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THE WAVELET TRANSFORMS IN GELFAND-SHILOV

SPACES

STEVAN PILIPOVIĆ, DUŠAN RAKIĆ, NENAD TEOFANOV,
AND JASSON VINDAS

Abstract. We describe local and global properties of wavelet
transforms of ultra-differentiable functions. The results are given
in the form of continuity properties of the wavelet transform on
Gelfand-Shilov type spaces and their dual spaces. In particular,
we introduce a new family of highly time-scale localized spaces
on the upper half-space. We study the wavelet synthesis operator
(the left-inverse of the wavelet transform) and obtain the resolu-
tion of identity (Calderón reproducing formula) in the context of
ultradistributions.

1. Introduction

One of the most useful concepts in time-frequency analysis for signal
analysts and engineers is the wavelet series expansion of a signal. The
coefficients in such series, representing the discrete version of a signal,
are then used in the signal analysis, processing and synthesis. The
continuous versions of these discrete representations lead to the wavelet
(analysis) transform Wψ and the wavelet synthesis operator Mφ [17].
The authors have studied both transforms in several papers, [29, 30,
31, 35, 40]. Although the continuous transforms are less popular in
the literature than their discrete counterparts, studying the intrinsic
properties of the continuous wavelet transform is also a very important
subject. In particular, continuous transforms may potentially serve
well in the study of microlocal and pointwise aspects of a signal, cf.
[11, 18, 22, 33]. Microlocal aspects have also been recently studied by
different authors via shearlet transforms, see e.g. [9, 15]. An interesting
alternative approach to the wavelet transform in several variables with
applications in microlocal analysis is performed in [11].
It is well known that smooth orthonormal wavelets cannot have ex-

ponential decay, cf. [8, 10, 16]. In this paper we study the wavelet
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transform defined by wavelets with almost exponential decay. In this
context it is then natural to work with Gelfand-Shilov spaces as a
functional-analytic groundwork. We shall prove continuity theorems
for the wavelet transform and the wavelet synthesis operator on spaces
of Gelfand-Shilov type, see Section 2 for definitions. In contrast to
known results [17, 27, 29, 35], we introduce in the article a new fam-
ily of (semi-)norms with additional parameters in the corresponding
wavelet image space. These parameters measure fast decay or growth
orders of the wavelet transform and the wavelet synthesis operator.
Roughly speaking, our considerations are able to detect Gevrey ultra-
differentiability properties (such as analyticity) via appropriate decay
of the wavelet transform.
Gelfand-Shilov spaces of ultra-differentiable functions were originally

introduced in [12] as a tool to treat existence and uniqueness questions
for parabolic initial-value problems. Such spaces, consisting of Gevrey
ultra-differentiable functions, are also very useful in hyperbolic and
weak hyperbolic problems, see [1, 13, 36] and the references therein.
Exponential decay and holomorphic extension of solutions to globally
elliptic equations in terms of Gelfand-Shilov spaces have been recently
studied in [3, 4], see also [1]. We refer to [26] for an overview of results in
this direction and for applications in quantum mechanics and traveling
waves. On the other hand, in the context of time-frequency analysis,
the Gelfand-Shilov spaces have recently captured much attention in
connection with modulation spaces [14], localization operators [7], and
the corresponding pseudodifferential calculus [32, 38, 39]. We follow
here Komatsu’s approach [20] to spaces of ultra-differentiable functions.
Another widely used approach is that of Braun, Meise, Taylor, Vogt
and their collaborators, see e.g. [2] and the recent contribution [34].
These two approaches are equivalent in many interesting situations, cf.
[23] for more details.
We remark that the wavelet transform in the context of Gelfand-

Shilov spaces was already studied in [27, 28] in dimension n = 1. In
the present article we propose and develop an intrinsically different ap-
proach, which also covers the multidimensional case. We employ here
wavelets with all vanishing moments. The advantage of this condition
is that one is able to translate ultra-differentiability and subexponen-
tial decay of functions into sharper localization properties in the scale
variable of the wavelet transform. Our approach also provides the
resolution of the identity (Calderón reproducing formula) for ultradis-
tributions. As a matter of fact, this inversion formula for the wavelet
transform of ultradistributions seems to be out of reach of the results
from [27, 28].
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We point out that the number of vanishing moments (called cancella-

tions in [25]) of a wavelet ψ is intimately related to the order of approx-

imation of the corresponding wavelet series via the so-called Strang-Fix
condition. In particular, wavelets with many vanishing moments are
appropriate when dealing with objects which are very regular except
for a few isolated singularities, cf. [8, 24]. It is also well known [16]
that as soon as an orthogonal wavelet belongs to the Schwartz class
S(Rn) then all its moments must vanish. In [17] wavelets with all van-
ishing moments were used to develop a distributional framework for
the wavelet transform in the context of Lizorkin spaces. Here we shall
develop an new ultradistributional framework.
The paper is organized as follows. In Section 2 we explain some

facts about Gelfand-Shilov type spaces. In particular, we introduce
a new four-parameter family Sst,τ1,τ2(H

n+1) of function spaces on the
upper-half space and study its properties (see Subsection 2.1). Section
3 contains our main continuity results, Theorems 1 and 2, which imply
Calderón reproducing formulas for ultradistributions (Theorem 3 and
Corollary 1). Finally, in Section 4 we collect the proofs of the main
results.

1.1. Notation and notions. We denote byHn+1 = Rn×R+ the upper
half-space and N = {0, 1, 2, . . . }. The unit sphere in Rn is denoted by
Sn−1. When x, y ∈ Rn and m ∈ Nn, |x| denotes the Euclidean norm,
〈x〉 = (1+|x|2)1/2, xy = x1y1+x2y2+· · ·+xnyn, x

m = xm1

1 . . . xmn
n , m! =

m1!m2! . . .mn!, ∂
m = ∂mx = ∂m1

x1 . . . ∂
mn
xn , and △ denotes the Laplacian:

△ = △x = ∂2
x2
1

+ · · ·+∂2x2n. By a slight abuse of notation, the length of a

multi-indexm ∈ Nn is denoted by |m| = m1+· · ·+mn, and the meaning
of | · | shall be clear from the context. We denote by C, h, . . . positive
constants which may be different in various occurrences; A . B means
that A ≤ C ·B for some positive constant C. If A . B and B . A we
write A ≍ B. The dual pairing between a test function space A and its
dual space of (ultra)distributions A′ is denoted by 〈 · , · 〉 =A′ 〈 · , · 〉A.
When α and β are multi-indices and n is the space dimension, we

have

|α|! ≤ n|α|α!, α!β! ≤ (α+ β)! ≤ 2|α|+|β|α!β!.

