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GELFAND–TSETLIN POLYTOPES AND THE INTEGER

DECOMPOSITION PROPERTY

PER ALEXANDERSSON

Abstract. Let P be the Gelfand–Tsetlin polytope defined by the skew shape
λ/µ and weight w. In the case corresponding to a standard Young tableau,
we completely characterize for which shapes λ/µ the polytope P is integral.
Furthermore, we show that P is a compressed polytope whenever it is integral
and corresponds to a standard Young tableau. We conjecture that a similar

property hold for arbitrary w, namely that P has the integer decomposition
property whenever it is integral.

Finally, a natural partial ordering on GT-polytopes is introduced that pro-
vides information about integrality and the integer decomposition property,
which implies the conjecture for certain shapes.

Keywords: Compressed polytopes, Gelfand–Tsetlin polytopes, integer de-
composition property, Young tableaux.
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1. Introduction

The study of polytopes related to quantities in representation theory has been
fruitful over the last few decades; a highlight, for example, is Knutson and Tao’s
proof of the Saturation conjecture [12].

There are two types of (skew) Gelfand–Tsetlin polytopes, which are defined later
on. The first type is weight-restricted polytopes Pλ/µ,w, which is the main topic
of this paper. There are also polytopes without a restriction on the weight, Pλ/µ,
which are only covered briefly.

In order to study linear recurrence relations among skew Schur polynomials,
the integer decomposition property of Gelfand–Tsetlin polytopes without weight
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2 P. ALEXANDERSSON

restriction was proved and used in [1]. A sketch of this proof can be found in
Section 7.

It is therefore natural to consider the weight-restricted version of Gelfand–Tsetlin
polytopes. These polytopes are more complicated; for example, not all such poly-
topes are integral, as proved by De Loera and McAllister in [13].

A skew Gelfand–Tsetlin polytope Pλ/µ,w is defined by two partitions, λ/µ and
an integer composition w (the exact definition is given in Section 3).

Main result: The main result of this paper (Corollary 19) concerns the case w =
(1, . . . , 1), which correspond to the case of standard Young tableaux. We completely
characterize the skew shapes λ/µ for which Pλ/µ,w is integral, see Corollary 27,
and then proceed to show that each such integral polytope is compressed.

Second result: We show that if w′ is a refinement of w, then

• If Pλ/µ,w′ is integral, then Pλ/µ,w is integral.
• If Pλ/µ,w′ has the integer decomposition property, then Pλ/µ,w is also has

the integer decomposition property.

This result is presented as Theorem 28 and it implies integrality and non-integrality
of several natural families of Gelfand–Tsetlin polytopes. For example, all hook
shapes and disjoint unions of rows yield integral polytopes, which also have the
integer decomposition property. The latter family of polytopes has a natural in-
terpretation in terms of contingency matrices, (see Section 8). We conjecture that
Pλ/µ,w is integral if and only if it has the integer decomposition property. This is
supported by computer experiments.

The present article extends previous work by King, Tollu, Toumazet [10], De
Loera and McAllister [13, 14]; we extensively use and extend results by the latter
two authors.

The work [17] by Rassart gives a good overview on the connection between
representation theory and polytopes. Briefly stated, there is a bijection (given
further down) between integral points inside Gelfand–Tsetlin polytopes and semi-
standard Young tableaux, which explains the connection with representation theory.

Acknowledgements. The author would like to thank Valentin Féray, Christian
Haase, Tyrrell McAllister and Benjamin Nill for helpful discussions, as well as the
anonymous referees for their suggestions. This work has been partially funded by
the Knut and Alice Wallenberg Foundation.

2. Preliminaries

We expect that the reader is somewhat familiar with the notion of Young tableaux
and skew Young tableaux. A standard reference in this field is [15].

Let λ and µ be integer partitions where λi ≥ µi. A skew Young diagram of
shape λ/µ is an arrangement of “boxes” in the plane with coordinates given by
{(i, j) ∈ Z2|µi < j ≤ λi}. Note that we use the English convention. For example,
the skew diagram of shape λ/µ = (5, 4, 2, 2)/(2, 1) is given to the left in (1).

(1)

1 1 2
1 2 3

1 3
4 4

.



GELFAND–TSETLIN POLYTOPES 3

A semi-standard Young tableau (or SSYT) is a Young diagram with natural numbers
in the boxes, such that each row is weakly increasing and each column is strictly
increasing, as in (1). Whenever all numbers are different, we say that the tableau
is standard, and whenever µ is not the empty partition, it is a skew tableau.

2.1. Notation. We always use bold lowercase letters, x, to denote vectors or par-
titions (x1, x2, . . . , xn). The symbol 1 denotes the integer composition (1, 1, . . . , 1)
where the length is evident from the context. The sum of the entries in the vector
x is denoted |x|. If S is a set, |S| also denotes the cardinality of S. Sets are always
capital letters, so there should be no confusion. Whenever we need multiple vectors,
we index these with superscript. Multiplication by a constant is done elementwise
on vectors, integer compositions, and partitions. The number l(w) denote the index
of the last non-zero entry in w.

We write λ ≥ µ if λi ≥ µi for all i. A stronger condition is defined by the partial
order λ ≥int µ, which indicates that the entries in λ and µ interlace:

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn ≥ µn.

Clearly, λ ≥int µ if and only if kλ ≥int kµ for k > 0. For integer compositions w

and w′, we write w′ ≤ref w if w′ is a composition refinement of w.
As per the standard convention, partitions are padded with zeros as needed.

2.2. GT-patterns. Gelfand–Tsetlin patterns were first introduced in [7]. A Gelfand–
Tsetlin pattern, or GT-pattern for short, is a triangular or parallelogram arrange-
ment of non-negative numbers,

xm
1 xm

2 · · · · · · xm
n

. . .
. . .

. . .

x2
1 x2

2 · · · · · · x2
n

x1
1 x1

2 · · · · · · x1
n

where the entries must satisfy the inequalities

(2) xi+1
j ≥ xi

j and xi
j ≥ xi+1

j+1

for all values of i, j where the indexing is defined. The inequalities simply states
that horizontal rows and down-right diagonals are weakly decreasing, while down-
left diagonals are weakly increasing. Note that the conditions ensure that any two
adjacent rows interlace; xi+1 ≥int xi.

Whenever all xi
j are natural numbers, we say that the GT-pattern is integral.

