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VALUE SHARING BY AN ENTIRE FUNCTION WITH ITS

DERIVATIVES

INDRAJIT LAHIRI AND RAJIB MUKHERJEE

Abstract. We prove a uniqueness theorem for an entire function, which shares certain
values with its higher order derivatives.

Acta Math. Vietnam. (to appear)

1. Introduction, Definitions and Results

Let f be a non-constant meromorphic function in the open complex plane C. We denote
by n(r,∞; f) the number of poles of f lying in | z |< r, the poles are counted according to
their multiplicities. The quantity

N(r,∞; f) =

r
∫

0

n(t,∞; f)− n(0,∞; f)

t
dt+ n(0,∞; f) log r

is called the integrated counting function or simply the counting function of poles of f .

Also m(r,∞; f) =
1

2π

2π
∫

0

log+ | f(reiθ) | dθ is called the proximity function of poles of f ,

where log+ x = log x if x ≥ 1 and log+ x = 0 if 0 ≤ x < 1.
The sum T (r, f) = m(r,∞; f)+N(r,∞; f) is called the Nevanlinna characteristic function

of f . We denote by S(r, f) any quantity satisfying S(r, f) = o{T (r, f)} as r → ∞ except
possibly a set of finite linear measure.

For a ∈ C, we put N(r, a; f) = N

(

r,∞;
1

f − a

)

and m(r, a; f) = m

(

r,∞;
1

f − a

)

.

Let us denote by n(r, a; f) the number of distinct a-points of f lying in | z |< r, where
a ∈ C ∪ {∞}. The quantity

N(r, a; f) =

r
∫

0

n(t, a; f)− n(0, a; f)

t
dt+ n(0, a; f) log r

denotes the reduced counting function of a-points of f .
Also by N (2(r, a; f) we denote the reduced counting function of multiple a-points of f .
Let A ⊂ C and nA(r, a; f) be the number of a-points of f lying in A∩ {z :| z |< r}, where

a ∈ C ∪ {∞} and the a-points are counted acording to their multiplicities. We put

NA(r, a; f) =

r
∫

0

nA(t, a; f)− nA(0, a; f)

t
dt+ nA(0, a; f) log r.

For a ∈ C∪{∞} we denote by E(a; f) the set of a-points of f (counted with multiplicities)
and by E(a; f) the set of distinct a-points of f .

For standard definitions and results of the value distribution theory the reader may consult
[2] and [8].
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In 1977 L. A. Rubel and C. C. Yang [7] first investigated the uniqueness of entire functions
sharing certain values with their derivatives. They proved the following result.

Theorem A. [7] Let f be a non-constant entire function. If E(a; f) = E(a; f (1)) and

E(b; f) = E(b; f (1)) for two distinct finite complex numbers a and b, then f ≡ f (1).

In 1979, E. Mues and N. Steinmetz [6] improved Theorem A in the following manner.

Theorem B. [6] Let a, b be two distinct finite complex numbers and f be a non-constant

entire function. If E(a; f) = E(a; f (1)) and E(b; f) = E(b; f (1)), then f ≡ f (1).

In 1986, G. Jank, E. Mues and L. Volkmann [3] dealt with the case of a single shared value
by the two derivatives of an entire function. Their result may be stated as follows.

Theorem C. [3] Let f be a non-constant entire function and a(6= 0) be a finite complex

number. If E(a; f) = E(a; f (1)) and E(a; f) ⊂ E(a; f (2)) then f ≡ f (1).

In 2002 J. Chang and M. Fang [1] extended Theorem C in the following way.

Theorem D. [1] Let f be a non-constant entire function and a, b be two non-zero finite

constants. If E(a; f) ⊂ E(a; f (1)) ⊂ E(b; f (2)) , then either f = λe
bz

a +
ab− a2

b
or f =

λe
bz

a + a, where λ(6= 0) is a constant.

In Theorem C it is not possible to replace the second derivative by any higher order
derivative. For, let f(z) = eωz + ω − 1, where ωn−1 = 1, ω 6= 1 and n(≥ 3) is an integer.

Then E(ω; f) = E(ω; f (1)) = E(ω; f (n)) but f 6≡ f (1).
Considering higher order derivatives, H. Zhong [10] proved the following result.

Theorem E. [10] Let f be a non-constant entire function and a(6= 0,∞) be a complex

number. If E(a; f) = E(a; f (1)) and E(a; f) ⊂ E(a; f (n)) ∩ E(a; f (n+1)) for n ≥ 1, then

f ≡ f (n).

P. Li and C. C. Yang [5] also considered the higher order derivatives and proved the
following theorem.

Theorem F. [5] Let f be a non-constant entire function, a be a finite nonzero complex

number and n be a positive integer. If E(a; f) = E(a; f (n)) = E(a; f (n+1)), then f ≡ f (1).

To state the next result we require the following definition. Let f and g be two non-
constant meromorphic functions defined in C. For a ∈ C∪{∞} we put B = E(a; f)∆E(a; g),
where ∆ denotes the symmetric difference of sets. The functions f and g are said to share
the value a IMN if NB(r, a; f) = S(r, f) and NB(r, a; g) = S(r, g) {see [10]}.

