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Abstract

In this article, universal concentration estimates are established for the local

times of random walks on weighted graphs in terms of the resistance metric. As a

particular application of these, a modulus of continuity for local times is provided

in the case when the graphs in question satisfy a certain volume growth condition

with respect to the resistance metric. Moreover, it is explained how these results

can be applied to self-similar fractals, for which they are shown to be useful for

deriving scaling limits for local times and asymptotic bounds for the cover time

distribution.

1 Introduction

Over the last couple of decades, extensive efforts have been devoted to studying the be-
haviour of random walks on general graphs, work that has yielded, for instance, estimates
for the corresponding heat kernel and mixing times in terms of quantities such as volume
growth and electrical resistance, which do not depend on precise structural information
(see, for example, [7, 9, 31, 36]). Furthermore, for a wide range of families of fractal and
random graphs, scaling limits have been established for the laws of the random walks
upon them [10, 12, 13, 14, 15, 29, 30], as well as corresponding asymptotic results for
heat kernels and mixing times [16, 17]. More delicate properties of random walks on
graphs, particularly the cover time, are also becoming better understood. Indeed, recent
years have seen the order of growth of the cover time computed for various families of
graphs [1, 8], and a strong connection has been made between the cover time and the
maximum of the Gaussian free field for any graph [20]. Moreover, in some special cases
where there is concentration of the cover time about its mean, extremely precise distri-
butional convergence results are known, notably for the two-dimensional discrete torus
[18, 19]. Partly motivated by providing techniques for studying the cover time in settings
where there is not concentration of the cover time – as is the case for many self-similar
fractals, in this article we study the continuity properties of local times on graphs. Since
the first time that local times of a simple random walk on a graph are non-zero everywhere
gives the cover time, we believe that our results will provide another tool for studying
the latter; this is a point upon which we will expand later in the article.
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In order to present our main results, let us start by introducing the framework in which
we are working. In particular, let G = (V (G), E(G)) be a finite connected graph, where
V (G) denotes the vertex set and E(G) the edge set of G. To avoid trivialities, we always
assume that G has at least two vertices. Let µG : V (G)2 → R+ be a weight function
that is symmetric, i.e. µG

xy = µG
yx, and satisfies µG

xy > 0 if and only if {x, y} ∈ E(G). The
associated discrete time simple random walk is then the Markov chain ((XG

t )t≥0,P
G
x , x ∈

V (G)) with transition probabilities (PG(x, y))x,y∈V (G) defined by

PG(x, y) :=
µG
xy

µG
x

,

where µG
x :=

∑

y∈V (G) µ
G
xy. We note that the invariant probability measure of this process

is a multiple of the measure version of µG obtained by setting µG({x}) := µG
x for x ∈ V (G).

The process XG has corresponding local times (LG
t (x))x∈V (G),t≥0, given by LG

0 (x) = 0 and,
for t ≥ 1,

LG
t (x) :=

1

µG
x

t−1
∑

i=0

1{XG
i =x}.

It is providing a modulus of continuity of these random functions in the spatial variable
x that is the focus of this article.

It is widely known that there are close connections between the study of random walks
on graphs and electrical networks. Our work will contribute to this area by providing
estimates for the fluctuations in the local times of a random walk in terms of the so-
called resistance metric, which we now introduce. More specifically, the process XG has
an associated Dirichlet form given by

EG(f, g) :=
1

2

∑

x,y∈V (G):
{x,y}∈E(G)

(f(x)− f(y))(g(x)− g(y))µG
xy,

for f, g : V (G) → R, which can in turn be used to define the resistance operator through
the variational formula

RG(A,B)−1 := inf {EG(f, f) : f : V (G) → R, f |A = 0, f |B = 1}

for A,B disjoint subsets of V (G); the latter is so-called because it describes the effective
resistance between A and B in the graph when it is viewed as an electrical network
with conductances along edges given by the weight function µG. We then define the
resistance metric on the vertices of G by setting RG(x, y) := RG({x}, {y}) if x 6= y, and
RG(x, x) := 0. We note that the resistance metric is indeed a metric (see [4, Proposition
4.25]).

In studying cover times of random walks on graphs, continuity properties of local times
in terms of the resistance metric have previously been considered. Indeed, applying the
key identity

PG
x

(

τy < τ+x
)

=
1

µG
xRG(x, y)

, (1)

where τy = inf{t ≥ 0 : XG
t = y} is the first hitting time of y, and τ+x = inf{t ≥ 1 :

XG
t = x} the first return time to x (see [33, Proposition 9.5], for instance), the following
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Gaussian concentration result was established as [26, Lemma 5.2]: if τx(0) = 0 and, for
i ≥ 1, τx(i) is defined to be the time of the ith subsequent visit to x by XG (so that τx
can be considered to be the inverse local time at x), then

PG
x

(

LG
τx(i)(x)− LG

τx(i)(y) ≥ λ
)

≤ e
−

λ2µGx
4iRG(x,y) ,

for all i ≥ 0, λ > 0 and x, y ∈ V (G) (cf. [20, Lemma 1.12]). Our concentration estimates
(Theorem 1.1 below) are of a similar form, with an important distinction being that
we are interested in estimating the fluctuations of the local time at deterministic times,
rather than at the random inverse local time. In the first estimate, we sacrifice Gaussian
tails to establish a bound that holds uniformly over time intervals – this is the discrete
time analogue of [11, (V.3.28)]. In the second, Gaussian tails are obtained at the cost of
truncating the local times (cf. [3, Lemma 2.8]). For the statement of these bounds, as
two important measures of the scale of G, we define

m(G) := µG(V (G)), r(G) := max
x,y∈V (G)

RG(x, y),

to be its total mass with respect to the measure µG, and its diameter in the resistance
metric, respectively. Note that the product m(G)r(G) gives the maximal commute time
of the random walk, e.g. [33, Proposition 10.6], and so gives a natural time-scaling. We
also introduce the rescaled resistance metric R̃G(x, y) := r(G)−1RG(x, y), and define the
notation x ∧ y := min{x, y}.

Theorem 1.1. (a) For each T > 0, there exist constants c1 and c2 not depending on G
such that

max
x,y,z∈V (G)

PG
z

(

max
0≤t≤Tm(G)r(G)

r(G)−1
∣

∣LG
t (x)− LG

t (y)
∣

∣ ≥ λ

√

R̃G(x, y)

)

≤ c1e
−c2λ

for every λ ≥ 0. (NB. The constants can be chosen such that only c1 depends on T .)
(b) For any G it holds that

max
x,y,z∈V (G)

PG
z

(

max
t≥0

∣

∣

∣

∣

L ∧
(

LG
t (x)

r(G)

)

− L ∧
(

LG
t (y)

r(G)

)∣

∣

∣

∣

≥ λ

√

R̃G(x, y)

)

≤ 2e
1
2
− λ2

8L

for every λ ≥ 0 and L ≥ 1.

To provide a modulus of continuity for the local times, the goal is to bring the max-
imum over the arguments of the local times inside the estimates of the previous result.
In the continuous setting, this has been achieved by applying a general estimate on the
fluctuations of a function on Euclidean space known in the literature as Garsia’s lemma
(after [22, Lemma 1], cf. [23, Lemma 1.1]). Indeed, this approach was first used in [24,
Theorem 2] to deduce the continuity of local times of Markov processes on the real line. (A
similar argument was applied to the local times of the Brownian motion on the Sierpiński
gasket in [10, Theorem 1.11].) Moreover, the argument was subsequently strengthened
for Lévy processes in [3] (see also the estimates for the Sierpiński carpet that appear as
[6, Theorem 8.2]). The aim here is to adapt the same approach to the discrete setting,
and so for this we derive below a version of Garsia’s lemma for graphs (see Proposition
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3.1). To obtain a modulus of continuity estimate from this, the one restriction we need
is some uniform control on the volume growth of the graphs in question. To state the
condition we need, we define

BG(x, r) := {y ∈ V (G) : RG(x, y) < r}

to be the open ball in the resistance metric, and set r0(G) := minx,y∈V (G):x 6=y RG(x, y).

Definition 1.2. A collection of finite connected weighted graphs (Gi)i∈I is said to satisfy
uniform volume growth with volume doubling (UVD) if there exist constants c1, c2, c3 ∈
(0,∞) such that

c1v(r) ≤ µGi (BGi
(x, r))

for every x ∈ Gi, r ∈ [r0(Gi), r(Gi)], i ∈ I, and moreover,

m(Gi) ≤ c2v(r(Gi))

for every i ∈ I, where v : R+ → R+ is non-decreasing function with v(2r) ≤ c3v(r) for
every r ∈ R+.

Remark 1.3. The above condition is weaker than is sometimes called uniform volume
growth with volume doubling, since we do not require the upper volume bound to hold for
balls smaller than the full space.

Our next main result is that, under UVD, R̃Gi
(x, y)1/2(1+ ln R̃Gi

(x, y)−1)1/2 provides,
with uniformly high probability, a modulus of continuity for the rescaled local times
r(Gi)

−1LGi
t (x) in the spatial variable (uniformly over the appropriate time interval). Ob-

serve that the particular form of v that appears in the UVD property does not affect the
modulus of continuity.