There is a bijection between integral GT-patterns and skew Young tableaux; The
skew shape defined by row j and j + 1 in a GT-pattern G describes which boxes in
a tableau T that have content j. In particular, if the bottom row in G is µ and the
top row is λ, then T has shape λ/µ. Here is an example of this correspondence:

(3)

4 3 2 1
4 3 1 1

3 3 1 1
3 2 1 0

2 1 1 0

←→

1 3
1 2
4

2
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Note that if |µ| = 0, then xi
j = 0 whenever j ≥ i. In this case, these entries are

usually not displayed and it suffices to present a triangular array, which is the more
common form of GT-patterns;

(4)

5 4 2 1 1 0
5 3 2 1 0

3 3 2 1
3 3 1

3 2
3

←→

1 1 1 5 5
2 2 3 6
3 4
4
6

It is customary to only write λ instead of λ/µ to describe such a shape.

Remark 1. In any GT-pattern, xi+1
j −xi

j counts the number of boxes with content
i in row j in the corresponding tableau.

Let Gλ/µ,w denote the set of all integral GT-patterns where the top row is given
by λ, the bottom row is given by µ and

(5)

n∑

j=1

(xi+1
j − xi

j) = |xi+1| − |xi| = wi for i = 1, 2, . . . , l(w).

The integer composition w is usually referred to as the weight. We let Gk
λ/µ,w be

a short form of Gkλ/kµ,kw. In most applications, w is always considered to be a
partition, since |Gλ/µ,w| = |Gλ/µ,π(w)| for any permutation π. This identity not
obvious, but follows from [3].

2.3. Adding GT-patterns. Given two GT-patterns G1 ∈ Gk1

λ/µ,w and G2 ∈

Gk2

λ/µ,w, we define G1 + G2 as element-wise addition on the patterns and it is

easy to verify that

(6) G1 + G2 ∈ Gk1+k2

λ/µ,w.

As an example,

4 3 2
4 3 1

3 3 1
3 2 0

2 1 0

+

8 6 4
7 6 3

7 4 3
7 3 0

4 2 0

=

12 9 6
11 9 4

10 7 4
10 5 0

6 3 0

.

This operation (which we denote ⊠) can also be seen on the Young tableaux side,

1 3
1 2

2 4
⊠

1 1 1 4
1 2 3 3

2 2 2 4
=

1 1 1 1 3 4
1 1 2 2 3 3

2 2 2 2 4 4
.

One can deduce from (5) that ⊠ corresponds to row-wise concatenation of the
corresponding Young tableaux and rearrangement of the boxes in increasing order.

It should be noted that there are few sources that cover GT-patterns of skew
type. There are several reasons for this: there are not as many applications of
skew Young tableaux in representation theory, and many cases can be reduced to
a non-skew setting.

However, it will be evident in the techniques used in this paper that it is less
painful to work with parallelogram rather than triangular arrangements.
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3. Gelfand–Tsetlin polytopes

Given a skew shape λ/µ and weight w, the Gelfand–Tsetlin polytope Pλ/µ,w ⊂
Rmn (or GT-polytope), is defined as the convex polytope consisting of all GT-
patterns (xi

j)1≤i≤m,1≤j≤n that satisfy the equalities

• xm = λ and x1 = µ;
• |xi+1| − |xi| = wi for i = 1, 2, . . . , m− 1.

The elements in Gλ/µ,w are in bijection with the integer lattice points in Pλ/µ,w.
GT-polytopes (mainly those for which |µ| = 0 and w is a partition) have been
studied in many places before, e.g. [11, 13, 18].

In order to have consistent notation, let Pk
λ/µ,w denote the k-dilation of the

polytope Pλ/µ,w. Analogous to (6), it is easy to verify the following identity on the
Minkowski sum of GT-polytopes:

Pk1

λ/µ,w + Pk2

λ/µ,w = Pk1+k2

λ/µ,w.

A convex polytope is called integral if all of its vertices are integer points.
Gelfand–Tsetlin polytopes are in general not integral, see [10, 13], but it is known
that the Ehrhart quasi-polynomial for such a polytope is actually a polynomial; this
is not to be expected of a general non-integral polytope. See [11, 18] for a proof of
the polynomiality of the Ehrhart quasi-polynomial.

Even though Gλ/µ,w and Gλ/µ,π(w) always have the same cardinality for any
permutation π, the corresponding polytopes may look different. For example, the
parameters λ = (5, 3), µ = (0) and w = (2, 2, 2, 1, 1) give an integral polytope, but
setting w = (2, 2, 1, 2, 1) for the same shape yields a non-integral polytope. This
explains the more general setting of composition weights.

3.1. The geometry of GT-polytopes. In this subsection, we recall some notions
introduced in [13]. These definitions and results were originally proved only for non-
skew shapes, but the same proofs can be carried out in the skew setting, which is
what is stated here.

Definition 2 (Tiling). The tiling of a GT-pattern G is a partition P of entries in
G into tiles. This partition is defined as the finest partition with the property that
entries in G that are equal and adjacent1 belong to the same tile.

Thus, G is constant on each of its tiles and for each tile, this constant is called
the content of the tile. Tiles that contain entries from the bottom or the top row
are called fixed, while all other tiles are free.

Two Gelfand–Tsetlin patterns are displayed with their tilings in Figure 1.

The following definition is slightly different, but for our purposes, equivalent with
the definition in [13]:

Definition 3 (Tiling matrix). Let G be a GT-pattern with m rows and s free tiles,
enumerated in some way. A tiling matrix TG = (tij)1≤i≤m,1≤j≤s associated to G is
a matrix with s columns and m rows, such that tij is the number of entries in the
free tile j that are in the (m− i + 1)th row of G.

1Adjacent in the four directions NW, NE, SW and SE.
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6 5 3 2 0
11
2

9
2

5
2

3
2 0

9
2 4 5

2 0 0
9
2 3 1

2 0 0
4 1 0 0 0

6 6 4 2
6 5 3 1

6 4 1 0
4 4 0 0

4 1 0 0
2 1 0 0

Figure 1. The tilings of a non-integral and an integral GT-
pattern. The gray tiles are the fixed tiles.

Tiling matrices for the GT-patterns in Figure 1 are for example









0 0 0 0 0 0 0
1 1 1 1 0 0 0
0 1 1 0 1 0 0
0 1 0 0 0 1 1
0 0 0 0 0 0 0









and











0 0 0 0
1 1 1 0
0 0 1 1
0 0 0 2
0 0 0 1
0 0 0 0











.

In the first matrix, the columns corresponds to the free tiles with content 11
2 , 9

2 , 5
2 ,

3
2 , 4, 3 and 1

2 . The columns in the second matrix corresponds to the contents 5, 3,
1 and 4. Note that the first and last row in any tiling matrix only contain zeros.

We can now state the main theorem in [13]:

Theorem 4. Suppose TG is the tiling matrix of some G ∈ Pλ/µ,w. Then the
dimension of ker TG is equal to the dimension of the minimal (dimensional) face of
the GT-polytope containing G.

