
DERIVED AND RESIDUAL SUBSPACE DESIGNS
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Abstract. A generalization of forming derived and residual de-
signs from t-designs to subspace designs is proposed. A q-analog of
a theorem by Van Trung, van Leijenhorst and Driessen is proven,
stating that if for some (not necessarily realizable) parameter set
the derived and residual parameter set are realizable, the same is
true for the reduced parameter set.

As a result, we get the existence of several previously unknown
subspace designs. Some consequences are derived for the existence
of large sets of subspace designs. Furthermore, it is shown that
there is no q-analog of the large Witt design.

1. Introduction

1.1. History. Let V be a v-dimensional vector space over a finite field
GF(q). A t-(v, k, λ)q subspace design D = (V,B) consists of a set B
of k-dimensional subspaces, called blocks, such that each t-dimensional
subspace of V lies in exactly λ blocks. This notion is a vector space
analog of ordinary set-theoretic t-designs. For that reason, subspace
designs are also called q-analogs of designs.

The first reference about subspace designs appears to be [9], and the
first actual subspace designs with t ≥ 2 have been constructed in [19].
An introduction to subspace designs can be found in [16, Day 4].

There has been a growing interest in subspace designs, recently. New
subspace designs for t = 2 and t = 3 have been constructed in [2, 3, 8, 4].
A major success was the discovery of a 2-(13, 3, 1)2 subspace design in
[5], which is the first q-analog of a Steiner system, and the q-analog
to Teirlinck’s theorem [18], stating that simple t-subspace designs exist
for every value of t [11].

Based on these results, it is natural to investigate further concepts
in classical set-theoretic design theory for their applicability in the q-
analog case. In [13], intersection numbers for subspace designs are
given. In this article, we consider the fundamental constructions of
derived and residual designs.
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1.2. Overview. In the case of a set-theoretic t-(v, k, λ) design D =
(V,B) a point x ∈ V is fixed and the blocks fall into classes of those
that contain or avoid x:

Derx(D) = (V \ {x}, {B \ {x} : x ∈ B ∈ B})
Resx(D) = (V \ {x}, {B ∈ B : x 6∈ B})

Here, the derived design Derx(D) is a (t − 1)-(v − 1, k − 1, λ) design
and the residual design Resx(D) is a (t− 1)-(v − 1, k, µ) design, where
µ = λ · v−t

k−t+1
.

While the above definition of the derived design is translated directly
to the q-analog case, for the translation of the residual design we will
start from the equivalent description

ResS(D) = (S, {B ∈ B : B ⊆ S})
where S is a (v − 1)-subset of V , see Definition 4.

It is worth mentioning that not all concepts of set-theoretic design
theory do have a straightforward q-analog. While the existence of a
q-analog of the Fano plane is still an important unsolved problem, in
Example 7 it will be shown that there is there is no q-analog of the
large Witt design.

In set-theoretic design theory, there is a theorem found independently
by Van Trung [21], van Leijenhorst [14], and Driessen [10], stating that
for any two set-theoretic designs with the parameters of the derived
and the residual design of some (not necessarily realizable) parameter
set, there is a design with the parameters of the reduced design.1 In
Theorem 14, a q-analog of this theorem will be given. As an application,
in Corollary 17 we get the hitherto unknown existence of subspace
designs with the parameters

2-(8, 4, λ)2 where λ ∈ {63, 84, 147, 168, 189, 252, 273, 294}
and

2-(10, 4, λ)2 where λ ∈ {1785, 1870, 3570, 3655, 5355}.
In Corollary 20, the application of Theorem 14 yields a q-analog of
[1, Lemma 4], which is a construction method for new large sets from
known ones.

2. Preliminaries

2.1. The subspace lattice. In the following, we fix a prime power q
and a vector space V over GF(q) of finite dimension v. The lattice of
all subspaces of V will be denoted by L(V ). The set of all subspaces
of V of a fixed dimension k is known as the Graßmannian and will be

1We remark that in [21, 14, 10], the involved designs are addressed by their
numerical parameters. However, there is no interpretation in terms of the derived,
residual and reduced design parameters.
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denoted by
[
V
k

]
q
. For simplicity, its elements will be called k-subspaces.

The cardinality of
[
V
k

]
q

is the Gaussian binomial coefficient[
v

k

]
q

=
k−1∏
i=0

qv−i − 1

qi+1 − 1
=

{
0 if k > v,
(qn−1)(qn−1−1)·...·(qn−k+1−1)

(q−1)(q2−1)·...·(qk−1) otherwise.

