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Abstract:

The Myers—Perry black holes are higher-dimensional generalizations of the usual
(3+1)-dimensional rotating Kerr black hole. They are of considerable interest in
Kaluza—Klein models, specifically within the context of brane-world versions thereof.
In the present article we shall consider the greybody factors associated with scalar
field excitations of the Myers—Perry spacetimes, and develop some rigorous bounds
on these greybody factors. These bounds are of relevance for characterizing both the
higher-dimensional Hawking radiation, and the super-radiance, that is expected for

these spacetimes.
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I. INTRODUCTION.

Greybody factors modulate the absorption cross-sections of classical black holes, and alter
the closely related Hawking emissiont2 probabilities of semi-classical black holes.2 Physi-
cally, the incoming or outgoing wave back-scatters off the gravitational field surrounding the
black hole, leading to a non-trivial transmission coefficient. In the case of Hawking radiation,
this modifies the naive Planckian spectrum by multiplying it with a frequency-dependent
greybody factor. Explicitly evaluating these greybody factors is typically an impossible task,
even for the simple case of the Schwarzschild black hole.” In view of this difficulty, techniques
for placing analytic bounds on the greybody factors have now become of some interest.” 1!
(Alternatively one might seek to extract qualitative or numerical information.12 1)

The bounds developed in references -1 apply to various black holes, (Schwarzschild,
Reissner—Nordstrom, Kerr, Kerr-Newman, etcetera), and are all based on a very general
technique for bounding one-dimensional barrier penetration probabilities; a technique that
was first developed in reference @, with later formal developments to be found in references
@@, and additional related discussion in references 20-23. In the current article we shall
apply the same sort of formalism to the Myers—Perry rotating black holes in (3+1+4n) di-
mensions.242 The Myers-Perry black holes are particularly important in that they are the
simplest of the higher-dimensional rotating black holes, being of particular interest in both
Kaluza—Klein scenarios and in brane-world scenarios.

We first describe the Myers-Perry spacetime, 2422 setting up the relevant Teukolsky equa-

tion for scalar field excitations.2® An important part of the technical analysis is the fact
that we can place positivity constraints on both the separation constant and on the effective
potential; without such positivity constraints progress would be severely limited. We then
analyze both the greybody factors and (when relevant) super-radiant emission as a function
of the angular momentum quantum number m. While zero angular momentum (m = 0)
serves as a good template for the other cases, there are some significant differences to take
into account. After completing the analysis and summarizing the general case, we specialize
to (34+1) dimensions to verify compatibility with the usual Kerr black hole, and also consider
the specific (3+1+1) five-dimensional case which is perhaps most relevant to brane-world
models. We conclude with a brief discussion of the significance of our results.

II. TEUKOLSKY EQUATION FOR SCALAR FIELDS.

In setting up the formalism, it is best to first focus on the geometry of the specific space-
times under consideration, and then analyse the technical steps involved in separation of
variables, leading up to the development of the Teukolsky equation for scalar field excita-
tions. With this in hand, one can then proceed to examination of the effective potential.
For some general background on black hole perturbation theory see references @h



A. Myers—Perry spacetime.

The Myers—Perry geometry (with only one of the angular momentum parameters being

non-zero) is described by the metric242°

)
ds® = —dt* + Z dr? + 2 d6? + (2 + a?) sin? 0 de?

A
+ 'ulz (dt — asin® 0 dy)? + r? cos § dQ2. (1)
e
Here
A=r’+a®— ’ul, Y =124 a’cos? 4, (2)
e

and dQ? is the line-element on the unit n-sphere S™. We choose coordinates so that

n—1

d0? = d#? + sin? 0, db3 + sin® @, sin® Oy dO3 + - - - + (H sin? 9,-) do?, (3)

1=1

whence recursively
dQ2(0y,...,0,) = dO7 4+ sin? 0, dQ2_ (0, ...,0,). (4)

(Several other coordinate conventions on the n-sphere are also relatively common.) This
Myers—Perry spacetime has 4 + n dimensions, 4 of them “usual” and n “extra”. This is
sometimes phrased as 3 + 1 + n dimensions, (meaning 3 of space, 1 of time, and n “extra”
Kaluza—Klein dimensions). The black hole mass Mgy, and angular momentum J, are
defined as follows

(n+2) Apio 2a

M = J:
BH 160G 1" n+2

Mpy. (5)

