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Abstract:

The Myers–Perry black holes are higher-dimensional generalizations of the usual
(3+1)-dimensional rotating Kerr black hole. They are of considerable interest in
Kaluza–Klein models, specifically within the context of brane-world versions thereof.
In the present article we shall consider the greybody factors associated with scalar
field excitations of the Myers–Perry spacetimes, and develop some rigorous bounds
on these greybody factors. These bounds are of relevance for characterizing both the
higher-dimensional Hawking radiation, and the super-radiance, that is expected for
these spacetimes.
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I. INTRODUCTION.

Greybody factors modulate the absorption cross-sections of classical black holes, and alter
the closely related Hawking emission1,2 probabilities of semi-classical black holes.3–6 Physi-
cally, the incoming or outgoing wave back-scatters off the gravitational field surrounding the
black hole, leading to a non-trivial transmission coefficient. In the case of Hawking radiation,
this modifies the naive Planckian spectrum by multiplying it with a frequency-dependent
greybody factor. Explicitly evaluating these greybody factors is typically an impossible task,
even for the simple case of the Schwarzschild black hole.7 In view of this difficulty, techniques
for placing analytic bounds on the greybody factors have now become of some interest.7–11

(Alternatively one might seek to extract qualitative or numerical information.12–14)

The bounds developed in references 7–11 apply to various black holes, (Schwarzschild,
Reissner–Nordström, Kerr, Kerr–Newman, etcetera), and are all based on a very general
technique for bounding one-dimensional barrier penetration probabilities; a technique that
was first developed in reference 15, with later formal developments to be found in references
16–19, and additional related discussion in references 20–23. In the current article we shall
apply the same sort of formalism to the Myers–Perry rotating black holes in (3+1+n) di-
mensions.24,25 The Myers–Perry black holes are particularly important in that they are the
simplest of the higher-dimensional rotating black holes, being of particular interest in both
Kaluza–Klein scenarios and in brane-world scenarios.

We first describe the Myers-Perry spacetime,24,25 setting up the relevant Teukolsky equa-
tion for scalar field excitations.26 An important part of the technical analysis is the fact
that we can place positivity constraints on both the separation constant and on the effective
potential; without such positivity constraints progress would be severely limited. We then
analyze both the greybody factors and (when relevant) super-radiant emission as a function
of the angular momentum quantum number m. While zero angular momentum (m = 0)
serves as a good template for the other cases, there are some significant differences to take
into account. After completing the analysis and summarizing the general case, we specialize
to (3+1) dimensions to verify compatibility with the usual Kerr black hole, and also consider
the specific (3+1+1) five-dimensional case which is perhaps most relevant to brane-world
models. We conclude with a brief discussion of the significance of our results.

II. TEUKOLSKY EQUATION FOR SCALAR FIELDS.

In setting up the formalism, it is best to first focus on the geometry of the specific space-
times under consideration, and then analyse the technical steps involved in separation of
variables, leading up to the development of the Teukolsky equation for scalar field excita-
tions. With this in hand, one can then proceed to examination of the effective potential.
For some general background on black hole perturbation theory see references 27–34.
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A. Myers–Perry spacetime.

The Myers–Perry geometry (with only one of the angular momentum parameters being
non-zero) is described by the metric24,25

ds2 = −dt2 +
Σ

∆
dr2 + Σdθ2 + (r2 + a2) sin2 θ dϕ2

+
µ

rn−1Σ
(dt− a sin2 θ dϕ)2 + r2 cos2 θ dΩ2

n. (1)

Here
∆ = r2 + a2 − µ

rn−1
, Σ = r2 + a2 cos2 θ, (2)

and dΩ2
n is the line-element on the unit n-sphere Sn. We choose coordinates so that

dΩ2
n = dθ21 + sin2 θ1 dθ

2
2 + sin2 θ1 sin

2 θ2 dθ
2
3 + · · ·+

(

∏n−1

i=1
sin2 θi

)

dθ2n, (3)

whence recursively

dΩ2
n(θ1, . . . , θn) = dθ21 + sin2 θ1 dΩ

2
n−1(θ2, . . . , θn). (4)

(Several other coordinate conventions on the n-sphere are also relatively common.) This
Myers–Perry spacetime has 4 + n dimensions, 4 of them “usual” and n “extra”. This is
sometimes phrased as 3 + 1 + n dimensions, (meaning 3 of space, 1 of time, and n “extra”
Kaluza–Klein dimensions). The black hole mass MBH , and angular momentum J , are
defined as follows

MBH =
(n+ 2)An+2

16πG
µ, J =

2a

n+ 2
MBH . (5)

Here G denotes the gravitational constant in the (4 + n)-dimensional space-time, and the
quantity An+2 = 2π(n+3)/2/Γ[(n+3)/2] is the area of a (n+2)-dimensional unit sphere. The
location of the black hole horizon rH is the solution of ∆(rH) = 0, such that µ = rn−1

H (r2H+a2)
is satisfied.