Note that dim ker TG is independent of the order of the columns in TG. Also
note that a GT-pattern is a vertex of Pλ/µ,w if and only if the columns in the tiling
matrix are linearly independent.

Let P and P ′ be tilings of GT-patterns in some Pλ/µ,w. A tiling P ′ is a
refinement of P if each tile of P ′ is a subtile of a tile in P.

Lemma 5. Let G = a1G1 + a2G2 + · · ·+ akGk with Gj ∈ Pλ/µ,w and all aj > 0.
Then the tiling of G is a refinement (not necessarily strict) of the tiling of each Gj .

Proof. All GT-patterns have the same monotonicity of the entries along down-left,
down-right, up-left and up-right diagonals, so if two adjacent entries in G are equal,
the corresponding entries in Gj must be equal. �

The following lemma shows how the kernel of the tiling matrix relate a GT-
pattern G with vertices of the minimal-dimensional face that contains G.

Lemma 6. Let G be a non-vertex of a GT-polytope Pλ/µ,w and let G′ be a vertex
of the minimal-dimensional face that contains G. If Ti is a tile of G, let xi be the
content of tile i in G and let yi be the content of Ti when viewed as a subset of G′.
The latter is well-defined, since according to Lemma 5, G′ is constant on each tile
of G.

Then x− y is in the kernel of TG.
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Proof. For each entry in G that is a member of a fixed tile, the corresponding entry
in G′ is also a member of a fixed tile. Thus, G and G′ agrees on the fixed tiles of G.
Let w′

i be the sum of the entries in the fixed tiles of G in row i. Adding all entries
in each row of G (free plus fixed) we have that TGx + w′ = w. Similarly, we have
that TGy + w′ = w by adding all entries in each row of G′. From this, it is evident
that TG(x− y) = 0. �

We end this section with a small application of tiling matrices:

Proposition 7. If λ is a hook, i.e. of the form λ = (h, 1, 1, . . . , 1), then for any
w, all integral points in Pλ,w are vertices of Pλ,w.

Proof. All integral GT-patterns of hook shape are of the following form:

h 1 . . . 1 0 . . . 0
. . .

. . . . .
.

⋆
. . . . .

.

xj 1 ⋆ ⋆ 0
. . .

. . . ⋆ . .
.

. . .
. . . . .

.

x2 ⋆
x1

Since NW-SE diagonals are decreasing, all ⋆ entries must be either 0 or 1. These
entries must therefore belong to the fixed tiles and the only free tiles consist of
(possibly a subset of) the xi. Since no two such entries appear in the same row, the
corresponding tiling matrix have full rank and it follows that G is a vertex. �

3.2. Geometric properties of Gelfand–Tsetlin polytopes. We now prove some
results regarding integrality and non-integrality of some natural families of GT-
polytopes.

Lemma 8. Let G be a vertex of Pλ/µ,w and suppose that the tiling matrix TG has
rank s. If every s× s-minor of TG has determinant ±1 or 0, then G is integral.

Proof. Since G is a vertex, the s columns of TG are linearly independent. Let
x = (x1, x2, . . . , xs) be the vector such that xj is the content of tile j.

The non-free tiles only contain integers and each row sum in G is an integer. The
vector y = TGx must therefore be an integral vector; yj is the sum of the entries
in row j in G that belong to free tiles.

Since every s × s-minor of TG has determinant ±1 or 0 and at least one such
minor is non-zero, it follows that there is an invertible integer matrix U such that
Uy = UTGx and the top s × s-submatrix of UTG is the identity matrix. This
implies that entries in x are integers and hence G is integral. �

Proposition 9. All integral GT-patterns in Pλ/µ,1 are vertices of Pλ/µ,1.

Proof. Consider an integral GT-pattern G ∈ Pλ/µ,1.
Let T be a tiling matrix of G and let Ti be the submatrix of T , given by the i

bottom rows of T and the columns corresponding to the free tiles that intersect at
least one of the rows 1, 2, . . . , i in G. By definition, if G has m rows, then Tm = T .
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The goal is to show that the columns of Ti are linearly independent for all i. The
case T1 is clear, since this matrix has no columns. Now assume that all columns of
Ti are linearly independent and consider the rows i and i + 1 in G. Since the row
sum only increase by one from row i to i + 1 and G is integral, there is only one
entry which differs between adjacent rows. Hence, if τ i is row i, row i and i + 1
must have the form

τ i
1 . . . τ i

j−1 τ i
j + 1 τ i

j+1 . . . τ i
n

τ i
1 . . . τ i

j−1 τ i
j τ i

j+1 . . . τ i
n

.

There are two cases to consider, depending on the value of the boxed entry:






τ i
j + 1 = τ i

j−1 =⇒ Ti+1 =

(

⋆

Ti

)

τ i
j + 1 < τ i

j−1 =⇒ Ti+1 =

(

⋆ 1

Ti 0

) .

Here, the entries in ⋆ is unimportant. It is safe to assume that the matrices have
this form, as any permutation of the columns do not change the rank of the matrix.

In the first case, the boxed entry is a member of a free tile which intersects row
i, so it does not contribute to a new tile. Therefore, no new columns appear in Ti+1

compared to Ti and the columns of Ti+1 must still be linearly independent.
In the second case, the boxed entry belongs to a tile that is not already accounted

for in the columns of Ti. If this entry is contained in a fixed tile, we either have
the same behavior as in the first case, or it is a member of a free tile that starts
in row i + 1. In the latter case, Ti+1 contains a new column, corresponding to this
free tile. The columns in Ti+1 are linearly independent in this case also.

By the induction principle, we can conclude that all columns in T are linearly
independent, so G is a vertex of Pλ/µ,1. �

The following definition and observations allows us to reduce a number of cases
to consider in a later argument.

Let λ/µ and ν/τ be two diagram shapes. The disjoint union of these diagrams
is the shape

λ/µ ∪ ν/τ = (ν1 + λ, ν)/(ν1 + µ, τ ).

For example, (3, 2)/(1) ∪ (4, 2, 2)/(1, 1) is the diagram

(7, 6, 4, 2, 2)/(5, 4, 1, 1) = .

Note that inserting r empty rows and c empty columns between the shapes λ/µ

and ν/τ in their disjoint union, a diagram of shape

(c + ν1 + λ, ν1, . . . , ν1
︸ ︷︷ ︸

r

, ν)/(c + ν1 + µ, ν1, . . . , ν1
︸ ︷︷ ︸

r

, τ )
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is obtained. GT-patterns of such a shape look like

λ′
1 . . . λ′

n ν1, . . . , ν1 ν1 . . . νl

. . .
. . .

