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INEQUALITIES OF DIRICHLET EIGENVALUES FOR
DEGENERATE ELLIPTIC PARTIAL DIFFERENTIAL
OPERATORS

NA HUANG AND JINGJING XUE

ABSTRACT. Let X;,Y;(j = 1,---,n) be vector fields satisfying Hérmander’s
n

condition and Ap, = (XJ2 + Yf) In this paper, we establish some inequal-
~

ities of Dirichlet eigenvalues for degenerate elliptic partial differential operator

Ay and A2L. These inequalities extend Yang’s inequalities for Dirichlet eigen-

values of Laplacian to the settings here and the forms of inequalities are more

general than Yang’s inequalities. To obtain them, we give a generalization of
the inequality by Chebyshev.

1. INTRODUCTION

Estimates of Dirichlet eigenvalues for Laplacian in the Euclidean space have been
extensively studied. For the following Dirichlet problem

—Au = Au, in €,
u =0, on 01,

where  is a bounded domain in R"™, Payne, Pélya and Weinberger in [11] obtained
the inequality (now called the PPW inequality)

k
4
Mep1 = M € — 3 A

r=1

Hile and Protter in [4] proved the inequality (now called the HP inequality)

K Ar nk
DI
= Mt = Ar 4

Recently, Yang in [13] established some important eigenvalue estimates including
Yang’s first inequality

k 4 k
D ke = A" <=3 (Mgt = A
r=1 r=1
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and Yang’s second inequality
k
4\ 1
N1 < <1 + ﬁ) EZ:AT.
=

Some estimates for Dirichlet eigenvalues of sub-Laplacian on the Heisenberg
group was deduced. Niu and Zhang in [10] obtained the PPW type inequality:

k
2
<> .
Akl — Ak < nk (r—l )\r>

Ilias and Makhoul in [5] gave the Yang type inequalities.
In the paper, we consider the following two Dirichlet problems:

(1.1) { —Aru = Au, in Q,

u =0, on 01},
and
(=Ar)*u = Au, inQ,
(1.2) { u = 8—3 =0, on 082,

where Q C R?"*! is a bounded domain, the boundary 952 is smooth and not char-
acteristic, v is the outward unit normal on 9Q; Ay is the degenerate elliptic partial
differential operator constituted by vector fields X;,Y;(j = 1,- - -,n) satisfying
Hormander’s condition,

(1.3) Zn: X7 +Y7),

20—-2 9

20-2 9 )
7 Y; = —20x,|z] 5,7=1,-n,z,yecR",

_ 0 .
where X; = Ba; +20y;|z| 5 T
1

n 2
teR, z=x4+-1yeC, |zl = | X (25 +y})| ,o is any natural number. When
j=1
o =1, Ay is the sub-Laplacian on the Heisenberg group; when ¢ = 2,3, -, Ap
is the operators discussed by Greiner (see [3, 8]). We note that compared with
sub-Laplacian on the Heisenberg group, those operators by Greiner do not have
properties of group structure and translation. Some related papers see [9, 14].
From [7], we know that the eigenvalues of (1.1) and (1.2) exist and satisfy

O0< A <A< <A <vv e = Fo0.

The corresponding orthogonal normalized eigenfunctions wy, ue, - - -, ug, - - - satisfy
(uj,wy)) = 8y, 4,1 = 1,2,- - -. Since the boundary 92 is not characteristic, the
eigenfunctions are smooth by using the results in [12].

For convenience, we denote L = —Aj, in the sequel. The main results of this
paper are the following:

Theorem 1.1. Let {\;} be the eigenvalues of (1.1), then

k k k 2
2 a—
(1.4) E Met1 — A)* < \/;(E_l (Aot — ﬂ§_1 Meg1 — 2 B— 1)\Z> )

i=1
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where o € R, 3> 0 and o? < 28.
Inequality (1.4) is the generalization of Yang Type inequalities. Using Theorem
1, it follows some interesting corollaries.

Corollary 1.2. Let {\;} be the eigenvalues of (1.1), then we have the Yang type
first inequality

k k
(1.5) Z Ak+1 — 2 < Z Akt+1 —

i=1 i=1

Corollary 1.3. Let {\;} be the eigenvalues of (1.1), then we have the Payne-Pdlya-
Weinberger Type inequality

SIL\D

k
2
(1.6) Aepr = Ax < = Z;A

Corollary 1.4. Let {\;} be the eigenvalues of (1.1), then we have the Yang type
second inequality

k
(1.7) App1 < (1 + %) % <Z )\i> :
i=1

Theorem 1.5. Let {\;} be the eigenvalues of (1.2), then

k
(1.8) > (ks —

=1

[N

k % k
2L O = 4] 350 =200
i=1 i=1

where o € R, 3> 0, and o2 < 28.

