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Abstract

In this paper, we propose a novel, simple, and unified approach to explore
sufficient and necessary conditions, i.e., invariance conditions, under which
four classic families of convex sets, namely, polyhedra, polyhedral cones, ellip-
soids, and Lorenz cones, are invariant sets for a linear discrete or continuous
dynamical system.

For discrete dynamical systems, we use the Theorems of Alternatives,
i.e., Farkas lemma and S -lemma, to obtain simple and general proofs to
derive invariance conditions. This novel method establishes a solid connec-
tion between optimization theory and dynamical system. Also, using the
S-lemma allows us to extend invariance conditions to any set represented by
a quadratic inequality. Such sets include nonconvex and unbounded sets.

For continuous dynamical systems, we use the forward or backward Euler
method to obtain the corresponding discrete dynamical systems while pre-
serves invariance. This enables us to develop a novel and elementary method
to derive invariance conditions for continuous dynamical systems by using
the ones for the corresponding discrete systems.

Finally, some numerical examples are presented to illustrate these invari-
ance conditions.
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1. Introduction

Positively invariant sets play a key role in the theory and applications
of dynamical systems. Stability, control and preservation of constraints of
dynamical systems can be formulated, somehow in a geometrical way, with
the help of positively invariant sets. For a given dynamical system, both of
continuous or discrete time, a subset of the state space is called positively
invariant set for the dynamical system if containing the system state at a
certain time then forward in time all the states remain within the positively
invariant set. Geometrically, the trajectories cannot escape from a positively
invariant set if the initial state belongs to the set. The dynamical system
is often a controlled system of which the maximal (or minimal) positively
invariant set is to be constructed.

It is well known, see e.g., Blanchini [9], Blanchini and Miani [12], and
Polanski [42], that the Lyapunov stability theory is used as a powerful tool in
obtaining many important results in control theory. The basic framework of
the Lyapunov stability theory synthesizes the identification and computation
of a Lyapunov function of a dynamical system. Usually positive definite
quadratic functions serve as candidate Lyapunov functions. Sufficient and
necessary conditions for positive invariance of a polyhedral set with respect
to discrete dynamical systems were first proposed by Bitsoris [6, 7]. A novel
positively invariant polyhedral cone was constructed by Horváth [32]. The
Riccati equation was proved to be connected with ellipsoidal sets as invariant
sets of linear dynamical systems, see e.g., Lin et al. [37] and Zhou et al. [61].
Birkhoff [5] proposed a necessary condition for positive invariance on a convex
cone for linear discrete system. A sufficient and necessary condition for
positive invariance on a nontrivial convex set for linear discrete systems was
derived by Elsner [18]. Stern [49] studied the properties of positive invariance
on a proper cone for linear continuous systems. For a more general case, the
mapping from a polyhedral cone to another polyhedral cone was studied by
Haynsworth, Fiedler and Pták [27], and the mapping from a convex cone
to another convex cone in finite-dimensional spaces was studied by Tam
[52, 53]. Here we note that when the two cones are the same, then this is
equivalent to positive invariance for discrete system. The concept of cross
positive matrices, which was introduced by Schneider and Vidyasagar [46],
are used as tools to prove positive invariance of a Lorenz cone by Loewy and
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Schneider [38]. According to Nagumo’s theorem [41] and the theory of cross
positive matrices, Stern and Wolkowicz [50] presented sufficient and necessary
conditions for a Lorenz cone to be positively invariant with respect to a linear
continuous system. A novel proof of the spectral characterization of real
matrices that leave a polyhedral cone invariant was proposed by Valcher and
Farina [56]. The spectral properties of the matrices, e.g., theorems of Perron-
Frobenius type, were connected to set positive invariance by Vandergraft
[46]. Recently, the discrete system has been extended to the case when
the state variable belongs to the tangent bundle of a Riemannian manifold
or a Lie algebra by Fiori, see, [20, 21]. The problem of the unconditional
invariance is posed for the first time in the history of control theory by
Shipanov [47]. Gusev and Likhtarnikov [26] present a survey of the history
of two fundamental results of the mathematical system theory - the Kalman-
Popov-Yakubovich lemma and the theorem of losslessness of the S -procedure.
For an excellent book about the S -procedure the reader is referred to [1]
by Aizerman and Gantmacher. An extension of invariance conditions to
nonlinear dynamical system can be found in [36].

Mathematical modeling of many problems from the real world often leads
to differential equations in continuous form. When we solve these differential
equations numerically, we not only need to obtain a good approximation of
the differential equations, but also hope to preserve the basic characteristics
of these mathematical variables and models. Invariance preserving is one of
the latter type requirements. In fact, there are various characteristics pre-
serving topics, e.g., positivity preserving, strong stability preserving, area
preserving, etc, which are extensively studied in recent decades. 1). Positiv-
ity Preserving: Positivity preserving is an important topic in the numerical
analysis community, see, e.g., [32, 33, 58, 59, 60]. Positivity preserving is
equivalent to invariance preserving in the positive orthant, i.e., consider the
positive orthant, which is a polyhedral cone. Let us assume that the positive
orthant is an invariant set for a continuous system, and assume that it is
also an invariant set for the discrete system which is obtained by using a
discretization method with a certain steplength. In practice, many variables,
e.g., energy, density, mass, etc, are nonnegative. When these variables are
used in some mathematical models in a continuous form, e.g., in the heat
equation, one should choose appropriate discretization method with appro-
priate steplength such that solution of the the discretized systems are also
nonnegative. 2). Strong Stability Preserving (SSP): Strong stability pre-
serving (SSP) numerical methods are developed to solve ordinary differential
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equations, see, e.g., [23, 24], etc. Particularly, SSP numerical method are
used for the time integration of semi-discretizations of hyperbolic conserva-
tion laws. It is well known that the exact solutions of scalar conservation
laws holds the property that total variation does not increase in time, see,
e.g., [24]. SSP methods are also referred to as total variation diminishing
methods. These are higher order numerical methods that also preserve this
property. 3). Area Preserving-Symplectic Methods: Intuitively, a map from
the phase-plane to itself is said to be symplectic if it preserves areas. In
mathematics, a matrix M ∈ R2n×2n is called symplectic if it satisfies the

condition MTΩM = Ω, where Ω =

[
0 In
−In 0

]
. A symplectic map is a real-

linear map T that preserves a symplectic form f , i.e., f(Tx, Ty) = f(x, y)
for all x, y, see, e.g., [40]. A numerical one-step method xn+1 = D∆t(xn)
is called symplectic if, when applied to a Hamiltonian system, the discrete
flow x→ D∆t(x) is a symplectic map for all sufficiently small step sizes, see,
e.g., [19, 39], etc. There is one compelling example that shows symplectic
methods are the right way to solve planetary trajectories. If we solve the
trajectory of the earth using forward Euler method, then the discrete trajec-
tory will spiral away from the sun. If we use backward Euler method, then
the discrete trajectory will sink into the sun. If we use symplectic methods,
then the discrete trajectory will stay on the original continuous trajectory.

In many applications, the models are represented as a partial differential
equation (PDE), e.g., heat equation, then certain numerical methods, e.g.,
finite difference methods, finite element methods, etc., may be first applied
to the spatial variable to obtain a ODE (dynamical system). The numerical
methods for ODE are then used to obtain the discrete form of the model.
Therefore, invariance condition for a ODE (dynamical system) is crucial for
models even within a PDE form. We point out that the invariance condition
for the numerical methods for the spatial variable of the PDE is an important
research topic but out of the scope of this paper.

In this paper we deal with dynamical systems in finite dimensional spaces
and introduce a novel and unified method for the determination of whether
a set is a positively invariant set for a linear dynamical system. Here the sets
are ellipsoids, polyhedral sets or - not necessarily convex - second order sets
including Lorenz cones. In addition, we formulate optimization methods to
check the resulting equivalent conditions.

The main tool in the continuous time case consists of the explicit compu-
tation of the tangent cones of the positively invariant sets and their applica-
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tion along the lines of the Nagumo theorem [41]. This theorem says that a set
is positively invariant, under some conditions on solvability of the underlying
differential equation, if and only if at each point of the set, the vector field of
the differential equation points toward the tangent cone at that point. The
resulting conditions are constructive in the sense that they can be checked
by well established optimization methods. Our unified approach is based
on optimization methodology. The analysis in the discrete case is based on
the theorems of alternatives of optimization, namely on the Farkas lemma
[44] and the S -lemma [43, 57]. The name S-lemma is due to the name of a
Lagrange function that corresponds to the constrained optimization in [26].
Lagrange multipliers method as a penalty method of constrained nonlinear
optimization can refer to [22]. Let us mention that the technique with the
tangent cones in the continuous time case and the theorem of alternatives of
optimization in the discrete case show common features.

