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Abstract We characterize the existence of a locally con-
formally Kähler metric on a compact complex manifold
in terms of currents, adapting the celebrated result of
Harvey and Lawson for Kähler metrics.

1 Introduction

A locally conformally Kähler manifold (LCK for short) is a Hermitian man-
ifold (M,J, g) for which the fundamental two-form ω(X,Y ) = g(JX, Y )
satisfies

dω = θ ∧ ω, dθ = 0 (1.1)

for some one-form θ called the Lee form.
There are many examples of compact LCK and non-Kähler manifolds,

among them the Hopf manifolds, see [DO], [OV].
As dθ = 0, the twisted differential dθ := d − θ∧ defines a twisted coho-

mology which is the Morse-Novikov cohomology of X. The LCK condition
simply means that the fundamental form of (X,J, g) is dθ-closed.

The aim of this note is to obtain an analogue of the intrinsic character-
ization in [HL] for Kähler manifolds in the context of LCK geometry.

2 LCK condition in terms of currents

Our main result is the following:

1Partially supported by CNCS grant RU-TE-2011-3-0053.
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A. Otiman Currents on LCK manifolds

Theorem 2.1: Let X be a compact, complex manifold of complex dimension

n > 2, and let θ be a closed one-form on X. Then X admits a LCK metric

with Lee form θ if and only if there are no non-trivial positive currents which

are (1, 1) components of dθ-boundaries.

Remark 2.2: Suppose X is a compact complex manifold, admitting a LCK
metric, ω, with Lee form θ. Then any closed 1-form η ∈ [θ]dR will be a Lee
form for a conformal metric of ω and moreover, any conformal change of ω
will be LCK with a Lee form in the same de Rham cohomology class as θ.
Therefore, we need not fix θ, we can directly use its cohomology class, [θ]dR.
By this observation, the theorem above can be stated as:

Let X be a compact, complex manifold of complex dimension n > 2, and
let [θ]dR a cohomology class in H1

dR(X). Then X admits a LCK metric with

Lee form θ if and only if there are no non-trivial positive currents which are

(1, 1)-components of dη-boundaries, for any closed one-form η belonging to

[θ]dR.

The rest of Section 2 is devoted to the proof, which follows the lines in
[HL]. We use the same results and intermediate steps as [HL], the difficult
part being that of finding some proper analogues in LCK geometry for the
Kähler notions used in the original article. Each following subsection is a
step of the proof.

2.1 Range of dθ is closed

Associated with dθ are the following operators:

∂θ = ∂ − θ1,0∧, ∂θ = ∂ − θ0,1∧, dcθ = i(∂θ − ∂θ)

Definition 2.3: A smooth function is called θ-pluriharmonic if it is locally
the real part of a smooth ∂θ-closed function.

We let Hθ be the sheaf of germs of θ-pluriharmonic functions on X.

Lemma 2.4: Hθ is the kernel of the sheaves morphism ER
dθd

c
θ

−−→ E1,1
R

, where

the subscript R denotes the germs of real valued forms.

Proof: The proof is based on the following easy observation

∂θf = 0 ⇔
1

2i

(

∂θf − ∂θf
)

= 0
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A. Otiman Currents on LCK manifolds

Let now f = u+ iv. One obviously has

∂θf = 0 ⇔
∂θ(u+ iv)− ∂θ(u− iv)

2i
= 0 ⇔ dθv + dcθu = 0 (2.1)

Let g for which a f ′ exists such that f = g + if ′ is ∂θ-closed. It follows
from (2.1) that dθf

′ + dcθg = 0, which implies dθd
c
θg = 0.

Conversely, if g satisfies dθd
c
θg = 0, finding a f ′ such that f = g + if ′ is

∂θ-closed is equivalent to solving the equation dθf
′ = −dcθg.

Since θ is locally exact, let θ = dh on a contractible open set. Then
e−hdcθg is closed and by Poincaré lemma there exists a function h′ such that
e−hdcθg = dh′. Then f ′ = −ehh′ which completes the proof.