Because of

lim
q→1

[
v

k

]
q

=

(
v

k

)
,

the Gaussian binomial coefficients are considered the q-analogs of the
binomial coefficients, see [12]. Many identities for binomial coefficients
have q-analogs for the Gaussian binomial coefficients. We make use of
the following identities[

n

k

]
q

=

[
n

n− k

]
q

and

[
n

h

]
q

[
n− h
k

]
q

=

[
n

k

]
q

[
n− k
h

]
q

and the q-Pascal triangle identities (n ≥ 1)[
n

k

]
q

=

[
n− 1

k − 1

]
q

+ qk
[
n− 1

k

]
q

= qn−k
[
n− 1

k − 1

]
q

+

[
n− 1

k

]
q

.

2.2. Subspace designs.

Definition 1. A pair (V,B) with B ⊆
[
V
k

]
q

is called a t-(v, k, λ)q (sub-

space) design, if for each T ∈
[
V
t

]
q

there are exactly λ elements of B
containing T .

According to a statement of Tits [20], combinatorics on sets can be
seen as the limit case q → 1 of combinatorics on vector spaces over
GF(q), see also [7]. Indeed, many statements about subspace designs
become true statements about set-theoretic designs when setting q = 1,
and replacing notions about vector spaces by their set-theoretic coun-
terpart.2

The following fact is the q-analog of a well-known property of block
designs, which can be easily proven by a double counting argument:

Lemma 2 ([17, Lemma 4.1(1)]). Let D be a t-(v, k, λ)q design. For
each s ∈ {0, . . . , t}, D is a s-(v, k, λs)q design with

λs = λ ·

[
v−s
t−s

]
q[

k−s
t−s

]
q

= λ ·

[
v−s
k−s

]
q[

v−t
k−t

]
q

.

2Gaussian binomial coefficients are replaced by ordinary binomial coefficients,
vector spaces and subspaces are replaced by sets and subsets, the dimension is
replaced by the cardinality, etc.
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In particular, the number of blocks of D is

λ0 = λ ·

[
v
t

]
q[

k
t

]
q

= λ ·

[
v
k

]
q[

v−t
k−t

]
q

.

In the situation s = t− 1, the resulting subspace design is called the
reduced design.

For the existence of a t-(v, k, λ)q design, necessarily the integrality
conditions λs ∈ Z must be satisfied for all s ∈ {0, . . . , t}. If this is the
case, we call the parameter set t-(v, k, λ)q admissible, without requiring
that the parameter set is realizable, meaning that a t-(v, k, λ)q design
actually exists.

As an example, the parameter set 2-(7, 3, 1)q (q-analog of the Fano
plane) and the parameter set 5-(12, 6, 1)q (q-analog of the small Witt
design) are admissible for any prime power q. However, the question
for the realizability of these parameter set is open for all values of q.

Example 3. We consider the parameters 3-(22, 6, 1)q. Denoting the
n-th cyclotomic polynomial by Φn ∈ Z[X], the integrality conditions
yield that

λ0 =

[
22
3

]
q[

6
3

]
q

=
(q22 − 1)(q21 − 1)(q20 − 1)

(q6 − 1)(q5 − 1)(q4 − 1)

=
Φ22(q)Φ21(q)Φ20(q)Φ11(q)Φ10(q)Φ7(q)

Φ6(q)

must be integral. Using the fact that for any x ∈ Z, gcd(Φa(x),Φb(x)) >
1 can only happen if a/b is the integral power of a prime, we see that
λ0 ∈ Z implies q = 1. So in contrast to the set-theoretic case q = 1,
for q ≥ 2 the parameters 3-(22, 6, 1)q are not admissible and there is
no 3-(22, 6, 1)q subspace design.

Two subspace designs (V,B) and (V ′,B′) are called isomorphic it
there is a lattice isomorphism L(V ) → L(V ′) mapping B to B′. By
the fundamental theorem of projective geometry, the set of lattice iso-
morphisms V → V ′ is given by the set of bijective semilinear mappings
V → V ′. Furthermore, the group of lattice automorphisms of L(V ) is
isomorphic to the projective semilinear group PΓL(V ).