First, in the paper, we consider various sets as candidates for positively
invariant sets with respect to a discrete system. Sufficient and necessary con-
ditions for the four types of sets are derived using the Farkas lemma [44] and
the S -lemma [43, 57], respectively. The Farkas lemma and the S -lemma are
frequently referred to as Theorems of the Alternatives in the optimization
literature. Note that the approach based on the Farkas lemma is originally
due to Hennet [28]. Our approach, based on the S -lemma for ellipsoids
and Lorenz cones, is not only simpler compared to the traditional Lyapunov
theory based approach, but also highlights the strong relationship between
control and optimization theories. It also enables us to extend invariance con-
ditions to any set represented by a quadratic inequality. Such sets include
nonconvex and unbounded sets. Positively invariant sets for continuous sys-
tems are linked to the ones for discrete systems by applying Euler method.
The forward Euler method or backward Euler method is used to discretize a
continuous system to a discrete system. According to [11, 13, 34], we have
that both the continuous and discrete systems can share the same set as a
positively invariant set when forward or backward Euler methods are used
and when the discretization steplength is bounded by a certain value. In [34],
we prove that there exists a uniform upper bound of the steplength for both
the forward and backward Euler methods such that the discrete and contin-
uous systems can share a polyhedron or a polyhedral cone as a positively
invariant set (for an ellipsoid or a Lorenz cone, there exists a uniform upper
bound of the steplength for the backward Euler method). An efficient algo-
rithm to derive the uniform steplength threshold for invariance preserving for
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certain discretization methods on a polyhedron is presented in [35]. Then,
sufficient and necessary conditions under which the four types of convex sets
are positively invariant sets for the continuous systems are derived by using
Euler methods and the corresponding sufficient and necessary conditions for
the discrete systems.

The main novelty of this paper is that we propose a simple, novel, unified
approach to derive invariance conditions for the four types of sets to be
positively invariant sets with respect to discrete systems. Our approach is
based on the so-called Theorems of Alternatives, i.e., Farkas lemma and S -
lemma. For discrete systems, the Farkas lemma is used for polyhedral sets,
while the S -lemma is used for ellipsoids and Lorenz cones. We also establish
a framework according to Euler methods to derive invariance conditions for
the four types of sets with respect to the continuous systems to be positively
invariant. Although some theorems presented in this paper are known, there
is no existing paper considering invariance conditions for the four types of
sets, and both for discrete and continuous dynamical systems together in a
unified framework. We also strengthen the power of Euler methods as a tool
to study invariance conditions to build connection between continuous and
discrete dynamical systems.

Notation and Conventions. To avoid unnecessary repetitions, the follow-
ing notations and conventions are used in this paper. A dynamical system,
positively invariant, and sufficient and necessary condition for positive invari-
ance are called a system, invariant, and invariance condition, respectively.
The sets considered in this paper are non-empty, closed, and convex sets if not
specified otherwise. The interior and the boundary of a set S is denoted by
int(S) and ∂S, respectively. A symmetric positive definite, positive semidefi-
nite, negative definite, or negative semidefinite matrix Q is denoted by Q � 0,
Q � 0, Q ≺ 0, or Q � 0, respectively. The i-th row of a matrix G is denoted
by GT

i . The eigenvalues of a real symmetric matrix Q, whose eigenvalues
are always real, are ordered as λ1 ≥ λ2 ≥ ... ≥ λn, and the corresponding
orthonormal set of eigenvectors is denoted by {u1, u2, ..., un}. The spectral ra-
dius of Q is represented by λ(Q) = max{|λi(Q)|}, and inertia{Q} = {α, β, γ}
indicates that the number of positive, zero, and negative eigenvalues of Q are
α, β, and γ, respectively. The index set {1, 2, ..., n} is denoted by I(n). The
inner product of vectors x, y ∈ Rn is represented by xTy.

This paper is organized as follows: in Section 2, the related basic concepts
and theorems are introduced. Our main results are shown in Section 3, in
which invariance conditions of polyhedral sets, ellipsoids, and Lorenz cones

6



for continuous and discrete systems are presented. In Section 4, some nu-
merical examples are given to illustrate the invariance conditions presented
in Section 3. Finally, our conclusions are summarized in Section 5.

2. Basic Concepts and Theorems

In this section, the basic concepts and theorems related to invariant sets
for dynamical systems are introduced.

2.1. Linear Dynamical System

In this paper, we consider discrete and continuous linear dynamical sys-
tems, respectively described by the following equations:

xk+1 = Bkxk, (1)

ẋ(t) = Ax(t), (2)

where Bk, A ∈ Rn×n are constant real matrice, xk, x(t) ∈ Rn are the state
variables, t ∈ R, and k ∈ N. We may assume, without loss of generality,
that Bk and A are not the zero matrix. The study of invariant sets is the
main subject of this paper, thus now we introduce invariant sets for both
discrete and continuous linear systems. Note that equations (1) and (2) can
be treated as autonomous systems or as controlled systems. In the latter
case, the coefficient matrix Bk and A in (1) or (2) can be represented in the
form of C + DF , where C is the open-loop state matrix, D is the control
matrix, and F is the gain matrix1.

Definition 2.1. A set S ⊆ Rn is an invariant set for the discrete system (1)
if xk ∈ S implies xk+1 ∈ S, for all k ∈ N.

Definition 2.2. A set S ⊆ Rn is an invariant set for the continuous system
(2) if x(0) ∈ S implies x(t) ∈ S, for all t ≥ 0.

In fact, the sets given in Definition 2.1 and 2.2 are conventionally referred
to as positively invariant sets. Considering that only positively invariant sets
are studied in this paper, we simply call them invariant sets. One can prove

1For simplicity, we take a discrete system as an example. In this case, the system is
represented as follows: xk+1 = Cxk +Duk, where xk is the state variable, uk is the control
variable, and uk = Fxk. Thus, this equation is equivalent to xk+1 = (C + DF )xk.

7



the following properties: the operators Bk (or2 for all t ≥ 0, eAt) leave S
invariant if S is an invariant set for the discrete (or continuous) systems.

Proposition 2.3. [3, 14] The set S is an invariant set for the discrete system
(1) if and only if BkS ⊆ S. Similarly, the set S is an invariant set for the
continuous system (2) if and only if for all t ≥ 0, eAtS ⊆ S.

2.2. Convex Sets

In this paper, we investigate invariance conditions for some classical con-
vex sets, namely polyhedral sets, ellipsoids, and Lorenz cones.

A polyhedron, denoted by P ⊆ Rn, can be defined as the intersection of
a finite number of half-spaces:

P = {x ∈ Rn |Gx ≤ b}, (3)

where G ∈ Rm×n, b ∈ Rm, or equivalently, as the sum of the convex com-
bination of a finite number of points and the conic combination of a finite
number of vectors:

P =
{
x ∈ Rn |x =

`1∑
i=1

θix
i +

`2∑
j=1

θ̂jx̂
j,

`1∑
i=1

θi = 1, θi ≥ 0, θ̂j ≥ 0
}
, (4)

where x1, ..., x`1 , x̂1, ..., x̂`2 ∈ Rn. The vertices of P form a subset of xi, i ∈
I(`1), and the extreme rays of P are represented as xi +αx̂j, α > 0, for some
i ∈ I(`1) and j ∈ I(`2). We highlight that a bounded polyhedron, i.e., `2 = 0
in (4), is called a polytope.

A polyhedral cone, denoted by CP ⊆ Rn, can be also considered as a
special class of polyhedra, and it can be defined as:

CP = {x ∈ Rn |Gx ≤ 0}, (5)

or equivalently,

CP =
{
x ∈ Rn |x =

∑̀
j=1

θ̂jx̂
j, θ̂j ≥ 0

}
, (6)

where G ∈ Rm×n, and x̂1, ..., x̂` ∈ Rn.

2The exponential function with respect to a matrix is defined as eAt =
∑∞

k=0
1
k! (A

ktk).
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An ellipsoid, denoted by E ⊆ Rn, centered at the origin, is defined as:

E = {x ∈ Rn |xTQx ≤ 1}, (7)

where Q ∈ Rn×n and Q � 0. Any ellipsoid with nonzero center can be
transformed to an ellipsoid centered at the origin.

A Lorenz cone3, denoted by CL ⊆ Rn, with vertex at the origin, is defined
as:

CL = {x ∈ Rn |xTQx ≤ 0, xTun ≥ 0}, (8)

where Q ∈ Rn×n is a symmetric nonsingular matrix with one negative eigen-
value λn, i.e., inertia{Q} = {n − 1, 0, 1}, and un is the eigenvector cor-
responding to the only negative eigenvalue λn. Similar to ellipsoids, any
Lorenz cone with nonzero vertex can be transformed to a Lorenz cone with
vertex at the origin. For every Lorenz cone given as in (8), there exists an
orthonormal basis {u1, u2, ..., un}, i.e., uTi uj = δij, where ui is the eigenvector
corresponding to the eigenvalue, λi, of Q, and δij is the Kronecker delta func-

tion, such that Q = UΛ
1
2 ĨΛ

1
2UT , where Λ

1
2 = diag{

√
λ1, ...,

√
λn−1,

√
−λn}

and Ĩ = diag{1, ..., 1,−1}. In particular, the Lorenz cone with Q = Ĩ is
denoted by Kn, then we have Kn = {x ∈ Rn |xT Ĩx ≤ 0, xT en ≥ 0}, where
en = (0, ..., 0, 1)T . We call Kn the standard Lorenz cone.

2.3. Basic Theorems

The Farkas lemma [44] and the S -lemma [43, 57], both of which are
also called the Theorem of Alternatives, are fundamental tools to derive
invariance conditions for discrete systems in our study. The S -lemma proved
by Yakubovich [57] is somewhat analogous to a special case of the nonlinear
Farkas lemma, see Pólik and Terlaky [43].

Theorem 2.4. (Farkas lemma [44]) Let P ∈ Rm×n, d ∈ Rm, c ∈ Rn, and
β ∈ R. Then the following two statements are equivalent:

1. There is no y ∈ Rm, such that P Ty ≤ c and dTy > β;

2. There exists a vector z ∈ Rn, such that z ≥ 0, P z = d, and cT z ≤ β.

Theorem 2.5. (S -lemma [43, 57]) Let g(y), r(y) : Rn → R be quadratic
functions, and suppose that there is a ŷ ∈ Rn such that r(ŷ) < 0. Then the
following two statements are equivalent:

3A Lorenz cone is sometimes also called an ice cream cone, a second order cone, or an
ellipsoidal cone.
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1. There exists no y ∈ Rn, such that g(y) < 0, r(y) ≤ 0.