Corollary 1.6. Let {\;} be the eigenvalues of (1.2), then

k
Z Akt1 —

i=1

Corollary 1.7. Let {\;} be the eigenvalues of (1.2), then

k % k 2
Z A4l — ] lz (M+1—)\z‘)2)\§1 -

=1

k
(1.10) > (kg1 —

i=1

1
k 21k
2v/n+1 a—
gfg— Fonna] [ w0

where o € R, 3> 0, and o2 < 28.

2

Corollary 1.8. Let {\;} be the eigenvalues of (1.2), then we have

k k
4(n+1
(1.11) > (A1 — % > Mkt — A
=1

n :
i=1
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Corollary 1.9. Let {\;} be the eigenvalues of (1.2), then we have

4(n+1)
(1.12) Aept = Ak < — <Z/\ ) :

These results are new even for Laplacian on the Euclidean space and sub-
Laplacian on the Heisenberg group.

This paper is arranged as follows. In Section 2 the definition of function couple
X and its properties are given; two elementary inequalities (see Lemmas 2.6 and
2.8) are proved and examples of noncharacteristics and characteristics domains for
vector fields are listed. The proofs of Theorem 1.1 and Corollaries 1.2-1.4 are put
in Section 3. The proofs of Theorem 1.5 and Corollaries 1.6-1.9 are given in Section
4.

2. PRELIMINARY RESULTS

Definition 2.1. (see [5]) A couple (f,g) of functions on the interval (0, ) (A > 0)
is said to belong to x provided that

(i) f and g are positive.

(ii) f and g satisfy

<f(x)—f(y))2+< ((f(x))2 L _Uw) )(g(z)—g(y))éov
9

r—y
for any x,y € (0,\), z # y.

Lemma 2.2. Let (f,g) € xa, then g must be nonincreasing; if f(xz) = (A —x)*,
g(z) = (A —z)8, then o? < 28.

Proof. From Definition 2.1 we see that g must be nonincreasing. Because f and g

satisfy
f@) = fw)\* (f(2))” (f(v)* 9(x) —9(y)
(P2 (i i) (A4 <o

T—y r)A—z)  g(y)(A—y) T —y

letting y — x, we have

2
7+ 20 @) <o
and then ,
f'(x) 2 9=
(7)) *waie =
Taking f(z) = (A — 2)%, g(x) = (A — 2)?, it follows a? < 28. O

Definition 2.3. (see [5]) For any two operators A and B, their commutator [A, B]
is defined by [A, B] = AB — BA.

Lemma 2.4. Forp=1,2,---,n, we have

(2.1) L(zpu;) = xpLu; — 2Xu;,

(2.2) (L, zp) ui = —2X,u,.
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Proof. A direct calculation gives
Xj(wpui) = (Xjwp)ui + 2p(Xjui),

X5 (wpui) = X ((X2p)ui + 2p(Xjui))
=2(Xjzp)(Xju;) + a:p(X?ui).
and
Yj(zpus) = 2p(Yjug).
sz (zpui) = xp(yfui)'
So

Lzpus) = — Yy (X7 +Y])(zpus)

I

Il
-

J

I
-

[Q(ijp)(Xjui) + xp(XJZUi) + xp(Yg?Ui)]

<.
Il

= xpLu; — 2X,u;,
and (2.1) is proved. Noting
[L, zp) u; = L(zpu;) — xpLu; = zpLu; — 2Xpu; — xpLu; = —2X,u,,
(2.2) is proved. O
Lemma 2.5. (see [5]) Let A: D C H — H be a self-adjoint operator defined on
a dense domain D, which is semibounded below and has a discrete spectrum Ay <
Ao < Ag--. Let{T,: D — H}Zzl be a collection of skew-symmetric operators, and

{Bp : T,(D) — H}Z:1 be a collection of symmetric operators, leaving D invariant.