• In the specific case of n = 0 this spacetime reduces to the standard Kerr black hole,
with the usual inner and outer horizons.

• In the specific case of n = 1, we have µ = r2H + a2, so then rH =
√

µ− a2, and
the horizon exists only when a <

√
µ; in fact the horizon shrinks to zero area in the

extreme limit a → √
µ. So the case n = 1 is somewhat different from n > 1.

• On the other hand, in the case of n > 2, for µ > 0 a unique positive solution for rH
always exists for all a. Indeed rH ∈

(

0, µ1/(n+1)
]

.

B. Separation of variables.

In this article we will focus on scalar field emission from the Myers–Perry black hole. The
relevant excitations can be described by the Klein–Gordon equation

∂µ
(√−g gµν ∂νΦ

)

= 0. (6)
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Here the metric determinant factorizes nicely into 4-dimensional and n-dimensional pieces.
Specifically, with conventions as in equation (3), we have

√
−g = (Σ sin θ)× (rn cosn θ)×

(

n−1
∏

i=1

sinn−i θi

)

, (7)

with the trailing factor arising from the unit n-sphere.
Similarly to the Kerr–Newman black hole in four dimensions, the Myers–Perry solution

enjoys a hidden symmetry due to the existence of a Killing–Yano tensor.35 In view of this,
we can use the separation of variables ansatz36

Φ(t, r, θ, ϕ, θ1, . . . , θn) = e−iωt eimϕ R̃jℓm(r) Sℓm(θ) Yjn(θ1, . . . , θn). (8)

Here the Yjn(θ1, . . . , θn) are the quite standard hyper-spherical harmonics defined on the
unit n-sphere, which satisfy the differential equation37

∆SnYjn(θ1, . . . , θn) + j(j + n− 1)Yjn = 0. (9)

The important observation is that for the n-sphere the Laplacian eigenvalues are−j(j+n−1).
In 4 dimensions (n → 0) these hyperspherical harmonics reduce to trivial constants, (and
j → 0). In 5 dimensions (n → 1) they are simply sines and cosines. If one wishes an explicit
rendition of the Laplacian on the n-sphere then, with coordinates as in equation (3), we
have

n
∑

k=1

1
∏n−1

i=1 sinn−i θi
∂θk

[(

n−1
∏

i=1

sinn−i θi

)

∂θkYjn
∏k−1

i=1 sin
2 θi

]

+ j(j + n− 1)Yjn = 0. (10)

We mention in passing that when you choose coordinates to write the n-sphere metric
recursively, as in equation (4), then the Laplacian can also be expressed recursively

∆SnX =
1

sinn−1 θ1

∂

∂θ1

(

sinn−1 θ1
∂X

∂θ1

)

+
1

sin2 θ1
∆Sn−1X. (11)

In contrast to the hyper-spherical harmonics defined on the hyper-sphere Sn, the spheroidal
harmonics Sℓm(θ) e

imϕ are defined on the two angular variables associated with the “usual”
4-dimensional part of the spacetime. They are the appropriate generalization of the standard
spherical harmonics Yℓm(θ, φ). The spheroidal harmonics satisfy the differential equation12

{

1

sin θ cosn θ

d

dθ

[

sin θ cosn θ
d

dθ

]

−
(

ωa sin θ − m

sin θ

)2

− j(j + n− 1)

cos2 θ
+ λjℓm

}

Sℓm(θ) = 0.

(12)

Note that going to 4 dimensions corresponds to setting n → 0 and setting j → 0, in which
case this differential equation reduces to that for the Kerr (or Kerr–Newman) geometry as
given in reference 11. These spheroidal harmonics are very closely related both to the Heun
functions,38–41 and to the hyper-spherical harmonics.37,42

The separation constant λjℓm in this spheroidal differential equation is positive. To see
this let us define a new variable by du = sin θ cosn θ dθ, then

d

dθ
=

du

dθ

d

du
= sin θ cosn θ

d

du
. (13)
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Therefore

1

sin θ cosn θ

d

dθ

[

sin θ cosn θ
dS(θ)

dθ

]

=
d

du

[

(sin θ cosn θ)2
dS(θ)

du

]

. (14)

Then the angular equation (12) for the spheroidal harmonics becomes

d

du

[

(sin θ cosn θ)2
dS(θ)

du

]