Here G denotes the gravitational constant in the (4 4+ n)-dimensional space-time, and the
quantity A, .o = 27"*3/2/T[(n+3)/2] is the area of a (n + 2)-dimensional unit sphere. The
location of the black hole horizon 7 is the solution of A(ry) = 0, such that u = r; ' (r%+a?)
is satisfied.

e In the specific case of n = 0 this spacetime reduces to the standard Kerr black hole,
with the usual inner and outer horizons.

e In the specific case of n = 1, we have u = 7% + a?, so then ry = /u — a2, and
the horizon exists only when a < ,/j; in fact the horizon shrinks to zero area in the
extreme limit @ — /. So the case n = 1 is somewhat different from n > 1.

e On the other hand, in the case of n > 2, for 4 > 0 a unique positive solution for rg
always exists for all a. Indeed ry € (0, ,ul/("H)}.

B. Separation of variables.

In this article we will focus on scalar field emission from the Myers—Perry black hole. The
relevant excitations can be described by the Klein—-Gordon equation

9, (V=g 4" 8,8) =0, (6)
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Here the metric determinant factorizes nicely into 4-dimensional and n-dimensional pieces.
Specifically, with conventions as in equation (3, we have

V=g = (2 sinf) x (r"cos" 0) x <1:[ sin™ ™" ‘91') ; (7)

with the trailing factor arising from the unit n-sphere.

Similarly to the Kerr-Newman black hole in four dimensions, the Myers—Perry solution
enjoys a hidden symmetry due to the existence of a Killing—Yano tensor.2? In view of this,
we can use the separation of variables ansatz3

O(t,7,0,0,01,...,0,) = e ™ R (r) Sem(0) Yin(01,. .., 0,). (8)

Here the Y;,(61,...,6,) are the quite standard hyper-spherical harmonics defined on the
unit n-sphere, which satisfy the differential equation3?

The important observation is that for the n-sphere the Laplacian eigenvalues are —j(j+n—1).
In 4 dimensions (n — 0) these hyperspherical harmonics reduce to trivial constants, (and
j — 0). In 5 dimensions (n — 1) they are simply sines and cosines. If one wishes an explicit
rendition of the Laplacian on the m-sphere then, with coordinates as in equation (@], we
have

n

1 o T in" ai‘)k Jn
Zﬁ O Hsm i W

i1 1Li=y sin® i=1 =1 S

+j(j+n—-1)Y;, =0. (10)

We mention in passing that when you choose coordinates to write the n-sphere metric
recursively, as in equation (), then the Laplacian can also be expressed recursively

1 0 0X 1
Agn X = ———— — [gin" 10, — Agn1 X. 11
o sin"~ 19, 06, <sm ! 691) t e, sin® 0, s (11)

In contrast to the hyper-spherical harmonics defined on the hyper-sphere 5™, the spheroidal
harmonics Sy, (0) €™ are defined on the two angular variables associated with the “usual”
4-dimensional part of the spacetime. They are the appropriate generalization of the standard
spherical harmonics Yy, (6, ). The spheroidal harmonics satisfy the differential equation!?

1 d d , m N2 j(i+n—-1) B
{sin@cos”@d@ {sm@cos Hdﬁ] (wa sin ¢ sin@) p——y: + Njom ¢ Sem(0) = 0.
(12)

Note that going to 4 dimensions corresponds to setting n — 0 and setting ;7 — 0, in which
case this differential equation reduces to that for the Kerr (or Kerr-Newman) geometry as
given in reference [11. These spheroidal harmonics are very closely related both to the Heun
functions,2 4! and to the hyper-spherical harmonics.3742

The separation constant Ajg,, in this spheroidal differential equation is positive. To see
this let us define a new variable by du = sin # cos™ 6 df, then

d du d d
W Wd= sin 6 cos™ 9@ (13)



Therefore

1 d
sin 6 cos™ 0 d6

dS(e)] d 10

{sin Ocos" ——=| = — [(sin 0 cos™ 0)

d9 |  du 2 dS(e)] '

du

Then the angular equation (I2) for the spheroidal harmonics becomes

4 {(sin@cosne)zw} _ [(wasme— S$9>2 LAUdn=1) Ajem] S(0). (15)

du du cos? 6
Multiplying the above equation by S(6) and integrating both sides over u yields
d . o oo dS(0)
/S(G)@ [(sm@cos 0) T} du
_ : m\? Jji+n-1) 2
— / l(wasm@ — sin9> + vy Njem | S7(0) du. (16)

Integrate the left hand side by parts, using periodicity to discard boundary terms, and then
rearrange to obtain