2. Gelfand-Shilov type spaces

In this section we discuss definitions and properties of the test func-
tion spaces that will be employed in our study of the wavelet transform.
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For the reader’s convenience, and in order to be self-contained, we
first recall various spaces of rapidly decreasing functions that were con-
sidered in the context of wavelet transform in e.g. [17, 29].
The moments of ϕ ∈ S(Rn), the Schwartz space of rapidly decreasing

smooth test functions, are denoted by µm(ϕ) =
∫

Rn x
mϕ(x)dx, m ∈

N
n. We fix constants in the Fourier transform as follows: ϕ̂(ξ) =

∫

Rn ϕ(x)e
−ix·ξdx, ξ ∈ Rn.

The Lizorkin space S0(R
n) = {ϕ ∈ S(Rn) : µm(ϕ) = 0, ∀m ∈ Nn} is

a closed subspace of S(Rn) equipped with the relative topology inhered
from S(Rn), [17, 37].
The space S(Hn+1) of “highly localized functions over the half-space”

[17] consists of Φ ∈ C∞(Hn+1) such that the seminorms

pl,kα,β(Φ) = sup
(b,a)∈Hn+1

(

al +
1

al

)

〈b〉k
∣

∣

∣
∂αa ∂

β
b Φ(b, a)

∣

∣

∣
(1)

are finite for all l, k, α ∈ N and for all β ∈ Nn.

When (b, a) ∈ H
n+1 and k, l ∈ N, then

(

al + 1
al

)

≍
(

a+ 1
a

)l
and

〈b〉k ≍ |b|k when |b| is large enough, see also Remark 1 below.
We introduce spaces of Gelfand-Shilov type by analogy to S(Rn),

S0(R
n) and S(Hn+1). The family of spaces Sρ1ρ2 (R

n) introduced by I.
M. Gelfand and G. E. Shilov in the study of Cauchy problems was
systematically studied in [12], see [26] for a recent survey.
Recall that ϕ ∈ S(Rn) belongs to the Gelfand-Shilov space Sρ1ρ2 (R

n),
ρ1, ρ2 > 0, if there exists a constant h > 0 such that

|xαϕ(β)(x)| . h−|α+β| α!ρ2β!ρ1 , x ∈ R
n, α, β ∈ N

n.

The space Sρ1ρ2 (R
n) is nontrivial if and only if ρ1 + ρ2 ≥ 1. The family

of norms

pρ1,ρ2h (ϕ) = sup
x∈Rn,α,β∈Nn

h|α+β|

α!ρ2β!ρ1
|xαϕ(β)(x)|, h > 0, (2)

defines the canonical inductive topology of Sρ1ρ2 (R
n).

It is well known [6] that ϕ ∈ Sρ1ρ2 (R
n) if and only if there exists h > 0

such that

sup
x∈Rn

eh|x|
1/ρ2 |ϕ(x)| <∞ and sup

ξ∈Rn

eh|ξ|
1/ρ1 |ϕ̂(ξ)| <∞.

Hence, the Fourier transform is an isomorphism between Sρ1ρ2 (R
n) and

Sρ2ρ1 (R
n).

The space Sρ1ρ2 (R
n) is non-quasianalytic, namely, it contains com-

pactly supported functions, if and only if ρ1 > 1. Then it consists
of Gevrey ultra-differentiable functions, cf. [36]. If ρ1 = 1, then
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ϕ ∈ Sρ1ρ2 (R
n) is a real analytic function, and if 0 < ρ1 < 1, then it

is an entire function.

Remark 1. We will often use an equivalent family of norms where in (2)
(and in other similar situations) xαϕ(β)(x) is replaced by 〈x〉αϕ(β)(x),
(〈x〉αϕ(x))(β) or (xαϕ(x))(β). Moreover, instead of the supremum norm
any Lp norm (1 ≤ p < ∞) gives rise to an equivalent topology on
Sρ1ρ2 (R

n) (cf. [5, Ch 2.5]).

We denote by (Sρ1ρ2 )0(R
n) the closed subspace of Sρ1ρ2 (R

n) given by

(Sρ1ρ2 )0(R
n) =

{

ϕ ∈ Sρ1ρ2 (R
n) : µm(ϕ) = 0, ∀m ∈ N

n
}

.

One can show that (Sρ1ρ2 )0(R
n), ρ1, ρ2 > 0, is nontrivial if and only if

ρ2 > 1 (cf. [12]).

2.1. Gelfand-Shilov type spaces on the upper half-space. In
this subsection we introduce a new scale of function spaces which
describes sharp subexponential/superexponential localization over the
upper half-space.
To this end, we employ parameters which measure the decay prop-

erties of a function with respect to the scaling variable a > 0 at zero
and at infinity, as well as their Gevrey ultra-differentiability and decay
properties in the localization variable b. While the seminorms in (1)
measure polynomial decay of a certain order with respect to the scal-
ing parameter a > 0 at zero and at infinity, the seminorms in (3) may
detect (super- and sub-) exponential decay of different orders at zero
and at infinity.

Definition 1. Let s, t, τ1, τ2 > 0. A smooth function Φ belongs to
Sst,τ1,τ2(H

n+1), if for every α ∈ N there exists a constant h > 0 such
that

ps,t,τ1,τ2α,h (Φ) = sup
h|β|+k+l1+l2

β!sk!tl1!τ1l2!τ2

(

al1 +
1

al2

)

〈b〉k
∣

∣

∣
∂αa ∂

β
b Φ(b, a)

∣

∣

∣
<∞,

(3)
where the supremum is taken over

((b, a), (k, l1, l2), β) ∈ Λ = H
n+1 × N

3 × N
n.

The topology of Sst,τ1,τ2(H
n+1) is defined via the family of seminorms

(3), as inductive limit with respect to h and projective limit with re-
spect to α.
The space Sst,τ1,τ2(H

n+1) is nontrivial if and only if s + t ≥ 1, which
can be proved as follows.
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Consider the set of smooth functions in Hn+1 of the form Φ(b, a) =
g(b)f(a), b ∈ Rn, a ∈ R+. Then ps,t,τ1,τ2α,h (Φ) < ∞ is equivalent to

ps,th (g) <∞ and

sup
a>0,l1,l2∈N

hl1+l2

l1!τ1l2!τ2

(

al1 +
1

al2

)

|∂αa f(a)| <∞. (4)

Thus, if s + t ≥ 1, then Sst,τ1,τ2(H
n+1) is non-trivial, τ1, τ2 > 0. For

example, if g ∈ Sst (R
n), then Hn+1 ∋ (b, a) 7→ e−a

1/τ1−a−1/τ2g(b) ∈
Sst,τ1,τ2(H

n+1).
Since for fixed a ∈ R+ and l1 = l2 = α = 0, it follows from (3) that

Φ(·, a) ∈ Sst (R
n), we see that the condition s + t ≥ 1 is also necessary

for the non-triviality of Sst,τ1,τ2(H
n+1).