2. There exists a scalar ρ ≥ 0, such that g(y) + ρr(y) ≥ 0, for all y ∈ Rn.

Proposition 2.3 allows us to use the Theorems of Alternatives 2.4 and 2.5
to derive invariance conditions for discrete systems. According to Proposi-
tion 2.3, to prove that a set S is an invariant set for a discrete system, we
need to prove AS ⊆ S, which is equivalent to (Rn \ S)∩ (AS) = ∅. Since we
assume that S is a closed set, we have that Rn \ S is an open set. Open sets
are usually represented by strict inequalities. As the Theorems of Alterna-
tives include strict inequalities, they provide the proper tools to characterize
invariance conditions for continuous and discrete systems. This is one of the
statements in the Theorems of Alternatives 2.4 or 2.5.

For invariance conditions for continuous systems, the concept of tangent
cone plays an important role in our analysis.

Definition 2.6. Let S ⊆ Rn be a closed convex set, and x ∈ S. The tangent
cone of S at x, denoted by TS(x), is given as

TS(x) =
{
y ∈ Rn

∣∣∣ lim inf
t→0+

dist(x+ ty,S)

t
= 0
}
, (9)

where dist(x,S) = infs∈S ‖x− s‖.

A geometrical interpretation of tangent cones is given by the left side
picture of Figure 1. The tangent cone at vertex c1 is the red colored NW-SE
shaded cone, and the tangent cone at extreme point c2 is the green color
SW-NE shade half space, which is also a cone.

The following classic result proposed by Nagumo [41] provides a general
criterion to determine whether a closed convex set is an invariant set for a
continuous system. This theorem, however, is not valid for discrete systems,
for which one can find a counterexample in [10].

Theorem 2.7. (Nagumo [10, 41]) Let S ⊆ Rn be a closed convex set, and
assume that the system ẋ(t) = f(x(t)), where f : Rn → Rm is a continuous
mapping, admits a globally unique solution for every initial point x(0) ∈ S.
Then S is an invariant set for this system if and only if

f(x) ∈ TS(x), for all x ∈ ∂S, (10)

where TS(x) is the tangent cone of S at x.
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Figure 1: Tangent Cone (left) and Nagumo Theorem (right).

Nagumo’s Theorem 2.7 has an intuitive geometrical interpretation as fol-
lows: for any trajectory that starts in S, it has to go through ∂S if it goes
out of S. Then one needs only to consider the property of this trajectory
on ∂S. Note that f(x) is the derivative of the trajectory, thus (10) ensures
that the trajectory will point inside S on the boundary, which means S is an
invariant set. The disadvantage of Theorem 2.7, however, is that it may be
difficult to verify whether (10) holds for all points on the boundary of a given
set. According to Nagumo’s Theorem 2.7, the key is to derive the formula of
the tangent cone on the boundary of the set. An intuitive interpretation is
given in the right side subfigure of Figure 1.

We use Euler methods to discretize continuous system (2) to derive a
discrete system, because for sufficiently small step size they preserve the
invariance of a set, i.e., a set, which is an invariant set for a continuous
system, is also an invariant set for the corresponding derived discrete system.
Here we formally present these results as follows. The first statement can be
found in [8, 10, 11, 34], and the second statement can be found in [34].

Theorem 2.8. Assume a polyhedron P, polyhedral cone CP , ellipsoid E or
Lorenz cone CL is an invariant set for the continuous system (2). Then

• there exists a τ̂ > 0, such that P (or CP) is also an invariant set for
the discrete system xk+1 = (I + A∆t)xk for all 0 ≤ ∆t ≤ τ̂ , and

• there exists a τ̃ > 0, such that P (CP , E or CL) is also an invariant set
for the discrete system xk+1 = (I − A∆t)−1xk for all 0 ≤ ∆t ≤ τ̃ .
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Remark 2.9. The first statement in Theorem 2.8 means that the forward
Euler method preserves the invariance of polyhedral set, while the second
statement means that the backward Euler method preserves the invariance of
polyhedral set, ellipsoid, and Lorenz cone.

3. Invariance Conditions

In this section, we present the invariance conditions, i.e., sufficient and
necessary conditions under which polyhedral sets, ellipsoids, and Lorenz
cones are invariant sets for discrete and continuous systems. For each con-
vex set, the invariance conditions for discrete systems are first derived by
using the Theorems of Alternatives, i.e., the Farkas lemma or the S-lemma.
Then the invariance conditions for continuous systems are derived by using a
discretization method to discretize the continuous system and applying the
invariance conditions for the obtained discrete systems.

3.1. Polyhedral Sets

Since every polyhedral set has two different representations as shown in
Section 2.2, we present the invariance conditions for both forms, respectively.
Nonnegative and essentially nonnegative matrices are used in the invariance
conditions.

Definition 3.1. A matrix H is called a nonnegative matrix, denoted by H ≥
0, if Hij ≥ 0 for all i, j. A matrix L is called an essentially nonnegative
matrix4, denoted by L≥o0, if Lij ≥ 0 for i 6= j.

3.1.1. Invariance Conditions for Discrete Systems

The invariance condition of a polyhedral sets given as in (3) for a discrete
system is presented in Theorem 3.2. The study of invariance condition of
polyhedral sets for discrete system can be traced back to Bitsoris in [6, 7],
which consider a special class of polyhedral sets that is symmetric with re-
spect to the origin. We give a more straightforward proof here by using the
Farkas lemma for the polyhedral set in the form of (3). It was brought to
our attention recently that the result is the same as the one presented by
Hennet [28], which also uses the Farkas lemma. To keep the integration of
the paper, we also present the proof explicitly.

4An essentially nonnegative matrix, see e.g., [16], is also called Metzler matrix or quasi-
positive matrix, see, e.g., [4].
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Theorem 3.2. (Hennet [28]) A polyhedron P given as in (3) is an in-
variant set for the discrete system (1) if and only if 5 there exists a matrix
H ∈ Rm×m, such that H ≥ 0, HG = GBk and Hb ≤ b.

Proof. We have that P is an invariant set for the discrete system (1) if and
only if BkP ⊆ P , which is the same as P ⊆ P ′ = {x | GBkx ≤ b}. Note that
P ⊆ P ′ if and only if for every i ∈ I(m), we have

{x |Gx ≤ b} ∩ {x | (GBk)
T
i x > bi} = ∅,

i.e., the inequality system Gx ≤ b and (GBk)
T
i x > bi has no solution. Accord-

ing to the Farkas lemma 2.4, this is equivalent to that there exists a vector
hi ≥ 0, such that GThi = (GBk)i, and bThi ≤ bi. We let H = [h1, h2, ..., hm],
then we have H ≥ 0, HG = GBk and Hb ≤ b. The proof is complete.

We highlight that Castelan and Hennet [16] present an algebraic charac-
terization of the matrix G satisfying the conditions in Theorem 3.2. They
prove that given Bk and G, there exists a matrix H satisfying HG = GBk if
and only if the kernel of G is an Bk-invariant subspace.

The invariance condition of a polyhedral set given as in (4) for discrete
systems is provided in Theorem 3.3. Note that a similar result is presented
in [10], which considers only the case when the set is a polytope. Invariance
condition of a polytope is presented in [10], while invariance condition of a
polyhedral cone is presented in [54]. Here we integrate these two results in
one theorem.

Theorem 3.3. A polyhedron P given as in (4) is an invariant set for the
discrete system (1) if and only if there exists a matrix L ∈ R(`1+`2)×(`1+`2),
such that L ≥ 0, XL = BkX and 1̄TL = 1̄T , where X = [x1, ..., x`1 , x̂1, ..., x̂`2 ],
1̄T = (1T`1 , 0

T
`2

).

Proof. Note that P given as in (4) is an invariant set for the discrete system
if and only if Bkx

i ∈ P , for all i ∈ I(`1), and Bk(O
+P) ⊆ O+P , where

O+P denotes the recession cone of P . Clearly, Bkx
i ∈ P for all i ∈ I(`1)

is equivalent to that there exist θip1 , θ̂
i
p2
≥ 0, p1 ∈ I(`1), p2 ∈ I(`2), with∑`1

p1=1 θ
i
p1

= 1, such that Bkx
i =

∑`1
p1=1 θ

i
p1
xp1 +

∑`2
p2=1 θ̂

i
p2
x̂p2 . Since O+P is

5The referee proposes an easy way to show the “if” part: let x ∈ P, i.e., Gx ≤ b. Since
H ≥ 0, HG = GBk and Hb ≤ b, we have GBkx = HGx ≤ Hb ≤ b, i.e., Bkx ∈ P.
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generated by x̂j, where j ∈ I(`2), we have that Bk(O
+P) ⊆ O+P can be

rewritten as Bkx̂
j ∈ O+P , for all j ∈ I(`2). Then Bk(O

+P) ⊆ O+P is equiv-
alent to that there exist θjp2 ≥ 0, p2 ∈ I(`2), such that Bkx̂

j =
∑`2

p2=1 θ̂
j
p2
x̂p2 .

Let L = [θ1, .., .θ`1 , θ̂1, ..., θ̂`2 ], then the theorem is immediate.

A polyhedral cone is a special polyhedral set, thus we have the following
invariance condition of a polyhedral cone for discrete systems.

Corollary 3.4. 1). A polyhedral cone CP given as in (5) is an invariant set
for the discrete system (1) if and only if there exists a matrix H ∈ Rm×m,
such that H ≥ 0 and HG = GBk.