The above result shows that the following is an exact sequence of sheaves:

0 −→ Hθ −→ ER
dθd

c
θ

−−−−→ E1,1
R

dθ−→
[

E1,2 ⊕ E2,1
]

R

dθ−→ · · ·

Since
[

Ep,q
]

R
are acyclic, the above is a resolution which computes the

cohomology groups of Hθ.

We now prove that H i(X,Hθ) are finite dimensional for all i > 0.
Let Oθ denote the sheaf of germs of smooth functions satisfying ∂θf = 0

and let F be the kernel of the sheaves morphism Re : Oθ → Hθ:

0 −→ F −→ Oθ
Re
−→ Hθ −→ 0 (2.2)

Proposition 2.5: Oθ is locally free of rank 1 over the sheaf of germs of

holomorphic functions, OX , and F is locally constant.

Proof: To prove that F is locally constant, we characterize the non-zero
∂θ-closed real valued functions.

Let h be a (unique up to addition with constants) real valued smooth
function on a contractible neighbourhood such that θ0,1 = ∂h. Then

∂θf = 0 ⇔ ∂f − fθ0,1 = 0 ⇔ ∂f = f∂h

Since both f and h are real valued, the above last equality gives, by conju-
gation, ∂f = f∂h.

Summing up, we obtain df = fdh, which yields

d log f = dh, and hence f = eh · c, c ∈ R

This proves that on the neighbourhood where θ0,1 is ∂-exact, the sheaves F
and R are isomorphic.
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We use a similar argument for Oθ. Let h be as above. Then eh is ∂θ-
closed. Let f ∈ Oθx,X defined on an open set contained in the domain of
h. Let λ := fe−h. As ∂θf = 0, we have ∂λ · eh + λ∂h · eh − λeh · θ0,1 = 0.
Since eh is nowhere vanishing, we conclude that ∂λ = 0 which is equivalent
to λ ∈ Ox,X . Hence Oθx,X

∼= Ox,X , proving that Oθ is locally free of rank 1.

Corollary 2.6: F and Oθ have finite dimensional cohomology groups.

Proof: By proving that Oθ is locally free of rank 1, we have proved its
coherence. Using now the Cartan-Serre theorem for coherent sheaves on
compact complex manifolds [T], we obtain the finite dimension of its coho-
mology groups. As for F , the compactness of X assures the existence of a
finite covering of contractible sets, on which F is isomorphic to R. However,
R has vanishing cohomology groups on contractible sets. Thus, by Leray
theorem [D], we find a covering which computes via the Čech complex the
cohomogy of F . But every term in the Čech complex associated to this cov-
ering is a real finite dimension vector space, hence the finite cohomological
dimension of F is obvious.

Splitting the long exact sequence in cohomology asociated to (2.2) into
short exact sequences and using the above Corollary proves:

Corollary 2.7: Hθ has finite dimensional cohomology groups.

Remark 2.8: One usually proves the finite dimensionality of the coho-
mology groups of a complex by means of elliptic operators, the most fa-
mous example being that of the Hodge isomorphism theorem stating that
H•(X,R) ≃ Ker∆. Examples of elliptic operators dealing with twisted dif-
ferentials such as dθ are given in [AK]. However, we would be interested in
an elliptic operator such that its kernel is given by the cohomology groups
of the sheaf Hθ and this case is not covered by the results in [AK]. More
specifically, we are interested only in the second cohomology group of this
sheaf, as we will see in the following sections.

Corollary 2.9: The operator dθ : E
1,1
R

−→
[

E1,2 ⊕ E2,1
]

R
has closed range.

Proof: Since H2(X,Hθ) is finite dimensional, Im dθ has finite codimension
in Z(X) = {ψ ∈

[

E1,2 ⊕ E2,1
]

R
, dθψ = 0}. Z(X) remains a Fréchet space,

as every closed subset of a Fréchet space does, so dθ is a continuous lin-
ear function between two Fréchet spaces, whose codimension is finite (i.e.
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Z(X)/ Im dθ is finite dimensional). We will invoke now the open mapping
theorem for Fréchet spaces [Tr, p.170], which states that every surjective
continuous and linear map between two Fréchet spaces is open, in order to
prove the following general result, which is an elementary functional analy-
sis lemma. If a liniar continuous map between two Fréchet spaces has finite

codimension, its range is closed.