2.3. Duality. For an ordinary set-theoretic design (V,B), the supple-
mentary design is defined as

(V, {V \B : B ∈ B}).
It has the parameters

t-

(
v, v − k, λ ·

(
v−k
t

)(
k
t

) ) .
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To get a q-analog of this construction, fix some non-singular bilinear
form β on the vector space V over GF(q). For U ∈ L(V ) we denote
the dual subspace by

U⊥ = {x ∈ V : β(x, y) = 0 for all y ∈ U}.
For a t-(v, k, λ)q design D = (V,B), the dual design is defined as

D⊥ = (V, {B⊥ : B ∈ B}).
In [17, Lemma 4.2] it was shown that D⊥ is a design with the param-
eters

t-

(
v, v − k, λ ·

[
v−k
t

]
q[

k
t

]
q

)
q

.

In fact, the only required property is that U 7→ U⊥ is an antiauto-
morphism of the subspace lattice L(V ) of V . For two such antiauto-
morphisms φ and φ′ the mapping φ−1 ◦φ′ is an automorphism of L(V ).
So up to isomorphism, the dual design D⊥ does not depend on the
choice of the antiautomorphism.

3. Derived and residual designs

Definition 4. Let D = (V,B) be a t-(v, k, λ)q design. For U ∈
[
V
1

]
q
,

the derived design of D in U is defined as

DerU(D) = (V/U, {B/U : B ∈ B, U ≤ B}).

For H ∈
[

V
v−1

]
q
, the residual design of D in H is defined as

ResH(D) = (H, {B : B ∈ B, B ≤ H}).

For the special case of Steiner systems, the derived design was used
in [15, Th. 2]. To the authors’ knowledge, the above notion of the
residual design is new.

We point out that the derived subspace design is a factor design
while the residual design is a subdesign of D. Of course, there are
many choices for U and H, which may lead to non-isomorphic derived
and residual designs. However, the design parameters are the same for
all derived and all residual parameters, respectively:

Lemma 5. With the notation as in Definition 4, DerU(D) is a (t−1)-
(v − 1, k − 1, λ)q design and ResH(D) is a (t− 1)-(v − 1, k, µ)q design
where

µ = λ ·

[
v−k
1

]
q[

k−t+1
1

]
q

= λ · q
v−k − 1

qk−t+1 − 1
=
λt−1 − λ
qk−t+1

.

Proof. A t-subspace T that contains U lies in exactly λ blocks B ∈ B
that also contain U . Factoring out U yields the blocks of the claimed
derived design on V/U .
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For ResH(D), we have to count the blocks B ∈ B with T ≤ B ≤ H
for any (t − 1)-subspace T of H. According to [16, Lemma 4.2], this

number is λ·
([

v−t
k−t+1

]
q
/
[
v−t
k−t

]
q

)
, which evaluates to the expressions given

for µ. �

Remark 6. (a) For q = 1, we get back the parameters of the de-
rived and the residual design in the set-theoretic case.

(b) In the above proof, the numbers µj
i of [16, Lemma 4.2] were

used in the special case i = t − 1, j = 1. More general that
lemma says that for nonnegative integers i and j with i+ j ≤ t
and fixed subspaces I ∈

[
V
i

]
q
, J ∈

[
V
j

]
q
, the number

µj
i = #{B ∈ B | I ≤ B ≤ J}

does not depend on the choice of I and J With the notion of
reduced and residual designs, we can give the following alter-
native characterization: The number µj

i is the parameter λ of
any design which arises from a t-(v, k, λ)q design by taking j
times the residual design and t− i− j times the reduced design,
no matter in which order the reducing and residual steps are
performed and which subspaces H are chosen for the residual
steps.3

Example 7. The famous large Witt design with parameters 5-(24, 8, 1)
does not have a q-analog for any prime power q ≥ 2. Otherwise, taking
the derived design twice would give a 3-(22, 6, 1)q design in contradic-
tion to Example 3.4

Definition 8. Let t-(v, k, λ)q be a (not necessarily admissible) param-
eter set. We define its

(a) reduced parameter set (t− 1)-(v, k, λt−1),
(b) derived parameter set (t− 1)-(v − 1, k − 1, λ),

(c) residual parameter set (t− 1)-(v − 1, k, λ · qv−k−1
qk−t+1−1).