2). A polyhedral cone CP given as in (6) is an invariant set for the discrete
system (1) if and only if there exists a matrix L ∈ R`×`, such that L ≥ 0 and
XL = BkX, where X = [x̂1, ..., x̂`].

For a given polyhedral set and a discrete system, according to Theo-
rem 3.2 (Theorem 3.3, or Corollary 3.4), to determine whether the set is an
invariant set for the system is equivalent to verify the existence of a non-
negative matrix H (or L), which is actually a linear optimization problem.
Rather than computing H (or L) directly, it is more efficient to sequentially
solve some small subproblems. Let us choose polyhedron P as given in (3)
and Theorem 3.2 as an example to illustrate this idea. We can sequen-
tially examine the feasibility of the subproblems. Find hi ∈ Rn, such that
hTi G = GT

i Bk, hi ≥ 0, and hTi b ≤ bi, for all i ∈ I(n). Clearly, these are
linear feasibility problems which can be considered as a special case of linear
optimization problems, see, e.g., [29]. A linear optimization problem can be
solved in polynomial time, e.g., by using interior point methods [44]. If all
of these linear optimization problems are feasible, then their solutions forms
such a nonnegative matrix H. Otherwise, we can conclude that the set is
not an invariant set for the system, and the computation is terminated at
the first infeasible subproblem.

3.1.2. Invariance Conditions for Continuous Systems

According to [34], we have that both the forward and backward Euler
methods are invariance preserving for a polyhedral set. Blanchini [8, 10]
presents the connection between invariant sets for continuous and discrete
systems by using the forward Euler method. The discrete system obtained
by using the forward Euler method is refereed to as Euler Approximating
System [8, 10]. We first present the following invariance condition which is
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obtained by using Nagumo’s Theorem 2.7. For x ∈ P , let Ix denote the set
of indices of the constraints which are active at x, i.e., the corresponding
linear inequality holds as equality at x. Clearly, we have x ∈ ∂P if and only
if Ix 6= ∅.
Lemma 3.5. Let a polyhedron P be given as in (3), and Ix 6= ∅ for all
x ∈ P. Then P is an invariant set for the continuous system (2) if and only
if for every x ∈ ∂P, i.e., GT

i x = bi, we have

GT
i Ax ≤ 0, for all i ∈ Ix. (11)

Proof. For all x ∈ ∂P , the tangent cone at x is TP(x) = {y |GT
i y ≤ 0, i ∈ Ix}

for all i ∈ Ix (see [30, p.138]). Then the lemma immediately follows from
Nagumo’s Theorem 2.7.

We now present another invariance condition of a polyhedron in the form
of (3) for the continuous system (2). The following theorem also refers to
Castelan and Hennet [16, Proposition 1].

Theorem 3.6. A polyhedron P given as in (3) is an invariant set for the
continuous system (2) if and only if there exists a matrix H̃ ∈ Rm×m, such
that H̃ ≥o 0, H̃G = GA and H̃b ≤ 0.

Proof. We first consider the “if” part. Noting that H̃G = GA, we have
H̃T
i Gx = GT

i Ax, for every i ∈ I(n). Since H̃≥o0 and x ∈ ∂P ,

when j = i, we have h̃ii ∈ R and GT
i x = bi,

when j 6= i, we have h̃ij ≥ 0 and GT
j x ≤ bj,

(12)

where h̃ij is the (i, j)-th entry of H̃.According to (12), we have
∑m

j=1 h̃ij(G
T
j x−

bj) ≤ 0, i.e., H̃T
i Gx ≤ H̃T

i b. Since H̃b ≤ 0, we have H̃T
i b ≤ 0. Then, we have

GT
i Ax = H̃T

i Gx ≤ H̃T
i b ≤ 0. According to Lemma 3.5, we have that P is an

invariant set for the continuous system.
Now we consider the “only if” part. According to Theorem 2.8, we have

that there exists a τ̂ > 0, such that P is also an invariant set for the discrete
system xk+1 = (I + A∆t)xk, for every 0 ≤ ∆t ≤ τ̂ . Then, according to
Theorem 3.2, there exists a matrix H(∆t) ≥ 0, such that H(∆t)G = G(I +
A∆t), and H(∆t)b ≤ b, i.e.,

H(∆t)− I
∆t

G = GA, and
H(∆t)− I

∆t
b ≤ 0. (13)

Clearly H̃ = H(∆t)−I
∆t

for ∆t > 0 satisfies this theorem.
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We consider the invariance condition of the polyhedron in the form of (4)
for the continuous system (2). For an arbitrary convex set in Rn, we have
the following conclusion6.

Lemma 3.7. Let S be a convex set in Rn. For any ` ∈ N and x, y1, y2, ..., y` ∈
S satisfying x =

∑`
i=1 βiy

i, where
∑`

i=1 βi = 1 and βi > 0 for every i ∈ I(`),
we have TS(yi) ⊆ TS(x) for every i ∈ I(`).

Proof. We denote cone(x,S) = {α(y − x) | y ∈ S, α ≥ 0}, then we have
that TS(x) is the same as the topological closure of cone(x, S). Let Φ(x)
denote the face of S generated by x, i.e., the set {y ∈ S |µx + (1 − µ)y ∈
S for some µ > 1}. We first show that for any x, u ∈ S, if u ∈ Φ(x), then
TS(u) ⊆ TS(x). In fact, by definition of Φ(x) there exists µ > 1, such
that v := µx + (1 − µ)u ∈ S. Then we have x = (1 − α)u + αv for some
α, 0 < α < 1. Note that for any y ∈ S, we have (1 − α)y + αv ∈ S and
[(1−α)y+αv]−x = (1−α)(y−u). It follows that cone(u,S) ⊆cone(x,S). By
taking the closure of both sides, we have TS(u) ⊆ TS(x). Since

∑`
i=1 βi = 1

and βi > 0 for every i ∈ I(`), yi ∈ Φ(x), for every i ∈ I(`) we have yi ∈ Φ(x),
the lemma follows immediately.

For the polyhedron P given as in (4), a vertex of P is given as xi, for
some i ∈ I(`1), and an extreme ray of P is represented as xi + αx̂j, α > 0,
for some i ∈ I(`1) and j ∈ I(`2). Applying Lemma 3.7 to P , we have the
following Corollary 3.8 about the relationship between tangent cones at a
vector and the vertices and extreme rays of P . Note that TP(x) = Rn for
every x ∈ int(S), thus Corollary 3.8 is only nontrivial for x ∈ ∂P .

Corollary 3.8. Let a polyhedron P be given as in (4), and x ∈ P be a point
in P given as in formula (4). Let I1 = {i ∈ I(`1) | θi > 0} and I2 = {j ∈
I(`2) | θ̂j > 0}. Then TP(xi) ⊆ TP(x) and TP(xi+αx̂j) = TP(xi+x̂j) ⊆ TP(x)
for i ∈ I1, j ∈ I2, and α > 0, where xi + αx̂j is an extreme ray of P.

Let us consider a polytope P̃ generated by {x1, x2, ..., x`1} as its vertices.
Then, according to [8], we have that TP̃(xi) can be generated as a conic

combination of xp−xi for all p ∈ I(`1), i.e., TP̃(xi) = {y|y =
∑`1

p=1,p 6=i αp(x
p−

6We thank the referee for proposing this simple and more transparent proof.
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xi), αp ≥ 0}. Let αi =
∑`1

p=1,p 6=i αp. Then we have

TP̃(xi) =
{
y|y =

`1∑
p=1

αpx
p, αp ≥ 0, p 6= i,

`1∑
p=1

αp = 0
}
.

By a similar argument, we have that the exact representations of the tangent
cones at vertices or extreme rays of P given as in (4) are presented in Lemma
3.9 below.

Lemma 3.9. Let a polyhedron P be given as in (4), and I ′1 = {i ∈ I(`1) |
for any j ∈ I(`2), xi + x̂j is not an extreme ray.}, I ′′1 = I(`1)\I ′1, then

1). For every i ∈ I ′1, we have TP(xi) = {y ∈ Rn | y =
∑`1

p=1 αpx
p, αp ≥

0, p 6= i,
∑`1

p=1 αp = 0}.
2). For every i ∈ I ′′1 , we have TP(xi) = {y ∈ Rn | y =

∑`1
p=1 αpx

p +∑`2
q=1 α̂qx̂

q, αp, α̂q ≥ 0, p 6= i,
∑`1

p=1 αp = 0}.
3). For every i ∈ I ′′1 and j ∈ I(`2) such that xi + x̂j is an extreme ray,

we have TP(xi + x̂j) = {y ∈ Rn | y =
∑`2

q=1 α̂qx̂
q, α̂q ≥ 0, j 6= q}.

Lemma 3.10. Let C be a closed convex cone. If x + αy ∈ C for all α > 0,
then x, y ∈ C.

The following lemma presents an invariance condition for a polyhedron
in the form of (4) for the continuous system (2).

Lemma 3.11. Let a polyhedron P be given as in (4). Then P is an invariant
set for the continuous system (2) if and only if Axi ∈ TP(xi) and Ax̂j ∈
TP(xi + x̂j) for i ∈ I(`1) and j ∈ I(`2), where xi + αx̂j for α ≥ 0 is an
extreme ray of P .

Proof. We first consider the “only if” part. According to Nagumo’s Theorem
2.7, for any i ∈ I(`1) and j ∈ I(`2) when xi + αx̂j for α ≥ 0 is an extreme
ray, we have Axi ∈ TP(xi) and A(xi + αx̂j) ∈ TP(xi + x̂j). By Lemma 3.10,
this implies that Ax̂j ∈ TP(xi + x̂j).