Theorem 1.4. If (Gi)i∈I is a collection of graphs that satisfies UVD, then, for each
T > 0,

lim
λ→∞

sup
i∈I

max
z∈V (Gi)

PGi
z









max
x,y∈V (Gi)

max
0≤t≤Tm(Gi)r(Gi)

r(Gi)
−1
∣

∣LGi
t (x)− LGi

t (y)
∣

∣

√

R̃Gi
(x, y)

(

1 + ln R̃Gi
(x, y)−1

)

≥ λ









= 0.

Whilst we do not pursue it here, we expect that the above bound on the modulus of
continuity for rescaled local times is sharp up to constants. In the one-dimensional case,
where XGi is simple random walk on the interval {0, 1, . . . , i}, in particular, it should be
possible to check this, either directly or by a coupling of the rescaled random walks with
reflected Brownian motion on the interval, using a Ray-Knight-type description of the
relevant local times and an appeal to Levy’s modulus of continuity theorem for Brownian
motion (or the discrete adaptation thereof).

The remainder of the article is organised as follows. In Section 2, we establish the
concentration estimates of Theorem 1.1. Our discrete version of Garsia’s lemma is es-
tablished in Section 3, and applied under the assumption of UVD in Section 4, thereby
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proving Theorem 1.4. Subsequently, in Section 5, we present a number of examples, in-
cluding self-similar fractal graphs, to which these results apply. Moreover, in Section 6,
an adaptation of the results to a class of infinite graphs is derived. Finally, in Section
7, we consider some of the consequences of our equicontinuity results. In particular, we
show that if we have a sequence of graphs such that the associated random walks admit
a diffusion scaling limit that has jointly continuous local times, and a suitable local time
equicontinuity result holds, then it is further possible to obtain convergence of rescaled
local times. We also discuss an application to the study of cover times of random walks
on graphs.

2 Local time concentration estimates

The aim of this section is to prove Theorem 1.1. We begin with a lemma that provides
an estimates for the distributional tail of the return time. We note that similar estimates
to this and the next result have appeared elsewhere in the literature, e.g. [28, Section 3],
but we include their proofs for completeness.

Lemma 2.1. There exist universal constants c1, c2 such that

µG
x r(G)P

G
x

(

τ+x ≥ λm(G)r(G)
)

≤ c1e
−c2λ

for every λ ≥ 4.

Proof. By applying the Markov property at times 2⌈m(G)r(G)⌉, 4⌈m(G)r(G)⌉, . . . , we
deduce that PG

x (τ
+
x ≥ λm(G)r(G)) is bounded above by

PG
x

(

τ+x ≥ 2⌈m(G)r(G)⌉
)

(

max
y∈V (G)\{x}

PG
y (τx ≥ 2⌈m(G)r(G)⌉)

)k−1

,

where k := ⌊λm(G)r(G)/2⌈m(G)r(G)⌉⌋ ≥ ⌊λ/4⌋ ≥ 1 (note that m(G)r(G) ≥ 1). Since

EG
x τ

+
x =

m(G)

µG
x

, EG
y τx ≤ RG(x, y)m(G) (2)

for all x, y ∈ V (G) (see, for example, [33, Lemma 10.5 and Proposition 10.6]), we obtain
that

PG
x

(

τ+x ≥ λm(G)r(G)
)

≤ m(G)

2µG
x ⌈m(G)r(G)⌉

(

r(G)m(G)

2⌈m(G)r(G)⌉

)k−1

≤ 1

µG
x r(G)

(

1

2

)k

,

and the result follows.

The above lemma readily yields the following corollary.

Corollary 2.2. There exists a universal constant c such that

EG
x

(

e−θτ+x
)

≤ e
− θm(G)

µGx
+ cθ2m(G)2r(G)

µGx

for every θ ≥ 0.
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Proof. Since 1− x ≤ e−x ≤ 1− x+ x2/2 for x ≥ 0, we have that

EG
x

(

e−θτ+x
)

≤ 1− θEG
x

(

τ+x
)

+
θ2

2
EG

x

(

(τ+x )
2
)

≤ e−θEG
x (τ+x )+ θ2

2
E

G
x ((τ+x )2). (3)

From (2), we know that EG
x (τ+x ) = m(G)/µG

x . For the second moment, we apply this and
Lemma 2.1 to deduce

EG
x

(

(τ+x )
2
)

≤ 2

∞
∑

k=0

kPG
x

(

τ+x ≥ k
)

≤ 2

4m(G)r(G)
∑

k=1

EG
x

(

τ+x
)

+
2c1

µG
x r(G)

∞
∑

k=4m(G)r(G)+1

ke−c2k/m(G)r(G)

≤ 8m(G)2r(G)

µG
x

+
2c1e

−c2/m(G)r(G)

µG
x r(G) (1− e−c2/m(G)r(G))

2

≤ cm(G)2r(G)

µG
x

.

For the final inequality, we again use that m(G)r(G) ≥ 1. Inserting this estimate into
(3), we obtain the desired result.

Proof of Theorem 1.1(a). To begin with, suppose that the random walk starts from z =
x, where x 6= y. As in the introduction, let τx(0) = 0 and, for i ≥ 1, τx(i) be the time
of the ith subsequent visit to x by XG. Since local times are monotonic in the time
variable, we have for t ∈ (τx(i), τx(i + 1)] that |LG

t (x) − LG
t (y) ≤ |LG

t (x) − LG
τx(i)

(y)| +
|LG

t (x)−LG
τx(i+1)(y)|. For t in this range, we also have that LG

t (x) = LG
τx(i+1)(x). Moreover,

LG
τx(i+1)(x)− LG

τx(i)
(x) = 1/µG

x . Thus

∣

∣LG
t (x)− LG

t (y)
∣

∣ ≤
1
∑

j=0

∣

∣LG
τx(i+j)(x)− LG

τx(i+j)(y)
∣

∣+
1

µG
x

.

Consequently, for λ > 0 and L ≥ 0,

PG
x

(

max
0≤t≤Tm(G)r(G)

∣

∣LG
t (x)− LG

t (y)
∣

∣ ≥ λ
√

r(G)RG(x, y)

)

≤ PG
x

(

µG
xL

G
Tm(G)r(G)(x) > L+ 1

)

+PG
x

(

1/µG
x ≥ λ

√

r(G)RG(x, y)/2
)

+PG
x

(

max
1≤i≤L+1

∣

∣LG
τx(i)(x)− LG

τx(i)(y)
∣

∣ ≥ λ
√

r(G)RG(x, y)/4

)

=: T1 + T2 + T3,

where we note that the condition µG
xL

G
Tm(G)r(G)(x) > L + 1 is equivalent to τx(L + 1) <

Tm(G)r(G). We will bound each of the above three terms separately. To this end, we
first note that µG

x

√

r(G)RG(x, y) ≥ 1, and so T2 is equal to 0 whenever λ > 2.

6



We next consider T1. Using the fact that under PG
x the variables (τx(i+1)− τx(i))i≥0

form an independent sequence, each distributed as τ+x , one can deduce that, for θ ≥ 0,

T1 = PG
x (τx(L+ 1) < Tm(G)r(G))

= PG
x

(

L
∑

i=0

(

τx(i+ 1)− τx(i)−
m(G)

µG
x

)

< Tm(G)r(G)− (L+ 1)m(G)

µG
x

)

≤ e
−θ

(

(L+1)m(G)

µGx
−Tm(G)r(G)

)

EG
x

(

e
−θ

(

τ+x −m(G)

µGx

))L+1

.

By Corollary 2.2, it therefore holds that

T1 ≤ e
−θ

(

(L+1)m(G)

µGx
−Tm(G)r(G)

)

+ c(L+1)θ2m(G)2r(G)

µGx ,

and optimising over θ yields, for L+ 1 ≥ TµG
x r(G),

T1 ≤ e
−µG

x

(

(L+1)

µGx
−Tr(G)

)2

/2c(L+1)r(G)
.

We now turn to T3, and for the moment we assume that µG
y RG(x, y) > 1. Observe

that the term in question can be written as

T3 = PG
x

(

max
1≤i≤L+1

∣

∣

∣

∣

∣

i
∑

j=1

(

1

µG
x

− ηj

)

∣

∣

∣

∣

∣

≥ λ
√

r(G)RG(x, y)/2

)

,

where ηi := LG
τx(i)

(y)−LG
τx(i−1)(y) for i ≥ 1. Now, (ηi)i≥1 is an independent and identically

distributed sequence, and it is a simple application of the Markov property to obtain from
(1) that if Ni := µG

y ηi, then

PG
x (Ni = k) =

1

µG
xRG(x, y)

(

1− 1

µG
y RG(x, y)

)k−1
1

µG
y RG(x, y)

, (4)

for k ≥ 1. Moreover, it is elementary to check from (4) that EG
x (ηi) = (µG

x )
−1. This

means that (Mi)i≥0, where M0 = 0 and, for i ≥ 1,

Mi :=

i
∑

j=1

(

1

µG
x

− ηi

)

, (5)

is a martingale, and further, for θ ∈ (0,−µG
y ln(1−1/µG

y RG(x, y))), we have that (e
θ|Mi|)i≥0

is a sub-martingale. (The condition θ < −µG
y ln(1− 1/µG

yRG(x, y)) ensures integrability.)
Therefore, applying Doob’s sub-martingale inequality, we deduce that

T3 = PG
x

(

max
0≤i≤L+1

|Mi| ≥ λ
√

r(G)RG(x, y)/2

)

≤ PG
x

(

max
0≤i≤L+1

eθ|Mi| ≥ eθλ
√

r(G)RG(x,y)/2

)

≤ EG
x

(

eθ|ML+1|
)

e−θλ
√

r(G)RG(x,y)/2

≤
(

EG
x

(

eθML+1
)

+ EG
x

(

e−θML+1
))

e−θλ
√

r(G)RG(x,y)/2

=

(

EG
x

(

e−θ(ηi−1/µG
x )
)L+1

+ EG
x

(

eθ(ηi−1/µG
x )
)L+1

)

e−θλ
√

r(G)RG(x,y)/2.