Obviously, the family Sst,τ1,τ2(H
n+1) is increasing with respect to pa-

rameters s, t, τ1, τ2. The parameters τ1 and τ2 measure the behavior
of Φ ∈ Sst,τ1,τ2(H

n+1), with respect to a > 0 at infinity and at zero,
respectively.
It can be shown that all these spaces of test functions are closed

under multiplication by (ultra-)polynomials, partial differentiation (or
more generally ultra-differential operators), translation and dilation,
cf. [12] for Sρ1ρ2 (R

n). The following lemma can be proved in the same
way as it is done in [12, Chapter IV 6.2] for Sρ1ρ2 (R

n), we therefore omit
its proof.

Lemma 1. Let Φ ∈ C∞(Hn+1) and let F1Φ denote its Fourier trans-

form with respect to the first variable:

F1Φ(ξ, a) =

∫

Rn

e−ibξ Φ(b, a) db, (ξ, a) ∈ H
n+1.

Then Φ ∈ Sst,τ1,τ2(H
n+1) if and only if F1Φ ∈ Sts,τ1,τ2(H

n+1). Fur-

thermore, F1 is a topological isomorphism between Sst,τ1,τ2(H
n+1) and

Sts,τ1,τ2(H
n+1).

Next, we show that (3) precisely describes the rate of decay of the
derivatives of Φ.

Proposition 1. Let Φ ∈ Sst,τ1,τ2(H
n+1) and α ∈ N. Set

qs,t,τ1,τ2α,h (Φ) := sup
((b,a),β)∈Hn+1×Nn

h|β|

β!s
eh(a

1/τ1+a−1/τ2+|b|1/t)
∣

∣

∣
∂αa ∂

β
b Φ(b, a)

∣

∣

∣
.

Then ps,t,τ1,τ2α,h (Φ) < ∞ for some h > 0, if and only if qs,t,τ1,τ2α,h (Φ) < ∞
for some h > 0.
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Proof. Assume that ps,t,τ1,τ2α,h (Φ) < ∞ for some h > 0. Then, for any
given l1, l2, k ∈ N,

hl1+l2+k

l1!τ1 l2!τ2k!t

(

al1 +
1

al2

)

〈b〉k|∂αaΦ(b, a)|

is uniformly bounded on Hn+1. This implies that appropriate summa-
tions over l1, l2 and k are also uniformly bounded. Indeed, the estimate

C−1 e(r−ε)η
1/r

≤
∞
∑

j=0

ηj

(j!)r
≤ C e(r+ε)η

1/r

, ∀η ≥ 0,

which holds for every r, ε > 0 and for some C = C(r, ε) > 0, yields

|∂αa ∂
β
b Φ(b, a)| . h̃|β|β!se

−h̃

(

a
1
τ1 +( 1

a
)

1
τ2 +|b|

1
t

)

, (b, a) ∈ H
n+1, β ∈ N

n,

for some h̃ > 0. By taking the corresponding supremum, we obtain
that qs,t,τ1,τ2α,h (Φ) is finite for some h > 0.

Conversely, assume that qs,t,τ1,τ2α,h (Φ) <∞ for some h > 0. Employing
the same estimate as above, we conclude that

(1 + al1)|∂αa ∂
β
b Φ(b, a)| . h|β|+l1β!sl1!

τ1 ,

(

1 +
1

al2

)

|∂αa ∂
β
b Φ(b, a)| . h|β|+l2β!sl2!

τ2

and

〈b〉k|∂αa ∂
β
b Φ(b, a)| . h|β|+kβ!sk!t,

for every ((b, a), (k, l1, l2), β) ∈ Λ. Hence,

(

al1 +
1

al2

)

〈b〉k|∂αa ∂
β
b Φ(b, a)|

3 . h3|β|+l1+l2+kβ!3sl1!
τ1l2!

τ2k!t,

i.e.

h̃|β|+l1+l2+k

β!sl1!τ1l2!τ2k!t

(

al1 +
1

al2

)

〈b〉k|∂αa ∂
β
b Φ(b, a)| < C

for some h̃, C > 0. By taking the supremum over Λ, we obtain that
ps,t,τ1,τ2α,h (Φ) is finite for some h > 0.

�
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3. Wavelet transform of ultradifferentiable functions

and ultradistributions

In this section we study continuity properties of wavelet transforms
on Gelfand-Shilov spaces of ultradifferentiable functions and their du-
als. In particular, we derive the resolution of identity formula in a class
of tempered ultradistributions. As mentioned in the introduction, the
most technical proofs are postponed to Section 4.

3.1. Continuity theorems. A function ψ ∈ Sρ1ρ2 (R
n) is called a wavelet

if µ0(ψ) = 0. The wavelet transform of a tempered ultradistribution
f ∈ (Sρ1ρ2 (R

n))′ with respect to the wavelet ψ ∈ Sρ1ρ2 (R
n) is defined via

Wψf(b, a) =

〈

f(x),
1

an
ψ̄

(

x− b

a

)〉

=
1

an

∫

Rn

f(x)ψ̄

(

x− b

a

)

dx,

(5)
where (b, a) ∈ Hn+1. In fact, if ψ is a test function and the dual pairing
in (5) makes sense, then we call Wψf the wavelet transform of f with
respect to ψ.
We first investigate continuity properties of the wavelet transform

when the analyzing function belongs to a space of ultradifferentiable
functions.

Theorem 1. Let ρ1 > 0, ρ2 > 1 and let s > 0, t > ρ1 + ρ2, τ1 > ρ1
and τ2 > ρ2 − 1. Then the mapping

W : (Sρ1ρ2 )0(R
n)× (S

min{s,τ2−ρ2+1}
1−ρ1+min{t−ρ2,τ1}

)0(R
n) → Sst,τ1,τ2(H

n+1),

given by W : (ψ, ϕ) 7→ Wψϕ, is continuous.

Remark 2. In the sequel we will use the continuity of

W : (Sρ1ρ2 )0(R
n)× (Sst+1−ρ1−ρ2

)0(R
n) → Sst,t−ρ2,s+ρ2−1(H

n+1)

which follows from Theorem 1, when τ1 = t− ρ2 and τ2 = s+ ρ2 − 1.

The following simple facts are useful in calculations:
By the Plancherel theorem, we have

Wψϕ(b, a) =
1

(2π)n

∫

Rn

eibξψ̂(aξ)ϕ̂(ξ)dξ, (b, a) ∈ H
n+1.

Hence F1Wψϕ(ξ, a) = ψ̂(aξ)ϕ̂(ξ), (ξ, a) ∈ Hn+1. Moreover, for (b, a) ∈
Hn+1,

∂βbWψϕ(b, a) =

∫

Rn

ϕ(β)(ax+ b)ψ(x)dx = i|β|
∫

Rn

eiξbξβϕ̂(ξ)ψ̂(aξ)dξ,

and, if ψ ∈ (Sρ1ρ2 )0(R
n) then

∫

bγWψϕ(b, a)db = 0, γ ∈ Nn.