=

[

(

ωa sin θ − m

sin θ

)2

+
j(j + n− 1)

cos2 θ
− λjℓm

]

S(θ). (15)

Multiplying the above equation by S(θ) and integrating both sides over u yields
∫

S(θ)
d

du

[

(sin θ cosn θ)2
dS(θ)

du

]

du

=

∫
[

(

ωa sin θ − m

sin θ

)2

+
j(j + n− 1)

cos2 θ
− λjℓm

]

S2(θ) du. (16)

Integrate the left hand side by parts, using periodicity to discard boundary terms, and then
rearrange to obtain

λjℓm

∫

S2(θ) du =

∫
[

(

ωa sin θ − m

sin θ

)2

+
j(j + n− 1)

cos2 θ

]

S2(θ) du

+

∫

[

(sin θ cosn θ)2
(

dS(θ)

du

)2
]

du. (17)

Now the right hand side of this equation is manifestly positive, as is the factor
∫

S2 du on
the left hand side. Therefore the separation constant λjℓm is guaranteed to be positive.

C. Effective potential.

We now construct the effective potential, starting from the radial part of the variable-
separated Klein–Gordon equation.12–14 We have

{

1

rn
d

dr

[

rn∆
d

dr

]

+
[(r2 + a2)ω −ma]2

∆
− j(j + n− 1)a2

r2
− λjℓm

}

R̃jℓm(r) = 0. (18)

Let us now define a new radial mode function

R̃jℓm(r) =
r−

n

2Rjℓm(r)√
r2 + a2

. (19)

It is now a quite standard calculation to show that the radial Teukolsky equation, (the
Regge–Wheeler-like equation governing the radial modes), is given by12–14

{

d2

dr2∗
− Ujℓm(r)

}

Rjℓm(r) = 0, (20)

where r∗ is the standard “tortoise coordinate”

dr∗ =
r2 + a2

∆(r)
dr. (21)
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Note that the tortoise coordinates can be expressed as

r∗ =

∫ r

rH

r2 + a2

∆(r)
dr ∼ An ln(r − rH) +Bn(r), (22)

where the exact expressions for the coefficients An and functions Bn(r) depend on the number
of extra dimensions n. However, we can quite generally observe that as r → rH we have
r∗ → −∞, and as r → ∞ we have r∗ → ∞. So the region r > rH outside the black hole,
(the domain of outer communication), maps into the entire real line −∞ ≤ r∗ ≤ +∞ in
terms of the tortoise coordinate.
The Teukolsky potential, (sometimes called the Regge–Wheeler–Teukolsky potential), is now
seen to be

Ujℓm(r) =
∆(r)

(r2 + a2)2

[

λjℓm +
j(j + n− 1)a2

r2
+

n(n− 2)∆(r)

4r2
+

n∆′(r)

2r

− 3r2∆(r)

(r2 + a2)2
+

[r∆(r)]′

r2 + a2

]

−
(

ω − ma

r2 + a2

)2

. (23)

Note that for j = n = 0 this reduces to the Teukolsky potential for the ordinary Kerr black
hole in 4 dimensional space-time. (See reference 11.) For purposes of calculation, we now
define quantities

̟(r) =
a

a2 + r2
, (24)

and more specifically

ΩH =
a

a2 + r2H
. (25)

Here ̟(r) is related to frame dragging, while ΩH is the “angular velocity” of the event
horizon.11 We can now re-express the Teukolsky potential as

Ujℓm(r) = Vjℓm(r)− (ω −m̟)2, (26)

with

Vjℓm(r) =
∆(r)

(r2 + a2)2

[

λjℓm +
j(j + n− 1)a2

r2

+
n(n− 2)∆(r)

4r2
+

n∆′(r)

2r
− 3r2∆(r)

(r2 + a2)2
+

[r∆(r)]′

r2 + a2

]

. (27)

D. Positivity properties.

To show positivity of Vjℓm(r), we start by noting that ∆(r) > 0 outside the horizon, (that
is for r > rH). This is standard for n = 0, and trivial for n = 1. For n ≥ 1 we generically
re-express ∆(r) as

∆(r) = r2 + a2 − r1−nµ

= r2 + a2 − (r/rH)
1−n (r2H + a2)

≥ (r2H + a2)
(

1− (rH/r)
n−1) . (28)
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Since r ≥ rH , we can see that ∆(r) ≥ 0 for n ≥ 1. Using this result, we make the following
observations. First, for n ≥ 1 we have

[r∆(r)]′

r2 + a2
− 3r2∆(r)

(r2 + a2)2
∝ [r∆(r)]′(r2 + a2)− 3r2∆(r)