For the “if” part, we choose x ∈ P . We represent x as x =
∑

i∈I1 θix
i +∑

j∈I2 θ̂jx̂
j, where I1 = {i ∈ I(`1) | θi > 0} and I2 = {j ∈ I(`2) | θ̂j > 0}.

Then according to Corollary 3.8, we have Ax =
∑

i∈I1 θiAx
i +
∑

j∈I2 θ̂jAx̂
j.

Note that Axi ∈ TP(xi) ⊆ TP(x) and Ax̂j ∈ TP(xi + x̂j) ⊆ TP(x). Since TP
is a convex cone, it is closed under vector addition. So we have Ax ∈ TP(x).
Finally, the “if” part follows by Nagumo’s Theorem 2.7.
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By Lemma 3.9 and Lemma 3.11, the following corollary is immediate.

Corollary 3.12. Let a polyhedron P be given as in (4). Then P is an
invariant set for the continuous system (2) if and only if for xi, i ∈ I(`1),
there exist αip, α̂

i
q ≥ 0 for p 6= i, αii ≤ 0, such that

Axi =

`1∑
p=1

αipx
p +

`2∑
q=1

α̂iqx̂
q, and

`1∑
p=1

αip = 0, (14)

for x̂j, j ∈ I(`2), there exist α̂jq ≥ 0 for q 6= j, and α̂jj ∈ R, such that

Ax̂j =
∑`2

q=1 α̂
j
qx̂

q.

Theorem 3.13. A polyhedron P given as in (4) is an invariant set for the
continuous system (2) if and only if there exists a matrix L̃ ∈ R(`1+`2)×(`1+`2),
such that L̃≥o0, XL̃ = AX, and 1̄L̃ = 0̄, where X = [x1, ..., x`1 , x̂1, ..., x̂`2 ],
1̄ = [1`1 , 0`2 ].

Proof. This proof is similar to the one given in Theorem 3.6. We denote the
i-th column of L̃ by (l1,i, ..., l`1+`2,i)

T .
For the “if” part, we consider xi with i ∈ I(`1). Since L̃≥o0, XL̃ = AX,

and 1̄L̃ = 0̄, we have Axi =
∑`1

p=1 lp,ix
i +

∑`2
q=1 l`1+q,ix̂

q, with
∑`1

p=1 lp,i =

0, and lp,i ≥ 0, for p 6= i. The argument for x̂j with j ∈ I(`2) is similar.
Then, according to Corollary 3.12, we have that P is an invariant set for the
continuous system.

For the “only if” part, the proof is similar to the one in Theorem 3.6.
According to Theorem 2.8 and Theorem 3.3, we know that there exists a
nonnegative matrix L(∆t) and a scalar τ̂ > 0, such that XL(∆t) = (I +
∆tA)X, 1̄L(∆t) = 1̄, for 0 ≤ ∆t ≤ τ̂ , i.e.,

X
L(∆t)− I

∆t
= AX, 1̄

L(∆t)− I
∆t

= 0̄.

Let L̃ = L(∆t)−I
∆t

, the theorem is immediate.

Since the invariance conditions for a polyhedral cone given in the two
different forms can be obtained by similar discussions as above, we only
present these invariance conditions without providing the proofs.
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Corollary 3.14. 1). A polyhedral cone CP given as in (5) is an invariant set
for the continuous system (2) if and only if there exists a matrix H̃ ∈ Rm×m,
such that H̃ ≥o 0 and H̃G = GA.

2).A polyhedral cone CP given as in (6) is an invariant set for the con-
tinuous system (2) if and only if there exists a matrix L̃ ∈ R`×`, such that
L̃ ≥o 0 and XL̃ = AX, where X = [x̂1, ..., x̂`].

According to Theorem 3.13 and Corollary 3.14, verifying if a polyhedron
given as in (4) or polyhedral cone given as in (6) is an invariant set for the
continuous system (2) can be done by solving a series of linear optimization
problems.

3.2. Ellipsoids

In this section, we consider the invariance condition for ellipsoids which
are represented by a quadratic inequality.

3.2.1. Invariance Conditions for Discrete Systems

The S -lemma and Proposition 2.3 are our main tools to obtain the in-
variance condition of an ellipsoid for a discrete system. First, we present a
technical lemma.

Lemma 3.15. Let Q be an n×n real symmetric matrix and let α be a given
real number. Then xTQx ≥ α for all x ∈ Rn if and only if Q � 0, and α ≤ 0.

Theorem 3.16. An ellipsoid E given as in (7) is an invariant set for the
discrete system (1) if and only if

∃µ ∈ [0, 1], such that BT
k QBk − µQ � 0. (15)

Proof. According to Proposition 2.3, to prove this theorem is equivalent to
prove E ⊆ E ′, where E = {x |xTQx ≤ 1} and E ′ = {x |xTBT

k QBkx ≤ 1}.
Clearly, E ⊆ E ′ holds if and only if the following inequality system has no
solution:

− xTBT
k QBkx+ 1 < 0, xTQx− 1 ≤ 0. (16)

Note that the left sides of the two inequalities in (16) are both quadratic
functions, thus, according to the S -lemma, we have that (16) has no solution
is equivalent to that there exists µ ≥ 0, such that−xTBT

k QBkx+1+µ(xTQx−
1) ≥ 0, or equivalently,

xT (µQ−BT
k QBk)x ≥ µ− 1, for all x ∈ Rn. (17)

The theorem follows by applying Lemma 3.15 to (17).
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We can also consider an ellipsoid as an invariant set for a system in the
following perspective. Invariance of a bounded set for a system is possible
only if the system is non-expansive, which means that for discrete system
(1), all eigenvalues of Bk are in a closed unit disc of the complex plane. Then
it becomes clear that (15) has a solution only if (1) is non-expansive, i.e., the
trajectory of (1) is non-expansive. One can conclude from this that there is
an invariant ellipsoid for (1) if and only if (15) has a solution for a positive
definite Q.

Moreover, we can also observe that the smallest µ solving (15) is the
largest eigenvalue of WATQAW , where W is the symmetric positive definite
square root of Q−1, i.e., W 2 = Q−1.

We now present two examples such that condition (15) does not hold for
µ 6∈ [0, 1]. First, let Q be positive definite and µ < 0, then BT

k QBk − µQ is
always a positive definite matrix. Thus condition (15) does not hold. Second,
let Q be positive definite and µ > 1, consider the discrete system xk+1 = −xk.
One can prove that {x |xTQx ≤ 1} is an invariant set for this discrete system.
However, in this case, we have BT

k QBk − µQ = (1− µ)Q, which is always a
negative definite matrix. Thus condition (15) does not hold either.

Apart from the simplicity, another advantage of the approach given in the
proof of Theorem 3.16 is that it obtains a sufficient and necessary condition.
Also, this approach highlights the close relationship between the theory of
invariant sets and the Theorem of Alternatives, which is a fundamental result
in optimization community.

Corollary 3.17. Condition (15) holds if and only if

∃ ν ∈ [0, 1], such that Q̃ =

(
Q−1 Bk

BT
k νQ

)
� 0. (18)

Proof. First, Q � 0 yields Q−1 � 0. By Schur’s lemma [15], Q̃ � 0 if and
only if its Schur complement νQ − BT

k (Q−1)−1Bk = νQ − BT
k QBk � 0, i.e.,

(15) holds.

Corollary 3.18. Condition (15) holds if and only if

BT
k QBk −Q � 0. (19)

Proof. The “if” part is immediate by letting µ = 1 in (15). For the “only if”
part, we let ν = 1 − µ, which, by reformulating (15), yields BT

k QBk − Q �
−νQ � 0, for ν ∈ [0, 1], where the second “ �” holds due to the fact that
ν ≥ 0 and Q � 0.
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The left side of (19) is called the Lyapunov operator [14] in discrete form
or Stein transformation [48] in dynamical system. Corollary 3.18 is consistent
with the invariance condition of an ellipsoid for discrete system given in
[10, 14]. The invariance condition presented in [10] is the same as (19) without
the equality. This is since contractivity rather than invariance of a set for a
system is analyzed in [10]. Lyapunov method is used to derive condition (19)
in [14]. Apparently, condition (19) is easier to apply than condition (15),
since the former one involves only about the ellipsoid and the system.

The attentive reader may observe that the positive definiteness assump-
tion for matrix Q is never used in the proof of Theorem 3.16. That assump-
tion was only needed to ensure that the set S is convex. Recall that the
quadratic functions in the S -lemma are not necessarily convex, thus we can
extend Theorem 3.16 to general sets which are represented by a quadratic
inequality.

Theorem 3.19. A set S = {x ∈ Rn |xTQx ≤ 1}, where Q ∈ Rn×n, is an
invariant set for the discrete system (1) if and only if

∃µ ∈ [0, 1], such that BT
k QBk − µQ � 0. (20)

The proof of Theorem 3.19 is the same as that of Theorem 3.16, so we do
not duplicate that proof here. A trivial example that satisfy the condition in
is given by choosing Q to be any indefinite matrix, Bk = I, and we choose µ =
1. It is easy to see that for this choice condition (24) holds. Further exploring
the implications of possibly using nonconvex and unbounded invariant sets
is far from the main focus of our paper, so this topic remains the subject of
further research.

3.2.2. Invariance Conditions for Continuous Systems

We first present an interesting result about the solution of continuous
system.