7



A routine computation using (4) gives that EG
x (e

θ(ηi−1/µG
x )) is equal to

e−θ/µG
x

(

1− 1

µG
xRG(x, y)

)

+
eθ(1/µ

G
y −1/µG

x )

µG
xRG(x, y)2µG

y

(

1− eθ/µ
G
y

(

1− 1
µG
y RG(x,y)

)) .

By considering the Taylor expansion of this expression, we deduce that

EG
x (e

θ(ηi−1/µG
x )) ≤ 1 + θ2EG

x

(

(

ηi − 1/µG
x

)2
)

≤ e
θ2EG

x

(

(ηi−1/µG
x )

2
)

uniformly over θ ≤ c1min{µG
x , µ

G
y , RG(x, y)

−1} = c1RG(x, y)
−1, where c1 ∈ (0, 1) is some

small universal constant. (Note that RG(x, y)
−1 ≤ −µG

y ln(1− 1/µG
y RG(x, y)), and so the

integrability condition for the martingale is also satisfied if θ ∈ (0, c1RG(x, y)
−1].) Again

appealing to (4), it is possible to compute that

EG
x

(

(

ηi − 1/µG
x

)2
)

=
2
(

1− 1
µG
y RG(x,y)

)

RG(x, y)

µG
x

+
1

µG
x µ

G
y

− 1

(µG
x )

2
≤ 2RG(x, y)

µG
x

. (6)

So we obtain
T3 ≤ 2e2θ

2(L+1)RG(x,y)/µG
x −θλ

√
r(G)RG(x,y)/2.

Again optimising over θ, we find

T3 ≤ 2e−µG
x λ2r(G)/16(L+1),

at least assuming that µG
x λ
√

(r(G)RG(x, y))/8(L+ 1) ≤ c1.
In summary, we have so far shown that if µG

y RG(x, y) > 1, λ > 2 and it also holds

that L+ 1 ≥ TµG
x r(G) and µ

G
x λ
√

(r(G)RG(x, y))/8(L+ 1) ≤ c1, then

PG
x

(

max
0≤t≤Tm(G)r(G)

∣

∣LG
t (x)− LG

t (y)
∣

∣ ≥ λ
√

r(G)RG(x, y)

)

≤ e
−µG

x

(

(L+1)

µGx
−Tr(G)

)2

/2c(L+1)r(G)
+ 2e−µG

x λ2r(G)/16(L+1).

Setting L+ 1 := c−1
1 λµG

x r(G), so that

µG
x λ
√

r(G)RG(x, y)

8(L+ 1)
=
c1
8

√

RG(x, y)

r(G)
≤ c1

we obtain that the relevant probability is bounded above by c2e
−c3λ for λ > max{2, T c1},

where only c2 depends on T . This bound is readily extended to hold for all λ ≥ 0 by
adjusting the constants as necessary, which establishes the desired estimate in this case.

When µG
y RG(x, y) = 1, essentially the same argument applies. The main difference

is that, because in this case the vertex y is connected to x by a single edge of resistance
RG(x, y) = 1/µG

y , the distribution of Ni is given by

PG
x (Ni = 0) = 1− 1

µG
xRG(x, y)

= 1−PG
x (Ni = 1).
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In particular, the bound for T1 does not change, T2 is still equal to 0 for λ > 2, and a
similar martingale argument can be used to estimate T3. We omit the details.

Clearly, one could also reverse the role of x and y in the above argument, so that we
start the process XG from y instead. Hence, in the case that we start from an arbitrary
vertex z, by applying the strong Markov property at the first time we hit the set {x, y}
(noting that the local times of both x and y are zero up until this time), one can also
deduce a similar result. This concludes the proof.

Proof of Theorem 1.1(b). We note that the proof of this part of the theorem is an adap-
tation of the proof of [3, Lemma 2.8]. We will use the same notation as in the proof of
Theorem 1.1(a), though to account for arbitrary starting points will redefine τx(0) to be
the first hitting time of x. (For i ≥ 1, τx(i) will continue to denote the time of the ith
subsequent visit to x by XG). In particular, for x, y, z and x 6= y, by applying the strong
Markov property at τx(0), this allows us to deduce that, for L ≥ 0,

PG
z

(

max
0≤t≤τx(L+1)

(

LG
t (x)− LG

t (y)
)

≥ λ
√

r(G)RG(x, y)

)

≤ PG
x

(

max
0≤t≤τx(L+1)

(

LG
t (x)− LG

t (y)
)

≥ λ
√

r(G)RG(x, y)

)

= PG
x

(

max
1≤i≤L+1

(

i+ 1

µG
x

− LG
τx(i)(y)

)

≥ λ
√

r(G)RG(x, y)

)

= PG
x

(

1

µG
x

+ max
1≤i≤L+1

Mi ≥ λ
√

r(G)RG(x, y)

)

,

where (Mi)i≥0 is the martingale defined at (5). For L ≥ 0 and any θ ≥ 0, we have that

PG
x

(

max
1≤i≤L+1

Mi ≥ λ

)

≤ EG
x

(

eθML+1
)

e−θλ

= EG
x

(

e−θ(ηi−1/µG
x )
)L+1

e−θλ

≤ e
θ2

2
E

G
x (η2i )(L+1)e−θλ

≤ eθ
2RG(x,y)(L+1)/µG

x −θλ,

where we have applied Doob’s sub-martingale inequality, e−x ≤ 1−x+x2 for x ≥ 0, and
the second moment estimate of (6), similarly to the proof of Theorem 1.1(a). We note
that, because we are only seeking a one-sided bound, integrability is not an issue here,
and hence no restrictions on θ ≥ 0 are required. Optimising over θ ≥ 0 yields

PG
x

(

max
1≤i≤L+1

Mi ≥ λ

)

≤ e−λ2µG
x /2RG(x,y)(L+1),

from which conclude that

PG
z

(

max
0≤t≤τx(L+1)

(

LG
t (x)− LG

t (y)
)

≥ λ
√

r(G)RG(x, y)

)

≤ e−λ2µG
x r(G)/8(L+1) (7)

whenever λ > 2.

9



Next, define the event

A(x, y, λ, L) :=

{

max
t≥0

(

L ∧
(

LG
t (x)

r(G)

)

− L ∧
(

LG
t (y)

r(G)

))

≥ λ

√

R̃G(x, y)

}

.

On this event, for some t ≥ 0 we have that

(

L ∧
(

LG
t (x)

r(G)

)

− L ∧
(

LG
t (y)

r(G)

))

≥ λ

√

R̃G(x, y),

and so, assuming λ > 0 and x 6= y, it must also hold that r(G)−1LG
t (y) < L. In particular,

this implies

L ∧
(

LG
t (x)

r(G)

)

≥ λ

√

R̃G(x, y) +
LG
t (y)

r(G)
.

Setting s = t ∧ τx(⌊LµG
x r(G)⌋), we thus deduce that

LG
s (x)

r(G)
= L ∧

(

LG
t (x)

r(G)

)

≥ λ

√

R̃G(x, y) +
LG
t (y)

r(G)
≥ λ

√

R̃G(x, y) +
LG
s (y)

r(G)
.

Again applying the strong Markov property at τx(0), we have therefore shown that

PG
z (A(x, y, λ, L)) ≤ PG

x

(

max
0≤t≤τx(⌊LµG

x r(G)⌋)

(

LG
t (x)− LG

t (y)
)

≥ λ
√

r(G)RG(x, y)

)

.

Recalling the bound at (7), this implies

PG
z (A(x, y, λ, L)) ≤ e−λ2µG

x r(G)/8⌊LµG
x r(G)⌋ ≤ e−λ2/8L

for every λ > 2 and L ≥ 1. The result follows.

3 A discrete version of Garsia’s lemma

For our discrete version of Garsia’s lemma, we continue to work in a general frame-
work. In this section, though, we do not need to restrict our attention to the resis-
tance metric, and instead consider an arbitrary metric dG on V (G). We write d0(G) :=
minx,y∈V (G):x 6=y dG(x, y) for the shortest distance between two distinct points,

d(G) := max
x,y∈V (G)

dG(x, y) (8)

for the diameter of V (G), and

Bd(x, r) := {y : dG(x, y) < r} (9)

for the open balls with respect to this metric. To state our main result, we further
suppose: v : R+ → R+ is a non-decreasing function; p : R+ → R+ is a non-decreasing
function with p(0) = 0; and ψ : R → R+ is symmetric, convex and satisfies ψ(0) = 1 and
limx→∞ ψ(x) = ∞.