= a2(r2 + a2) +
µ

rn−1

[

(n + 1)r2 + (n− 2)a2
]

= a2∆(r) +
µ

rn−1

[

(n + 1)r2 + (n− 1)a2
]

≥ 0. (29)

Note that the equivalent result for n = 0 was already derived in reference 11 for the Kerr–
Newman spacetime. Second, for n ≥ 0, we also have

n(n− 2)∆(r)

4r2
+

n∆′(r)

2r
∝ n{(n− 2)∆(r) + 2r∆′(r)}
= n{(n+ 2)r2 + (n− 2)a2 + nµr1−n}. (30)

Now for n ≥ 2 this quantity is certainly positive. For n = 0 this quantity is identically zero.
For n = 1 this quantity reduces to 3r2−a2+µ = 3r2−r2H ≥ 0 (provided the horizon exists).
In all situations the relevant quantity is non-negative. Thus, by now combining these results
with the fact that λjℓm > 0, and the fact that both n ≥ 0 and j ≥ 0, we can conclude that
Vjℓm(r) is always positive for all values of j, ℓ, m, and r.

E. Super-radiance.

Now note that the effective potential is

Ujℓm(r) = Vjℓm(r)− (ω −m̟)2; Vjℓm(r) ≥ 0. (31)

However, the quantity ω −m̟ can under suitable circumstances change sign. This is the
harbinger of super-radiance. Some rather general analyses can be found in references 43–44,
while a specific analysis closely related to the current situation can be found in reference 11.
The key point is that super-radiance is a phenomenon in which the reflected wave is larger
in its amplitude than the incident wave. From mathematical point of view, super-radiance
is a phenomenon in which |r| > 1, where r is the reflection coefficient. Super-radiance will
occur once ω − m̟ changes sign in the domain of outer communication which, given the
asymptotic behaviour of ̟, occurs whenever 0 < ω < mΩH , that is m > m∗ ≡ ω/ΩH.
Once super-radiance occurs, the bound on the greybody factor becomes a bound on the
spontaneous emission amplitude. A detailed discussion of this particular issue can be found
in reference 11.

III. ANALYTIC BOUND FOR SCALAR TRANSMISSION.

From reference 15, (see also references 16, 17, 18, and 19 for further developments and
applications), we have the extremely general result that

Tjℓm ≥ sech2

(
∫ ∞

−∞

ϑ dr∗

)

, (32)
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where

ϑ =

√

[h′(r∗)]2 + [Ujℓm(r∗) + h2(r∗)]
2

2h(r∗)
, (33)

for any positive function h(r∗). Equivalently

ϑ =

√

[h′(r∗)]2 + [Vjℓm(r∗)− (ω −m̟)2 + h2(r∗)]
2

2h(r∗)
. (34)

We shall now use the positivity properties of λjℓm and Vjℓm, together with the super-radiant/
non-super-radiant distinction, to systematically analyse this bound in various cases. In
particular

• The modes m < m∗ ≡ ω/ΩH are not super-radiant.

• The modes m ≥ m∗ ≡ ω/ΩH are super-radiant.

In situations where super-radiance occurs, in addition to the greybody factor Tjℓm, there is
a closely related spontaneous emission rate which satisfies the bound11

Γjℓm ≤ ω sinh2

(
∫ ∞

−∞

ϑ dr∗

)

. (35)

IV. NON-SUPER-RADIANT MODES (m < m∗).

It is convenient to split the discussion of non-super-radiant modes into three sub-cases:

• m = 0 zero-angular-momentum modes: This is the most fundamental case, and most
straightforward case to analyze. This case provides a useful template for the more
complicated situations.

• m 6= 0 nonzero-angular-momentum modes: These are most conveniently further split
into two sub-cases.

– m < 0 negative-angular-momentum modes.

– m ∈ (0, m∗) low-lying positive-angular-momentum modes.

A. Zero angular momentum modes (m = 0).

We choose h̃(r∗) = ω > 0 and m = 0, then

Ujℓ,m=0(r) =
∆(r)

(r2 + a2)2

[

λjℓ,m=0 +
j(j + n− 1)a2

r2
+

n(n− 2)∆(r)

4r2

+
n∆′(r)

2r
− 3r2∆(r)

(r2 + a2)2
+

[r∆(r)]′

r2 + a2

]

− ω2. (36)
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Then

T ≥ sech2

(

1

2ω

∫ ∞

−∞

|V | dr∗
)

= sech2

(

1

2ω

∫ ∞

rh

|V (r)| r
2 + a2

∆(r)
dr

)