Proposition 3.20. The solution of the continuous system (2) is on the
boundary of the ellipsoid E given as in (7) (or the Lorenz cone CL given
as in (8)) whenever x0 ∈ ∂E(or x0 ∈ ∂CL) if and only if

k−1∑
i=0

1

(k − 1)!

(
k − 1

i

)
(Ai)TQAk−i−1 = 0, for k = 2, 3, .... (21)
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Proof. We consider only ellipsoids, and the proof for Lorenz cones is sim-
ilar. The solution of (2) is given as x(t) = eAtx0, thus x(t) ∈ ∂E if and
only if xT0 (eAt)TQeAtx0 = 1, which can be expanded, by substituting eAt =∑∞

i=0
Ai

i!
ti, as

∞∑
k=1

tk−1xT0 Q̃k−1x0 = 1, where Q̃k−1 =
k−1∑
i=0

1

(i)!(k − i− 1)!
(Ai)TQAk−i−1,

for any xT0Qx0 = 1 and t ≥ 0. Thus, Q̃k−1 = 0, for k ≥ 2. Also, note that
1

(k−1)!

(
k−1
i

)
= 1

(i)!(k−i−1)!
, condition (21) is immediate.

In particular, when k = 2, condition (21) yields ATQ+QA = 0. The left
hand side of this equation is called Lyapunov operator in continuous form.
The following invariance conditions is first given by Stern and Wolkowicz [50],
where they consider only Lorenz cones and their proof is using the concept
of cross-positivity. Here we present a simple proof.

Lemma 3.21. [50] An ellipsoid E given in the form of (7) (or a Lorenz cone
CL given in the form of (8)) is an invariant set for the continuous system (2)
if and only if

(Ax)TQx ≤ 0, for all x ∈ ∂E ( or x ∈ ∂CL). (22)

Proof. We consider only ellipsoids, and the proof is analogous for Lorenz
cones. Note that ∂E = {x |xTQx = 1}, thus the outer normal vector of E
at x ∈ ∂E is Qx. Then we have TE(x) = {y | yTQx ≤ 0}, thus this theorem
follows by Theorem 2.7.

We now present a sufficient and necessary condition that an ellipsoid is
invariant for the continuous system.

Theorem 3.22. An ellipsoid E given as in (7) is an invariant set for the
continuous system (2) if and only if

ATQ+QA � 0. (23)

Proof. According to Lemma 3.21, we have that condition (22) holds, i.e., E
is an invariant set for the continuous system if and only if

xT (ATQ+QA)x ≤ 0, for all x ∈ ∂E . (24)

22



Clearly (23) implies (24). Now assume (24) holds. Then for all nonzero
y ∈ Rn, there exists an x ∈ ∂E and γ > 0, such that y = γx. Then yT (ATQ+
QA)y = 1

γ2
xT (ATQ+QA)x ≤ 0, which yields condition (23).

The presented method in the proof of Theorem 3.22 is simpler than the
traditional Lyapunov method to derive the invariance condition. However,
the approach in the proof cannot be used for Lorenz cones, since the origin
is not in the interior of Lorenz cones.

3.3. Lorenz Cones

A Lorenz cone CL given as in (8) also has a quadratic form, but the way
to obtain the invariance condition of a Lorenz cone for discrete system is
much more complicated than that for an ellipsoid. The difficulty is mainly
due to the existence of the second constraint in (8).

3.3.1. Invariance Conditions for Discrete Systems

The representation of the nonconvex set CL ∪ (−CL) = {x |xTQx ≤ 0}
involves only the quadratic form, which is almost the same as an ellipsoid.
We can first derive the invariance condition of this set for discrete system.
Recall that the S -lemma does not require that the quadratic functions have
to be convex, thus the S -lemma is still valid for the nonconvex set.

Theorem 3.23. The nonconvex set CL ∪ (−CL) is an invariant set for the
discrete system (1) if and only if

∃µ ≥ 0, such that BT
k QBk − µQ � 0. (25)

Proof. The proof is closely following the ideas in the proof of Theorem 3.16.
The only difference is that the right side in (17) is 0 rather than 1−µ, which
is why the condition µ ≤ 1 is absent in this case.

The invariance condition for CL ∪ (−CL) shown in (25) is similar to the
one proposed by Loewy and Schneider in [38]. They proved by contradiction
using the properties of copositive matrices that when the rank of A is greater
than 1, BkCL ⊆ CL or −BkCL ⊆ CL if and only if (25) holds. They also
concluded (see [38, Lemma 3.1]) that when the rank of Bk is 1, BkCL ⊆ CL
if and only if there exist two vectors x, y ∈ CL, such that Bk = xyT .

The following example shows that for the given Bk and Q, only µ = 1
satisfies condition (25). Let Bk = Q = diag{1, ..., 1,−1}. Then the Lorenz
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cone is an invariant set for the system, since such a Lorenz cone is a self-dual
cone7. The left hand side in (25) is, however, now simplified to (1−µ)Q which
is negative semidefinite only for µ = 1, because inertia{Q} = {n− 1, 0, 1}.

In the case of ellipsoids, we used Schur’s lemma, see, e.g., [44], to sim-
plify invariance condition (15) to (18), which was further simplified to the
parameter free invariance condition (19). Although conditions (15) and (25)
are similar, it seems to be impossible to develop a parameter free condition
analogous to (19) for Lorenz cone. This is since matrix Q for a Lorenz cone
is neither positive nor negative semidefinite.

To find the scalar µ in (25) is essentially a semidefinite optimization
(SDO) problem. Various celebrated SDO solvers, e.g., SeDuMi [51], CVX
[25], and SDPT3 [55] have been shown robust performance in solving a SDO
problems numerically.

Corollary 3.24. If λ1(BT
k QBk) ≤ 0, then the Lorenz cone CL given as in

(8) is an invariant set for the discrete system (1).

Corollary 3.24 gives a simple sufficient condition such that a Lorenz cone
is an invariant set. However, one must note that this result is valid only if
matrix Bk is singular. Let dim(M) represent the dimension of a matrix M .
In fact, if Bk is nonsingular, then by Sylvester’s law of inertia [31], we have
that λ1(BT

k QBk) > 0. When λ1(BT
k QBk) ≤ 0, we have that the rank of Bk

is at most 1. This is because, if the rank is larger than 1, then range(Bk) ∩
span{u1, u2, ..., un−1} must be a nonzero subspace. This is since the sum
of dim(range(Bk)) and dim(span{u1, u2, ..., un−1}) is greater than or equal to
2+(n−1) = n+1 > n, and dim(range(Bk))∩span{u1, u2, ..., un−1}) is greater
than or equal to 1. Then let 0 6= x ∈ range(Bk) ∩ span{u1, u2, ..., un−1}, we
have xT (BT

k QBk)x > 0, which contradicts to λ1(BT
k QBk) ≤ 0. Also, note

that the rank of BT
k QBk is less than or equal to the minimum of the rank of

Bk and the rank of Q, so if BT
k QBk is not zero matrix and λ1(BT

k QBk) ≤ 0,
then the rank of Bk is equal to 1.

The interval of the scalar µ in (25) can be tightened by incorporating the
eigenvalues and eigenvectors of Q. Such a tighter condition is presented in
Corollary 3.25.

7A self-dual cone is a cone that coincides with its dual cone, where the dual cone for a
cone C is defined as {y | xT y ≥ 0,∀x ∈ C}.
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Corollary 3.25. If µ satisfies BT
k QBk − µQ � 0, then

max
{

0, max
1≤i≤n−1

{uTi BT
k QBkui
λi

}}
≤ µ ≤ uTnB

T
k QBkun
λn

. (26)

Proof. Multiplying condition (25) by uTi from the left and ui from the right,
we have uTi B

T
k QBkui − µuTi Qui ≤ 0. Since uTi Qui = λiu

T
i ui = λi > 0, for

i ∈ I(n− 1), and uTnQun = λn < 0, condition (26) follows immediately.

Corollary 3.25 presents tighter bounds for the scalar µ in (26) in terms
of an algebraic form. The existence of a scalar µ implies that the upper
bound should be no less than the lower bound in (26). However, this is not
always true. We now present a geometrical interpretation of the interval of
the scalar µ, that can be directly derived from Corollary 3.25.

Corollary 3.26. The relationship between the vector Bkui, and the scalars
uTi B

T
k QBkui, and µ are as follows:

• If Bkun /∈ CL ∪ (−CL), then µ satisfying (26) does not exist.

• If Bkui ∈ CL ∪ (−CL) for all i ∈ I(n− 1), then

– if Bkun ∈ ∂CL ∪ (−∂CL) and (26) holds, then µ = 0.

– if Bkun ∈ int CL∪(−int CL) and (26) holds, then µ ∈
[
0,

uTnB
T
k QBkun
λn

]
.

• Let I = {i | Bkui /∈ CL ∪ (−CL)}. If the set I ⊆ I(n− 1) is nonempty,
then

– if Bkun ∈ ∂CL ∪ (−∂CL), then µ satisfying (26) does not exist.

– if Bkun ∈ int (CL) ∪ (−int(CL)), then

∗ if there exist i∗ ∈ I, such that
uT
i∗B

T
k QBkui∗

λi∗
>

uTnB
T
k QBkun
λn

, then

µ satisfying (26) does not exist.

∗ otherwise, if (26) holds, then

µ ∈
[

maxi∈I

{
uTi B

T
k QBkui
λi

}
,
uTnB

T
k QBkun
λn

]
.