10



Proposition 3.1. Suppose the measure µG satisfies

min
x∈V (G)

µG (Bd(x, r)) ≥ v(r) (10)

for every r = [d0(G), d(G)]. Given a function f : V (G) → R, define

Γ(f) :=
∑

x,y∈V (G)

ψ

(

f(x)− f(y)

p(dG(x, y))

)

µG
x µ

G
y .

(By convention, we set (f(x) − f(y))/p(dG(x, y)) = 0 when x = y.) It is then the case
that

|f(x)− f(y)| ≤ 2

⌊log2(dG(x,y)/d0(G))⌋+1
∑

i=1

p(d0(G)2
i+1)ψ−1

(

Γ(f)

v(d0(G)2i−1)2

)

(11)

for every x, y ∈ V (G), where ψ−1(x) := inf{y ≥ 0 : ψ(y) > x}.
Proof. Fix x0, y0 ∈ V (G), x0 6= y0. For i = 0, 1, 2, . . . , define Ai to be a set of the
form Bd(xi, d0(G)2

i) that contains x0. Similarly, define Bi to be a set of the form
Bd(yi, d0(G)2

i) that contains y0. Note that A0 = {x0} and B0 = {y0}. Moreover,
we can choose the sets so that An = Bn, where n := min{i : d0(G)2i > dG(x0, y0)} =
⌊log2(dG(x0, y0)/d0(G))⌋+ 1.

For a set A ⊆ V (G), if we define fA := 1
µG(A)

∑

x∈A f(x)µ
G
x to be the mean of f on

the set A, then, by applying the convexity of ψ, we deduce that, for i = 1, . . . , n,

ψ

(

fAi
− fAi−1

p(d0(G)2i+1)

)

≤ 1

µG(Ai)µG(Ai−1)

∑

x∈Ai

∑

y∈Ai−1

ψ

(

f(x)− f(y)

p(d0(G)2i+1)

)

µG
x µ

G
y

≤ 1

µG(Ai−1)2

∑

x∈Ai

∑

y∈Ai−1

ψ

(

f(x)− f(y)

p(dG(x, y))

)

µG
x µ

G
y

≤ Γ(f)

v(d0(G)2i−1)2
.

In particular, this implies

∣

∣fAi
− fAi−1

∣

∣ ≤ p(d0(G)2
i+1)ψ−1

(

Γ(f)

v(d0(G)2i−1)2

)

.

Since fA0 = f(x0), summing over i gives

|fAn
− f(x0)| ≤

n
∑

i=1

p(d0(G)2
i+1)ψ−1

(

Γ(f)

v(d0(G)2i−1)2

)

.

Repeating the argument for y0 yields the desired result.

Remark 3.2. An elementary argument gives that the sum at (11) can be bounded above
by the integral

4

∫ 2dG(x,y)

d0(G)

p(4s)

s
ψ−1

(

Γ(f)

v(s/2)2

)

ds.

By extending the lower limit of integration to 0, one obtains an upper bound that does
not depend on d0(G).
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4 Local time continuity under UVD

In this section, we prove Theorem 1.4. We start by combining Theorem 1.1(a) with
the discrete version of Garsia’s lemma derived in the previous section to establish a
slightly weaker result. Although this has a worse power of the log term in the modulus
of continuity than we will eventually obtain, it will allow us to uniformly control the
maximum value of local time over the relevant time scales, as we do in the subsequent
lemma.

Lemma 4.1. If (Gi)i∈I is a collection of graphs that satisfies UVD, then, for each T > 0,

lim
λ→∞

sup
i∈I

max
z∈V (Gi)

PGi
z



 max
x,y∈V (Gi)

max
0≤t≤Tm(Gi)r(Gi)

r(Gi)
−1
∣

∣LGi
t (x)− LGi

t (y)
∣

∣

R̃Gi
(x, y)1/2

(

1 + ln R̃Gi
(x, y)−1

) ≥ λ



 = 0.

Proof. Set dGi
:= R̃Gi

, vGi
(x) := v(r(Gi)x) (where v is the function that appears in the

definition of the UVD property), pGi
(x) :=

√
x and ψGi

(x) := ec|x| for some c which will
later taken to be small. By the lower bound of UVD, we know that (10) holds for each i
with this choice of dGi

and vGi
. We therefore obtain from Proposition 3.1 (and Remark

3.2) that

r(Gi)
−1
∣

∣LGi
t (x)− LGi

t (y)
∣

∣ ≤ 8

c

∫ 2R̃Gi
(x,y)

0

1

s1/2
ln+

(

Γ
(

r(Gi)
−1LGi

t

)

v(r(Gi)s/2)2

)

ds

for every x, y ∈ V (Gi), i ∈ I, t ≥ 0.
Assume now that Γ(r(Gi)

−1LGi
t ) ≤ λm(Gi)

2 for some λ ≥ 1. From the UVD property,
we deduce

Γ
(

r(Gi)
−1LGi

t

)

≤ λm(Gi)
2 ≤ λc22v(r(Gi))

2 ≤ λc22c
4
3s

−2 log2 c3v(r(Gi)s/2)
2,

where c3 is the constant such that v(2r) ≤ c3v(r). Hence, setting λ̃ = λ1/2 log2 c3,

r(Gi)
−1
∣

∣LGi
t (x)− LGi

t (y)
∣

∣ ≤ c4

∫ 2R̃Gi
(x,y)

0

1

s1/2
ln+

(

c5λ̃

s

)

ds

for every x, y ∈ V (Gi), i ∈ I. This implies

r(Gi)
−1
∣

∣LGi
t (x)− LGi

t (y)
∣

∣ ≤ c6

√

R̃Gi
(x, y)

(

ln(c5λ̃) + ln R̃Gi
(x, y)−1

)

≤ c7 (1 + lnλ)

√

R̃Gi
(x, y)

(

1 + ln R̃Gi
(x, y)−1

)

for every x, y ∈ V (Gi), i ∈ I.
It follows from the conclusion of the previous paragraph that

sup
i∈I

max
z∈V (Gi)

PGi
z



 max
x,y∈V (Gi)

max
0≤t≤Tm(Gi)r(Gi)

r(Gi)
−1
∣

∣LGi
t (x)− LGi

t (y)
∣

∣

R̃Gi
(x, y)1/2

(

1 + ln R̃Gi
(x, y)−1

) ≥ λ





≤ sup
i∈I

max
z∈V (Gi)

PGi
z

(

max
0≤t≤Tm(Gi)r(Gi)

Γ
(

r(Gi)
−1LGi

t

)

> λ′m(Gi)
2

)

,
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where λ′ is defined by λ = c7(1 + lnλ′). Hence, to complete the proof, it will be enough
to show that

sup
i∈I

max
z∈V (Gi)

m(Gi)
−2EGi

z

(

max
0≤t≤Tm(Gi)r(Gi)

Γ
(

r(Gi)
−1LGi

t

)

)

<∞. (12)

Now, by definition, we have that the left-hand side is bounded above by

sup
i∈I

max
x,y∈V (Gi)

EGi
z



exp







cmax0≤t≤Tm(Gi)r(Gi) r(Gi)
−1
∣

∣LGi
t (x)− LGi

t (y)
∣

∣

√

R̃Gi
(x, y)









 .

Consequently, assuming that c is chosen to be suitably small, the bound at (12) can be
deduced by applying Theorem 1.1(a).

Lemma 4.2. If (Gi)i∈I is a collection of graphs that satisfies UVD, then, for each T > 0,

lim
λ→∞

sup
i∈I

max
z∈V (Gi)

PGi
z

(

max
x∈V (Gi)

r(Gi)
−1LGi

Tm(Gi)r(Gi)
(x) ≥ λ

)

= 0.

Proof. First note that, for λ ≥ 1, PG
x (r(G)

−1LG
Tm(G)r(G)(x) > λ) is bounded above by

PG
x (τx(⌊λµG

x r(G)⌋) < Tm(G)r(G)). Recalling the bound for T1 that appeared in the
proof of Theorem 1.1(a), it follows that

PGi
x

(

r(Gi)
−1LGi

Tm(Gi)r(Gi)
(x) > λ

)

≤ e
−µ

Gi
x

(

⌊λµ
Gi
x r(Gi)⌋

µ
Gi
x

−Tr(Gi)

)2

/2c⌊λµ
Gi
x r(Gi)⌋r(Gi)

,

and the upper bound here converges to 0 as λ→ ∞, uniformly in x ∈ V (Gi), i ∈ I. The
result follows by applying this convergence and Lemma 4.1, together with the observation
that PGi

z (maxx∈V (Gi) r(Gi)
−1LGi

Tm(Gi)r(Gi)
(x) ≥ λ) is bounded above by

PGi
z

(

r(Gi)
−1LGi

Tm(Gi)r(Gi)
(z) ≥ λ/2

)

+PGi
z

(

max
x,y∈V (Gi)

r(Gi)
−1
∣

∣

∣
LGi

Tm(Gi)r(Gi)
(x)− LGi

Tm(Gi)r(Gi)
(y)
∣

∣

∣
≥ λ/2

)

.