. . .
. . .

. . .

µ′
1 . . . µ′

n ν1, . . . , ν1 τ1 . . . τl

where λ′ = c+ν1+λ and µ′ = c+ν1+µ. Such GT-patterns consist of three distinct
blocks: the first n diagonals, the next r diagonals and the final l diagonals. Since
µ′

n ≥ ν1, the south-west to north-east inequalities involving the middle r diagonals
containing ν1 does not have any effect — for any choice of r (even r = 0), the valid
fillings for different choices of r are in natural correspondence with one another, by
inserting or deleting a number of diagonals from the middle block.

Likewise, there is a correspondence between patterns with different values of c,
by simply adding some constant to all elements in the first block.

Note that none of these two operations of changing r or c affect the weight
of the pattern, and it is fairly straightforward to see that changing r or c (i.e.
deleting or inserting empty rows or columns between the shapes λ/µ and ν/τ ) can
be realized as invertible linear mappings between the corresponding GT-polytopes
that preserve lattice points. In particular, this means that (integer) vertices are
mapped to (integer) vertices.

Finally, note that the diagrams (λ/µ)∪(ν/τ ) and (ν/τ )∪(λ/µ) are different in
general. However, there is an invertible, lattice-point-preserving linear map between
GT-patterns of these two shapes, namely the map that sends the pattern above to

ν′
1 . . . ν′

l λ1, . . . , λ1 λ1 . . . λn

. . .
. . .

. . .
. . .

. . .

τ ′
1 . . . τ ′

l λ1, . . . , λ1 µ1 . . . µn

with ν′ = c + λ1 + ν and τ ′ = c + λ1 + τ . This implies the following:

Lemma 10. The polytope P(λ/µ)∪(ν/τ),w is integral if and only if P(ν/τ)∪(λ/µ),w

is integral.

3.3. GT-polytopes corresponding to standard Young tableaux. The inte-
gral GT-patterns in Pλ/µ,1 correspond to standard Young tableaux with skew shape
λ/µ, that is, all boxes in the corresponding Young tableaux are different.

In this section, we completely characterize for which shapes λ/µ the polytope
Pλ/µ,1 is integral. Because of the observation in the previous section, it is enough
to consider shapes λ/µ with no empty row or column.

Given a partition λ, let λ+ denote any partition obtained from the diagram λ

by adding one box. That is, λ+ ⊃ λ and |λ+| − |λ| = 1. Similarly, let λ− denote
a partition obtained from the diagram λ by removing one box.

Lemma 11. If Pλ/µ,1 is non-integral, then Pλ+/µ,1 and Pλ/µ
−

,1 are also non-
integral.

Proof. Let G be a non-integer vertex in Pλ/µ,1:

λ1 λ2 . . . λn

. . .
. . .

. . .

µ1 µ2 . . . µn

.
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The tiling matrix TG has full rank, since G is a vertex. Let i be the row in the
diagram λ+/µ where an extra box was added; consider

G+ =

λ1 λ2 . . . λi + 1 . . . λn

λ1 λ2 . . . λi . . . λn

. . .
. . .

. . .
. . .

µ1 µ2 . . . µi . . . µn

which is a point in Pλ+/µ,1. All λj for i 6= j in the second row from the top belong

to a fixed tile of G+. Two things can happen:
The entry λi belongs to a fixed tile. This implies that the tiling matrix of

G+ is identical with that of G, with the additional top row repeated twice. This
operation does not change the rank, so G+ is a vertex.

The entry λi belongs to a free tile. This free tile was not present in G, so
TG+ has an extra column. However, this is the only free tile that intersects the
second row from the top in G+, which implies that the corresponding column in
the tiling matrix is linearly independent from the other columns.

It follows that G+ is a non-integral vertex. A similar argument shows that G−

obtained from G as

G− =

λ1 λ2 . . . λi . . . λn

. . .
. . .

. . .
. . .

µ1 µ2 . . . µi . . . µn

µ1 µ2 . . . µi − 1 . . . µn

is also a non-integral vertex. �

Lemma 12. Whenever λ/µ is any of the shapes

the polytope Pλ/µ,1 is non-integral.

Proof. The shapes admit the following vertices:

3 2
5
2

3
2

3
2

3
2

3
2

1
2

1 0

2 2 1
2 3

2
1
2

2 1
2

1
2

3
2

1
2 0

1 0 0

3 2 1
3 3

2
1
2

3 1
2

1
2

5
2

1
2 0

2 0 0

3 2 2
5
2 2 3

2
2 3

2
3
2

2 3
2

1
2

2 1 0

2 2 1 1
2 3

2 1 1
2

2 1 1
2

1
2

3
2 1 1

2 0
1 1 0 0

�
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Lemma 13. Whenever λ/µ is of the shape

...

and the total number of boxes is at least four, the polytope Pλ/µ,1 is non-integral.

Proof. The cases k = 4 and k = 5 permit the following non-integral vertices:

3 2 1 1
3 3

2 1 1
2

3 1 1
2

1
2

5
2 1 1

2 0
2 1 0 0

3 2 1 1 1
3 3

2 1 1 1
2

3 1 1 1
2

1
2

3 1 1
2

1
2 0

5
2 1 1

2 0 0
2 1 0 0 0

.

These patterns can be generalized to any k ≥ 4, by considering the patterns

3 2 1 1 1 . . . 1 1
3 3

2 1 1 . . . 1 1 1
2

3 1 1 1 . . . 1 1
2

1
2

3 1 1 1 . . . 1
2

1
2 0

. . . . .
.

. .
.

. .
.

. . . . .
.

. .
.

. .
.

. .
.

3 1 1
2

1
2 0

5
2 1 1

2 0
2 1 0

.

That the rows satisfy all the inequalities and that the row-sums increase by one
upwards is straightforward to check. Also, all integers in the pattern belong to
fixed tiles and the tiles containing 1

2 , 3
2 and 5

2 produce a tiling matrix with full
rank. Thus, this is a non-integer vertex for every k ≥ 2. �

Using Lemma 10 and Lemma 11 together with Lemma 12 and Lemma 13 it is
clear that a large number of polytopes Pλ/µ,1 are non-integral. In particular, all
shapes in (7) and (8) below have non-integral Pλ/µ,1 and adding boxes to these
shapes preserves non-integrality. The next lemma characterizes the diagrams that
cannot be obtained in this fashion.

Some terminology: A diagram D1 is a subdiagram of D2, if D1 can be obtained
from D2 by removal of some boxes and deletion of empty rows and columns.

Lemma 14. A diagram without empty rows or columns that does not contain any
of the diagrams

(7)
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(8)

...

