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Corrected phase-type approximations for the workload of
the MAP/G/1 queue with heavy-tailed service times
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ABSTRACT

In many applications, significant correlations between ar-
rivals of load-generating events make the numerical evalua-
tion of the load of a system a challenging problem. Here,
we construct very accurate approximations of the workload
distribution of the MAP/G/1 queue that capture the tail
behavior of the exact workload distribution and provide a
small relative error. Motivated by statistical analysis, we
assume that the service times are a mixture of a phase-type
and a heavy-tailed distribution. With the aid of perturba-
tion analysis, we derive our approximations as a sum of the
workload distribution of the MAP/PH/1 queue and a heavy-
tailed component that depends on the perturbation parame-
ter. We refer to our approximations as corrected phase-type
approximations, and we exhibit their performance with a
numerical study.

Keywords: Markovian Arrival Process (MAP); Workload
distribution; Heavy-tailed service times; Tail asymptotics;
Perturbation analysis.

1. INTRODUCTION

The evaluation of the workload of a MAP/G/1 queue is
an important problem that has been widely studied in the
literature. For an extensive review see [9]. Although closed-
form expressions for the evaluation of the workload are avail-
able, they are practical only in the case of phase-type (PH)
service times. When the workload distribution cannot be
computed exactly, it needs to be approximated. Here, we
develop a new method to construct reliable approximations
for the workload distribution for heavy-tailed service times.

Two main directions for approximating the workload dis-
tribution are PH and asymptotic approximations. When the
service times are light-tailed, a common approach to approx-
imate the workload with high accuracy is by approximating
the service time distribution with a PH one [8 [13]. We refer
to these methods as phase-type approximations, because the
approximate workload distribution has a PH representation
[I0]. However, in many cases, a heavy-tailed distribution
is most appropriate to model the service times [6] 12]. For
the special class of subexponential service times, asymptotic
approximations for the workload distribution are available,
which provide a good fit only at the tail [3] [7].
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In this paper, we develop approximations of the work-
load distribution for heavy-tailed service times that main-
tain the computational tractability of PH approximations,
capture the correct tail behavior and provide small absolute
and relative errors. Also, they have the advantage that finite
higher-order moments for the service times are not required.
In order to achieve these desirable characteristics, our key
idea is to use a mixture model for the service times.

The idea of our approach stems from fitting procedures
of the service time distribution to data. Heavy-tailed sta-
tistical analysis suggests that only a small fraction of the
upper-order statistics of a sample is relevant for estimating
tail probabilities [II]. The remaining data set may be used
to fit the bulk of the distribution. Since PH distributions
are dense in the class of all positive definite probability dis-
tributions [4], a natural choice is to fit a PH distribution to
the remaining data set [5]. As a result, a mixture model for
the service times is a natural assumption.

In short, we consider the service time distribution as a
mixture of a PH distribution and a heavy-tailed one. As
“base” model we use the model appearing when all heavy-
tailed customers are removed, and we interpret the heavy-
tailed term of the mixture model as perturbation of the PH
one. Using perturbation analysis, we find our approxima-
tions for the workload in the mixture model as a sum of the
workload of the base model and a heavy-tailed component
that depends on the perturbation parameter. In a previ-
ous study (cf. [I4]), we carried out this project for Poisson
arrivals. Here we develop an extension to MAP’s.

The rest of the paper is structured as follows. In Section 2]
we introduce the notation for the model under consideration,
and in Section [3] we present the algorithm to construct our
approximations. In Section ] we give their formulas and we
also specialize to the M/G/1 queue. Finally, in Section [
we perform an illustrative numerical experiment.

2. MODEL DESCRIPTION

We consider a single server queue with FIFO discipline,
where customers arrive according to a Markovian Arrival
Process (MAP) with NV states. The regulating Markov chain
{Z,}n>0 has an irreducible transition probability matrix P
and stationary distribution 7. Transitions from state i occur
at an exponential rate A; (directed to state j with probabil-
ity pi;). With probability ¢;, a transition from 4 corresponds
to an arrival of a (real) customer with service time distri-
bution F(t) (independent of the state), and otherwise, it
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corresponds to an arrival of a (dummy) customer with zero
service time. So the service time distribution of a customer
arriving in state ¢ is G;(t) = ¢ F(t) +1 — ¢;. Observe that
if the service time distribution of a real customers F'(t) was
depending on the state of the system then we would allow
for cross-correlations between the arrivals and the services,
which is not the case in our model.