Lemma 4.3. If (Gi)i∈I is a collection of graphs that satisfies UVD, then, for each L > 0,

lim
λ→∞

sup
i∈I

max
z∈V (Gi)

PGi
z









max
x,y∈V (Gi)

max
t≥0

∣

∣

∣
L ∧

(

L
Gi
t (x)

r(Gi)

)

− L ∧
(

L
Gi
t (y)

r(Gi)

)∣

∣

∣

√

R̃Gi
(x, y)

(

1 + ln R̃Gi
(x, y)−1

)

≥ λ









= 0.

Proof. Since the proof of this is essentially the same as that of Lemma 4.1 with the
local times being replaced by the truncated local times, we omit the details. We merely
note that to obtain the square root of the log term of the modulus of continuity, we
take ψGi

(x) := ecx
2
and estimate the expectation of maxt≥0 Γ(L ∧ (LGi

t /r(Gi))) using the
Gaussian bound of Theorem 1.1(b).
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Proof of Theorem 1.4. Clearly, the probability we are trying to bound is no greater than

PGi
z









max
x,y∈V (Gi)

max
t≥0

∣

∣

∣
L ∧

(

L
Gi
t (x)

r(Gi)

)

− L ∧
(

L
Gi
t (y)

r(Gi)

)∣

∣

∣

√

R̃Gi
(x, y)

(

1 + ln R̃Gi
(x, y)−1

)

≥ λ









+PGi
z

(

max
x∈V (Gi)

r(Gi)
−1LGi

Tm(Gi)r(Gi)
(x) ≥ L

)

.

Hence the result is an easy consequence of Lemmas 4.2 and 4.3.

5 Examples

In this section, we present some examples of collections of graphs for which UVD can
be checked, and therefore to which Theorem 1.4 applies. Although in these examples we
restrict our attention to collections of unweighted graphs (i.e. those for which µG

xy = 1,
for all {x.y} ∈ E(G)), we note that the assumption UVD is stable under perturbations
that keep the weights uniformly bounded. In particular, the discussion would equally
apply if we supposed µG

xy ∈ [c1, c2] for all {x.y} ∈ E(G) (uniformly over the graphs in the
collection), where 0 < c1 ≤ c2 <∞. We further note that for the majority of the graphs
described explicitly in our examples, we have that for some α ≥ 1, β ≥ 2,

µG(Bd(x, r)) ≍ rα, RG(x, y) ≍ dG(x, y)
β−α, (13)

for x, y ∈ V (G), r ∈ [r0(G), r(G)] (again, uniformly over the collection), where dG is
the usual shortest path graph distance, Bd(x, r) is the corresponding ball (defined as at
(9)), and ≍ means ‘bounded above and below by constant multiples of’. As a result, the
conclusion of Theorem 1.4 can be written as

lim
λ→∞

sup
i∈I

max
z∈V (Gi)

PGi
z









max
x,y∈V (Gi)

max
0≤t≤Td(Gi)β

d(Gi)
−(β−α)

∣

∣LGi
t (x)− LGi

t (y)
∣

∣

√

d̃Gi
(x, y)β−α

(

1 + ln d̃Gi
(x, y)−1

)

≥ λ









= 0

(14)
for each T > 0, where d̃Gi

(x, y) := dGi
(x, y)/d(Gi) is the graph distance rescaled by the

graph diameter (as defined at (8)). Note that β gives the relevant time-scaling exponent
(cf. the heat kernel estimates for infinite graphs of [7]). We describe the extension of this
local time continuity result to the infinite graph setting in the next section.

5.1 One-dimensional graphs

Consider (Gi)i∈I to be a collection of unweighted graphs for which there exists a finite
constant c such that m(Gi) ≤ cr(Gi) for all i ∈ I. Since the shortest path graph
distance dGi

satisfies dGi
≥ RGi

, we immediately deduce that µGi(BGi
(x, r)) ≥ r for r ∈

[r0(Gi), r(Gi)], which confirms UVD holds in this case with v(r) = r. In particular, this
class of examples covers collections of essentially one-dimensional graphs. For example,
it includes the case when Gi is the graph with vertices {0, . . . , i} connected by nearest
neighbour edges, i ∈ N. (This latter example satisfies (13) uniformly over (Gi)i∈N with
α = 1, β = 2.)
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Figure 1: The Vicsek set graphs G0, G1, G2.

Figure 2: The Sierpiński gasket graphs G0, G1, G2.

5.2 Trees

Suppose (Gi)i∈I is a collection of graph trees. Since in this case dGi
≡ RGi

, it follows that
we can replace the resistance metric by the shortest path metric in the UVD condition to
be checked, and in the conclusion. In particular, if we have a family of trees with uniform
polynomial volume growth of exponent α with respect to the graph distance (so that the
left-hand estimate of (13) holds uniformly over (Gi)i∈I), then UVD holds and Theorem
1.4 applies. (NB. In this case, the right-hand estimate of (13) immediately holds with
β = α + 1.) For instance, if we take the Gi to be the ith level graph tree approximation
of the Vicsek set – the first three such graphs are shown in Figure 1, then it is easy to
check that we have the requisite polynomial volume growth with exponent α = ln 5/ ln 3,
and so we conclude (14) holds with this α, β = α + 1 and d(Gi) = 2× 3i.

5.3 Nested fractal graphs

The nested fractals were originally introduced in [34], and are a class of self-similar fractals
that are finitely-ramified, embedded into Euclidean space and admit a high degree of
symmetry. The volume and resistance growth of such fractals and associated graphs are
well-understood, and so fit naturally into the framework of the present article. Although
the discussion of this section would readily extend to any nested fractal, for simplicity of
presentation we restrict ourselves to the graphs associated with the Sierpiński gasket in
two dimensions.

Let V0 := {x1, x2, x3} ⊆ R
2 consist of the vertices of an equilateral triangle of side

length 1. Write ψi(x) := |x+ xi|/2. Then there exists a unique compact set such F that
F = ∪3

i=1ψi(F ); this is the Sierpiński gasket. We define the associated Sierpiński gasket
graphs (Gi)i≥0 by setting V (Gi) := Vi, where Vi := ∪3

i=1ψi(Vi−1) for i ≥ 1, (note that
V0 was already defined,) and defining E(Gi) to be the collection of pairs of elements of
Vi at a Euclidean distance 2−i apart. (The first three graphs in this sequence are shown
in Figure 2.) For such graphs, it is easy to check that balls in the shortest path graph

15



Figure 3: The Sierpiński carpet graphs G0, G1, G2.

distance dGi
satisfy c1r

df ≤ µGi(BdGi
(x, r)) ≤ c2r

df for every x ∈ V (Gi), r ∈ [1, d(Gi)],
i ≥ 0, where df := ln 3/ ln 2. Moreover, for the resistance metric RF on the limiting
fractal, it is known that c3|x − y|dw−df ≤ RF (x, y) ≤ c4|x − y|dw−df for all x, y ∈ F ,
where dw = ln 5/ ln 2 (see [37, (1.6.10)], for example). From the standard construction
of RF in terms of resistances on approximating subsets, it is possible to deduce that
RGi

(x, y) = (5/3)iRF (x, y) for all x, y ∈ V (Gi), i ≥ 0. It is also straightforward to verify
c52

i|x− y| ≤ dGi
(x, y) ≤ c62

i|x− y| for all x, y ∈ V (Gi), i ≥ 0. Hence it follows that

c7dGi
(x, y)dw−df ≤ RGi

(x, y) ≤ c8dGi
(x, y)dw−df

for all x, y ∈ V (Gi), i ≥ 0. (For nested fractals in general, a discussion of the connection
between the various distances can be found in [21, Remark 3.7].) Putting these estimates
together, we deduce UVD holds for this example, and an application of Theorem 1.4
yields the following. We note that a similar modulus of continuity for the local times of
the limiting diffusion was established in [10, Theorem 1.11, see also the remark following
its proof].

Theorem 5.1. If (Gi)i≥0 is the sequence of Sierpiński gasket graphs, then, for each T > 0,

lim
λ→∞

sup
i≥0

max
z∈V (Gi)

PGi
z

(

max
x,y∈V (Gi)

max
0≤t≤5iT

(

3
5

)i ∣
∣LGi

t (x)− LGi
t (y)

∣

∣

|x− y|ln(5/3)/2 ln 2(1 + ln |x− y|−1)1/2
≥ λ

)

= 0.