...

...
(four or more boxes)

as a subdiagram is either a disjoint union of rows of boxes, or of one of the shapes

,

∗ · · ·

...
,

...

· · · ∗

(called the 2 × 2-box, hook and reverse hook) where the box marked ∗ can either be
present or not.

Proof. Assume we are given a diagram that avoids all the ten forbidden diagrams
in (7) and (8). A diagram that contains at most one box per column is a union of
rows of boxes and it is easy to see that such an arrangement does not contain a
forbidden pattern. Hence, assume that the diagram contains at least one instance
where one box is on top of another and consider the topmost such instance. If there
are several such arrangements, pick the rightmost one.

Furthermore, we can assume that the diagram contains at least four boxes, since
no arrangement of three boxes can be forbidden, and it is easy to see that all such
arrangements of at most three boxes is a hook, reverse hook or a union of rows.
Remember that we assume that there are no empty rows or columns, so there must
be a third box placed somewhere in one of the following ways:

1

2 1

2 1

1

1 2

1

1

1

2

2

1

1

1

1

2

.

In the second case above, an extra box is indicated, since it must be present in
order for the shape to be a proper skew shape. In the last case, we can assume that
the two boxes marked with 1 are in the two top rows, otherwise, one can consider
the fifth case instead.

In the first five arrangements, some positions cannot have a box since that would
introduce a forbidden pattern, or would contradict the choice of the first two boxes.
These are marked with × and we have the following possible arrangements:

× ×

1 ×

2 1

· · · × ×

× ×

2 1 ×

× 1

× ×

× × × · · ·

1 2

× 1

×
...

× × · · ·

1 ×

1

2

· · · × ×

× × · · ·

× 2

1 ×

× 1

×
...

Knowing that some boxes are not present, other positions can be excluded as well,
since the diagram must be a proper skew shape. From here, it is straightforward
to deduce that only the 2 × 2-box or a (reverse) hook can be obtained by adding
boxes in a non-forbidden fashion.

The last case is slightly different. If the diagram is only one column of boxes, it
is a (degenerate) hook. Since there are no empty rows or columns, we can assume
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the last case must be of one of the forms

1

1

2
...

×

or

1

1

2
...

× ×

which leads to

...

×

· · · × ×

or

...

· · · × ×

.

It is now straightforward to deduce that these two cases must be reverse hooks.
Thus, every diagram that avoids the forbidden patterns is either a disjoin union

of horizontal rows, a 2× 2-box or some type of hook. �

It remains to show that the non-forbidden shapes in Lemma 14 are integral
to completely characterize all λ/µ such that Pλ/µ,1 is integral. We leave it as
an exercise (this was also proved in [10]) to show that the 2 × 2-box gives a one-
dimensional polytope, with two integer vertices and proceed to show that whenever
λ/µ is a disjoint union of rows, the corresponding Gelfand–Tsetlin polytope is
integral.

Proposition 15. If λ/µ is a disjoint union of rows, then Pλ/µ,w is integral.

Proof. It is enough to consider the case when there are no empty rows or columns.
In that case, µ = (λ2, λ3, . . . ). Consider any GT-pattern with such a shape λ/µ:

λ1 λ2 . . . λn

. . .
. . .

. . .

τ1 τ2 . . . τn

. . .
. . .

. . .

λ2 λ3 . . . λn

Since λj ≥ τj ≥ λj+1, we can only have τj = τj+1 if τj = λj+1 = τj+1. Hence,
τj and τj+1 can only be members of the same tile, if this tile also contains some
element from the top and bottom row.

The conclusion is that no free tile can contain two (or more) entries from the same
row. Hence, all columns in the tiling matrix are of the form (0, . . . , 0, 1 . . . , 1, 0, . . . , 0)
and it is easy to show that such a matrix is totally unimodular. Therefore, all points
and especially all vertices in Pλ/µ,w have totally unimodular tiling matrices. Every
minor of a totally unimodular matrix has determinant 0 or ±1 and the result now
follows from Lemma 8. �

It now remains to show that hook shapes and reverse hook shapes give rise to
integral polytopes as well. This is done later in Proposition 25.

4. Polytopes with the integer decomposition property and pulling

triangulations

The goal of this section is to show that every integral Pλ/µ,1 is a compressed
polytope. We first recall some basic notions regarding convex polytopes, see [21, 9]
for details.

Let kP denote the k-dilation of P . An integral polytope P ⊂ Rd is said to have
the integer decomposition property (IDP) if for every k ∈ N and x ∈ kP ∩ Zd, we
can find x1, x2, . . . , xk ∈ P ∩ Zd such that x1 + · · · + xk = x. The only simplices
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with the integer decomposition property are simplices with normalized volume one.
Such a simplex is called a unimodular simplex.

In general, it is hard to determine if a polytope has the IDP using this definition,
but there are several stronger properties of polytopes that imply IDP. For example,
one can use the following proposition:

Proposition 16. If P has a triangulation into unimodular simplices, then P has
the IDP. Such a triangulation is called a unimodular triangulation.

Information about the following definition can be found in [9, 20]:

Definition 17 (Pulling triangulation). Let P be a polytope and fix a total order
on the vertices p1, . . . , pk of P . The pulling triangulation ∆pull(P) is defined re-
cursively as follows: If p1, . . . , pk are affinely independent, then ∆pull(P) is just
{{p1, . . . , pk}}. Otherwise,

∆pull(P) =
⋃

F

{{pk} ∪ σ|σ ∈ ∆pull(F )},

where the union is taken over all facets F of P , that do not contain pk. The ordering
of the vertices in the facets are induced by the ordering on P .

One property of pulling triangulations, which follows easily from the definition,
is the following: If {p0, . . . , pd} ∈ ∆pull(P) (with the total order above), then the
minimal-dimensional face of P that contains {p0, . . . , pj} is j-dimensional, for all
0 ≤ j ≤ d. Finally, an integral convex polytope P is compressed if every pulling
triangulation of P is a unimodular triangulation.

Consider an integral GT-pattern G in Pλ/µ,1. It is clear that G is uniquely

determined by the entries (i, j) where xi
j > xi−1

j . We call such an entry an increase.

Note that if (i, j) is an increase, then xi
j and xi−1

j are members of different tiles.

Lemma 18. Let G0, . . . , Gd be integer vertices of Pλ/µ,1 such that the minimal-
dimensional face of Pλ/µ,1 that contains {G0, . . . , Gj} is j-dimensional, for all
0 ≤ j ≤ d. Then the simplex ∆ = {G0, . . . , Gd} is unimodular.