Ajgm/sﬂ(e) du:/ [(wasine— S$9)2+M] S2(6) du

cos? 0
v

ds(e)\?
sin § cos” )?
singeos”o)* (45
Now the right hand side of this equation is manifestly positive, as is the factor [ S?du on
the left hand side. Therefore the separation constant A, is guaranteed to be positive.

du. (17)

C. Effective potential.

We now construct the effective potential, starting from the radial part of the variable-
separated Klein-Gordon equation.t?14 We have

{ri"% {T"Ag} + (0" +a)w —ma’  jGtn-Da® Ajém} Rym(r) = 0. (18)

dr A r2

Let us now define a new radial mode function

. "2 Ripm

Ripm(r) = Tiﬂ(r)
VrE+a?

It is now a quite standard calculation to show that the radial Teukolsky equation, (the

Regge—Wheeler-like equation governing the radial modes), is given by12 1

(19)

{8~ Unts)} Rl = 0. (20)

2
dr?

where 7, is the standard “tortoise coordinate”

dr, = dr. (21)



Note that the tortoise coordinates can be expressed as

T2 2
r :/ C O e A ln(r — ) + Bo(r), (22)
rn A()

where the exact expressions for the coefficients A,, and functions B, (r) depend on the number
of extra dimensions n. However, we can quite generally observe that as r — ry we have
r, — —00, and as r — oo we have r, — 0o. So the region r > rg outside the black hole,
(the domain of outer communication), maps into the entire real line —oo < r, < 400 in
terms of the tortoise coordinate.

The Teukolsky potential, (sometimes called the Regge—Wheeler—Teukolsky potential), is now
seen to be

A(r)

: Jj(j +mn—1)a? N n(n —2)A(r) N nA'(r)
(r2 4+ a?)

Ajem r2 42 2r

_3HAM4+%Mﬂ1_<w_ Wl)? (23)

(r24+a?)?  r2+4a? r2 + a?

Ujem (1) =

Note that for j = n = 0 this reduces to the Teukolsky potential for the ordinary Kerr black
hole in 4 dimensional space-time. (See reference ﬂ) For purposes of calculation, we now

define quantities
a

= — 24
() = 1, (24)
and more specifically
a
Qg =——. 25
H a2 + T%{ ( )

Here w(r) is related to frame dragging, while Qy is the “angular velocity” of the event
horizon.2* We can now re-express the Teukolsky potential as

Uien(r) = Vien(r) = (@ — me)”, (26)
with
Viem(r) = % Ajem + i+ 7;2— 1)a?
n(n — 2)A(r) nA/(T) 37’2A(’r‘) [TA(’I")],
42 + o - (,,,2 + ag)g "2+ o2 (27)

D. Positivity properties.

To show positivity of Vj,(r), we start by noting that A(r) > 0 outside the horizon, (that
is for r > rg). This is standard for n = 0, and trivial for n = 1. For n > 1 we generically
re-express A(r) as

Alr)=r*+a* —r "y
=24+ a = (r/ry) " (4 + a?)
> (ry +a°) (1 - (TH/T)"_l) : (28)
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Since r > ry, we can see that A(r) > 0 for n > 1. Using this result, we make the following
observations. First, for n > 1 we have
[rA(r)]) 3r2A(r)

g (2 a2y o [rA()]) (r? + a?) — 3r*A(r)

1

Tn—l

= a®(r* + a®) + [(n+1)r* + (n— 2)a?]

= ®A(r) + —— [(n+1)r? + (n — 1)a?]

Tn—l

> 0. (29)

Note that the equivalent result for n = 0 was already derived in reference [11 for the Kerr—
Newman spacetime. Second, for n > 0, we also have
—2)A A
n(n - 2) (r)  m - ") s nf{(n — DAE) + 20 A (1)}
r r

=n{(n+2)r* + (n — 2)a® + nur'~"}. (30)

Now for n > 2 this quantity is certainly positive. For n = 0 this quantity is identically zero.
For n = 1 this quantity reduces to 3r? —a®+ u = 3r? —r% > 0 (provided the horizon exists).
In all situations the relevant quantity is non-negative. Thus, by now combining these results
with the fact that Az, > 0, and the fact that both n > 0 and j > 0, we can conclude that
Viem(r) is always positive for all values of j, ¢, m, and r.