We denote by {u;}.—, a basis of orthonormal eigenvectors of A, u; corresponding
to Ai. Let k> 1 and assume A\gr1 > M. Then for any (f,g) in xx,.,, it follows

(23) (ZZf(AMTp,Bp] >>
k n n 2
<4 (Zzgw (14, B, uz—,Bpu») (ZZ ol |Tpuz-||2> .

i=1 p=1 9

Lemma 2.6. Fory>1,s,>0,i=1,---k, we have

k v k
<Z> LIS
i=1

i=1

Proof. Let 0(s) = 57,5 > 0,7 > 1,50 0'(s) =vs7"1>0,0"(s) = vy(y—1)s772 > 0.
Noting that 6(s) is a convex function on (0, +00), we have that for s; > 0,4 =1, -, k,

it holds
k
k 21 (0(s:))
0 <;S/k> <=
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and yields

The required inequality is proved. O
Lemma 2.7. (Chebyshev’s inequality, [6]) If (ar — a;) (bx — b;) < 0 for any non-

negative k, g, then
Zaibi < % (Z ai) (Z bi) :
i=1 i=1 i=1

A key preliminary inequality in the paper is the following which enable us to
obtain estimates of eigenvalues more general than Yang’s.

Lemma 2.8. [f A1 > A2 >+ > A, >20,0< By < By <--- < B, 0<Cp <
ng---ng,izl <ok, thenfora2<26, we have

(24) ZAﬂB ZA% o < ZAﬂZAfa_B_lBZ-Ci.
i=1

Proof. When k = 1, we see that (2.4) is true, since Af By A2 71y — AP A2*7 P71 B, ¢ =
0. Now suppose that the conclusion is true for & — 1, then

ZAﬁB ZAM =1, — ZABZAf“’ﬁ’lBiCZ—
=1 =1
_ZABBZAQQﬂlc ZA,BZAQQﬂlBC
=1
A2a lB Ck A2a lBka
k—1
+AX Py ; APB; + A2 By, z APl
k-1
— AP Oy ;Aﬁ Al Z A2=P1 B,

=1

Based on the assumption for £ — 1, we have
k k k k
(2.5) STAIBY AFTITIC; =T APN T ARG
i=1 i=1 i=1 i=1

k—1 k—1
S AP AT (Bi— By) — ALY AFTPTIC (B - Br)
=1 i=1
k—1

Noting o? < 28 and 2a — 1 < o2 implies 28 — 2a+ 1 > 0.
IfA>2A> - 24, >0,0< B <By<--- < B, 0<C <0y < - <y,
then fori=1,-- - k,

AZB—20+1 0y o A, 28—20+1 B,
— ST >l =<L
A C; Ci ) \ Ay

Sy
e
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and
(2.6) AP2etloy  A2P7200n > 0, By — By < 0.
If A;, B; and C;,i = 1,- - -, k, are nonnegative, then (2.6) is also true. Hence from
(2.6),
k k k k

STAIBY AFTITIC; =D AP AP B <,

i=1 i=1 i=1 =1
and (2.4) is proved. O

By Lemma 2.8, we immediately have the following result proved in [1].

Corollary 2.9. If Ay > Ay > -+ > A 20,0 < By < By < -+ < By,
0<C1 <Cy<---<(Ck,1=1,---k, then we have

Zn: AZB; zn: AiC; < zn: A2 Zn: AiBC:.
=1 =1 i=1 i=1

Now let us describe some characteristic and noncharacteristic domains with re-
spect to vector fields and give some such domains.

Definition 2.10. Let ¢(z,t) be the boundary function of a domain . We call
that a point (z,t) on 0 is a characteristic point with respect to vector fields X, Y;
(j =1,---,n), if it satisfies |V ¢(z,t)| =0, where V = (X3, . X, Y1,---,Y,). A
domain with characteristic points is called a characteristic domain. If the boundary
0%) does not have any characteristic point, then €2 is said a noncharacteristic domain.

Proposition 2.11. The sets Q,, = {(z,t) e C? x R|(|z] —a)® + (t = b)* < m? } ,

m = 1,2, - -, are noncharacteristic domains with respect to X;,Y;(j = 1,---,n),
where a > 0, b is any real number.

Proof. Fix m and denote ¥(z,t) = (|z| — a)> + (t — b)*> — m2, then
_ _ 0 2 2 2 (2020 2 2 2
Xb(at) = 5 (121 = ® + (t = 0)* = m?) + 209|212 ((12] = @) + (¢ = 1) = m?)
= 2D gy o2 -

E
Vii(ent) = 5o (1= ) + (0= 0)° = m2) =20, |52 3 (1] = 0 + (£ =0 = ?)

ot
2 — i _
z

and

IV (2, b)) =

M=

(1650t + ¥y 0))

4(|z —CL2 I2+ 2
( (Il I) |2( i i) +160%|2" (¢ = b)” (27 + u7)
V4

7j=1

|

j=1

= 4(|z| — a)® + 1602|2|" 7 (t — b)*.