We include its proof for the sake of completeness.
Let T : A → B be such a map. Let ω1, . . . , ωn be elements in B that

give a basis for B/ ImT and let C = 〈ω1, . . . , ωn〉 ⊂ B. We consider now
the map F : A ⊕ C → B given by F (x + y) = T (x) + y. It is a simple
observation that F is surjective. F is also continuous and linear, hence by
the open mapping theorem an open map. We may assume that T is actually
injective, otherwise we factorize by its kernel and thus, F becomes a bijective
open continuous map, hence a homeomorphism. T (A) = F (A⊕{0}), which
is a closed set.

So the open mapping theorem was crucial for proving that Im dθ is closed
in Z(X) and hence closed in

[

E1,2 ⊕ E2,1
]

R
.

2.2 Extension of dθ to currents

We follow the definitions and conventions in [D] for currents.
Let [E ′

i(X)]R denote the dual space of [E i(X)]R. Recall that the differ-
ential d : [E ′

i(X)]R → [E ′
i−1(X)]R acts by

〈dT, η〉 := 〈T, dη〉, η ∈ E i−1(X)

and the exterior product of a current and a 1-form · ∧ ξ : [E ′
i(X)]R →

[E ′
i−1(X)]R is defined by

〈T ∧ ξ, η〉 = 〈T, ξ ∧ η〉

We then define dθ : [E
′
i(X)]R → [E ′

i−1(X)]R as follows:

〈dθT, η〉 = 〈T, dθη〉, η ∈ E i−1(X) (2.3)

Let T ∈ [E ′
p,q(X)]R. In particular, T is a p+ q current which vanishes on

all (i, j) forms with (i, j) 6= (p, q)), dθT ∈ E ′
p+q−1 and decomposes as:

dθT =
∑

i+j=p+q−1

(dθT )i,j

– 5 – version 2, October 6, 2014
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where

〈(dθT )i,j, η〉 = 〈T, dθη〉, η ∈ E i,j(X), i + j = p+ q − 1

But since

〈T, η〉 =
∑

i+j=p+q−1

〈Ti,j , ηij〉, ηij = the (i, j) part of η,

we obtain

(dθT )i,j = 0 for all (i, j) 6∈ {(p, q − 1), (p − 1, q)}

Let now T ∈ [E ′
p,q+1(X) ⊕ E ′

p+1,q(X)]R. Then dθT ∈ E ′
p+q(X). By (2.3), the

only possibly non-zero components dθT are (dθT )p,q, (dθT )p+1,q−1, (dθT )p−1,q+1,
as only the differential of (p, q), (p + 1, q − 1) and (p − 1, q + 1) forms can
have non-trivial (p, q + 1) and (p + 1, q) parts. We have proved:

Claim 2.10: 〈dθT, η〉 = 〈(dθT )p,q, η〉, for any η ∈ Ep,q(X).

As in [HL], let Πp,q : E ′
p+q(X) −→ E ′

p,q(X) be the projector associating
the (p, q) part of a p+ q current. Let also

(dθp,qT )
not.
= (dθT )p,q = Πp,q ◦ dθ|[E ′

p,q+1
(X)⊕E ′

p+1,q(X)]R(T )

Denote Bθ
p,q = Im(dθp,q). We prove:

Lemma 2.11: Let η ∈ E1,1(X). Then dη = θ ∧ η if and only if 〈T, η〉 = 0
for any T ∈ Bθ

1,1.

Proof: If η is dθ - closed, then 〈T, dθη〉 = 0 for all T ∈ [E ′
2,1(X)⊕E ′

1,2(X)]R
and hence 〈dθ1,1T, η〉 = 0, yielding 〈T, η〉 = 0 for all T ∈ Bθ

1,1.

Conversely, if 〈dθ1,1T, η〉 = 0 for T ∈ [E ′
2,1(X)⊕E ′

1,2(X)]R, then 〈T, dθη〉 =
0, equality which is attained even for all T ∈ [E ′

3(X)]R, since a (3, 0) current
vanishes on dθη, and thus dθη = 0.