THE WAVELET TRANSFORMS IN GELFAND-SHILOV SPACES 9

In order to construct the left-inverse for the wavelet transform, we
proceed as follows. The wavelet synthesis transform of Φ ∈ Sst,τ1,τ2(H

n+1),
s, t, τ1, τ2 > 0, s+t ≥ 1, with respect to φ ∈ (Sρ1ρ2 )0(R

n), ρ1 > 0, ρ2 > 1,
is defined by

MφΦ(x) =

∫ ∞

0

(
∫

Rn

Φ(b, a)
1

an
φ

(

x− b

a

)

db

)

da

a
, x ∈ R

n.

Theorem 2. Let ρ1 > 0, ρ2 > 1 and let s > 0, t > ρ2 and τ > 0. Then
the bilinear mappings

a) M : (Sρ1ρ2 )0(R
n)×Sτt,t−ρ2,s−ρ1(H

n+1) → (Sst )0(R
n), when s > ρ1;

b) M : (Sρ1ρ2 )0(R
n)× Sst,t−ρ2,τ (H

n+1) → (Sst )0(R
n),

given by M : (φ,Φ) 7→ MφΦ, are continuous.

Remark 3. 1. It will be seen from the proof of Theorem 2 that a more
general statement holds true. In fact, M can actually be extended
to a continuous mapping from Sρ1ρ2 (R

n) × Sτt,t−ρ2,s−ρ1(H
n+1) or from

Sρ1ρ2 (R
n)×Sst,t−ρ2,τ (H

n+1) to Sst (R
n). However, we will only use wavelets

with all vanishing moments in the rest of this article.
2. The continuity properties from Theorem 2 a) and b) provide

information about high regularity and the decay properties of MφΦ.
In the notation of Gelfand-Shilov spaces the upper index is related to
Gevrey ultra-differentiability while the lower index is related to the
decay of a function. Note that when s = 1, the function MφΦ is real
analytic and if 0 < s < 1, it extends to an entire function on Cn. The

index t gives subexponential decay at rate e−h|x|
1/t
, for some h > 0. In

Theorem 2 a) the regularity of the image MφΦ is measured in terms
of the regularity of the wavelet φ and the decay of Φ when a > 0 tends
to zero, while Theorem 2 b) shows that the regularity of Φ is preserved
under the action of the synthesis operator. Similarly, the decay ofMφΦ
at infinity is related to the corresponding decays of φ and Φ in both
Theorem 2 a) and b).

The importance of the wavelet synthesis operator follows from the
fact that it can be used to construct a left inverse for the wavelet
transform, whenever the wavelet possesses nice reconstruction proper-
ties. We end this subsection with a necessary and sufficient condition
for such property to hold in the context of Gelfand-Shilov spaces.
We start with some terminology. We say that a wavelet ψ ∈ S0(R

n)
admits a reconstruction wavelet φ ∈ S0(R

n) if

cψ,φ(ω) =

∫ ∞

0

ψ̂(rω)φ̂(rω)
dr

r
, ω ∈ S

n−1,
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is finite, non-zero, and independent of the direction ω ∈ Sn−1. In such
a case we write cψ,φ := cψ,φ(ω).
For example, if ψ ∈ S0(R

n) is non-trivial and rotation invariant,
then it is its own reconstruction wavelet. In fact, the existence of a
reconstruction wavelet is equivalent to non-degenerateness in the sense
of the following definition (see [31, Proposition 5.1]).

Definition 2. ([30, 31]) A test function ϕ ∈ S(Rn) is said to be non-

degenerate if for any ω ∈ Sn−1 the function Rω(r) = ϕ̂(rω), r ∈ [0,∞)
is not identically zero, that is, suppRω 6= ∅, for each ω ∈ Sn−1. If in
addition µ0(ϕ) = 0, then ϕ is called a non-degenerate wavelet.

We can now state the reconstruction formula for the wavelet trans-
form (cf. [17, Theorem 14.0.2]). If ψ ∈ S0(R

n) is non-degenerate and
φ ∈ S0(R

n) is a reconstruction wavelet for it, then

ϕ =
1

cψ,φ
MφWψϕ, ∀ϕ ∈ S(Rn). (6)

We are interested in wavelets in Gelfand-Shilov spaces. The ensu-
ing proposition shows that if the non-degenerate wavelet ψ possesses
higher regularity properties, then it is possible to choose a reconstruc-
tion wavelet with the same regularity as ψ.

Proposition 2. Let ψ ∈ (Sρ1ρ2 )0(R
n), ρ1 > 0, ρ2 > 1, be non-degenerate.

Then, it admits a reconstruction wavelet φ such that φ ∈ (Sτρ2)0(R
n),

∀τ > 0.

Proof. The proof is similar to that of [31, Proposition 5.1]. However,
here the reconstruction wavelet should satisfy additional regularity
properties.
Since ψ is non-degenerate, then, by Definition 2, there exist 0 < r1 <

r2 such that supp ψ̂(rω) ∩ [r1, r2] 6= ∅, ∀ω ∈ Sn−1.
The condition ρ2 > 1 implies that the space Sρ2τ (R) is non-quasianalytic

for every τ > 0. Let η ∈
⋂

τ>0 S
ρ2
τ (R) be a compactly supported non-

negative rotation-invariant function with 0 /∈ supp η and η(ξ) = 1 for
r1 ≤ |ξ| ≤ r2.
Consider the auxiliary function

g(ω) =

∫ ∞

0

η(r)|ψ̂(rω)|2
dr

r
> 0, ω ∈ S

n−1.

A straightforward computation shows that

sup
ω∈Sn−1

|∂αg(ω)| ≤ Ch|α|(α!)ρ2 , α ∈ N
n.
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In fact, g ∈ E{(α!)ρ2}(Sn−1), the Gevrey class of {(α!)ρ2}-ultra-differentiable
functions on the unit sphere Sn−1, see [20] for the definition. Then, by
employing an atlas on Sn−1 consisting of functions from E{(α!)ρ2}(Sn−1)
and [21, Lemma 1], once concludes that 1/g ∈ E{(α!)ρ2}(Sn−1), i.e., the
partial derivatives of 1/g satisfy the same decay properties as those of g.
Moreover, by [19, Theorem 8.2.4] and since the function ω : ξ 7→ ξ/|ξ|
is analytic off the origin, it follows that 1/g(ξ/|ξ|) ∈ E{(α!)ρ2} away from
the origin.
Finally we define the reconstruction wavelet via its Fourier trans-

form as follows. Set φ̂(ξ) := η(ξ)ψ̂(ξ)/g(ξ/|ξ|). It is a compactly
supported function, all of its partial derivatives vanish at the origin
and φ̂ ∈ ∩τ>0S

ρ2
τ (Rn). Therefore φ ∈ (Sτρ2)0(R

n), ∀τ > 0. Moreover,
by construction cψ,φ = cψ,φ(ω) = 1. This completes the proof.