Lemma 9. Let t-(v, k, λ)q be a parameter set and s ∈ {0, . . . , t − 1}.
Denoting the λs-parameter (see Lemma 2) of the derived parameter set
by δs and that of the residual parameter set by ρs, we have

λs = δs + qk−sρs = qv−kδs + ρs.

Proof. It is straightforward to check that

λs = λ ·

[
v−s
k−s

]
q[

v−t
k−t

]
q

, δs = λ ·

[
v−s−1
k−s−1

]
q[

v−t
k−t

]
q

and ρs = λ ·

[
v−s−1
k−s

]
q[

v−t
k−t

]
q

.

Now the claim follows from the q-Pascal triangle identities. �

3The i-fold reduced and j-fold residual is a (t− i− j)-(v − j, k, µj
t−i−j)q design.

4Similar to Example 3, it can also be shown that the parameters 5-(24, 8, 1)q are
not admissible for any prime power q ≥ 2.
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Lemma 10. Let t-(v, k, λ)q be an admissible parameter set. Then its
reduced, derived and residual parameter sets are admissible, too.

Proof. It is clear that the reduced parameter set is admissible. With the
notation as in Lemma 9, δs = λs+1 is an integer for all s ∈ {0, . . . , t−1},
so the derived parameter set is admissible. Now by ρs = λs − qv−kδs,
also the residual parameter set is admissible. �

With respect to this notion of duality, the derived and the residual
design are dual concepts:

Lemma 11. Let D be a design on V , U ∈
[
V
1

]
q

and H ∈
[

V
v−1

]
q
. Then

DerU(D)⊥ ∼= ResU⊥(D⊥) and ResH(D)⊥ ∼= DerH⊥(D⊥).

Example 12. The dual of a q-analog of the Fano plane (a 2-(7, 3, 1)q
design) would be a 2-(7, 4, q2 + 1)q design. These are the derived and
the residual parameter sets of the parameter set 3-(8, 4, 1)q. The same
is true in the set-theoretic case q = 1, where we know that all the
designs actually exist.

4. A q-analog of a theorem by Van Trung,
van Leijenhorst and Driessen

By the discussion in the previous section, the admissibility of a pa-
rameter set implies the admissibility of its derived, residual and reduced
parameter sets. Realizability is propagated in the same way. In this sec-
tion, we study the consequences of the derived and the residual design
parameters both being admissible (resp. realizable), without requiring
the original parameter set to be admissible (resp. realizable).

Lemma 13. Let t-(v, k, λ)q be a parameter set whose derived and resid-
ual parameter sets are admissible. Then t-(v, k, λ)q is admissible, too.

Proof. We use the notation as in the proof of Lemma 9. According
to that lemma, the values λs are integers for all s ∈ {1, . . . , t − 1}.
Furthermore, λt = δt−1 is an integer. �

Theorem 14. Let t-(v, k, λ)q be a parameter set whose derived and
residual parameter sets are realizable. Then its reduced parameter set
is realizable, too.

Proof. Let V be a v-dimensional vector space over GF(q), V̄ a (v− 1)-
dimensional vector space over GF(q) and ϕ : V → V̄ a surjective
GF(q)-linear map. Then U = ker(ϕ) is a 1-subspace of V . By the
preconditions, there exists a (t − 1)-(v − 1, k − 1, λ)q design DDer =
(V̄ ,BDer) and a (t − 1)-(v − 1, k, µ)q design DRes = (V̄ ,BDer) on V̄ ,

where µ = λ · qv−k−1
qk−t+1−1 . Let

B1 = {ϕ−1(B̄) : B̄ ∈ BDer}
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and

B2 = {K : K is complement of U in ϕ−1(B̄), B̄ ∈ BRes}.

Both sets B1 and B2 consist of k-subspaces of V . We remark that each
block B = ϕ−1(B̄) ∈ B1 is uniquely determined by B̄ ∈ BDer, and
each block B ∈ B2 uniquely determines its B̄ ∈ BRes as B̄ = ϕ(B).
Furthermore, the sets B1 and B2 are clearly disjoint, since the elements
of B1 contain U , while the elements of B2 do not.

Now we claim that (V,BRed) with BRed = B1 ∪ B2 is a design with
the reduced parameter set (t− 1)-(v, k, λRed)q where by Lemma 2

λRed = λ ·

[
v−(t−1)
t−(t−1)

]
q[

k−(t−1)
t−(t−1)

]
q

= λ ·

[
v−t+1

1

]
q[

k−t+1
1

]
q

=
qv−t+1 − 1

qk−t+1 − 1
.