= sech2

[

1

2ω

∫ ∞

rh

∣

∣

∣

∣

1

r2 + a2

{

λjℓ,m=0 +
j(j + n− 1)a2

r2
+

n(n− 2)∆(r)

4r2

− 3r2∆(r)

(r2 + a2)2
+

n∆′(r)

2r
+

[r∆(r)]′

r2 + a2

}
∣

∣

∣

∣

dr

]

. (37)

For n ≥ 1 and r ≥ rH , in view of the positivity properties of the separation constant and
effective potential, we can replace

∫

| · · · | dr → |
∫

· · ·dr|. Therefore

T ≥ sech2

∣

∣

∣

∣

1

2ω

∫ ∞

rh

1

r2 + a2

{

λjℓ,m=0 +
j(j + n− 1)a2

r2
+

n(n− 2)∆(r)

4r2

− 3r2∆(r)

(r2 + a2)2
+

n∆′(r)

2r
+

[r∆(r)]′

r2 + a2

}

dr

∣

∣

∣

∣

. (38)

We would like to integrate this equation term by term. Start by considering the first term:

∫ ∞

rH

λjℓ,m=0

r2 + a2
dr =

λjℓ,m=0

a
arctan

r

a

∣

∣

∣

∣

∞

rH

=
λjℓ,m=0

a
arctan

a

rH
. (39)

For the last two integrals, we can show that they can be simplified as follows:

∫ ∞

rH

1

r2 + a2

[

− 3r2∆(r)

(r2 + a2)2
+

[r∆(r)]′

r2 + a2

]

dr =

∫ ∞

rH

r2∆(r)

(r2 + a2)3
dr. (40)

This can be explicitly integrated (for instance by using Mathematica) and we arrive at

∫ ∞

rH

r2∆(r)

(r2 + a2)3
dr =

n

8rH
− n(n− 2)(r2H + a2)

8(n+ 2)r3H
2F1

(

1,
n+ 2

2
,
n + 4

2
,− a2

r2H

)

− a2

4rH(r
2
H + a2)

+
1

2a
arctan

a

rH
. (41)

Here 2F1(z1, z2, z3, z4) is the hypergeometric function. Let us now consider the j-dependent
integral:

∫ ∞

rH

j(j + n− 1)a2

r2(r2 + a2)
dr =

j(j + n− 1)

rH
− j(j + n− 1)

a
arctan

a

rH
. (42)

We can also integrate the n-dependent terms as

∫ ∞

rH

1

r2 + a2

[

n(n− 2)∆(r)

4r2
+

n∆′(r)

2r

]

dr =
n2(r2H + a2)

4(n+ 2)r3H
2F1

(

1,
n+ 2

2
,
n+ 4

2
,− a2

r2H

)

+
n(n− 2)

4rH
+

n

a
arctan

a

rH
. (43)
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Finally, combining the results from equation (39), (41), (42), and (43), we obtain

Tjℓ,m=0 ≥ sech2

∣

∣

∣

∣

1

2ωrH
Ijℓ,m=0

∣

∣

∣

∣

, (44)

where we define

Ijℓ,m=0 =
n(2n− 3)

8
+ j(j + n− 1) +

a2

4(r2H + a2)

+

(

2n+ 1

2
− j(j + n− 1) + λjℓ,m=0

)

rH
a

arctan
a

rH

+
n(r2H + a2)

8r2H
2F1

(

1,
n+ 2

2
,
n + 4

2
,− a2

r2H

)

. (45)

For a consistency check, consider the limit a → 0 (with both n = 0 and j = 0),

lim
a→0

Ij=0,ℓ,m=0 = lim
a→0

[

− a2

4(r2H + a2)
+

(

1

2
+ λj=0,ℓ,m=0

)

rH
a

arctan
a

rH

]

=
1

2
+ λj=0,ℓ,m=0. (46)

This is the same result as for the Kerr black hole, (the Kerr–Newman black hole for Q = 0),
as is to be expected.