Proof. We use induction over d and note that for d = 0, the statement is clear.
Consider any integral G in the k-dilation of ∆, that is, any integral G such that

(9) G = a0G0 + a1G1 + · · ·+ adGd

where the aj ∈ R are non-negative numbers with sum k. To prove that the simplex
is unimodular, it suffices to show that the aj are integers. It is enough to show that
ad is must be an integer, since if ad is an integer,

(10) G− adGd = a0G0 + a1G1 + · · ·+ ad−1Gd−1

is an integer point in the (k− ad)-dilation of the simplex ∆′ = {G0, . . . , Gd−1}. By
induction, ∆′ is unimodular, which implies that aj for 0 ≤ j ≤ d− 1 are integers.

We can now assume ad > 0 and observe that the tiling of G must be a weak
refinement of the tiling of Gd, according to Lemma 5. Furthermore, we know that
the minimal-dimensional face of Pλ/µ,1 that contains {G0, . . . , Gd−1} is (d − 1)-
dimensional and that the minimal-dimensional face that contains {G0, . . . , Gd} is
d-dimensional. Hence, the tiling of G0 + · · ·+ Gd is a strict refinement of the tiling
of G0 + · · · + Gd−1. The tiling of Gd is uniquely defined by the set of increases.
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Thus, there must be an increase (i, j) in Gd which is not present in any of the Gj

for j < d, and xi
j − xi−1

j = 1 in Gd, since Gd is an integer vertex.

From this, it follows that the difference xi
j − xi−1

j in G is given by ad. Since G
is an integral GT-pattern, ad is an integer. �

Corollary 19. If Pλ/µ,1 is an integer polytope, it is compressed.

Proof. Consider any simplex ∆ = {G0, . . . , Gd} in any pulling triangulation of
Pλ/µ,1. The vertices of ∆ are also integer vertices of Pλ/µ,1, according to Proposi-
tion 9. The properties of pulling triangulations ensure that the minimal-dimensional
face of Pλ/µ,1 that contains {G0, . . . , Gj} is j-dimensional. Lemma 18 now implies
that ∆ is unimodular. Hence, every pulling triangulation of Pλ/µ,1 is unimodular,
so the polytope is compressed. �

It is known that all lattice points in compressed polytopes are vertices of the
polytope, so this result cannot be extended to general w. For general w, there are
plenty of examples of integer GT-patterns that are not vertices.

5. Conditional results on integrality and integer decomposition

property

In this section we establish integrality and IDP of Pλ/µ,w under certain condi-
tions.

Lemma 20. Let G be the GT-pattern

G =
λ1 λ2 . . . λn

µ1 µ2 . . . µn

with rational entries. Then for every t ∈ Q between |µ| and |λ|, there is a ν such
that |ν| = t and a GT-pattern

G′ =
λ1 λ2 . . . λn

ν1 ν2 . . . νn

µ1 µ2 . . . µn

such that the entries λi and µj belong to the same tile in G′ if λi and µj belong to
the same tile in G.

Proof. Let δ > 0 be the largest rational number such that 1
δ G is an integer GT-

pattern and t/δ is an integer. It suffices to show the following statement:
Statement: For every t = aδ with a ∈ N such that |µ| ≤ t ≤ |λ|, there is a ν

such that |ν| = t, 1
δ ν is an integer partition,

G′ =
λ1 λ2 . . . λn

ν1 ν2 . . . νn

µ1 µ2 . . . µn

is a GT-pattern and the entries λi and µj belong to the same tile in G′ if λi and
µj belong to the same tile in G.

It is clear that the statement is true for t = |µ| and t = |λ| since then we may
choose ν = µ and ν = λ respectively. Using induction, it is enough to show that if
the statement is true for t = aδ, then it is also true for t = (a + 1)δ.

Now consider G′ for some ν satisfying the conditions in the statement. It suffices
to find some νi that can be increased by δ, such that if µi = λi+1 then at least
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one of the equalities µi = νi or µi = νi+1 holds. Keep in mind that λ ≥int µ and
that λ ≥int ν ≥int µ. Furthermore, δ is less than or equal to the smallest non-zero
difference between entries in G′. There are four cases to consider:

Case 1: There is some i such that λi > νi > µi. In this case, νi does not belong to
a tile in G′, so it can be increased by δ without breaking the property of
connected tiles.

Case 2: There is some i < n such that λi > νi = µi but νi > λi+1. Thus, νi and
µi belong to the same tile, but νi does not belong to a tile intersecting the
top row. Hence, νi can be increased by δ without breaking the property of
connected tiles.

Case 3a: For 1 ≤ j < i we have λi = νi = µi. Then the pattern G′ is of the form

λi νi νi+1 νi+2 . . . νi+l . . .
νi νi+1 νi+2 . . . νi+l νi+l . . .

νi νi+1 νi+2 . . . νi+l . . .

for some l ≥ 0 and we can safely increase νi+l since increasing this will not
break any tile into two smaller tiles.

Case 3b: The last case can essentially be considered as an extension of Case 2 or 3a,

G′ =
λi νi νi+1 . . . νn−1

νi νi+1 . . . νn−1 νn

νi νi+1 . . . νn−1 νn

and it is clear that the underlined entry can be increased, since νn−1 > νn.

The cases above cover all possibilities and from these observations, the statement
follows. �

Example 21. We illustrate the previous lemma with an example. Let G be given
by

G =
4 5

2

3
2 0

5

2
0 0 0

.

Suppose we wish to insert a line in the middle, where the sum of the entries is 7.
There are two tile that needs to be preserved, with content 5

2 and 0 respectively.
Start with the pattern

4 5
2

3
2 0

5
2 0 0 0

5
2 0 0 0

.

Case 1 does not apply, but Case 2 in the lemma works. This gives

4 5
2

3
2 0

5
2

5
2 0 0

5
2 0 0 0

.

The middle row sum is now 5, and we can now apply Case 2 again, followed by 3a:

4 5
2

3
2 0

5
2

5
2

3
2 0

5
2 0 0 0

−→
4 5

2

3
2 0

3 5

2

3
2 0

5

2
0 0 0

.

Note that the leftmost 0 in the bottom row was not part of a larger tile in G, so it
does not have to be part of the larger 0-tile.
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Proposition 22 (Integrality and refinement). Let w′ ≤ref w. If Pλ/µ,w is a non-
integral polytope, then Pλ/µ,w′ is also non-integral.

Proof. Let w be given by (w1, . . . , wi−1, wi+w′
i, wi+1, . . . , wn) and let w′ be (w1, . . . , wi−1, wi, w′

i, wi+1, . . . , wn).
It is clear that w′ ≤ref w and that any other refinement can be obtained by repeat-
ing this type of refinement.