�

Next we give an example of a non-degenerate wavelet from (Sρ1ρ2 )0(R
n).

Example 1. Assume that ρ1 > 0 and ρ2 > 1. Let ej = (0, 0, . . . , 1, . . . , 0),
with 1 at the j−th coordinate, and letB±j = B(±1

2
ej,

1
2
), j = 1, 2, . . . , n

denote the closed balls centered at ±1
2
ej with radius 1

2
. Since the class

Sρ2ρ1 (R
n) is non-quasiananalytic, it contains compactly supported func-

tions. Set ψ̂ =
∑n

j=−n φ̂j
j 6=0

, where the φ̂±j ∈ Sρ2ρ1 (R
n) are functions

supported by B±j , j = 1, 2, . . . , n, respectively, and positive in its in-

terior. Then the function ψ, the inverse Fourier transform of ψ̂, is an
example of non-trivial non-degenerate wavelet from (Sρ1ρ2 )0(R

n).

3.2. The wavelet transform of tempered ultradistributions. We
start with a useful growth estimate for the wavelet transform of an
ultradistribution. Recall, the wavelet transform of an ultradistribution
f with respect to the test function ψ is given by (5) whenever the dual
pairing is well defined.

Proposition 3. Let ρ1, ρ2 > 0, ρ1 + ρ2 ≥ 1, s > ρ1 and t > ρ2. If

ψ ∈ Sρ1ρ2 (R
n) and f ∈ (Sst (R

n))′, then for every k > 0,

|Wψf(b, a)| . ek
(

a
1

t−ρ2 +( 1
a
)

1
s−ρ1 +|b|

1
t

)

, (b, a) ∈ H
n+1.

Proof. Since ψ ∈ Sρ1ρ2 (R
n),

|∂βψ(x)| . h̃−|β|(β!)ρ1e−A|x|
1/ρ2

, x ∈ R
n, β ∈ N

n,

for some h̃, A > 0. For every h > 0 there exists Ch > 0 such that:

|Wψf(b, a)| ≤ Ch p
s,t
h

(

1

an
ψ̄
( · − b

a

)

)

, (b, a) ∈ H
n+1.
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So we have (for every c > 0):

|Wψf(b, a)| .
1

an
sup

x∈Rn,β∈Nn

h|β|

β!s
ec|ax+b|

1
t 1

a|β|
|ψ(β)(x)|

=
1

an
sup

x∈Rn,β∈Nn

h̃|β||ψ(β)(x)|

β!ρ1
eA|x|

1
ρ2
( h

h̃a

)|β| 1

β!s−ρ1
ec|ax+b|

1
t −A|x|

1
ρ2 ,

where h̃, A > 0. Therefore,

|Wψf(b, a)| . pρ1,ρ2l (ψ) e(s−ρ1)(
h
h̃a

)
1

s−ρ1
ec|b|

1
t sup
x∈Rn

(ec|ax|
1
t −A|x|

1
ρ2 ),

for some l > 0. Since g(r) := c(a ·r)
1

t −Ar
1

ρ2 , r > 0 attains its maximal

value at (ρ2c
tA

)
tρ2
t−ρ2 a

ρ2
t−ρ2 , and since we may chose arbitrary h > 0 and

c > 0, it follows that

|Wψf(b, a)| . ek
(

( 1
a
)

1
s−ρ1 +a

1
t−ρ2 +|b|

1
t

)

,

for every k > 0. �

Remark 4. Naturally, if ψ ∈ (Sρ1ρ2 )0(R
n), then Proposition 3 remains

valid for f ∈ ((Sst )0(R
n))′. Furthermore, if B′ ⊂ (Sst (R

n))′ is a bounded
set (resp. B′ ⊂ ((Sst )0(R

n))′ when ψ ∈ (Sρ1ρ2 )0(R
n))), then the conclu-

sion of Proposition 3 holds uniformly for f ∈ B′, as follows from the
Banach-Steinhaus theorem.

Next, we give an alternative definition of the wavelet transform of
an ultradistribution via duality.

Definition 3. Let ρ1 > 0, t > ρ2 > 1, s > 0 and τ > 0. If ψ ∈
(Sρ1ρ2 )0(R

n) and f ∈ ((Sst )0(R
n))′ then the wavelet transform Wψf of f

with respect to the wavelet ψ is defined as

〈Wψf(b, a),Φ(b, a)〉 := 〈f(x),Mψ̄Φ(x)〉, Φ ∈ Sst,t−ρ2,τ(H
n+1). (7)

Thus, Wψ : ((Sst )0(R
n))′ → (Sst,t−ρ2,τ (H

n+1))′ is continuous for the
strong dual topologies.

By Theorem 2 b), the transposition in (7) is well defined. Note that
we have freedom of the choice of τ . This fact will be crucial below.
If we assume that s > ρ1, then the choice τ = s − ρ1 leads to the
continuous mapping Wψ : ((Sst )0(R

n))′ → (Sst,t−ρ2,s−ρ1(H
n+1))′. The

next result shows the consistency between Definition 3 and (5) for this
choice of τ .
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Proposition 4. Assume that s > ρ1 > 0 and t > ρ2 > 1. Let f ∈
((Sst )0(R

n))′ and ψ ∈ (Sρ1ρ2 )0(R
n). Then, for every Φ ∈ Sst,t−ρ2,s−ρ1(H

n+1),

〈f(x),Mψ̄Φ(x)〉 =

∫ ∞

0

∫

Rn

Wψf(b, a)Φ(b, a)
dbda

a
. (8)

Proof. Fix Φ ∈ Sst,t−ρ2,s−ρ1(H
n+1). Proposition 1 implies that there is

h > 0 such that

|Φ(b, a)| . e
−h

(

a
1

t−ρ2 +a
− 1

s−ρ1 +|b|
1
t

)

, (b, a) ∈ H
n+1. (9)

Let {fj}
∞
j=0 be a sequence such that fj → f in ((Sst )0(R

n))′ and fj ∈
S0(R

n), for every j ∈ N. In view of Proposition 3 (cf. Remark 4),

|Wψfj(b, a)| . e
h
2

(

a
1

t−ρ2 +( 1
a
)

1
s−ρ1 +|b|

1
t

)

, (b, a) ∈ H
n+1, (10)

uniformly in j ∈ N. Fubini’s theorem and the regularity of fj imply
∫

Rn

fj(x)Mψ̄Φ(x)dx =

∫ ∞

0

∫

Rn

Wψfj(b, a)Φ(b, a)
dbda

a
(11)

Noticing that Wψfj(b, a) → Wψf(b, a) pointwisely, the estimates (9)
and (10) allow us to use the Lebesgue dominated convergence theorem
in (11) to conclude (8). �

We also introduce the the wavelet synthesis transform of an ultra-
distribution on H

n+1 via a duality approach. The consistency of the
following definition is ensured by Theorem 1 (cf. Remark 2).