We finally prove:

Proposition 2.12: The operator dθ1,1 : [E ′
1,2(X) ⊕ E ′

2,1(X)]R−→[E ′
1,1(X)]R

has closed range. In other words, Bθ
1,1 is closed in [E1,1(X)]R.
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Proof: From (Claim 2.10) we know that dθ1,1 is the adjoint of dθ : [E
1,1(X)]R −→

[E1,2(X)⊕ E2,1(X)]R, which, by Corollary 2.9, has closed range. Since both
[E1,1(X)]R and [E1,2(X) ⊕ E2,1(X)]R are Fréchet spaces, we may apply the
closed range theorem, as in [S, chap. IV, section 7.7] to conclude that dθ1,1
has closed range too.

2.3 Positive currents

We collect here, mainly without proof, several facts we shall need about
positive currents. The reference is [D].

Let T be a (p, p) current. It can be written locally as

T =
∑

|I|=n−p
|J |=n−p

TI,JdzI ∧ dzJ ,

where TI,J is a distribution.
For a positive current, TI,J is a complex measure that satisfies T I,J = TJ,I

and TI,I > 0. We denote by ‖T‖ :=
∑

|TI,J | the mass measure of T .
Since |TI,J | is absolutely continuous with respect to ‖T‖, Radon-Nykodim

theorem applies and hence there exists a measurable function fI,J such that
TI,J =

∫

fI,Jd‖T‖. Letting f :=
∑

I,J fI,JdzI ∧ dzJ , we may write

〈T, η〉 =

∫

X

η ∧ fd‖T‖, η ∈ Ep,p(X) (2.4)

If
−→
T x is defined by ηx(

−→
T x) = ηx ∧ fx, x ∈ X, (2.4) can be rewritten as

〈T, η〉 =

∫

X

η(
−→
T )d‖T‖, η ∈ Ep,p(X) (2.5)

Proposition 2.13: The current T is positive if and only if the function

f(x) =
∑

I,J fI,J(x)dzI ∧ dzJ ∈ Λn−p,n−pT ∗
xX is positive ‖T‖ a.e.

We apply the above considerations for a (1, 1) current T (in which case
−→
T is a bivector). Then

T is positive ⇔ f =
∑

|I|=n−1
|J |=n−1

fI,JdzI ∧ dzJ is positive ‖T‖ a.e.

⇔
−→
T ∈ conv

(

GC(1, TxX)
)

(2.6)
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2.4 Wirtinger inequality on LCK manifolds

Theorem 2.14: Let ω be a LCK form on X with Lee form θ. Then

ω(ξ) 6 1 for any ξ ∈ conv
(

GR(2, TxX)
)

, with equality if and only if ξ
lies in conv

(

GC(1, TxX)
)

.

Remark 2.15: Although the inequality is often stated for Kähler forms,
the condition dω = 0 is not used in the proof. The only property of the
Kähler form which is used is that ωn is a volume form, and this holds on
LCK manifolds too (and more generally, whenever ω is strictly positive).

Using also (2.6), it then follows that for a positive (1, 1) current T ,

〈T, ω〉 =

∫

X

ωx(
−→
T x)‖T‖ =

∫

X

‖T‖

But
∫

X
‖T‖ = ‖T‖(X) > 0 and hence 〈T, ω〉 > 0 for any positive non-zero

(1, 1) current T .

2.5 Proof of Theorem 2.1

We adjust the proof in [HL].
Denote by P1,1(X) the space of positive currents on the compact LCK

manifold X. Recall that we proved the following facts:

〈T, ω〉 = 0, for T ∈ Bθ
1,1 and 〈T, ω〉 > 0, forT ∈ P1,1(X) \ {0}

and hence we have
Bθ

1,1 ∩ P1,1 = {0} (2.7)

The difficult task is to prove the converse.
We let X be complex, compact and fix a closed one form θ. Assuming

(2.7), we look for a positive (1, 1) form which is dθ-closed (it will define the
LCK metric).