B. Non-zero angular momentum mode (m 6= 0).

From the basic inequality we have

Tjlm ≥ sech2









∫ ∞

−∞

√

[h̃′(r∗)]2 +
[

Ũjℓm(r∗) + h̃2(r∗)
]2

2h̃(r∗)
dr∗









, (47)

for all h̃(r∗) > 0. By now using the triangle inequality

|a|+ |b| ≥
√
a2 + b2, (48)

we have

Tjlm ≥ sech2





∫ ∞

−∞

∣

∣

∣
h̃′(r∗)

∣

∣

∣
+
∣

∣

∣
Ũjℓm(r∗) + h̃2(r∗)

∣

∣

∣

2h̃(r∗)
dr∗





≥ sech2





∫ ∞

−∞

∣

∣

∣
h̃′(r∗)

∣

∣

∣

2h̃(r∗)
dr∗ +

∫ ∞

−∞

∣

∣

∣
Ũjℓm(r∗) + h̃2(r∗)

∣

∣

∣

2h̃(r∗)
dr∗



 . (49)

Provided that h̃′(r∗) is monotone, we have

∫ ∞

−∞

|h̃′(r∗)|
2h̃(r∗)

dr∗ =











1
2
ln h̃(∞)

h̃(−∞)
for h̃′(r∗) > 0;

−1
2
ln h̃(∞)

h̃(−∞)
for h̃′(r∗) < 0.

(50)
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Let us now rewrite the potential as

Ujℓm = Vjℓ,m − (ω −m ̟(r))2 . (51)

This form of potential is exactly the same as for the 4-dimensional Kerr–Newman black hole,
and thus we simply choose

h̃(r∗) = h(r) = ω −m̟(r). (52)

Note that this choice for h(r) is always monotonic as a function of r. However, we can see
that h(r) is positive if and only if ω > mΩH . This condition is satisfied for m < ω/ΩH,
(that is m < m∗), where the mode does not suffer from super-radiant instability.

1. Negative-angular-momentum modes (m < 0).

Note that in this case, for h(r) defined in equation (52),

h̃(∞)

h̃(−∞)
=

h(∞)

h(rH)
=

ω

ω −mΩH

=
1

1−mΩH/ω
< 1. (53)

Then

1

2

∣

∣

∣

∣

∣

ln

[

h̃(∞)

h̃(−∞)

]
∣

∣

∣

∣

∣

=
1

2
ln(1−mΩH/ω). (54)

Note also that in this case we have ω −mΩH > h(r) > ω, so

∫ ∞

−∞

|Ujℓm + h2(r)|
2h(r)

dr∗ =

∫ ∞

−∞

|Vjℓm|
2h(r)

dr∗ <

∫ ∞

−∞

Vjℓm

2ω
dr∗. (55)

Then

Tjℓ,m<0 ≥ sech2

{

1

2
ln(1−mΩH/ω) +

∫ ∞

−∞

Vjℓ,m<0

2ω
dr∗

}

, (56)

≥ sech2

{

1

2
ln(1−m/m∗) +

1

2ωrH
Ijℓ,m<0

}

. (57)

It is easy to see that this result is very similar to the result we have for m = 0, with the
replacement λjℓ,m=0 → λjℓ,m<0. We can write down Ijℓm explicitly as

Ijℓm =
n(2n− 3)

8
+ j(j + n− 1) +

a2

4(r2H + a2)

+

(

2n+ 1

2
− j(j + n− 1) + λjℓm(aω)

)

rH
a

arctan
a

rH

+
n(r2H + a2)

8r2H
2F1

(

1,
n + 2

2
,
n+ 4

2
,− a2

r2H

)

. (58)
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2. Low-lying positive-angular-momentum modes (m ∈ (0, m∗)).

Recall that for m∗ > m > 0, h(r) is positive and monotonic as a function of r, for this
situation we first consider

h̃(∞)

h̃(−∞)
=

h(∞)

h(rH)
=

ω

ω −mΩH

=
1

1−mΩH/ω
> 1. (59)

Then, we have

1

2

∣

∣

∣

∣

∣

ln

[

h̃(∞)

h̃(−∞)

]
∣

∣

∣

∣

∣

= −1

2
ln(1−mΩH/ω). (60)

Note also that in this case we have ω −mΩH < h(r) < ω, so

∫ ∞

−∞

|Ujℓm + h2(r)|
2h(r)

dr∗ =

∫ ∞

−∞

|Vjℓ,m>0|
2h(r)

dr∗ <

∫ ∞

−∞

Vjℓ,m>0

2(ω −mΩH)
dr∗. (61)

Then, we arrive at the result

Tjℓ,m>0 ≥ sech2

{

−1

2
ln(1−mΩH/ω) +

∫ ∞

−∞

Vjℓ,m>0

2(ω −mΩH)
dr∗

}

, (62)

≥ sech2

{

−1

2
ln(1−m/m∗) +

1

2rHω(1−m/m∗)
Ijℓ,m>0

}

, (63)

where Ijℓ,m>0 is defined by equation (58).

V. SUPER-RADIANT MODES (m ≥ m∗).

It is a good strategy to split the super-radiant modes into two sub-classes depending on the
relative sizes of ω2 and (ω−mΩH)

2. Note that ω2 = (ω−mΩH)
2 when m = 2ω/ΩH = 2m∗.

This suggests that it might be useful to split the super-radiant modes as follows:

• m ∈ [m∗, 2m∗).