We now consider the invariance condition of a Lorenz cone CL given as in
(8), which is a convex set and can handle expansive systems.
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Lemma 3.27. [50] A Lorenz cone CL given as in (8) can be written as TKn,
where Kn is the standard Lorenz cone and T is the nonsingular matrix,

T =
[ u1√

λ1

, ...,
un−1√
λn−1

,
un√
−λn

]
. (27)

Lemma 3.28. A Lorenz cone CL given as in (8) is an invariant set for the
discrete system (1) if and only if the standard Lorenz cone Kn is an invariant
set for the following discrete system

xk+1 = T−1BkTxk, (28)

where T is defined as (27).

Proof. The Lorenz cone CL is an invariant set for (1) if and only if BkCL ⊆ CL.
This holds if and only if BkTKn ⊆ TKn, which is equivalent to T−1BkTKn ⊆
Kn.

The invariance condition of a Lorenz cone for discrete systems is presented
in Theorem 3.29. Although we have developed such invariance condition
independently, it was brought to our attention recently that the invariance
condition is the same as the one proposed by Aliluiko and Mazko in [2]. But
our proof is more straightforward.

Theorem 3.29. A Lorenz cone CL (or −CL) given as in (8) is an invariant
set for the discrete system (1) if and only if

∃µ ≥ 0, such that BT
k QBk − µQ � 0, uTnBkun ≥ 0, uTnBkQ

−1BT
k un ≤ 0,

(29)
where un is the eigenvector corresponding to the unique negative eigenvalue
λn of Q.

Proof. Since BkCL ⊆ CL if and only Bk(−CL) ⊆ −CL, we only present the
proof for CL. For an arbitrary x ∈ CL, by Theorem 3.23, we have that
Bkx ∈ CL or Bkx ∈ −CL if and only if condition (25) is satisfied. To ensure
that only Bkx ∈ CL holds, some additional conditions should be added.

According to Lemma 3.28, we may consider Kn and the discrete system
(28), where the coefficient matrix, denoted by Ã, can be explicitly written as

Ã = T−1BkT =


uT1Bku1 · · ·

√
− λ1
λn
uT1Bkun

...
. . .

...√
−λn
λ1
uTnBku1 · · · uTnBkun

 .
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Then, according to Theorem 3.23, condition (25) is equivalent to

∃µ ≥ 0, such that (T−1BkT )T ĨT−1BkT − µĨ � 0, (30)

where Ĩ = diag{1, ..., 1,−1}. Note that T TQT = Ĩ, condition (30) is equiva-
lent to

∃µ ≥ 0, such that BT
k QBk − µQ � 0.

Recall that we denote the i-th row of a matrix M by MT
i . Also, the second

constraint in the formulae ofKn requires that for every x ∈ Kn the last coordi-
nate in x is nonnegative. Since ÃKn ⊆ Kn, we have ÃTnx ≥ 0, for all x ∈ Kn.
Note that Kn is a self-dual cone, we have ÃTnx ≥ 0, for all x ∈ Kn if and
only if Ãn ∈ Kn. Now we have

ÃTn =
√
−λn

( 1√
λ1

uTnBku1,
1√
λ2

uTnBku2, ...,
1√
−λn

uTnBkun

)
=
√
−λnuTnBkT.

(31)
Substituting the value of ÃTn given by the right side of (31) into the first
inequality in the formulae of Kn, we have

− λn(T TBT
k un)T Ĩ(T TBT

k un) ≤ 0. (32)

Since λn < 0 and T ĨT T =
∑n

i=1
uiu

T
i

λi
= Q−1, where the second equality is

due to the spectral decomposition of Q−1, we have that (32) is equivalent to
uTnBkQ

−1BT
k un ≤ 0. Also, substituting (31) into the second inequality in the

formulae of Kn yields uTnBkun ≥ 0. The proof is complete.

Remark 3.30. The inequality system uTnBkQ
−1BT

k un ≤ 0 and uTnBkun ≥ 0
holds if and only if uTnBkx ≥ 0, for all x ∈ CL.

Proof. Since xTQx ≤ 0 can be written as xTUΛ
1
2 ĨΛ

1
2UTx ≤ 0, we have

x ∈ CL if and only if Λ
1
2UTx ∈ Kn. Similarly, since Q−1 = UΛ−

1
2 ĨΛ−

1
2UT , we

have uTnBkQ
−1BT

k un ≤ 0 can be written as uTnBkUΛ−
1
2 ĨΛ−

1
2UTBT

k un ≤ 0,

which yields Λ−
1
2UTBT

k un ∈ Kn∪ (−Kn). Since the set Kn is a self-dual cone,

we have (Λ−
1
2UTBT

k un)T (Λ
1
2UTx) ≥ 0, which can be simplified to uTnBkx ≥ 0,

for all x ∈ CL.

The normal plane of the eigenvector un that contains the origin separates
Rn into two half spaces. Corollary 3.30 presents a geometrical interpretation
that A transforms the Lorenz cone CL to the half space that contains eigenvec-
tor un, i.e., BkCL ⊆ {y | uTny ≥ 0}. Moreover, note that uTnBkx = (BT

k un)Tx,
which shows that the vector BT

k un is in the dual cone of CL.
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Corollary 3.31. If condition (29) holds, then

0 ≤ µ ≤ uTnB
T
k QBkun
λn

. (33)

Proof. The proof is analogous to the one given in the proof of Corollary
3.25.

The interval for the scalar µ in condition (33) is wider but simpler than
the one presented in Corollary 3.25. Analogous to Corollary 3.26, we present
an intuitive geometrical interpretation of µ for Lorenz cones.

Corollary 3.32. The relationship between the vector Bkun, and the scalars
uTnB

T
k QBkun, and µ are as follows:

• If Bkun /∈ CL ∪ (−CL), then µ satisfying (33) does not exist.

• If Bkun ∈ ∂CL ∪ (−∂CL) and (33) holds, then µ = 0.

• If Bkun ∈ int (CL)∪(−int (CL)) and (33) holds, then µ ∈
[
0,

uTnB
T
k QBkun
λn

]
.

3.3.2. Invariance Conditions for Continuous Systems

Now we consider the invariance condition of Lorenz cones for the continu-
ous system. We also need to analyze the eigenvalue of a sum of two symmetric
matrices for the invariance conditions for continuous systems. The following
lemma is a useful tool in our analysis. It shows a fact that the spectrum of
a matrix is stable under a small perturbation by another matrix. Since the
statement is obvious, we omit the proof.

Lemma 3.33. Let M and N be two symmetric matrices. Then

• if there exists a τ̂ > 0, such that M + τN � 0, for 0 < τ ≤ τ̂ , then
M � 0.

• if M ≺ 0, then there exists a τ̂ > 0, such that M + τN � 0, for
0 < τ ≤ τ̂ .

Similar to the case for discrete system, we first consider the invariance
condition of the nonconvex set CL ∪ (−CL) for the continuous system.

28



Theorem 3.34. The nonconvex set CL ∪ (−CL) is an invariant set for the
continuous system (2) if and only if

∃ η ∈ R, such that ATQ+QA− ηQ � 0. (34)

Proof. For the “if” part, i.e., condition (34) holds, then for every x ∈ ∂CL ∪
(−∂CL), we have (Ax)TQx = (Ax)TQx− η

2
xTQx = 1

2
xT (ATQ+QA−ηQ)x ≤

0. Thus, by Lemma 3.21, the set CL∪(−CL) is an invariant set for continuous
system.

Next, we prove the “only if” part. According to Theorem 2.8, there
exists a τ̂ > 0, such that for every 0 ≤ ∆t ≤ τ̂ , CL ∪ (−CL) is also an
invariant set for xk+1 = (I−A∆t)−1xk. By Theorem 3.23 and (I−A∆t)−1 =
I + A∆t+ A2∆t2 + · · · , we have ∃ µ(∆t) ≥ 0, such that

1− µ(∆t)

∆t
Q+ (ATQ+QA) + ∆tK(∆t) � 0, (35)

where K(∆t) = (ATQA+(A2)TQ+QA2)+∆t((A2)TQA+ATQA2+(A3)TQ+
QA3) + O((∆t)2). Since Q and A are constant matrices, and applying the
fact that ‖M‖ = ‖MT‖, ‖M + N‖ ≤ ‖M‖ + ‖N‖ and ‖MN‖ ≤ ‖M‖‖N‖,
we have

‖K(∆t)‖ ≤
∞∑
i=3

i‖Q‖‖A‖i−1(∆t)i−3 = ‖Q‖‖A‖2

∞∑
i=0

(i+ 3)(∆t‖A‖)i

= ‖Q‖‖A‖2 3− 2∆t‖A‖
(1−∆t‖A‖)2

≤ 8‖Q‖‖A‖2,

where ∆t ≤ 5
4
‖A‖−1 such that (3 − 2∆t‖A‖)/(1 − ∆t‖A‖)2 ≤ 8. Also,

applying the relationship between spectral radius ρ(A) and its induced norm,
ρ(A) ≤ ‖A‖ (see [17]), to K(∆t), we have

|λi(K(∆t))| ≤ ρ(K(∆t)) ≤ ‖K(∆t)‖ ≤ 8‖Q‖‖A‖2, for i ∈ I(n),

i.e., the eigenvalues of K(∆t) are bounded. Let us denote η(∆t) = µ(∆t)−1
∆t

.
Then (35) is rewritten as

− η(∆t)Q+ ATQ+QA+K(∆t)∆t � 0. (36)

By multiplying both sides of (36) by un, where un is the eigenvector corre-
sponding to the negative eigenvalue λn, we have

uTn (ATQ+QA)un + ∆tuTnK(∆t)un ≤ η(∆t)λn. (37)
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Since K(∆t) is bounded, we have ∆tuTnK(∆t)un → 0 as ∆t → 0. This
implies that η(∆t) is bounded for 0 ≤ ∆t ≤ τ̂ for some τ̂ > 0. Therefore8,
we can take a subsequence {∆t`} such that η(∆t`) → η as ∆t` → 0, which
yields (34). The proof is complete.