If |Voy(z,t)| = 0, then |z| = a,t = b. But points satisfying these conditions do not
be on the boundary 0Q,,,m =1,2,---, so Q,,,m = 1,2, - -, are noncharacteristic.
O
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If we take a = 2,b = 0, then (see [2] for the case of Heisenberg groups)

Corollary 2.12. The sets Q,, = {( t) € C* x R‘(|z| —2° 42 <m }
1,2, -, are noncharacteristic domains with respect to vector ﬁelds X;,Y;(5
M.

Proposition 2.13. The set ) = {(z, t) e C*" x R‘|z|4a +1? < 1} is a character-
istic domain with respect to vector fields X;,Y;(j =1,---,n).

Proof. Let o(z,t) = |z|*” + 2 — 1, then

a loa o— a g
X;p(z,t) = e (|z|4 + 1% — 1) + 20,2 2@ (|z|4 + 1% — 1)
J

40—-2 202

= 4oz Lj "’4ij| 2|

6 o o— a o
Vigls,t) = 5. (|z|4 +t2—1) — 20z, (|z|4 —|—t2—1)
J

|4<7—2 20_2t.

= 40|z y; —4dox;|z|

Hence

M=

Vo0 = Y (10t + Ve )

1

J

[
NE

(1602|z|8074 (a:? + yf) + 1602|z|4074t2 (333 + yf))
1
602|2[% 7 4 1602|2] "7 %12
If [VLg(z,t)] = 0, then |z| = 0. We see that two points satisfying z = 0,¢ = £1 are
on the boundary 9f) and they are characteristic points. ([l

,_A <.
Il

Corollary 2.14. The sets §, = {(z,t) € C?" x R‘|z|4a +t2 <l } (r>0) are

characteristic domains with characteristic points (O, :|:7“2").

3. THE PROOFS OF THEOREM 1.1 AND COROLLARIES 1.2-1.4

Proof of Theorem 1.1. We apply (2.3) with A = L = —Ap, By = 21, -+, B, =
xnuBn-‘rl = Y1, '7B2n = Yn, Tl = Xlu' : '7Tn = X’n7Tn+l = }/17' : '7T277, = Yn7
f(x) =\ —2)* g(z) = (A —z)%, and obtain

k n 2
(3.1) <ZZ Ak+1 — (<[Xpaxp] uiaui>L2 + <[Ypay1)] uiaui>L2)>

n

k
<4 <ZZ Mot = A0) (L @] i, wptis) o + (L, yp) ui,ypui)L2)>

=1 p=1
kK n
2a 1 2 2
X <ZZ Ak+1 — h- (HXpuiHL2 + ”Y;Dul|L2>> .
i=1 p=1

Since
[va 'rp] U; = D/pa yp] U; = Uy,
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and

(L ) s, 2pts) o = 2 / W2 — (L, ) us, 2pts) 1o
Q

from (2.2), it follows

(3.2) ([L, wp] wi, wpug) 2 = /Quf =1.

In a similar way, we obtain

(3.3) <[Lvyp] Uiaypui>L2 = /Q uz2 =1

On the other hand, it yields

(34) S IXpuilZa+ 3 [Vousl s = /Q VoV s = /
p=1 p=1

Q Q

Instituting (3.2), (3.3)and (3.4) into (3.1), it deduces (1.4). O
Proof of Corollary 1.2. To obtain (1.5), we only need to take « = = 21in (1.4). O
Proof of Corollary 1.3. When a = 3, we have from Theorem 1.1 that

k k
Z Mgl — A)* < Z N1 — A)“ TN

=1 i=1

SIL\D

Using Lemmas 2.6 and 2.7, it implies

-1

k k * k .
D o =) <Z Akt1 — ) > (Z Akt — ) (M1 = Ar)

and
9 K k k
EZ()\kJrl )N < = (Z Akt1 — 1) <Z)\z> ,
=1 =1 =1
hence
k a—l 5 k k
(Z (Mt —M)) (Mes1 = M) < = <Z Aot — ) (Z Ai>.
i=1 i=1 i=1
Since

k a—1 k
(z Moo = >) =3 (= A
i=1 i=1

it shows (1.6). O
Proof of Corollary 1.4. When 1 < o= <2, we have from Theorem 1.1 that

k . o -
Z (Akt1 — < EZ Ak+1 — i

i=1 =1
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then
k
AkHZ Mot = M) =D e = X) N
=1
k
=D st = M) e = )
=1
D) k
<= a=ly
n; Aot — Ais
or
k
/\k+1Z()\k+1

(D)

k k
i)

where Lemma 2.7 is used. Therefore

o3 ()

k
Since (Z (Me+1 — )a_l) > 0, it follows

=1
2\ 1
)\k+l—(1+g>g<é Ai) SO

and (1.7) is proved.