Definition 4. Let ρ1 > 0, ρ2 > 1, s > 0 and t > ρ1 + ρ2. Let
F ∈ (Sst,t−ρ2,s+ρ2−1(H

n+1))′ and φ ∈ (Sρ1ρ2 )0(R
n). The wavelet synthesis

transform MφF of F with respect to the wavelet φ is defined by

〈MφF (x), ϕ(x)〉 := 〈F (b, a),Wφϕ(b, a)〉, ϕ ∈ (Sst+1−ρ1−ρ2
)0(R

n).

Thus, Mφ : (Sst,t−ρ2,s+ρ2−1(H
n+1))′ → ((Sst+1−ρ1−ρ2

)0(R
n))′ is continu-

ous.

We derive the following resolution of the identity mapping Id as
an easy consequence of our previous results. In the next theorem we
implicitly use the choice τ = s+ ρ2 − 1 in Definition 3.

Theorem 3. Let ρ1 > 0, ρ2 > 1, s > 0 and t > ρ1 + ρ2. Let ψ ∈
(Sρ1ρ2 )0(R

n) be a non-degenerate wavelet and let φ ∈ (Sρ1ρ2 )0(R
n) be a

reconstruction wavelet for it. Then the Calderón reproducing formula

Id =
1

cψ,φ
MφWψ

holds in ((Sst )0(R
n))′.
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Proof. Let f ∈ ((Sst )0(R
n))′. Since (Sst+1−ρ1−ρ2

)0(R
n) is dense in the

space (Sst )0(R
n), it is enough to prove the identity for test functions ϕ ∈

(Sst+1−ρ1−ρ2
)0(R

n). Then, by Definitions 4 and 3, and the reconstruction
formula (6), it follows that

〈MφWψf, ϕ〉 = 〈Wψf,Wφ̄ϕ〉 = 〈f,MψWφϕ〉 = cφ̄,ψ̄〈f, ϕ〉. (12)

�

Combining Remark 2, Proposition 4, and the relation (12), we obtain
an extension of the desingularization formula now in the context of
ultradistributions (cf. [17, 31] for the case of distributions).

Corollary 1. In addition to the assumptions of Theorem 3 suppose

that σ := ρ1 + ρ2 − 1 < s. Then,

〈f, ϕ〉 =
1

cψ,φ

∫ ∞

0

∫

Rn

Wψf(b, a)Wφϕ(b, a)
dbda

a
, ∀ϕ ∈ (Ss−σt−σ )0(R

n).

As an immediate consequence of Theorem 3 and Theorem 2 b) we
have the following regularity theorem for ultradistributions.

Corollary 2. Let ρ1 > 0, ρ2 > 1, s > 0 and t > ρ1 + ρ2. Let ψ ∈
(Sρ1ρ2 )0(R

n) be non-degenerate and let f ∈ ((Sst )0(R
n))′. If Wψf ∈

Sst,t−ρ2,τ (H
n+1) for some τ > 0 then f ∈ (Sst )0(R

n).

4. Proofs of main results

This section collects the proofs of Theorems 1 and 2.

Remark 5. On several occasions we will use the following facts. If
ϕ ∈ Sρ1ρ2 (R

n), ρ1 + ρ2 ≥ 1, so that pρ1,ρ2h0
(ϕ) <∞ for some h0 > 0, then

there exists h1 > 0 such that

sup
α,β∈Nn

h
|α+β|
1

α!ρ2β!ρ1

∫

|x||α||ϕ(β)(x)|dx . pρ1,ρ2h0
(ϕ). (13)

In addition, if (13) holds, then there exists h2 > 0 such that

sup
α,β∈Nn

h
|α+β|
2

α!ρ2β!ρ1
|x||α||ϕ(β)(x)| <∞.

We will omit the parts of the proofs where these arguments appear.
We will often make use of the fact that multiplication by | · ||α| (or by
〈·〉|α|) simply enlarges the corresponding constants h > 0. We will also
use, without explicit reference, the estimate

sup
β∈Nn,x∈Rn

h
|β|
0 (fg)(β+α)(x)

β!s
. sup

β∈Nn,x∈Rn

h
|β|
1 f

(β)(x)

β!s
sup

β∈Nn,x∈Rn

h
|β|
1 g

(β)(x)

β!s
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for some h1 = h1(α) > 0. Finally, we shall need the following form of
the reminder term in the Taylor formula

(Rα,mf)(x, y) =
∑

|α|=m

m(y − x)α

α!

∫ 1

0

(1− θ)m−1f (α)(x+ θ(y − x))dθ.

4.1. Proof of Theorem 1. Let ϕ and ψ satisfy

p
min{s,τ2−ρ2+1},1−ρ1+min{t−ρ2,τ1}
h (ϕ)pρ1,ρ2h (ψ) <∞. (14)

We will show that there exists h0 > 0 such that ps,t,τ1,τ2α,h0
(Wψϕ) < ∞,

that is, the supremum of

J =
h
|β|+k+l1+l2
0 (al1 + a−l2)〈b〉k|∂αa ∂

β
bWψϕ(b, a)|

β!sk!tl1!τ1l2!τ2

over

((b, a), (k, l1, l2), β) ∈ Λ = H
n+1 × N

3 × N
n

is finite for some h0 > 0. Without loss of generality we assume from
now on that α = 0.

Remark 6. In the following steps of the proof we start with h0 > 0
and in every step determine a new constant h1 ≤ h2 ≤ · · · ≤ h7 which
successively depends on the previous one, that is, hm depends on hm−1,
m = 1, 2, . . . , 7 and h7 should be equal to h > 0 in (14). Then, by going
in the opposite direction, we determine h6 from h7, h5 from h6, . . . ,
and h0 from h1. In such way for the constant h > 0 given in (14) we
find h0 > 0 so that

ps,t,τ1,τ20,h0
(Wψϕ) = sup

Λ
J . p

min{s,τ2−ρ2+1},1−ρ1+min{t−ρ2,τ1}
h (ϕ)pρ1,ρ2h (ψ),

which will prove the Theorem.