The approach in the proof of Theorem 3.34 can be also used to prove
Theorem 3.22. The only remaining invariance condition is the one of a Lorenz
cone for continuous system.

Theorem 3.35. A Lorenz cone CL (or −CL) is an invariant set for the
continuous system (2) if and only if (34) holds.

Proof. Consider the continuous system with x0 ∈ CL, according to Theorem
3.34, the trajectory x(t) will stay in CL ∪ (−CL) if condition (34) is satisfied.
If x(t) would move over to −CL, then x(t) must go through the origin, i.e.,
x(t∗) = 0 for some t∗ ≥ 0. Note that x(t) = eA(t−t∗)x(t∗) = 0 for any t > t∗,
i.e., the origin is an equilibrium point, which means CL is an invariant set for
the continuous system. Thus the theorem is immediate.

In fact, a direct proof of Theorem 3.35 can be given as follows: one can
also prove that the second and third conditions in (29) hold by choosing
sufficiently small ∆t. To be specific, for the second condition in (29), we
have

uTn (I −∆tA)−1un ≥ 0, if and only if ‖un‖2 +
∞∑
i=1

(∆t)iuTnA
iun ≥ 0, (38)

where the second term, when ∆t < ‖A‖−1, can be bounded as follows:∣∣∑∞
i=1(∆t)iuTnA

iun
∣∣ ≤ ‖un‖2 ∆t‖A‖

(1−∆t‖A‖) . Thus, we can choose the time step

less than the half of reciprocal of the norm of A, i.e., ∆t < 0.5‖A‖−1, such
that condition (38) holds. Similarly, the third condition in (29) can be trans-
formed to

uTn (I−∆tA)−1Q−1(I−∆tA)−Tun ≤ 0, if and only if
1

λn
‖un‖2 +K(∆t) ≤ 0,

(39)

8Here we use the fact that every bounded sequence has a convergent subsequence, see,
e.g., [45].
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where we use the fact that un is the eigenvector corresponding to the eigen-
value λ−1

n of Q−1, and K(∆t) = ∆tuTn (AQ−1+Q−1AT )un+(∆t)2uTn (AQ−1A+
A2Q−1 +Q−1A2T )un + · · · . We note that inertia{Q} = {n− 1, 0, 1} implies
inertia{Q−1)} = {n − 1, 0, 1}, then we have that Q−1 exists, which yields
the following: |K(∆t)| ≤ ‖u‖2(2∆t‖A‖‖Q−1‖ + 3∆t2‖A‖2‖Q−1‖ + · · · ) =

‖u‖2‖Q−1‖2∆t‖A‖−(∆t‖A‖)2
(1−∆t‖A‖)2 . We can choose ∆t ≤ min{0.5‖A‖−1, (‖A‖(1 −

4λn‖Q−1‖)−1}, such that (39) holds. In fact,

1

λn
‖un‖2 +K(∆t) ≤ ‖uk‖2

( 1

λn
+ ‖Q−1‖2∆t‖A‖ − (∆t‖A‖)2

(1−∆t‖A‖)2

)
≤ ‖u‖2

( 1

λn
+ ‖Q−1‖ 4∆t‖A‖

1−∆t‖A‖

)
≤ 0.

Condition (34) is the same as the one presented in [50], whose proof is
much more complicated than ours. Finding the value of η in Theorem 3.34
and 3.35 is essentially a semidefinite optimization problem. For example, we
can use the following semidefinite optimization problem:

max{η ∈ R | ATQ+QA− ηQ � 0}. (40)

When the optimal solution η∗ of (40) exists, then by Theorem 3.35 we can
claim that the Lorenz cone is an invariant set for the continuous system.
Various celebrated SDO solvers, e.g., SeDuMi, CVX, and SDPT3, can be
used to solve SDO problem (40).

Corollary 3.36. If condition (34) holds, then

max
1≤i≤n−1

{
uTi (AT + A)ui

}
≤ η ≤ uTn (AT + A)un. (41)

Proof. The proof is similar to the one presented in the proof of Corollary
3.25 by noting that uTi (ATQ+QA)ui = 2(Aui)

TQui, and Qui = λiui.

4. Examples

In this section, we present some simple examples to illustrate the invari-
ance conditions presented in Section 3. Since it is straightforward for discrete
systems, we only present examples for continuous systems. The following two
examples consider polyhedral sets for continuous systems.
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Example 4.1. Consider the polyhedron P = {(ξ, η) | ξ + η ≤ 1,−ξ + η ≤
1, ξ − η ≤ 1,−ξ − η ≤ 1}, and the continuous system ξ̇ = −ξ, η̇ = −η.

The solution of the system is ξ(t) = ξ0e
−t, η(t) = η0e

−t, so (ξ(t), η(t)) ∈ P
for all t ≥ 0, i.e., the polyhedron is an invariant set for the continuous system
provided that (ξ0, η0) ∈ P . This can also be verified by Theorem 3.6. We
have

H = −I4, G =


1 1
−1 1

1 −1
−1 −1

 , b =


1
1
1
1

 , A = −I2,

which satisfy HG = GA and Hb ≤ 0. Thus Theorem 3.6 yields that P is an
invariant set for this continuous system.

Example 4.2. Consider the polyhedral cone CP generated by the extreme
rays x1 = (1, 1, 1)T , x2 = (−1, 1, 1)T , x3 = (1,−1, 1)T , and x4 = (−1,−1, 1)T ,
and the continuous system ξ̇ = ξ, η̇ = η, ζ̇ = ζ.

The solution of the system is ξ(t) = ξ0e
t, η(t) = η0e

t, ζ(t) = ζ0e
t, thus

one can easily verify that the polyhedral cone is an invariant set for this
continuous system provided that (ξ0, η0, ζ0) ∈ CP . This can also be verified
by Corollary 3.14. We have

X =

 1 −1 1 −1
1 1 −1 −1
1 1 1 1

 , L̃ = I4, A = I3,

which satisfy that XL̃ = AX. Thus Corollary 3.14 yields that CP is an
invariance set for this continuous system.

The following two examples consider ellipsoids and Lorenz cones for con-
tinuous systems.

Example 4.3. Consider the ellipsoid E = {(ξ, η) | ξ2 + η2 ≤ 1}, and the
system ξ̇ = −η, η̇ = ξ.

The solution of the system is ξ(t) = α cos t + β sin t and η(t) = α sin t −
β cos t, where α, β are two parameters depending on the initial condition. The
solution trajectory is a circle, thus the system is invariant on this ellipsoid.
Also, we have

A =

[
0 −1
1 0

]
, Q = I2, A

TQ+QA =

[
0 0
0 0

]
� 0,

32



which shows that, according to Theorem 3.22, the ellipsoid is an invariant
set for this continuous system.

Example 4.4. Consider the Lorenz cone CL = {(ξ, η, ζ) | ξ2 + η2 ≤ ζ2, ζ ≥
0}, and the system ξ̇ = ξ − η, η̇ = ξ + η, ζ̇ = ζ.

The solution is ξ(t) = et(α cos t + β sin t), η(t) = et(α sin t − β cos t)
and ζ(t) = γet, where α, β, γ are three parameters depending on the initial
condition. It is easy to verify that this Lorenz cone is an invariant set for the
continuous system. Also, by letting η ≤ −2, we have

A =

 1 −1 0
1 1 0
0 0 1

 , Q = I3, A
TQ+QA+ηQ =

 η + 2 0 0
0 η + 2 0
0 0 η + 2

 � 0,

which shows that, according to Theorem 3.35, the Lorenz cone is an invariant
set for this continuous system.

5. Conclusions

Invariant sets are important both in the theory and for computational
practice of dynamical systems. In this paper, we explore invariance condi-
tions for four classic convex sets, for both linear discrete and continuous sys-
tems. In particular, these four convex sets are polyhedra, polyhedral cones,
ellipsoids, and Lorenz cones, all of which have a wide range of applications
in control theory.

In this paper, we present a novel, simple and unified method to derive
invariance conditions for linear dynamical systems. We first consider dis-
crete systems, followed by continuous systems, since invariance conditions of
the latter one are derived by using invariance condition of the former one.
For discrete systems, we introduce the Theorems of Alternatives, i.e., Farkas
lemma and S -lemma, to derive invariance conditions. We also show that
by applying the S -lemma one can extend invariance conditions to any set
represented by a quadratic inequality. The connection between discrete sys-
tems and continuous systems is built by using the forward or backward Euler
methods, while the invariance is preserved with sufficiently small step size.
Then we use elementary methods to derive invariance conditions for contin-
uous systems. This paper not only presents invariance conditions of the four
convex sets for continuous and discrete systems by using simple proofs, but
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also establishes a framework, which may be used for other convex sets as in-
variant sets, to derive invariance conditions for both continuous and discrete
systems.

Future research interests mainly focus on four directions. The first one is
extending the results of this paper to nonlinear dynamical systems and more
general sets. Some results on the extension to nonlinear system, one may refer
to [36]. The second one is extending the study of invariant sets for discrete
system on smooth manifold and on Lie groups, because discrete dynamical
system has been extended to these more general settings [20, 21]. The third
one is exploring the applications of the results in our paper in control and
related fields. The fourth one is extending the invariance condition for partial
differential equation and using other numerical methods, e.g., finite element
method, finite difference method, adaptive time step methods, etc.
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