• m ∈ [2m∗,∞).

A. Low-lying super-radiant modes (m ∈ [m∗, 2m∗)).

In this region we have ω2 > (ω −mΩH)
2 and we choose

h(r) = max {ω −m̟(r), mΩH − ω} . (64)

We can see that h(r) > 0 and monotone decreasing as we move from spatial infinity to the
horizon, and become a flat horizontal line near the horizon. Note that h(r) ≥ mΩH − ω
everywhere. By using h(r) as defined in equation (64), we have

∫ ∞

−∞

|h′(r)|
h(r)

dr∗ = | lnh(r)|∞rH = ln

(

ω

mΩH − ω

)

= − ln(m/m∗ − 1). (65)
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It is now straightforward to show that

∫ ∞

−∞

Vjℓm

2h(r)
dr∗ ≤

∫ ∞

−∞

Vjℓm

2(mΩH − ω)
dr′∗ =

Ijℓm
2(mΩH − ω)rH

=
Ijℓm

2ω(m/m∗ − 1)rH
, (66)

where Ijℓm is defined in equation (58). The last integral we need to perform is

J low
m =

∫ ∞

−∞

h(r)2 − (ω −m̟(r))2

2h(r)
dr∗. (67)

Note that with our choice of h(r), the integrand in above integral is zero over much of the
relevant range. To be more precise, we are interested only in

J low
m =

∫ r0

rH

(ω −mΩH)
2 − (ω −m̟(r))2

2(mΩH − ω)

r2 + a2

∆
dr. (68)

The upper limit of integration r0 is defined by the condition

m [ΩH +̟(r0)] = 2ω, (69)

or we can write down r0 explicitly as

r0 =

√

r2H +
2(m−m∗)

2m∗ −m
(r2H + a2). (70)

Notice that the upper limit r0 > rH for m ∈ [m∗, 2m∗). Then

J low
m =

m

2(mΩH − ω)

∫ r0

rH

(ΩH −̟(r)) (m̟(r) +mΩH − 2ω)
r2 + a2

∆
dr. (71)

However, for the relevant domain of integration we have

0 ≤ (m̟(r) +mΩH − 2ω) ≤ 2(mΩH − ω). (72)

Then we can conclude that

J low
m ≤ m

∫ r0

rH

(ΩH −̟(r))
r2 + a2

∆
dr = mΩH

∫ r0

rH

rn−1(r − rH)(r + rH)

rn−1(r2 + a2)− rn−1
H (r2H + a2)

dr. (73)

This integral is finite, and one can evaluate it exactly for each value of n. (The integrand is
in fact finite as r → rH by the l’Hôpital rule.) By now combining all these results, we have

Tjℓ,m∈[m∗,2m∗) ≥ sech2

{

−1

2
ln(m/m∗ − 1) +

Ijℓ,m∈[m∗,2m∗)

2rHω(m/m∗ − 1)
+ J low

m

}

. (74)
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B. Highly super-radiant modes (m ≥ 2m∗).

In this region we have (ω −mΩH)
2 > ω2, so we can choose

h(r) = max {m̟(r)− ω, ω} . (75)

It is not difficult to see that h(r) is both positive and monotone decreasing as we move from
the horizon to spatial infinity. Note also that h(r) ≥ ω for the relevant domain. By using
equation (75), we have

∫ ∞

−∞

|h′(r)|
h(r)

dr∗ = | lnh(r)|∞rH = ln

(

mΩH − ω

ω

)

= ln(m/m∗ − 1). (76)

We also obtain
∫ ∞

−∞

Vjℓm

2h(r)
dr∗ ≤

∫ ∞

−∞

Vjℓm

2ω
dr∗ =

Ijℓm
2ωrH

, (77)

where Ijℓm is defined in equation (58) as for the previous cases. Finally, we are left with the
integral

Jhigh
m =

∫ ∞

−∞

h(r)2 − (ω −m̟(r))2

2h(r)
dr∗. (78)

Again the integrand is zero over much of the domain of integration. That is, we are only
interested in

Jhigh
m =

∫ ∞

r0

ω2 − (ω −m̟(r))2

2ω

r2 + a2

∆
dr. (79)

Here the lower bound of integration, r0, is now defined by

m̟(r0) = 2ω, (80)

implying

r0 = a

√

m

2ωa
− 1. (81)

Recall that m ≥ 2m∗ in this region, we have

r0 ≥ a

√

m∗

ωa
− 1 = a

√

r2H + a2

a2
− 1 = rH . (82)

The integral Jhigh
m is finite. (In fact, the integrand is finite as r → r0, and falls of as 1/r2 as

r → ∞.) After assembling all results we have, we finally obtain

Tjℓ,m≥2m∗
≥ sech2

{

1

2
ln(m/m∗ − 1) +

Ijℓ,m≥2m∗

2rHω
+ Jhigh

m

}

. (83)
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VI. SUMMARY OF THE GENERAL CASE.