Using Lemma 20, any rational point G in the polytope Pλ/µ,w can be mapped
to a point in Pλ/µ,w′ by inserting some new row between rows i − 1 and i in the
GT-pattern G. Furthermore, every tile in G can be naturally identified with a tile
in G′. Tiles in G that do not cross from row i − 1 to i are preserved identically
in G′ and each tile in G that does cross this line also appear in G′ (possibly with
some extra elements), since Lemma 20 guarantees that no tile in G is broken into
two or more tiles in G′.

The only new tiles that appear in G′ are tiles consisting of only one element in
row i. Therefore, the tiling matrices of G and G′ can be written as

TG =











t11 t12 . . . t1r

...
...

. . .
...

tj1 ti2 . . . tjr

...
...

. . .
...

tm1 tm2 . . . tmr











and TG′ =













t11 t12 . . . t1r 0 . . . 0
...

...
. . .

...
...

. . .
...

t′
j1 t′

i2 . . . t′
jr 1 . . . 1

tj1 ti2 . . . tjr 0 . . . 0
...

...
. . .

...
...

. . .
...

tm1 tm2 . . . tmr 0 . . . 0













,

where j = m− i + 1 and m is the number of rows in G.
Assume now that G is a non-integral vertex of Pλ/µ,w. If G′ is a vertex, we are

done. Otherwise, Lemma 6 implies that there is an some y ∈ ker TG′ such that
adding yi to the entries in tile i in G′ for all i = 1, 2, . . . , we obtain a vertex of
Pλ/µ,w′ . Note that if y is in the kernel of TG′ , we must have y1 = · · · = yr = 0,
otherwise, (y1, . . . , yr) would be a non-zero entry in the kernel of TG, which is
impossible since G is a vertex. Hence, the vertex constructed by adding yi to the
tiles of G′ preserves all entries in the tiles corresponding to the first r columns in
TG′. Since there were non-integral entries among these, the vertex constructed in
this manner is non-integral. �

The previous proposition is a bit technical, so an example is justified:

Example 23. Consider Pλ,w for λ = (4, 4, 2, 1, 0) and w = (1, 2, 2, 3, 3). This
polytope is non-integral, since it has the following GT-pattern as a vertex:

G =

4 4 2 1 0
4 5

2
3
2 0

5
2

5
2 0

5
2

1
2

1

TG =









0 0 0
1 1 0
2 0 0
1 0 1
0 0 0









.



18 P. ALEXANDERSSON

We now consider the refinement where w′ = (1, 2, 2, 2, 1, 3). Reusing the ν calcu-
lated in Example 21, the pattern G′ in Pλ,w′ is given as

G′ =

4 4 2 1 0 0
4 5

2
3
2 0 0

3 5
2

3
2 0

5
2

5
2 0

5
2

1
2

1

TG′ =











0 0 0 0 0
1 1 0 0 0
1 0 0 1 1
2 0 0 0 0
1 0 1 0 0
0 0 0 0 0











.

This GT-pattern is not a vertex, but we can use the vector (0, 0, 0, 1,−1) in the
kernel of TG′ to adjust the underlined tiles in G′:

G′′ =

4 4 2 1 0 0
4 5

2
3
2 0 0

4 5
2

1
2 0

5
2

5
2 0

5
2

1
2

1

TG′′ =











0 0 0 0
1 1 0 0
1 0 0 1
2 0 0 0
1 0 1 0
0 0 0 0











.

It is now clear that G′′ is a vertex, so Pλ,w′ is non-integral.

The next proposition can be used as a main tool in an inductive argument to
prove IDP for general w.

Proposition 24 (Tableaux box refinement). Let w′ ≤ref w. If Pλ/µ,w′ has the

IDP2, then Pλ/µ,w also has the IDP.

Proof. Let w = (w1, . . . , wi−1, wi + w′
i, wi+1, . . . , wn). It suffices to consider re-

finements of the form w′ = (w1, . . . , wi, w′
i, wi+1, . . . , wn). Let G be an integral

GT-pattern in Pk
λ/µ,w. We need to show that G can expressed as

(11) G = G1 + G2 + · · ·+ Gk, Gi ∈ Gλ/µ,w.

Consider the tableau T that corresponds to G. There are k(wi + w′
i) boxes with

content i and no two of these boxes appears in the same column. Hence, there is a
natural ordering of these boxes, from left to right. We now construct a new tableau
T ′ by first adding 1 to all boxes with content greater than or equal to i+1, followed
by adding one to the kw1 rightmost boxes in T with content i. See Fig. 2 for an
example of this transformation. The tableau T ′ represents an integral GT-pattern

T =

1 1 1 1 1 1 2 2 3
2 2 2 2 2 3 3 3 4

2 2 3 3 3 3 3 3 4
3 3 4 5 5 5

, T ′ =

1 1 1 1 1 1 2 2 4
2 2 2 2 2 4 4 4 5

2 2 3 3 3 3 4 4 5
3 3 5 6 6 6

Figure 2. Example of the tableau transformation for the param-
eters k = 3, w = (2, 3, 4, 1, 1) and w′ = (2, 3, 2, 2, 1, 1).

in Pk
λ/µ,w′ . Since Pλ/µ,w′ has the IDP, there are tableaux T ′

j in Gλ/µ,w′ such that

T ′ = T ′
1⊠T ′

2⊠ · · ·⊠T ′
k. By construction, any row in T ′ that has a box with content

2Note that this assumption implies integrality of Pλ/µ,w′ .
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i cannot have a row with a box with content i + 1 below it. Since T ′ is the ⊠-sum
of the T ′

j ’s, this property also holds for each individual T ′
j.

Hence, the inverse transformation3 can be applied to each T ′
j to obtain tableau

Tj, corresponding to elements in Gλ/µ,w. Subsequently, T = T1 ⊠ T2 ⊠ · · · ⊠ Tk,
which is equivalent with (11). �

Proposition 25. All GT-polytopes Pλ,1 where λ = (h, 1, 1, . . . , 1), i.e., λ is a hook,
are integrally closed.

Proof. Let T be tableau in Pk
λ,1. It suffices to show that there is a T ′ such that

T ′
⊠ T ′′ for some T ′ in Pλ,1 and T ′′ in Pk−1

λ,1 .

Consider the first column in T , which is a subset of {1, . . . , |λ|}. If some number
j is not present in this column, then the k boxes with content j cannot be in the
first k columns of T so there must be some other column consisting of a single
box with content j. For all such missing numbers j, we record a corresponding
one-box column. Let T ′ be the first column, together with the recorded columns,
in left-to-right order. By construction, T ′ is a standard tableau with shape λ and
the complement of these columns, T ′′, is easily seen to be a semi-standard Young
tableau in Pk−1

λ,1 .