We will estimate

J1 =
h
|β|+2k+2l1
0 (1 + a2l1)〈b〉2k|∂βbWψϕ(b, a)|

β!sk!2tl1!2τ1

over ((b, a), (k, l1), β) ∈ Λ1 = H
n+1 × N

2 × N
n, and

J2 =
h
|β|+2l2
0 (1 + a−2l2)|∂βbWψϕ(b, a)|

β!sl2!2τ2

over ((b, a), (k, l2), β) ∈ Λ2 = Hn+1 × N2 × Nn.
Since

h
2(|β|+k+l1+l2)
0 (al1 + a−l2)2〈b〉2k|∂βbWψϕ(b, a)|

2

β!2sk!2tl1!2τ1l2!2τ2
. sup

Λ1

J1 sup
Λ2

J2
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we would have

ps,t,τ1,τ20,h0
(Wψϕ) .

√

sup
Λ1

J1 sup
Λ2

J2.

We will show that there exists h7 > 0 which depends on h0 > 0 such
that

sup
Λ1

J1 . p
s,1−ρ1+min{t−ρ2,τ1}
h7

(ϕ) pρ1,ρ2h7
(ψ)

and

sup
Λ2

J2 . p
min{s,τ2−ρ2+1},t
h7

(ϕ) pρ1,ρ2h7
(ψ).

We first estimate supΛ1
J1. There exists h1 = h1(h0) such that

J1 .
h
|β|+2k+2l1
1 (1 + a2l1)〈b〉2k

β!s(2k)!t(2l1)!τ1〈b〉2k

∣

∣

∣

∣

∫

Rn

eiξb(1−△ξ)
k(ξβϕ̂(ξ)ψ̂(aξ))dξ

∣

∣

∣

∣

=
h
|β|+2k+2l1
1

β!s(2k)!t(2l1)!τ1

∣

∣

∣

∣

∣

∣

∫

Rn

eiξb
∑

|γ|≤2k

cγ∂
γ
ξ (ξ

βϕ̂(ξ)(1 + a2l1)ψ̂(aξ))dξ

∣

∣

∣

∣

∣

∣

.
h
|β|+2k+2l1
1

β!s(2k)!t(2l1)!τ1

∑

|γ|≤2k

|cγ|
∑

i+j≤γ

|c̃i,j|

∫

Rn

|∂i(ξβϕ̂(ξ))|a|j|(1+a2l1)|ψ̂(j)(aξ)|dξ,

where cγ and c̃i,j are correspondent binomial coefficients. As already
noticed, by the use of Leibniz rule, the binomial coefficients simply
increase the constant h1 so that

J1 . sup
h
|β|+2k+2l1
2

β!s(2k)!t(2l1)!τ1

∑

|i+j|≤2k

(I1 + I2),

for some h2 = h2(h1) > 0 which does not depend on β, k and l1, where

I1 =

∫

|ξ|≤1

|∂i(ξβϕ̂(ξ))|a|j|(1 + a2l1)|ψ̂(j)(aξ)|dξ,

and

I2 =

∫

|ξ|≥1

|∂i(ξβϕ̂(ξ))|a|j|(1 + a2l1)|ψ̂(j)(aξ)|dξ,

and the supremum is taken over β, k and l1.
By Remarks 1 and 5 it follows that there exists h3 = h3(h2) > 0,

which does not depend on β, i, j and l1, such that

h
|β|+|i|+|j|+2l1
2

β!s|i|!t|j|!t(2l1)!τ1
I2
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.
h
|β|+|i|+|j|+2l1
2

β!s|i|!t|j|!t(2l1)!τ1

∫

|ξ|≥1

|∂i(ξβϕ̂(ξ))||ξ|nan|aξ||j|−n(1+|aξ|2l1)|ψ̂(j)(aξ)|dξ

. sup
h
|β|+|i|
3

β!s|i|!t
〈ξ〉n|∂i(ξβϕ̂(ξ))| sup

h
|j|+2l1
3

|j|!t(2l1)!τ1

∫

Rn

|x||j|−n(1+|x|2l1)|ψ̂(j)(x)|dx

. ps,th3(ϕ)p
min{t−ρ2,τ1},ρ2
h3

(ψ),

where the suprema are taken over β, i, j, l1 and ξ, and we have splited
|j|!t into |j|!t−ρ2 and |j|!ρ2.
From the above calculations we conclude that there exists h3 > 0

such that

sup
Λ1

h
|β|+2k+2l1
2

β!s(2k)!t(2l1)!τ1
I2 . ps,th3(ϕ)p

min{t−ρ2,τ1},ρ2
h3

(ψ).

Next, we estimate the term with I1:

I1 .
∑

p≤i

(

i

p

)

β!

p!

∣

∣

∣

∣

∫

|ξ|≤1

ξβ−pϕ̂(p)(ξ)a|j|(1 + a2l1)ψ̂
(j)

(aξ)dξ

∣

∣

∣

∣

=
∑

p≤i

(

i

p

)

β!

p!

∣

∣

∣

∫

|ξ|≤1

ξβ−p
∑

|r|=2l1+|j|−n

(2l1 + |j|)ξr

r!
·I·a|j|(1+a2l1)ψ̂

(j)

(aξ)dξ
∣

∣

∣

where I =
∫ 1

0
(1 − θ)2l1+|j|−n−1ϕ̂(p+r)(θξ)dθ, and we have used Taylor’s

formula for ϕ̂ and the vanishing moments of ϕ.

Since
∑

|r|=2l1+|j|−n

1

r!
.

c2l1+|j|

(2l1)!|j|!
for some c > 0 and binomial coeffi-

cients just increase the constant h2, we obtain

h
|β|+2k+2l1
2

β!s(2k)!t(2l1)!τ1
I1

. sup
h
|β|+|i|+|j|+2l1
4

β!s|i|!t|j|!t+1(2l1)!τ1+1
|ϕ̂(i+r)(x)|

∫

|ξ|≤1

an(1+|aξ||j|+2l1−n)|ψ̂(j)(aξ)|dξ

. sup h
|β|+|i|+|j|+2l1
4

|ϕ̂(i+r)(x)|

β!s|i|!t|j|!t−ρ1−ρ2+1(2l1)!τ1+1−ρ1

∫

Rn

〈ξ〉|j|+2l1−n|ψ̂(j)(ξ)|

|j|!ρ1(2l1)!ρ1 |j|!ρ2
dξ

with |r| = 2l1 + |j|, the suprema taken over β, i, j, l1 and x, and where
h4 > 0 does not depend on β, i, j, l1. Moreover, we may choose h4 ≥ h3.
By Remarks 1 and 5 and similar arguments to those used in the

estimates of I2 it follows that there exists h5 = h5(h4) > 0 (which does
not depend on β, k and l1) such that

h
|β|+2k+2l1
2

β!s(2k)!t(2l1)!τ1
I1 . p

s,1−ρ1+min{t−ρ2,τ1}
h5

(ϕ) pρ1,ρ2h5
(ψ).
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Since the sequence h0, h1, . . . , h5 is non-decreasing, we conclude that

sup
Λ1

J1 . p
s,1−ρ1+min{t−ρ2,τ1}
h5

(ϕ) pρ1,ρ2h5
(ψ).