5.4 Sierpiński carpet graphs

There are various definitions of generalised Sierpiński carpets and associated graphs to
which the following argument could be applied. Again, though, to avoid unnecessary
complication, we take one representative example. Let {x1, . . . , x8} ⊆ R

2 be the corners
and edge-midpoints of the unit square [0, 1]2. Write ψi(x) := |x+xi|/3. Then there exists
a unique compact set such F that F = ∪8

i=1ψi(F ); this is the Sierpiński carpet. We define
the associated Sierpiński carpets graphs (Gi)i≥0 by first setting V (Gi) := Vi, where V0
is the set consisting of the centres of the squares (ψj([0, 1]

2))8j=1, and Vi := ∪8
i=1ψi(Vi−1)

for i ≥ 1. Moreover, we define E(Gi) to be the collection of pairs of elements of Vi at a
Euclidean distance 3−(i+1) apart. (The first three graphs in this sequence are shown in
Figure 3.) Let us also define an infinite version of the graphical Sierpiński carpet G by
setting V (G) := ∪∞

i=03
i+1Vi, and defining E(G) to be the collection of pairs of elements

of V (G) a unit distance apart.
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Now, for the infinite graphical Sierpiński carpet, it is a consequence of results in [5, 7]
that

c1dG(x, y)
dw−df ≤ RG(x, y) ≤ c2dG(x, y)

dw−df (15)

for every x, y ∈ V (G), where RG and dG are the resistance and shortest path metric,
respectively, df := ln 8/ ln 3 and dw := ln(8ρ)/ ln 3 for some ρ > 1. Hence, if we consider
Gi with ‘wired’ boundary conditions, by which we mean we identify all the vertices on
the outer edge of the graph to obtain a new graph Gw

i , then a straightforward application
of Rayleigh’s monotonicity law (see, for example, [33, Theorem 9.12]) allows us to deduce
that RGw

i
(x, y) ≤ c3dGw

i
(x, y)dw−df for all x, y ∈ V (Gw

i ), i ≥ 0. It is also an elementary
exercise to check that µGw

i (BdGw
i
(x, r)) ≥ µGi(BdGi

(x, r)) ≥ c4r
df for every x ∈ V (Gw

i ),

r ∈ [1, d(Gw
i )], i ≥ 0. (If x is the boundary vertex in Gw

i , then we can take any x on the
boundary in the middle expression above.) This confirms that the first part of the UVD
condition holds with v(r) = rdf/(df−dw).

For the second part of the UVD condition, let us start by defining A to be the union
of two rectangles of height 1/9 and width 1, one at the top and one at the bottom of the
unit square [0, 1]2. Moreover, define B to be the square of side 1/9 located on the middle
of the right-hand side of [0, 1]2. (See left-hand side of Figure 4.) From [35, Theorem 6.1],
it follows that there exists a constant c5 such that

RGi
(A ∩ Vi, B ∩ Vi) ≥ c5ρ

i (16)

for every i ≥ 1. (The graphs considered in [35] have larger vertex sets than ours, but
it is easy to see that the resistance in the two settings is comparable.) Next, let A′

and B′ be the image of A and B under the map that takes the unit square [0, 1]2 to
[2/9, 1/3]× [4/9, 5/9] (see the right-hand side of Figure 4). By again applying Rayleigh’s
monotonicity law, it follows from (16) that if x ∈ B′∩V (Gw

i ) and y ∈ V (Gw
i )\[2/9, 1/3]×

[4/9, 5/9] (where i ≥ 3), then RGw
i
(x, y) ≥ RGw

i
(A′, B′) ≥ c6ρ

i. In particular, this implies

that r(Gw
i ) ≥ c7ρ

i, and we conclude that m(Gw
i ) ≤ c78

i ≤ c8r(G
w
i )

df/(df−dw), as desired.
Thus, since the graph distance dGi

is comparable to the wired Euclidean distance | ·− · |w
(i.e. the quotient of the usual Euclidean distance on [0, 1]2 under the identification of the
boundary) multiplied by 3i, we obtain the following. We expect that by developing further
the techniques of [35] (see also [5]), it should be possible to verify the corresponding result
for the unwired graphs (Gi)i≥0.

Theorem 5.2. If (Gw
i )i≥0 is the sequence of wired Sierpiński carpet graphs, then, for

each T > 0,

lim
λ→∞

sup
i≥0

max
z∈V (Gw

i )
P

Gw
i

z



 max
x,y∈V (Gw

i )
max

0≤t≤(8ρ)iT

ρ−i
∣

∣

∣
L
Gw

i
t (x)− L

Gw
i

t (y)
∣

∣

∣

|x− y|ln(ρ)/2 ln 3
w (1 + ln |x− y|−1

w )1/2
≥ λ



 = 0.

6 Infinite graphs

In this section, we consider the application of the techniques developed in this article
to a class of infinite graphs. In particular, we suppose G = (V (G), E(G)) is an infinite,

17



Figure 4: The left-hand figure shows A (black) and B (dark grey). The right-hand figure
shows A′ and B′.

locally finite, connected graph, with weights µG and distinguished vertex 0 ∈ V (G). We
assume that this satisfies (13) for some α < β (where α ≥ 1, β ≥ 2). We note that, as
is discussed following [7, Definition 1.2] (see also [7, Proposition 3.5]), these conditions
imply that the random walk XG is recurrent. As a consequence, the identity at (1) still
holds in this setting (see [2, Lemma 2.48], for example). This will be useful in proving
the following adaptation of Theorem 1.4 to the present setting, which is the main result
of this section. Since the proof is in many aspects similar to that of Theorem 1.4, we will
be brief with the details. At the end of the section, we describe a particular application
to the infinite graphical Sierpiński carpet.

Theorem 6.1. If G is an infinite graph satisfying (13) for some α ≥ 1, β ≥ 2 such that
α < β, then, for each T > 0,

lim
λ→∞

sup
i≥1

PG
0













max
x,y∈V (G)

max
0≤t≤T iβ

i−(β−α)
∣

∣LG
t (x)− LG

t (y)
∣

∣

√

R
(i)
G (x, y)

(

1 + ln+

(

R
(i)
G (x, y)

)−1
)

≥ λ













= 0,

where R
(i)
G (x, y) := i−(β−α)RG(x, y).

To prove the above result, we start with a lemma that controls the rate of growth of
the local times at a given vertex. Throughout this section, we suppose dG is the usual
shortest path metric on G, and denote balls with respect to this metric by Bd(x, r).

Lemma 6.2. If G is an infinite graph satisfying the conditions of Theorem 6.1, then, for
each T > 0, there exist constants c1 and c2 such that

sup
i≥1

sup
x∈V (G)

PG
x

(

i−(β−α)LG
Tiβ(x) ≥ λ

)

≤ c1e
−c2λ

for every λ ≥ 0.

Proof. We will first show the existence of constants ε1, ε2 > 0 such that

PG
x

(

τ+x ≥ ε1i
β
)

≥ ε2
µG
x i

β−α
(17)
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for all x ∈ V (G), i ≥ 1. Given x ∈ V (G), let y ∈ V (G) be such that dG(x, y) = i. We
then have that

PG
x

(

τ+x ≥ ε1i
β
)

≥ PG
x

(

τy < τ+x
)

PG
y

(

τBd(y,i)c > ε1i
β
)

≥ 1

µG
xRG(x, y)

(

1− c1e
−c2ε

− 1
β−1

1

)

≥ c3
µG
x i

β−α
,

where τBd(y,i)c is the exit time of the ball Bd(y, i). Note that we have applied (1) and [7,
Proposition 3.4 and Lemma 3.7] to deduce the second inequality, and (13) to obtain the
third. This confirms the desired bound.

Now, define (τx(i))i≥0 as in the proof of Theorem 1.1(a). It is then the case that

PG
x

(

i−(β−α)LG
Tiβ(x) > λ

)

≤ PG
x

(

τ(⌊λµG
x i

β−α⌋) < Tiβ
)

≤ PG
x





⌊λµG
x iβ−α⌋−1
∑

j=0

1{τx(j+1)−τx(j)≥ε1iβ} < T/ε1





= P
(

Bin
(

⌊λµG
x i

β−α⌋,PG
x (τ

+
x ≥ ε1i

β)
)

< T/ε1
)

≤ P
(

Bin
(

⌊λµG
x i

β−α⌋, ε2/µG
x i

β−α
)

< T/ε1
)

,

where we denote by Bin(n, p) a binomial random variable with parameters n and p, built
on a probability space with probability measure P. Note that the final inequality is a
consequence of (17). Hence,

PG
x

(

i−(β−α)LG
Tiβ(x) > λ

)

≤ eT/ε1EG
x

(

e−Bin(⌊λµG
x iβ−α⌋,ε2/µG

x iβ−α)
)

≤ eT/ε1e−(1−e−1)⌊λµG
x iβ−α⌋ε2/µG

x iβ−α

.

Next, note that if y ∈ V (G) is such that dG(x, y) = 1, then, by applying (1) and (13), we
have that 1 ≤ Px(τy < τ+x )

−1 = µG
xRG(x, y) ≤ c4µ

G
x dG(x, y)

β−α = c4µ
G
x . In conjunction

with the above inequality, it follows that, for λ ≥ 2c4, P
G
x (i

−(β−α)LG
Tiβ(x) > λ) ≤ c5e

−c6λ,
and the result follows.

The following result is a version of Theorem 1.1 for infinite graphs. Since on replacing
r(G) by iβ−α, and m(G) by iα, the proof of the result is almost identical to that of
Theorem 1.1, we omit it. (The one other change that is required is the use of Lemma 6.2
to bound the term corresponding to T1 in the proof of part (a).)