For the verification, consider a (t− 1)-subspace T of V . We count the
blocks in BRed containing T .

If U ≤ T , then all such blocks come from B1, and T ≤ B is equivalent
to ϕ(T ) ≤ ϕ(B). Since the dimension of ϕ(T ) in V̄ is t− 2, the design
BDer contains

λ ·

[
(v−1)−(t−2)
(t−1)−(t−2)

]
q[

(k−1)−(t−2)
(t−1)−(t−2)

]
q

= λRed

blocks ϕ(B) ≥ ϕ(T ), and each such block uniquely determines the
preimage B.

Now assume U � T . For B ∈ B1, T ≤ B if and only if ϕ(T ) ≤ ϕ(B)
and ϕ(B) is a block of BDer. Since ϕ(T ) has dimension t − 1 in V̄ ,
there are λ such blocks. Furthermore, B ∈ B2 passes through T if and
only if B̄ = ϕ(B) is a block of BRes containing the (t− 1)-dimensional
subspace ϕ(T ) and B is a complement of U in the (k+ 1)-dimensional
space ϕ−1(B̄) such that T ≤ B. There are µ such blocks B̄, and
considering the situation modulo T , we see that for each ϕ−1(B̄) there
are exactly q1·((k+1)−(t−1)−1) = qk−t+1 suitable complements B.5

So in total, there are

λ+ qk−t+1µ = λ ·
(

1 +
qv−t+1 − qk−t+1

qk−t+1 − 1

)
= λ · q

v−t+1 − 1

qk−t+1 − 1
= λRed

blocks of BRed passing through T . �

Example 15. By Theorem 14 and Example 12, the existence of a
q-analog of the Fano plane (a 2-(7, 3, 1)q design) would imply the exis-
tence of a design with the reduced parameters of 3-(8, 4, 1)q, which is
a 2-(8, 4, q4 + q2 + 1)q design.

5In general, a u-subspace U of a v-dimensional vector space V over GF(q) has
exactly qu(v−u) complements in V .
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Remark 16. (a) If in Theorem 14 the parameter set t-(v, k, λ)q is
realizable as a design D, the application of the construction to a
derived and a residual design of D won’t necessarily reproduce
D.

A counterexample is given by any 2-(13, 3, 1)2 Steiner system
D which exists by [5]. We assume that D arises as B1∪B2 by the
above construction. Take two distinct blocks B1, B2 ∈ B2 with
φ(B1) = φ(B2) = B̄. Then B1 and B2 are complements of U
in φ−1(B̄). So dim(B1 + B2) ≤ dim(φ−1(B̄)) = 4 and therefore
dim(B1) ∩ dim(B2) ≥ 2, which contradicts the Steiner system
property of D.

(b) In the situation of Theorem 14, the parameter set t-(v, k, λ)q
is admissible by Lemma 13. For ordinary block designs, it is
known that the parameters t-(v, k, λ)q are not necessarily real-
izable. It is natural to conjecture the same to be true in the
q-analog case. However, so far not a single admissible parameter
set has been shown to be non-realizable.

Corollary 17. The parameter sets

2-(8, 4, λ)2 with λ ∈ {63, 84, 147, 168, 189, 252, 273, 294}
and

2-(10, 4, λ)2 with λ ∈ {1785, 1870, 3570, 3655, 5355}.
are realizable.

Proof. Table 1 lists in the first column certain admissible (but not
known to be realizable) parameter sets t-(v, k, λ)q whose derived (col-
umn 2) and residual parameter set (column 3) are known to be real-
izable. Now by Theorem 14, the reduced parameter set (column 4) is
realizable. �

To our knowledge, all the parameter sets in Corollary 17 were not
known to be realizable before.

5. Application to large sets

Definition 18. A large set LSq[N ](t, k, v) is partition of
[
V
k

]
q

into N

subspace designs with the parameters t-(v, k, λ)q. More precisely, it is
a collection

{(V,Bi) : i ∈ {1, . . . , N}}
of t-(v, k, λ)q designs such that {Bi : i ∈ {1, . . . , N}} is a partition of[
V
k

]
q
.