It remains to estimate supΛ2
J2. We now use Taylor’s formula for ϕ

and the vanishing moments of ψ to obtain, for a < 1,

J2 =
h
|β|+2l2
0 (1 + a−2l2)

β!s(2l2)!τ2
×

×

∣

∣

∣

∣

∣

∣

∫

Rn





∑

|r|=2l2

2l2
r!

(
∫ 1

0

(1− θ)2l2−1ϕ(β+r)(b+ θax)dθ

)

a2l2xrψ(x)



 dx

∣

∣

∣

∣

∣

∣

.
h
|β|+2l2
6

β!s(2l2)!τ2+1
sup
x∈Rn

max
|r|=2l2

|ϕ(β+r)(x)| sup
x∈Rn

|〈x〉r+n+1ψ(x)|

. p
min{s,τ2−ρ2+1},t
h7

(ϕ) pρ1,ρ2h7
(ψ),

for some h6 ≥ h5 and h7 = h7(h6). When a ≥ 1, we employ a similar
argument (Taylor’s formula is not needed for this case).
Thus, we choose h7 = h > 0 for which

p
min{s,τ2−ρ2+1},1−ρ1+min{t−ρ2,τ1}
h (ϕ) pρ1,ρ2h (ψ) <∞.

Now, reasoning as in Remark 6, we determine for given h7 = h the
corresponding h0 > 0 so that

ps,t,τ1,τ20,h0
(Wψϕ) . p

min{s,τ2−ρ2+1},1−ρ1+min{t−ρ2,τ1}
h7

(ϕ) pρ1,ρ2h7
(ψ) <∞,

which proves the Theorem.

4.2. Proof of Theorem 2. We may again assume that α = 0.
a) Let h > 0 be chosen so that

pτ,t,t−ρ2,s−ρ10,h (Φ) pρ1,ρ2h (φ) <∞.

By Lemma 1 it is enough to prove that there exists h0 > 0 such that

ps,th0(MφΦ) . pt,τ,t−ρ2,s−ρ10,h (F1Φ) p
ρ1,ρ2
h (φ). (15)

Let β ∈ Nn and k ∈ N. We may assume that k is even. Then

〈x〉k
∣

∣∂βx
(

MφΦ(x)
)∣

∣ = 〈x〉k
∣

∣

∣

∣

∂βx

∫

R+

∫

Rn

Φ(b, a)
1

an
φ

(

x− b

a

)

db
da

a

∣

∣

∣

∣

. 〈x〉k
∣

∣

∣

∣

∫

R+

∫

Rn

∂βb Φ(x− b, a)
1

an
φ

(

b

a

)

db
da

a

∣

∣

∣

∣

. 〈x〉k
∣

∣

∣

∣

∫

R+

∫

Rn

e−ixξξβΦ̂(−ξ, a)φ̂(aξ) dξ
da

a

∣

∣

∣

∣
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. 〈x〉k

∣

∣

∣

∣

∣

∫

R+

∫

Rn

(1−∆ξ)
k
2 e−ixξ

〈x〉k
ξβΦ̂(−ξ, a)φ̂(aξ) dξ

da

a

∣

∣

∣

∣

∣

.
∑

|r|+|q|≤k

∫

R+

∫

Rn

∂rξ (ξ
βΦ̂(−ξ, a))∂qξ (φ̂(aξ))| dξ

da

a
.

∑

|r|+|q|≤k

I,

where

I =

∫

R+

∫

Rn

a|q| |ξ||β| |∂rξ Φ̂(−ξ, a)||φ̂
(q)(aξ)| dξ

da

a
.

We use again Remark 5 in a similar way as it was done in the proof of
Theorem 1. In the corresponding steps of the proof we enlarge h0 > 0
and regroup the integrands in an appropriate way. In fact, by taking the
corresponding suprema, one can show that there exist h1 = h1(h0) > 0
and h2 = h2(h1) > 0, which do not depend on β, q and r, such that

h
|β|+k
0

β!sk!t
〈x〉k|∂βx

(

MφΦ(x)
)

| .
h
|β|+k
0

β!sk!t

∑

|r|+|q|≤k

I (16)

. sup h
|β|+|r|+|q|
1

(

a|q| + 1
a|β|+1

)

|∂rξ Φ̂(−ξ, a)|

β!s−ρ1q!t−ρ2r!t
|aξ||β||φ̂(q)(aξ)|

β!ρ1q!ρ2

. pt,τ,t−ρ2,s−ρ10,h2
(F1Φ) p

ρ1,ρ2
h2

(φ),

where the supremum is taken over ξ, a, β, r and q (we have also used
a|q|−|β|−1 ≤

(

a|q| + 1
a|β|+1

)

, a > 0).
By Remark 6 for h2 = h, there exists h0 > 0 such that

sup
β∈Nn,k∈N

h
|β|+k
0

β!sk!t

∑

|r|+|q|≤k

I . pt,τ,t−ρ2,s−ρ10,h (F1Φ) p
ρ1,ρ2
h (φ),

which implies (15).
b) Here we bound (16) by

sup h
|β|+|r|+|q|
3

(

a|q| + 1
a

)

|ξ||β||∂rξ Φ̂(−ξ, a)|

β!sq!t−ρ2r!t
|φ̂(q)(aξ)|

q!ρ2

. pt,s,t−ρ2,τ0,h4
(F1Φ) p

ρ1,ρ2
h4

(φ),

for some h3 = h3(h0), and h4 = h4(h3), where the supremum is taken
over ξ, a, β, r and q. Once again by Remark 6 for h4 = h, it follows
that there exists h0 > 0 such that

sup
β∈Nn,k∈N

h
|β|+k
0

β!sk!t

∑

|r|+|q|≤k

I . pt,s,t−ρ2,τ0,h (F1Φ) p
ρ1,ρ2
h (φ) <∞,

which completes the proof.



20 S. PILIPOVIĆ, D. RAKIĆ, N. TEOFANOV, AND J. VINDAS

Acknowledgement
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[11] J. Fell, H. Führ, F. Voigtlaender, Resolution of the wavefront set using general

continuous wavelet transforms, preprint (arXiv:1412.7158v1).
[12] I. M. Gelfand, G. E. Shilov, Generalized functions, Vols. II and III, Academic

Press, 1967.
[13] C. Garetto, M. Ruzhansky, Wave equation for sums of squares on compact lie

groups, . J. Differential Equations 258 (2015), 4324–4347.
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22 S. PILIPOVIĆ, D. RAKIĆ, N. TEOFANOV, AND J. VINDAS

[39] J. Toft, Multiplication properties in Gelfand-Shilov pseudo-differential calculus,
in: Pseudo-differential operators, generalized functions and asymptotics, pp.
117-172, Oper. Theory Adv. Appl. 231, Birkhäuser/Springer Basel AG, Basel,
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