In 1997 L. Z. Yang [9] improved a result of H. Zhong [10] and proved the following theorem.

Theorem G. [9] Let f be a non-constant entire function and a(6= 0,∞) be a complex number.

If f and f (n) (n ≥ 1) share the value a IMN and E(a; f) ⊂ E(a; f (1)) ∩ E(a; f (n+1)), then
f = λez, where λ(6= 0) is a constant.

Recently Theorem G is improved in the following manner.

Theorem H. [4] Let f be a non-constant entire function and a(6= 0,∞) be a complex value.

Suppose that A = E(a; f)\E(a; f (n)) and B = E(a; f (n))\{E(a; f (1)) ∩ E(a; f (n+1))}. If

NA(r, a; f) +NB(r, a; f
(n)) = S(r, f), then either f = λez or f = λez + a, where λ(6= 0) is a

constant.

It seems to be an interesting problem to investigate the situation when an entire function
f shares a nonzero finite value with three consecutive derivatives f (n), f (n+1) and f (n+2),
where n ≥ 1. In the paper we prove the following result in this direction.
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Theorem 1.1. Let f be a non-constant entire function, n(≥ 1) be an integer and a, b be

two nonzero finite complex numbers. Further suppose that A = E(a; f)\E(b; f (n)) and B =

E(b; f (n))\{E(a; f (n+1))∩E(a; f (n+2))}. If NA(r, a; f)+NB(r, b; f
(n))+N (2(r, a; f) = S(r, f),

then a = b and either f = αez or f = a+ αez, where α(6= 0) is a constant.

Putting A = B = ∅ we get the following corollary.

Corollary 1.1. Let f be a non-constant entire function, n(≥ 1) be an integer and a, b be

two nonzero finite complex numbers. If E(a; f) ⊂ E(b; f (n)) ⊂ E(a; f (n+1)) ∩ E(a; f (n+2))
and N (2(r, a; f) = S(r, f), then a = b and either f = αez or f = a+ αez, where α(6= 0) is a

constant.

2. Lemmas

In this section we state necessary lemmas.

Lemma 2.1. {p.39 [8]} Let f be a non-constant meromorphic function in C and n be a

positive integer. Then

N(r, 0; f (n)) ≤ N(r, 0; f) + nN(r,∞; f) + S(r, f).

Lemma 2.2. {p.57 [2]} Let f be a non-constant meromorphic function in C and a, b be

finite nonzero complex numbers and n be a positive integer. Then

T (r, f) ≤ N(r,∞; f) +N(r, a; f) +N(r, b; f (n))

+ S(r, f).

Lemma 2.3. {p.47 [2]} Let f be a non-constant meromorphic function in C and a1, a2, a3
be distinct meromorphic functions satisfying T (r, aν) = S(r, f) for ν = 1, 2, 3. Then

T (r, f) ≤ N(r, a1; f) +N(r, a2; f) +N(r, a3; f)

+ S(r, f),

where N(r, aν ; f) = N(r, 0; f − aν) for ν = 1, 2, 3.

3. Proof of Theorem 1.1

Proof. We denote by N(2(r, a; f | f (n) = b) the counting function (counted with multiplicities)

of those multiple a-points of f which are b -points of f (n). We first note that

N(2(r, a; f) ≤ NA(r, a; f)

+N(2(r, a; f | f (n) = b)

≤ nN (2(r, a; f) + S(r, f)

= S(r, f).

Let z1 6∈ A ∪ B be a simple a-point of f . Then in some neighbourhood of z1 we get by
Taylor’s expansion

f(z) = a+ f (1)(z1)(z − z1) + · · · +
b

n!
(z − z1)

n

+
a

(n+ 1)!
(z − z1)

n+1 +
a

(n+ 2)!
(z − z1)

n+2

+
f (n+3)(z1)

(n+ 3)!
(z − z1)

n+3 +O(z − z1)
n+4,
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and so

f (n)(z) = b+ a(z − z1) +
a

2!
(z − z1)

2

+
f (n+3)(z1)

3!
(z − z1)

3 +O(z − z1)
4,

f (n+1)(z) = a+ a(z − z1) +
f (n+3)(z1)

2!
(z − z1)

2

+ O(z − z1)
3

and

f (n+2)(z) = a+ f (n+3)(z1)(z − z1) +O(z − z1)
2.

We note that f (1)(z1) 6= 0.

We put φ =
f (n+1) − f (n+2)

f − a
, ψ =

f (n+1) − f (n+2)

f (n) − b
and H =

bf (n+1) − af (n)

f − a
. Then by the

hypothesis we see that T (r, φ) + T (r, ψ) + T (r,H) = S(r, f). Now from above we get

φ(z) =
a− f (n+3)(z1)

f (1)(z1)
+O(z − z1), (3.1)

ψ(z) = 1−
f (n+3)(z1)

a
+O(z − z1), (3.2)

and

H(z) =
ab− a2

f (1)(z1)
+O(z − z1). (3.3)

We now consider the following cases.