Note that the parameter λ does not appear in the parameter set
LSq[N ](t, k, v) of a large set. This is because under the definition of
a large set, the parameter λ =

[
v−t
k−t

]
q
/N is already determined by the

other parameters.
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Table 1. Parameter sets of subspace designs

t-(v, k, λ)q derived residual reduced
3-(8, 4, 3)2 2-(7, 3, 3)2 [4] 2-(7, 4, 15)2 [4] 2-(8, 4, 63)2
3-(8, 4, 4)2 2-(7, 3, 4)2 [4] 2-(7, 4, 20)2 [4] 2-(8, 4, 84)2
3-(8, 4, 7)2 2-(7, 3, 7)2 [4] 2-(7, 4, 35)2 [4] 2-(8, 4, 147)2
3-(8, 4, 8)2 2-(7, 3, 8)2 [4] 2-(7, 4, 40)2 [4] 2-(8, 4, 168)2
3-(8, 4, 9)2 2-(7, 3, 9)2 [4] 2-(7, 4, 45)2 [4] 2-(8, 4, 189)2
3-(8, 4, 12)2 2-(7, 3, 12)2 [4] 2-(7, 4, 60)2 [4] 2-(8, 4, 252)2
3-(8, 4, 13)2 2-(7, 3, 13)2 [4] 2-(7, 4, 65)2 [4] 2-(8, 4, 273)2
3-(8, 4, 14)2 2-(7, 3, 14)2 [4] 2-(7, 4, 70)2 [4] 2-(8, 4, 294)2
3-(10, 4, 21)2 2-(9, 3, 21)2 [8] 2-(9, 4, 441)2 [8] 2-(10, 4, 1785)2
3-(10, 4, 22)2 2-(9, 3, 22)2 [4] 2-(9, 4, 462)2 [4] 2-(10, 4, 1870)2
3-(10, 4, 42)2 2-(9, 3, 42)2 [8] 2-(9, 4, 882)2 [8] 2-(10, 4, 3570)2
3-(10, 4, 43)2 2-(9, 3, 43)2 [4] 2-(9, 4, 903)2 [4] 2-(10, 4, 3655)2
3-(10, 4, 63)2 2-(9, 3, 63)2 [8] 2-(9, 4, 1323)2 [8] 2-(10, 4, 5355)2

By the properties of the dual design it is clear that the duals of the
designs in a large set again form a large set. So the existence of an
LSq[N ](t, k, v) is equivalent to the existence of an LSq[N ](t, v − k, v),
see also [6]. From the discussion of the derived and residual designs
above we obtain the following result.

Corollary 19. If there exists an LSq[N ](t, k, v) with t ≥ 1, then there
also exists an LSq[N ](t− 1, k− 1, v− 1) and an LSq[N ](t− 1, k, v− 1).

Proof. If the given large set is defined on the vector space V then we
fix a 1-dimensional subspace U to form the derived designs on V/U .
These form the claimed LSq[N ](t− 1, k− 1, v− 1). If we fix a subspace
H of codimension 1 in V then the residual designs of the given large
set on H form the claimed LSq[N ](t− 1, k, v − 1). �

The construction in Theorem 14 can be used for the construction of
large sets.

Corollary 20 (q-analog of [1, Lemma 4]). If there exists an LSq[N ](t, k−
1, v− 1) and an LSq[N ](t, k, v− 1) then there exists an LSq[N ](t, k, v).

Proof. Let V be a v-dimensional vector space over GF(q), V̄ a (v− 1)-
dimensional vector space over GF(q) and ϕ : V → V̄ a surjective

GF(q)-linear map. On V̄ , let {D(1)
Der, . . . , D

(N)
Der} be an LSq[N ](t, k −

1, v−1) and {D(1)
Res, . . . , D

(N)
Res} an LSq[N ](t, k, v−1). As in the proof of

Theorem 14, for any i ∈ {1, . . . , n} we use the mapping ϕ to combine

the two subspace designs D
(i)
Der and D

(i)
Res into a t-(v, k, λRed)q subspace

design D
(i)
Red on V . Clearly, the block sets of the designs D

(i)
Red form a

partition of
[
V
k

]
q
. �
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For t ≥ 2 no such combinable pairs of large sets have been found
so far. There are LS2[3](2, 3, 8) and LS2[3](2, 5, 8), see [6]. If an
LS2[3](2, 4, 8) could be found then Corollary 20 would imply the ex-
istence of large sets with the parameters LS2[3](2, 4, 9), LS2[3](2, 5, 9)
and LS2[3](2, 5, 10).
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