We choose an arbitrary Hermitian metric h onX and we let ψ = − Im(h).
Then ψ ∈ [E1,1(X)]R. Using ψ we define the setK = {T ∈ P1,1(X) ; 〈T, ψ〉 =
1} which is a compact base for P1,1(X) and is weakly compact in [E ′

1,1(X)]R,

as a consequence of Banach-Alaoglu theorem [D]. As Bθ
1,1(X) is closed, we

may apply the Hahn-Banach separation theorem [S], stating there is a closed
real hyperplane separating a closed set and a compact set in a locally convex
space, as long as they are disjoint. The space of real (1,1)-currents, E1,1

R
(X),

is locally convex and so is the quotient space E1,1
R

(X)/Bθ
1,1(X) [Di].
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Applying now the Hahn-Banach theorem for the locally convex space
E1,1
R

(X)/Bθ
1,1(X), the closed set {0} and the compact set K (which does not

contain the 0 current), we get a hyperplane that separates K from 0. Thus,
we obtain a continuous linear functional f : E1,1

R
(X)/Bθ

1,1(X) → R, which
takes only strictly positive or negative values on K and by a change of sign
we can assume the values are strictly positive. f provides a functional f̃
on the whole E1,1

R
(X), which vanishes on Bθ

1,1(X) and is positive on K.We

define the real (1, 1)-form, ω, as 〈T, ω〉 = f̃(T ), for any (1, 1)-current T. This
holds as definition since the pairing between a current and a form given by
the evaluation 〈T, ω〉 is nondegenerate. This real (1, 1)-form will vanish on
Bθ

1,1(X) and will be strictly positive on K.

Since the condition of vanishing on Bθ
1,1(X) is equivalent to dθω = 0, we

already obtain a dθ-closed form. As ω is strictly positive on K and K is a
compact base for P1,1(X), we also obtain the positivity on P1,1(X).

What remains is to show that ω is a non-degenerate, positive form.
We shall prove that

ωx(v ∧ v) > 0 for any v ∈ T 1,0
x X.

Let
−→
Tx = v ∧ v ∈ GC(1, n) ⊂ Λ1,1TxX.
By now, we asociated to each (1, 1) - current a smooth collection of

bivectors {
−→
Tx} and now we go the other way around, by defining the (1, 1)

current T = δx
−→
T , where δx is the Dirac measure concentrated in x. Then T

is a positive current since
−→
T was chosen from GC(1, n) and hence 〈T, ω〉 > 0.

This is equivalent to ω(v ∧ v) > 0, concluding that ω is a positive dθ-closed
(1, 1) form, thus producing a LCK metric.

3 Transverse (p, p)-forms

In [AA], Alessandrini and Andreatta extend Theorem 14 in [HL, p. 176] to
transverse closed (p, p)-forms. As a byproduct of adapting to dθ the usual
operations on currents, as presented in Section 2.2, we give an analogue of
Theorem 1.17 in [AA, p. 188] by considering the existence of a transverse
dθ-closed (p, p)-form instead of a usual transverse closed (p, p)-form. The
particular case p = 1 recovers precisely Theorem 2.1 of the present note.

Definition 3.1: A transverse (p, p)-form is a form which at any point be-
longs to the interior of the cone of strongly positive forms.

It is proved in [AA] that given a complex compact manifold X, there
exists a transverse closed (p, p)-form if and only if there are no positive
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currents which are (p, p)-components of boundaries. The same steps and
techniques can be used in order to prove the following result:

Proposition 3.2: Let X be a complex, compact manifold and θ a real

closed 1-form. There exists a transverse (p, p) dθ-closed form if and only if

there are no positive (p, p)- currents which are dθ - boundaries.

In order to prove this result we need first to present some intermediate
facts.

Let Bθ
p,p denote the space of currents which are (p, p)-components of

dθ-boundaries and Ωp
θ the kernel of the following sheaf morphism:

∂θ : E
p,0 −→ Ep,1

We have this exact sequence of sheaves:

0 −→ Hθ

f

−−→ L0
θ

f0
−−→ · · ·

fp−1

−−→ Lp−1
θ

g

−−→ Bp
θ

gp

−−→ Bp+1
θ

gp+1

−−→ · · ·

· · ·
g2p−1

−−→ B2p−1
θ

h

−−→ Ep,p
R

dθd
c
θ

−−→ Ep+1,p+1
R

dθ
−−→ Ep+1,p+2

R
⊕ Ep+2,p+1

R

dθ
−−→ · · ·

where:

Lk
θ = Ωk+1

θ ⊕ E0,k
R

⊕ E1,k−1
R

. . . ⊕ Ek,0
R

⊕Ωk+1
θ

for 0 6 k 6 p− 1;

Bk
θ = Ek−p,p

R
⊕ . . .⊕ Ep,k−p

R

for p 6 k 6 2p− 1;

f : Hθ → L0
θ

f(ϕ) = (−∂θϕ,ϕ,−∂θϕ)

fk : Lk
θ → Lk+1

θ

fk(ϕ, a
0,k, a1,k−1 . . . , ak−1,1, ak,0, η) =

(−∂θϕ,ϕ+∂θa
0,k, ∂θa

0,k+∂a1,k−1, . . . , ∂θa
i−1,j+∂θa

i,j−1, . . . , η+∂θa
k,0,−∂θη)

g : Lp−1
θ → Bp

θ

g(ϕ, a0,p−1, a1,p−1 . . . , ap−1,1, ap,0, η) =
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(ϕ+∂θa
0,p, ∂θa

0,p+∂a1,p−1, . . . , ∂θa
i−1,j +∂θa

i,j−1, . . . , η+∂θa
p,0,−∂θη)

gk : Bk
θ → Bk+1

θ

gk(a
k−p,p + . . .+ ap,k−p) =

(∂θa
k−p,p + ∂θa

k−p+1,p−1, . . . , ∂θa
p−1.k−p + ∂θa

p,k−p−1)

h : B2p−1
θ → Ep,p

R

h(ap−1,p, ap,p−1) = ∂θa
p−1,p + ∂θa

p,p−1

Remark 3.3: The sequence considered above is not a resolution for Hθ

since Lk
θ are not acyclic.

Proposition 3.4: Lk
θ has finite dimensional cohomology groups.

Proof: The sheaves Ek,q
R

are acyclic, therefore H i(Lk
θ) = H i(Ω

k

θ ⊕ Ωk
θ), for

any i > 0. But Ωk
θ and its conjugate have both finite dimensional cohomol-

ogy groups, since Ωk
θ is locally isomorphic to Ωk via an argument similar to

the coherence of the sheaf Oθ.
Let Z be the kernel of gp. By splitting the sequence into short exact

sequences and by using the proposition above, we obtain that the connecting
morphism

Hk(X,Z) −→ Hk+p(X,Hθ)

has finite domensional kernel and cokernel. We may now use the finite
dimensionality of the cohomology of Hθ and obtain the finite dimensionality
of the cohomology groups of Z.

Since the resolution:

0 −→ Z −→ Bp
θ

gp

−−→ Bp+1
θ

gp+1

−−→ · · ·
g2p−1

−−→

g2p−1

−−→ B2p−1
θ

h

−−→ Ep,p
R

dθd
c
θ

−−→ Ep+1,p+1
R

dθ
−−→ Ep+1,p

R
⊕ Ep,p+1

R

dθ
−−→ · · ·

computes the cohomology of Z, we conclude that Bθ
p,p is closed, sinceH

p+2(X,Z)
is finite dimensional.
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Remark 3.5: It is easy to see that a (p, p)-form is dθ-closed if and only if
it vanishes on Bθ

p,p.
The proof of Proposition 3.2 is now identical to the proof of Theorem

1.17 in [AA, p. 188], by replacing Bp,p with Bθ
p,p.

Acknowlegment: I would like to give special thanks to Prof. L. Ornea and
Prof. V. Vuletescu for their very helpful support and for carefully reading
previous versions of the paper.

I thank the referee for his or her thorough reading of this paper and for
very useful remarks.

References

[AA] L. Alessandrini, M. Andreatta, Closed transverse (p, p)-forms on com-
pact complex manifolds, Compositio Mathematica 61 (1987) 181-200.

[AK] D. Angella, H. Kasuya, Hodge theory for twisted differentials, arXiv:
1407.3928

[D] J.-P. Demailly, Complex analytic and differential geometry, www-
fourier.ujf-grenoble.fr/∼demailly/manuscripts/agbook.pdf
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