Collecting the results for the low-lying and highly super-radiant modes, together with the
non-super-radiant modes, we have the following bounds for the transmission probabilities:

Tjℓm ≥











































































sech2
{

1
2
ln(1−m/m∗) +

1
2rHω

Ijℓm

}

for m < 0;

sech2
{

1
2rHω

Ijℓm

}

for m = 0;

sech2
{

−1
2
ln(1−m/m∗) +

1
2rHω(1−m/m∗)

Ijℓm

}

for 0 < m < m∗;

sech2
{

−1
2
ln(m/m∗ − 1) + 1

2rHω(m/m∗−1)
Ijℓm + J low

m

}

for m∗ ≤ m < 2m∗;

sech2
{

1
2
ln(m/m∗ − 1) + 1

2rHω
Ijℓm + Jhigh

m

}

for m ≥ 2m∗.

(84)

Here m∗ is the “critical” azimuthal angular momentum defined by m∗ = ω/ΩH, while the
quantity Ijℓm is defined in equation (58).

VII. FOUR-DIMENSIONAL CASE n = 0.

When n = 0 the Myers–Perry spacetime reduces to the usual Kerr spacetime. Further-
more, the separation constant and effective potential reduce to those discussed in refer-
ence 11. Ultimately the bounds on the greybody factors reduce (as they should) to those of
reference 11.

VIII. FIVE-DIMENSIONAL CASE n = 1.

Let us now take a look at a special case with only one extra dimension n = 1. These are
the (3+1+1)-dimensional [five-dimensional] Myers–Perry black holes. In this case we have
the simplification

∆ → r2 + a2 − µ. (85)

A brief computation, starting from equation (58), now yields

In=1
jℓm =

(

3

8aΩH
− 1

8
+ j2 − aΩH

4

)

+

(

3

2
− j2 − 3

8aΩH
+ λjℓm

)

rH
a

arctan

(

a

rH

)

. (86)

Interestingly, J low
m has a very simple bound in five-dimensional space-time. For n = 1, we

have
J low
m

∣

∣

∣

n=1
≤ mΩH(r0 − rH) = ω

m

m∗

(r0 − rH). (87)

Let us now consider Jhigh
m ; this also takes a simpler form in five-dimensional space-time

Jhigh
m

∣

∣

n=1
=

∫ ∞

r0

ma

2ω

[

2ω −m̟(r)

(r − rH)(r + rH)

]

dr. (88)
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For the relevant domain of integration, 2ω > m̟(r), then we can conclude that

Jhigh
m

∣

∣

n=1
≤ ma

∫ ∞

r0

1

(r − rH)(r + rH)
dr =

ma

rH
ln

√

r0 + rH
r0 − rH

. (89)

Collecting results, we finally deduce a quite explicit bound for scalar emission from five-
dimensional simply rotating Myers–Perry black holes. The bound is given by:

T
(n=1)
jℓm ≥











































































sech2
{

1
2
ln(1−m/m∗) +

1
2rHω

In=1
jℓm

}

for m < 0;

sech2
{

1
2rHω

In=1
jℓm

}

for m = 0;

sech2
{

−1
2
ln(1−m/m∗) +

1
2rHω(1−m/m∗)

In=1
jℓm

}

for 0 < m < m∗;

sech2
{

−1
2
ln(m/m∗ − 1) + 1

2rHω(m/m∗−1)
In=1
jℓm + ω m

m∗

(r0 − rH)
}

for m∗ ≤ m < 2m∗;

sech2
{

1
2
ln(m/m∗ − 1) + 1

2rHω
In=1
jℓm + ma

rH
ln
√

r0+rH
r0−rH

}

for m ≥ 2m∗.

(90)
Here In=1

jℓm is as given in equation (86).

IX. DISCUSSION.

In this article we have established certain rigorous bounds on the greybody factors (mode
dependent transmission probabilities) for the Myers–Perry black holes. We have also ob-
tained (mutatis mutandis) certain rigorous bounds on the emission rates for the super-radiant
modes. In the absence of exact results, (the relevant differential equations seem highly re-
sistant to explicit analytic solution), quantitative bounds along these lines seem to be the
best one can do.
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