It is now straightforward to show that T = T ′
⊠ T ′′. �

Remark 26. The same proof can now be carried out for reverse hooks, that is, skew
shapes of the form λ = (h, h, . . . , h) with l(λ) = l and µ = (h− 1, h− 1, . . . , h− 1)
with l(µ) = l − 1.

Corollary 27. Using Proposition 15 and Proposition 25 and Lemma 14, Pλ/µ,1 is
integral if and only if λ/µ is one of the shapes

• a disjoint union of rows,
• a 2× 2-box,
• a hook, (possibly with the corner box missing).

6. A partial order on GT-polytopes

For fixed λ/µ, the partial order w′ ≤ref w induces an order on the polytopes
Pλ/µ,w. This order has several nice properties given by Proposition 22 and Propo-
sition 24:

Theorem 28 (Partial order properties). Let w′ <ref w and let P = Pλ/µ,w ⊂ Rd

and P ′ = Pλ/µ,w′ ⊂ Rd′

. Then

(1) |P ′ ∩ Zd′

| is greater or equal to |P ∩ Zd|.
(2) If P ′ is empty, then P is empty.
(3) If P ′ is integral, then P is integral.
(4) If P ′ has the integer decomposition property, then so does P .

The first item follows from using the same injection as described in Proposi-
tion 24, and the rest are evident from previous results. We also conjecture one
additional statement, supported by computer experiments:

(5) If P ′ is a unimodular simplex, then P a unimodular simplex.

3All boxes with content i+1 are replaced with boxes with content i, and all boxes with content
≥ i have its content decreased by one.
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In Fig. 3, Theorem 28 is illustrated in the non-skew case λ = (4, 3, 1). The
nodes are the values of w and arrows indicate the partial order <ref . Parameters
w that give empty polytopes are not shown. The solid and dashed frames indicate
integral polytopes, whereas dotted frames indicate non-integral. The solid frames
correspond to unimodular simplices.

Note that it is possible to extend this figure where different permutations of w

are presented.

422 332 431

2222 3221 4211 3311

22211 32111 41111

221111 311111

2111111

11111111

Figure 3. The partial order on the polytopes P431,w with different w.

7. GT-polytopes without weight restriction

For completeness, we briefly mention integrality and the integer decomposition
property in the case when no restriction on the weight is imposed. This setting is
significantly less complicated.

Given a skew shape λ/µ, define the convex polytope Pλ/µ ⊂ Rmn consisting of

all GT-patterns (xi
j)1≤i≤m,1≤j≤n that satisfy the equalities x1 = λ and xm = µ.

These polytopes can be seen as GT-polytopes without any restriction on the row
sums.

Proposition 29. All Pλ/µ have the integer decomposition property.

Proof sketch: A simple proof appears in [1] so an example illustrating the idea is
enough. Given G ∈ Pk

λ/µ
∩ Zmn, consider the corresponding tableau.

T =

1 1 1 1 1 5
1 1 1 3 3 3

1 2 2 2 2 2 4 4 5
2 4 5

Here, λ/µ = (4, 3, 3, 1)/(2, 1) and k = 3.

Note that columns appear in blocks of k. By selecting the jth column in each
block for j = 1, 2, . . . , k, k smaller tableaux are constructed and the big tableau
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can be expressed as the ⊠-sum of the smaller tableaux (recall the definition of this
operation in Section 2.3). In this particular case,

T =

1 1
1 3

1 2 4
2

⊠

1 1
1 3

2 2 4
4

⊠

1 5
1 3

2 2 5
5

This construct shows that Pλ/µ has the IDP. �

Note that this implies that all Pλ/µ are also integral. A recent paper [8] studies
the number of vertices of this type of polytope. There seem to be a lot of open
questions in this area.

8. Connection with contingency matrices

There is a natural correspondence between contingency matrices and certain
GT-polytopes. A contingency matrix is a matrix of non-negative integers, with
specified row sums and column sums. Such matrices appear naturally in statistics
as well as in representation theory (see e.g. [6]) and many other areas.

Let λ/µ be a disjoint union of rows and consider G ∈ Pk
λ/µ,1 and the corre-

sponding tableau.

Note that we might need to generalize the notion of a Young tableau slightly,
where boxes can have fractional width. Each row i contains (λi − µi)k boxes and
there are m rows. Let aij be the number of (possibly fractional) boxes with content
j in row i. The quantities aij can be computed using the observation in Remark 1.
Now consider the matrix

A =








a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn








.

Each column has sum k, since the number of boxes with content j is k. A similar
observation gives that the sum of the entries in row i is (λi − µi)k.

The change of variables from GT-patterns to the matrix above is an integral,
affine change of variables and so is the inverse. Thus, lattice points in Pλ/µ,1 are
in bijection with contingency matrices with column sums 1 and row sums given by
λi − µi.

The special case when λi − µi = 1 and n = m corresponds to the Birkhoff
polytope, which is the convex hull of all n×n permutation matrices. Since Pλ/µ,w

is compressed, the Birkhoff polytope is therefore also compressed, which was proved
previously in [19]. There are several unanswered questions about Birkhoff polytopes,
such as how to compute their volumes, see [16].
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9. Open questions

We conclude this article with some open questions. Some of these have been
posed in an earlier paper, see [10], and we add several new.

Question 30. Are all coefficient in the Ehrhart polynomial obtained from Pλ/µ,w

non-negative?

Question 31. The Gelfand–Tsetlin patterns discussed here are associated with Lie
algebras of type An. There are polytopes similar to GT-polytopes for other types,
see [4, 2]. Are there similar results regarding the integer decomposition property
and compactness for other types of GT-polytopes?

Question 32. The numbers |Gλ/µ,w| are called (skew) Kostka numbers or Kostka
coefficients, see [15]. They can be seen as special cases of Littlewood-Richardson
coefficients. The Littlewood-Richardson coefficients can also be interpreted as the
number of integer lattice points in certain polytopes, for example BZ-polytopes or
hive polytopes, [5, 12].

What about compactness and IDP among these polytopes? This question seems
to be related to a conjecture posed by De Loera and McAllister in [14], who con-
jecture that certain polytopes obtained from the hive conditions have unimodular
triangulations.

Question 33. The GT-polytopes, hive polytopes, BZ-polytopes and the Birkhoff
polytopes are all polytopes that can (after possibly introducing some slack variables)
be presented on the form Ax = y where A is a matrix with entries in {−1, 0, 1}.

Is it possible to characterize the matrices A, such that if they are integral, they
have the integer decomposition property, or are compact?

Note that all totally unimodular matrices give rise to IDP polytopes.
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