In matrix form, the above quantities can be written as
9 = diag(q1,...,9n), AN: diag(A1,...,An) and G(s) =
F(s)Q+ (I — Q), where F'(s) denotes the Laplace-Stieltjes
transform (LST) of the service time distribution F(t) of a
real customer, and I stands for the identity matrix with
dimension N. Finally, let © be the mean of the service time
distribution F'(t). We assume that the system is stable,
namely 7 (Af1 — uQ) e > 0, where e is the column vector
with all elements equal to 1. If 51(3) denotes the LST of
the steady-state workload in state i, the following theorem

holds for the transform vector ®(s) = [¢1(s), ..., dn(s)] (cf.
Th. 3.1 in [2]).

THEOREM 2.1. If the system is stable, there exists a unique
vector u = [u1, ..., un], such that ®(s) satisfies

®(s) (é(s)PA +sI — A) = su,
®(0)e = 1.

To determine the unknown vector u we have (cf. Th. 3.2
& 3.3. in [2]):
THEOREM 2.2. It holds that
1. det (é(s)PA +sI — A) = 0 has ezactly N roots s,
with s1 =0 and Re(s;) >0,i=2,...,N.
2. Let a; be non-zero column vectors satisfying

(é(si)PA+siI—A)ai:O, i=2,...,N.

Then, provided all s; are distinct, u is the unique so-
lution to the N linear equations:

uAle=m (Af1 — p,Q) e,
ua; =0, i=2,...,N.

Combining the results of Theorems [Z.1] and 2] the LST
of the total workload V' in the system is

s-u-adj (é(s)PA + sI — A) e
u(s) = = ; (1)
det (G(S)PA +sI— A)

where adj denotes the adjoint of a square matrix.

We now assume that the service time distribution of a real
customer has the form F'(t) = (1—€)F,(t)+eFx(t), € € [0,1),
for some PH (Fj,(t)) and heavy-tailed (Fj(t)) distributions,
with finite means p, and pn, respectively. Theorem
guarantees that the RHS of () in this model with mixed
service time distribution is well-defined in the positive half-
plane. However, if the LST F}(s) does not have a closed-
form expression (e.g.Pareto), Laplace inversion of ([l) cannot
be applied to find the distribution of the workload V¢ in this
mixture model.

In the next section, we describe how to create an approx-
imation for Ve, by approximating its LST.

3. APPROACH

The steps to construct our approximations are:
1. Use a PH approximation as base model.

(a) Set € = 0 and ﬁp(s) = qn(8)/pm(s), where gn(s)
and pm(s) are polynomials of degrees m and n

respectively, with n < m — 1, so that ﬁp(s) is the
LST of a PH-distribution.

(b) Use Theorem to determine the vector u and
find the adjoint matrix adj (CN-’v(s)PA +sI — A).

(c¢) Find the LST v(s) (see () as
ue [T7%, (s + ;)
H;L (s+z;) '
where Re(y;) > 0, Re(z;) > 0, j = 1,...,mr,

and r is an non-negative integer smaller than or
equal to the rank of P.

u(s) = (2)

(d) Apply Laplace inversion to (@) to find analytically
P(V > t).

2. Find the parameters of the mixture model as pertur-
bation of the base model’s ones (parameters affected
by the perturbation bear an index €).

(a) For the matrix G.(s)PA + sI — A, find its deter-
minant and its adjoint matrix .

(b) Evaluate the vector u. and the roots sc;, i =
1,..., N, using an extension of Theorem [22] (omit-
ted due to space limitations).

3. Find the LST of the workload V. as perturbation of
v(s), by keeping only up to e-order terms, i.e.,

e(s) = (s) + ev(s)k(s) + O(?), (3)
where k(s) is well-defined for positive values.

Our proposed approximations are constructed by applying
Laplace inversion to the up to e-order terms of ([@). In the
next section, we give their formulas.