Lemma 6.3. Suppose G is an infinite graph satisfying the conditions of Theorem 6.1.
(a) For each κ, T > 0, there exist constants c1 and c2 such that

sup
i≥1

max
x,y,z∈V (G):
dG(x,y)≤κi

PG
z

(

max
0≤t≤T iβ

i−(β−α)
∣

∣LG
t (x)− LG

t (y)
∣

∣ ≥ λ

√

R
(i)
G (x, y)

)

≤ c1e
−c2λ

for every λ ≥ 0.
(b) It holds that

sup
i≥1

max
x,y,z∈V (G)

PG
z

(

max
t≥0

∣

∣

∣

∣

L ∧
(

LG
t (x)

iβ−α

)

− L ∧
(

LG
t (y)

iβ−α

)∣

∣

∣

∣

≥ λ

√

R
(i)
G (x, y)

)

≤ 2e
1
2
− λ2

8L
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for every λ ≥ 0 and L ≥ 1.

We are now in a position to prove the main result of the section.

Proof of Theorem 6.1. Given κ ≥ 6, let Gi be the graph with vertex set V (Gi) :=
Bd(0, κi) and edge set E(Gi) := {x, y ∈ E(G) : x, y ∈ Bd(0, κi)}. From (13), it is
possible to check that there exists a constant c1 such that

µG (Bd(x, r) ∩ Bd(0, κi)) ≥ c1r
α (18)

for every x ∈ V (Gi), r ∈ [1, 2κi], i ≥ 1. Indeed, for balls such that Bd(x, r) ⊆ Bd(0, κi)
(which includes the case r = 1) this is obvious. Otherwise, x ∈ Bd(0, (κi − r)+)

c. If
we further suppose 2 ≤ r ≤ 2κi/3, then 1 ≤ ⌊r/2⌋ ≤ κi − r, and it is possible to select
y ∈ V (Gi) to be a point on a shortest path from 0 to x such that dG(x, y) = ⌊r/2⌋. For this
y, we have µG(Bd(x, r)∩Bd(0, κi)) ≥ µG(Bd(y, ⌊r/2⌋)) ≥ c2r

α. On the other hand, assume
2κi/3 ≤ r ≤ 2κi. Let y ∈ V (Gi) to be a point on a shortest path from 0 to x such that
dG(x, y) = ⌊dG(0, x)/2⌋. Then µG(Bd(x, r) ∩ Bd(0, κi)) ≥ µG(Bd(y, κi/6)) ≥ c3(κi)

α ≥
c4r

α. This confirms (18), and thus we deduce that the measures µGi := µG(· ∩Bd(0, κi))
satisfy (10) uniformly in i ≥ 1 for v(r) = c1r

α.
Next, from Lemma 6.3(a), we deduce that, for each κ, T > 0, there exists a constant

c5 such that

sup
i≥1

i−2αEG
0



 max
0≤t≤T iβ

∑

x,y∈Bd(0,κi)

ec5i
−(β−α)|Lt(x)−Lt(y)|/

√

R
(i)
G

(x,y)µG
x µ

G
y



 <∞.

Hence, setting dGi
:= R

(i)
G , vGi

(x) := iαxα/(β−α), pGi
(x) :=

√
x and ψGi

(x) := ec|x| for
suitably small c, and applying the volume bound of the previous paragraph, one can
proceed as in the proof of Lemma 4.1 to show that, for any κ, T > 0,

lim
λ→∞

sup
i≥1

PG
0



 max
x,y∈Bd(0,κi)

max
0≤t≤T iβ

i−(β−α)
∣

∣LG
t (x)− LG

t (y)
∣

∣

R
(i)
G (x, y)1/2

(

1 + ln+R
(i)
G (x, y)−1

) ≥ λ



 = 0.

Together with the conclusion of Lemma 6.2, this implies that, for each κ, T > 0,

lim
λ→∞

sup
i≥1

PG
0

(

max
x∈Bd(0,κi)

i−(β−α)LG
Tiβ(x) ≥ λ

)

= 0 (19)

(cf. the proof of Lemma 4.2). Moreover, Lemma 6.3(b) implies that for each κ > 0, L ≥ 1,
there exists a constant c6 such that

sup
i≥1

i−2αEG
0



max
t≥0

∑

x,y∈Bd(0,κi)

e
c6

∣

∣

∣

∣

L∧

(

LG
t (x)

iβ−α

)

−L∧

(

LG
t (y)

iβ−α

)∣

∣

∣

∣

2

/R
(i)
G

(x,y)
µG
x µ

G
y



 <∞.

Thus, as in Lemma 4.3, taking ψGi
(x) := ecx

2
in a similar application of Garsia’s lemma

yields

lim
λ→∞

sup
i≥1

PG
0









max
x,y∈Bd(0,κi)

max
t≥0

∣

∣

∣
L ∧

(

LG
t (x)

iβ−α

)

− L ∧
(

LG
t (y)

iβ−α

)∣

∣

∣

√

R
(i)
G (x, y)

(

1 + ln+R
(i)
G (x, y)−1

)

≥ λ









= 0. (20)
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Putting (19) and (20) together, we can emulate the proof of Theorem 1.4 to obtain

lim
λ→∞

sup
i≥1

PG
0









max
x,y∈Bd(0,κi)

max
0≤t≤T iβ

i−(β−α)
∣

∣LG
t (x)− LG

t (y)
∣

∣

√

R
(i)
G (x, y)

(

1 + ln+R
(i)
G (x, y)−1

)

≥ λ









= 0. (21)

Finally, we know from [7, Proposition 3.4 and Lemma 3.7] that if τBd(0,κi)c is the exit time
of XG from Bd(0, κi), then limκ→∞ supi≥1P

G
0 (τBd(0,κi)c ≤ T iβ) = 0. The result readily

follows by applying this together with (21).

A simple application of Theorem 6.1 yields the following corollary for the infinite
graphical Sierpiński carpet introduced in Section 5.4. The key estimate verifying (13)
is stated at (15). (The relevant volume bound is easy to check.) In stating the result,
we write the infinite carpet F∞ := ∪∞

i=03
iF , where F is the Sierpiński carpet defined in

Section 5.4. We extend the definition of discrete local times to this set in such a way that
for each x ∈ F∞, LG

t (x) is bounded below (above) by the minimum (maximum) of LG
t over

the graph vertices contained in the same and adjacent unit squares, and also (LG
t (x))x∈F∞

is continuous. We then extend to all times by linear interpolation. As is explained in
the next section, were it known that the random walks converged under rescaling to a
diffusion with jointly continuous local times, then this result would be enough to confirm
that the local times of the random walk also converged under suitable rescaling.

Corollary 6.4. For the infinite graphical Sierpiński carpet, for each t ≥ 0, the laws of

(

i−(dw−df )LG
idw t(ix)

)

x∈F∞
,

i = 1, 2, . . . , form a tight sequence of probability measures on C(F∞,R), where df :=
ln 8/ ln 3 and dw := ln(8ρ)/ ln 3.

7 Local time and cover time scaling

In this section, we consider the implications of local time equicontinuity for sequences
of graphs for which the associated random walks admit a scaling limit. As in Section
5.3, for brevity we restrict ourselves to the unweighted Sierpiński gasket graphs. It
should be noted, however, that the arguments below are relatively generic, and should
be transferable to many other models once the relevant inputs are established. Indeed,
this is the reason why, despite it being possible to prove a stronger result for cover times
than the one we derive below using a simple time-change argument in the particular case
of nested fractal graphs, we believe the techniques developed here are still of interest (see
Remarks 7.2 and 7.4 for further discussion on this point).

Let (Gi)i≥0 be the sequence of Sierpiński gasket graphs of Section 5.3, and F be the
limiting Sierpiński gasket into which these are embedded. By [10, 25, 32], we know that
if the associated random walks XGi are started from xi ∈ V (Gi), where xi → x ∈ F ,
then

(

XGi

5it

)

t≥0
→
(

XF
t

)

t≥0
(22)
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in distribution in C(R+, F ), where XF is Brownian motion on the Sierpiński gasket
started from x. (We suppose discrete time processes are extended to elements of C(R+, F )
by linear interpolation.)

In [10], it was shown that the Brownian motion XF admits local times (LF
t (x))x∈F,t≥0

that, almost-surely, are jointly continuous in (x, t) and satisfy the occupation density
formula:

∫

F

f(x)LF
t (x)µ

F (dx) =

∫ t

0

f(XF
s )ds,

for any continuous function f : F → R and t ≥ 0, where µF is the (ln 3/ ln 2)-dimensional
Hausdorff measure on F , normalised to be a probability measure. For t ∈ N, we similarly
have

∫

F

f(x)LGi
t (x)µGi(dx) =

t−1
∑

j=0

f(XGi

j ).