4. PROOFS OF THEOREM 1.5 AND COROLLARIES 1.6-1.9

Proof of Theorem 1.5. Applying (2.3) with A = L? = (—AL)2, By =x1,--,B, =
xnuBn-‘rl = Y1, '73277, = Yn, Tl = Xlu' : '7Tn = X’n7Tn+l = }/17' : '7T277, = Yn7
f(z) =\ —2)%, g(x) = (A —2)?, it follows

k n 2
(4'1) (ZZ )‘k-‘rl <[X;D7‘T;D] u17u1>L2 + <[Y207yp] uivui>L2)>
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Since
2 2
Z ”X ui||L2 + Z ”Y ui||L2
p=1 =
/VLuleul = / Lu; - u;
Q
1
2 1
< /u) < Luz)) =7,
Q
it implies

k n
(4.2) (ZZ N1 — )27 (HXpuiHiz + ||Ypui||iz)>

Recalling (3.2) an

ol

(3.3), we have

kK n 2
(4.3) (Z Z M1 — X)® (<[Xp’ Tp iy i) po + ([Yp, ypl i, Ui>L2)>
& 2
n? (Z Akt1 — ) .

i=1
On the other hand, it obtains by (2.2) that
(L2, 2] u; = L? (zpw;) — zpL2u;
= —2X,Lu; — 2L (X,u;) ,
and
[L?, yp| u; = —2Y, Lu; — 2L (Yyu;) .

Hence, we have

<[L2, :vp} ui,xpui>L2 =2 /Q Lu; - Xp, (xpu;) — 2 /Q xpXpui - Lu; — 4/9X§ui U

:2/L’ul’111—4‘/)(5’114’(1,Z
Q Q
and

<[L2,yp} ui,ypui>L2 = 2/ Lu; - Y, (ypu;) — 2/ YypYpu; - Lu; — 4/ qui U,
Q Q Q

=2/Luluz—4/§/ﬁulul
Q Q
Noting

n n n n
3 [ X = Y [ V= 1l + 3 Wl = [ L
=179 19 = = Q
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SO
k n
(4.4) Z Z Ms1 = 1)’ (L2, 2p] wiy wpus) o + ([L2 yp) v, yptia) ;)
=1 p=1
k n
= Z M1 — A)” (2/ Lu; - u; — 4/ X2u; - uz)
i=1p=1 £ a2
k n
+ZZ )‘k-i-l (2/Lulul—4/Yp2uluz)
i=1 p=1 a2 £
k
—4mn+1)Y (At — ,\i)ﬁ/ Lu; - u;
=1 Q
k 1
<4(n+1) Z (M1 — Ai)PAZ.
=1
Taking (4.2), (4.3) and (4.4) into (4.1), we obtain (1.8). O
Proof of Corollary 1.6. To obtain (1.9), take & = =2 in (1.8). O

Proof of Corollary 1.7. From Theorem 1.5, we have

k 2 k i
(Z (Akt1 —)\z‘)a> < % (Z (Aer1 — ) (Z g1 — X)) 7P~ 1)\2>

i=1 i=1

Applying Lemma 2.8 with A; = Ap41 — Ay and B; = C; = )\?, it deduces (1.10). O
Proof of Corollary 1.8. To obtain (1.11), we only need to take « = 8 = 2 in
Corollary 1.7. (|
Proof of Corollary 1.9. We have from (1.8) that

k 2 A(n+1) k ) k
(Z (AkH—Ai)”‘) <= (Z Net1 — "Af)x(_z Aot — A)2 P72 )

=1

. k ﬁ 1 k 2a—fB—1 .

Applying Lemma 2.7 to <Z (M1 — Ai) f) and <Z (Metr1 — Ai) A? >, it
i=1

follows

k 2
<Z (Mket1 — )\i)a>
=1
k k k 2
< dn+l) (:2;:21) (Z (Akt1 — /\i)ﬁ> <Z (Akt1 — )\z‘)Qaﬁl) (Z /\5>
dn+1) (& o wr) ()
=05 Z Mkt = M) ) % [ D0 kgr = Ai) Z)‘z‘ ;

=1

where we have used 1 < a = < 2. It implies
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then
b - An+1) [ 2 ’
; (Ae+1 = Ai) A1 = A) = — 55— ;)‘i <0,
since \; < A, for all 4 < k. Hence
2
(s —w) - 22D ZA <0,
and (1.12) is proved. O
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