4. CORRECTED PH APPROXIMATIONS

Let B¢ and C° be the generic stationary excess PH and
heavy-tailed service times, respectively. Moreover, let Ey be
an exponential r.v. with rate )\, and let V' be independent
and follow the same distribution of V. The next theorem
shows that each term in the Laplace inverse £~ {o(s)k(s)}
has a probabilistic interpretation.

THEOREM 4.1. There exist unique coefficients o, [, 7,
g, B, vi, g =1,...,mr and d;, ni, 0;, i =2,..., N, s.t.

ue

LY (s)k(s)} = — <B(MP]P(V+B€>15)—uhP(V+C’e>t))

+>° B (upP(V+B +Ey, >t) — pnP(V+C+ By, >t))
j=1
N
+ > i (pPE<VAB <t+E,,) — unP(t<V+C<t+EL,))
=2

+7 (pP(VHV' +B>t) — pn P(V4V'+C>t))



mr

+ 37 (mpP(VAV + B+ By, >t) — i P(VAV'+C+ By >t))

j=1
N
+ D 0 (o P(t<VHV'+ B <t+E,)

=2

— wPA<V+V'+C <t+Es,)) + aP(V>t)

mr N
+ ) P(VHEy, > 1)+ > 5iP(t<V<t+Esi)> .

j=1 =2

Remark 1. In Theorem EIl we assumed for convenience
that all y; are simple, but the result can be generalized to
roots with multiplicity greater than one. Also, the unique
coefficients are found in a straightforward way, but we omit
the details.

Remark 2. We assumed that all s; and y; are real-valued.
If e.g. s2 is complex, then we write Ege(s,) instead of Es,.
The imaginary part cancels out when we combine each com-
plex root with its conjugate.

Let Ve denote the approximation of V.. Following the
previous result, we have

DEFINITION 1. The corrected PH approximation is
P(V. > t) :=P(V> t) + L {d(s)k(s)}, (4)

where L™ {0(s)k(s)} is given by Theorem [J1] and P(V > t)
follows from step

For the M/G/1, the coefficients of Theorem [1] are di-
rectly obtained from the parameters of the system.

COROLLARY 1. In case of Poisson arrivals with rate \,
the corrected PH approximation takes the form

P(V.>t) :=P(V>t)+e

o (G = P> 1)

FunP(VHV +C> ) — MPP(V+V'+B€>t)).

Using a test model, in Section[5] we check the performance
of our approximations.

5. NUMERICAL EXAMPLE

We consider a MAP with Erlang-2 distributed interar-
rival times, where the exponential phases have both rate A,
namely \; = A, ¢ = 1,2. For the service times, we use a
mixture of an Exp(v) distribution and a heavy-tailed one
(cf. []) with LST F,(s) = 1 — TTvoaTys: The exact
workload distribution for this mixture of distributions can
be calculated by following a similar idea as the proof of Th. 9
in [I4]. For our numerical examples, we select kK = 2, v = 3
and e = 0.01.

From Table [Il we observe that the corrected PH approx-
imation yields a significant improvement to its PH coun-
terpart. The difference between the exact tail probabili-
ties of the workload and the corrected PH approximation is
O(10™%), while for the PH approximation it is O(1072), for
all values. The magnitude of the improvement we achieve
with the corrected PH is evident by looking at the relative
errors of the involved approximations. The relative error of
the PH easily reaches values close to 1, while the corrected
PH gives a relative error O(e).

t exact PH corrected-PH

0 [ 0.837500 0.833333 0.837213

5| 0.061452 0.031781 0.060882
10 | 0.023269 0.001212 0.023544
15 | 0.017579  0.000046 0.017862
20 | 0.014979 1.76 x 10~° 0.014091
25 | 0.013301 6.72 x 1078 0.013126
30 | 0.012090 2.56 x 10~° 0.011867
35| 0.011162 9.78 x 10~ ! 0.010943
40 | 0.010419 3.73 x 1072 0.010220
45 | 0.009809 1.42 x 1073 0.009601
50 | 0.009294 5.42 x 107'° 0.009106

Table 1: Tail probabilities of the exact workload, the
PH and the corrected PH approximations for ¢ = 0.01
and load 0.8375.
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