Hence, by applying the random walk scaling limit of (22), it is possible to check that, for
each continuous f : F → R and t ≥ 0,

5−i

∫

F

f(x)LGi

5it
(x)µGi(dx) →

∫

F

f(x)LF
t (x)µ

F (dx)

in distribution. (Note that, for this statement to make sense, we suppose that the defi-
nition of the discrete local time processes it extended to all times by linear interpolation
at each vertex.) By [27, Theorem 16.16], this is enough to imply that, for each t ≥ 0,

5−iLGi

5it
(x)µGi(dx) → LF

t (x)µ
F (dx) (23)

in distribution in the topology of weak convergence of Borel measures on F . (We view
µGi as an atomic measure on F in the obvious way.)

Now, for each t, we extend (LGi
t (x))x∈V (Gi) to a continuous function on F by setting

LGi
t (x) =

∑3
k=1 |x− xk|−1LGi

t (xk)
∑3

k=1 |x− xk|−1

when x is contained in the ith level triangle with vertices x1, x2, x3. Given the equicon-
tinuity result of Theorem 5.1 and uniform boundedness of Lemma 4.2, we can apply the
Arzela-Ascoli theorem to deduce that the laws of ((3/5)iLGi

5it
(x))x∈F form a tight sequence

of probability measures on C(F,R+). In particular, the sequence ((3/5)iLGi

5it
(x))x∈F ad-

mits a distributionally convergent subsequence. Suppose that we have such a subse-

quence ((3/5)ijL
Gij

5ij t
(x))x∈F , and (ℓ(x))x∈F is the distributional limit in C(F,R). Since

µG/(6 × 3i) → µF , it is an easy application of the continuous mapping theorem to de-

duce from this that 5−ijL
Gij

5ij t
(x)µGij (dx) → 6ℓ(x)µF (dx) in distribution in the topology of

weak convergence of Borel measures on F . In conjunction with (23) and the almost-sure
continuity of (LF

t (x))x∈F , it follows that (6ℓ(x))x∈F is equal to (LF
t (x))x∈F in distribution.

Since this conclusion is independent of the particular subsequence chosen, we obtain that,
for each t ≥ 0,

(

6

(

3

5

)i

LGi

5it(x)

)

x∈F

→ (LF
t (x))x∈F

22



in distribution in C(F,R+). Given that the convergence of the rescaled XGi to XF holds
in the uniform topology over compact time intervals, this result is readily extended to
hold simultaneously over a finite collection of times 0 ≤ t1 ≤ · · · ≤ tk. Moreover, because
local times are increasing in t and the limit is continuous in the temporal variable, an
elementary argument allows us to deduce the convergence is also uniform over time (cf. the
proof of Dini’s theorem). In particular, by following these steps, we obtain the following
result.

Theorem 7.1. Let (Gi)i≥0 be the sequence of Sierpiński gasket graphs of Section 5.3. If
the associated random walks XGi are started from xi ∈ V (Gi), where xi → x, then

(

6

(

3

5

)i

LGi

5it
(x)

)

x∈F,t≥0

→
(

LF
t (x)

)

x∈F,t≥0

in distribution in C(F×R+,R), where (L
F
t (x))x∈F,t≥0 are the local times for the Brownian

motion XF on the Sierpiński gasket F started from x.

Remark 7.2. We now discuss a simpler proof of the corresponding result for the continu-
ous time version of the random walk, similar to the proof of [4, Theorem 7.22]. If we define
Ai

t :=
∫

F
LF
t (x)µ

Gi(dx)/m(Gi) and τi(t) := inf{s : Ai
s > t}, then (XF

τi(t)
)t≥1 gives the con-

tinuous time random walk on Gi with exponential mean 5−i holding times. Moreover, sim-
ilarly to the argument of [13, Lemma 3.4], one can check that the local times of this process
with respect to µGi/m(Gi) are given by (LF

τi(t)
(x))x∈V (Gi),t≥0. Now, since µGi/m(Gi) →

µF , the continuity of the local times LF imply that (τi(t))t≥0 → (t)t≥0 almost-surely. Thus
a simple reparametrisation yields that if (L̃Gi

t (x))x∈V (Gi),t≥0 are the local times of the con-
tinuous time simple random walk on Gi with exponential mean one holding times, with
respect to the measure µGi, then (6(3/5)iL̃Gi

5it(x))x∈F,t≥0 → (LF
t (x))x∈F,t≥0 in distribution

in C(F ×R+,R), where the local times on the discrete spaces are suitably extended to take
values in this space. We note, however, that this result would not transfer to the discrete
time case without the use of some form of equicontinuity property, such as the one we
have proved in this article. Moreover, the construction of the time-changed processes that
the proof depends on is quite specific to the particular situation, and would not readily
transfer to other settings, such as the Sierpiński carpet.

To conclude the article, we show that, as a consequence of this local time convergence,
we are able to deduce the asymptotic behaviour of the cover times of the Sierpiński gasket
graphs in the sequence. To this end, for a random walk XG on a graph G, we define

τGcov := inf
{

t ≥ 0 : {XG
0 , . . . , X

G
t } = V (G)

}

(24)

to be the first time that XG has hit every vertex of G. We note that if

τ̃Gcov := inf
{

t ≥ 0 : LG
t (x) > 0, ∀x ∈ V (G)

}

, (25)

then τ̃Gcov = τGcov + 1; this equality will be crucial for our argument. We note that, as in
the first part of this section, the steps we follow are not specific to the Sierpiński gasket
example, and will apply to any sequence of graphs for which we have a scaling limit for
the random walks and local times. In order to state our main result, for a diffusion XF

with state space F and corresponding local times (LF
t (x))x∈F,t≥0, we define τFcov and τ̃Fcov

analogously to (24) and (25), respectively.
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Corollary 7.3. Let (Gi)i≥0 be the sequence of Sierpiński gasket graphs of Section 5.3. If
xi ∈ V (Gi) satisfy xi → x, then

lim sup
i→∞

PGi
xi

(

5−iτGi
cov ≤ t

)

≤ PF
x

(

τFcov ≤ t
)

, (26)

lim inf
i→∞

PGi
xi

(

5−iτGi
cov ≤ t

)

≥ PF
x

(

τ̃Fcov < t
)

, (27)

for every t ≥ 0, where PF
x is the law of the Brownian motion XF on the Sierpiński gasket

F started from x.

Proof. Suppose that t < τFcov. Then there exists an x ∈ F such that x is not contained
in the set {XF

s : 0 ≤ s ≤ t}. By the continuity of XF , it follows that there exists an
ε > 0 such that BE(x, ε)∩ {XF

s : 0 ≤ s ≤ t} = ∅, where BE(x, ε) is the Euclidean ball of
radius ε centred at x. Now, applying the Skorohod representation theorem, it is possible
to assume that we have a realisation of the relevant processes such that the convergence
at (22) occurs almost-surely. Since we are assuming convergence in the uniform topology,
it follows that, for large i, BE(x, ε/2) ∩ {XGi

5is
: 0 ≤ s ≤ t} = ∅, and so 5it ≤ τGi

cov. Thus
we conclude that lim inf i→∞ 5−iτGi

cov ≥ τFcov, and the bound at (26) follows.
Suppose that t > τ̃Fcov. As local times are increasing in t, it must be the case that

LF
t (x) > 0 for every x ∈ F . Together with the continuity of the local times, this implies

that there exists an ε > 0 such that LF
t (x) > ε for every x ∈ F . Again applying the

Skorohod representation theorem, we may suppose that the conclusion of Theorem 7.1
holds almost-surely. Since this statement is also in the uniform topology, it follows that
6(3/5)iLGi

5it
(x) > ε/2 for every x ∈ V (Gi) for large i. It thus holds that 5

it ≥ τ̃Gi
cov for large

i, which establishes lim supi→∞ 5−iτGi
cov = lim supi→∞ 5−iτ̃Gi

cov ≤ τ̃Fcov. This readily yields
the statement at (27).

Remark 7.4. (a) One can check that 0 < τFcov ≤ τ̃Fcov < ∞, almost-surely (cf. the proof
of [10, Theorem 6.3]), and so the limiting expressions are non-trivial.
(b) It is an interesting open problem to determine for which limiting diffusions the identity
τFcov = τ̃Fcov holds almost-surely, as it does for reflected Brownian motion on an interval,
for example. Indeed, if this were true for the Brownian motion on the Sierpiński gasket,
then the above result would actually demonstrate that 5−iτGi

cov → τFcov in distribution.
(c) In fact, in the Sierpiński gasket case, it is possible to check that 5−iτGi

cov → τFcov in
distribution using the time-change argument of Remark 7.2. Indeed, if

τF,icov := inf
{

t ≥ 0 : V (Gi) ⊆ {XF
s : 0 ≤ s ≤ t}

}

,

then it is possible to check from the continuity of XF that τF,icov → τFcov, almost-surely.
Hence we also have that τi(τ

F,i
cov) → τFcov, almost surely. Since τi(τ

F,i
cov) is the cover

time of the continuous time random walk with exponential mean 5−i holding times, by
a reparametrisation and the law of large numbers, it follows that the rescaled cover times
of the discrete time walks converge in distribution. We reiterate, though, that we expect
the argument of this article to be more widely applicable than this.
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Soc. London Ser. A 431 (1990), no. 1882, 345–360.

[6] , Transition densities for Brownian motion on the Sierpiński carpet, Probab.
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