Case 1. Let f (n+1) ≡ f (n+2). Then on integration we get f (n+1)(z) = αez , where α(6= 0) is
a constant. By successive integration we obtain

f(z) = αez + P (z) = f (n+1)(z) + P (z), (3.4)

where P is a polynomial of degree p(≤ n).
First we suppose that P is non-constant. Then by Lemma 2.3 we get

T (r, f) = N(r, a; f) + S(r, f). (3.5)

Now from (3.4) we see that every a-point of f , which does not belong to A ∪B, is a zero
of P . This shows that

N(r, a; f) ≤ N(r, 0;P ) +NA(r, a; f) +NB(r, a; f)

≤ NB(r, b; f
(n)) + S(r, f)

= S(r, f),

which contradicts (3.5). Therefore P (z) ≡ β, a constant. Then from (3.4) we get

f(z) = αez + β (3.6)

and so
f (n)(z) ≡ f (n+1)(z) ≡ f (n+2)(z) = αez . (3.7)

We see that N(r, b; f (n)) 6= S(r, f) and N(r, a; f (n+1)) 6= S(r, f). So by the hypothesis
E(b; f (n)) ∩ E(a; f (n+1)) 6= ∅. Hence from (3.7) we get a = b.

Let β 6= a. Since f does not assume the values β and ∞, we see that N(r, a; f) = T (r, f)+

S(r, f). Again we have from (3.7) N(r, b; f (n)) 6= S(r, f). Since NA(r, a; f) +NB(r, b; f
(n)) =

S(r, f), we get E(a; f) ∩ E(a; f (n+1)) 6= ∅. So from (3.6) and (3.7) we get β = 0. Therefore
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f = αez . The other possibility is β = a and so f = a+ αez .

Case 2. Let f (n+1) 6≡ f (n+2). By the hypothesis we get

N(r, b; f (n)) ≤ N(r, 1;
f (n+2)

f (n+1)
) +NB(r, b; f

(n))

≤ T (r,
f (n+2)

f (n+1)
) + S(r, f)

= N(r, 0; f (n+1)) + S(r, f). (3.8)

By Lemma 2.1 we get from (3.8)

N(r, b; f (n)) ≤ N(r, 0; f (n)) + S(r, f). (3.9)

On the other hand,

m(r, a; f) ≤ m(r, 0; f (n)) + S(r, f)

= T (r, f (n))−N(r, 0; f (n)) + S(r, f)

≤ T (r, f)−N(r, 0; f (n)) + S(r, f)

and so
N(r, 0; f (n)) ≤ N(r, a; f) + S(r, f). (3.10)

Since NB(r, b; f
(n)) = S(r, f), we have N(r, b; f (n)) = N(r, b; f (n)) + S(r, f) and so from

(3.9) and (3.10) we get, because NA(r, a; f) = S(r, f),

N(r, a; f) = N(r, b; f (n)) + S(r, f). (3.11)

By Lemma 2.2 we obtain from (3.11)

T (r, f) ≤ 2N(r, a; f) + S(r, f). (3.12)

First we suppose that a 6= b. We put L = φ−
ψH

b− a
. Then T (r, L) = S(r, f). If possible,

let L ≡ 0. Then we get f (n+1) − f (n) = a − b. Solving the differential equation we get
f(z) = αez +P (z), where P is a polynomial of degree n with leading coefficient b−a

n! and α is
a constant. By the hypothesis we see that f cannot be a polynomial and so α 6= 0.

Since P is non-constant, by Lemma 2.3 we get

N(r, a; f) = T (r, f) + S(r, f). (3.13)

Since NA(r, a; f) = S(r, f), by (3.13) we get E(a; f) ∩ E(b; f (n)) 6= ∅. If z0 ∈ E(a; f) ∩
E(b; f (n)), we see that P (z0) = 0. Therefore, from (3.13) we get

T (r, f) = N(r, a; f) + S(r, f)

≤ NA(r, a; f) +N(r, 0;P ) + S(r, f)

= S(r, f),

a contradiction. Hence L 6≡ 0.
Let z1 be a simple a-point of f such that z1 6∈ A ∪ B. Then by (3.1), (3.2) and (3.3) we

get L(z1) = 0. Therefore

N(r, a; f) ≤ NA(r, a; f) +NB(r, a; f) +N(r, 0;L)

+N(2(r, a; f)

≤ NB(r, b; f
(n)) + S(r, f)

= S(r, f),

which contradicts (3.13). Therefore a = b.
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Let H 6≡ 0. If z1 6∈ A∪B is a simple a-point of f , then from (3.3) we get H(z1) = 0. Hence

N(r, a; f) ≤ NA(r, a; f) +NB(r, a; f) +N(r, 0;H)

+N(2(r, a; f)

≤ NB(r, b; f
(n)) + S(r, f)

= S(r, f),

and so N(r, a; f) ≤ N(r, a; f) + N(2(r, a; f) = S(r, f), which contradicts (3.12). Therefore

H ≡ 0 and so f (n) ≡ f (n+1). This implies f (n+1) ≡ f (n+2), which contradicts the basic
assumption of Case 2. This proves the theorem. �
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