E. Super-radiance.

Now note that the effective potential is
Ujem(r) = Viem(r) — (@ — mo)*; Viem(r) = 0. (31)

However, the quantity w — mw can under suitable circumstances change sign. This is the
harbinger of super-radiance. Some rather general analyses can be found in references @,
while a specific analysis closely related to the current situation can be found in reference 1.
The key point is that super-radiance is a phenomenon in which the reflected wave is larger
in its amplitude than the incident wave. From mathematical point of view, super-radiance
is a phenomenon in which |r| > 1, where r is the reflection coefficient. Super-radiance will
occur once w — mw changes sign in the domain of outer communication which, given the
asymptotic behaviour of w, occurs whenever 0 < w < m€Qy, that is m > m, = w/Qy.
Once super-radiance occurs, the bound on the greybody factor becomes a bound on the
spontaneous emission amplitude. A detailed discussion of this particular issue can be found

in reference .

III. ANALYTIC BOUND FOR SCALAR TRANSMISSION.

From reference , (see also references @, @, , and [19 for further developments and
applications), we have the extremely general result that

Tiom > sech? (/ ﬂdr*) , (32)

8



where

[ (r)]? + [Ujem(r) + B2 (r)]?

)V : , (33)
2h(r.)

for any positive function h(r,). Equivalently

VIR + V() — (@ — moo)? + h2(r,)]?
9 = ) . (34)

We shall now use the positivity properties of Ajs, and Vg, together with the super-radiant/

non-super-radiant distinction, to systematically analyse this bound in various cases. In
particular

e The modes m < m, = w/Qy are not super-radiant.

e The modes m > m, = w/Qy are super-radiant.

In situations where super-radiance occurs, in addition to the greybody factor Tjg,,, there is
a closely related spontaneous emission rate which satisfies the boundt

Ljom < wsinh? (/ ﬁdr*) : (35)

IV. NON-SUPER-RADIANT MODES (m < m.,).

It is convenient to split the discussion of non-super-radiant modes into three sub-cases:

e m = ( zero-angular-momentum modes: This is the most fundamental case, and most

straightforward case to analyze. This case provides a useful template for the more
complicated situations.

e m # 0 nonzero-angular-momentum modes: These are most conveniently further split
into two sub-cases.

— m < 0 negative-angular-momentum modes.
— m € (0,m,) low-lying positive-angular-momentum modes.
A. Zero angular momentum modes (m = 0).

We choose h(r,) = w > 0 and m = 0, then

_ A(n) jG+n—1)a* nn—2)Ar)
Uj&mzo(?") = m )\j&m:O T2 + 47”2
nA'(r)  3r*A(r) | [rA()) 2
o 2 (rP+a?)? 24+a®| “ (36)

9



Then

1 o0
T > sech? (%/ |V|d7“*>

B ) i/oo T2—|—CL2
= sech (2w 5 |V (r)| NG dr

1 [~ 1 jG+n—1)a* n(n—2)A(r)
—sech? | — [ |——— I
v [Qw /rh r? 4 a? { jem=07F 72 - 472

CBPAM) |t | [TA(T)]/Hdr}.

(r2 4+ a?)? 2r r2 + a? (37)

For n > 1 and r > rp, in view of the positivity properties of the separation constant and

effective potential, we can replace [|---|dr — | [---dr|. Therefore
1 [~ 1 jG+n—1a* nln—2)A(r)
T > sech? |— —_ 0 e
= e w /Th r? + a? {)\ﬂ’m_o * 72 * 42
3r2A(r)  nA'(r)  [rA(r)]
— dr|.
(r?2 +a?)? LTI a2 (38)

We would like to integrate this equation term by term. Start by considering the first term:

o0 o0
)\jé,mZO )\jé,mZO r
> 5 dr = —/———— arctan —

ry 7O GQ a a

Aitm— a
= 2520 arctan —. (39)
a ra

TH
For the last two integrals, we can show that they can be simplified as follows:

/:0 1 [_ 3r2A(r) +[7=A(r)]’} . /:0 AT (40)

r2 —|—CL2 (7’2 —|—CL2)2 r2 —|—CL2 (7’2 + a2)

This can be explicitly integrated (for instance by using Mathematica) and we arrive at

o2 V(2 1 2 2
/ (TA(T>3dr: n n(n 2>(TH+Q)2F1(1,7H_2 n+4 a)

r? 4 a?) 8ry 8(n+2)r¥, 2 7 2 7
a? 1 a
- Y L arctan X 41
I + @) + 5, aretan - (41)

Here o F1 (21, 22, 23, 24) is the hypergeometric function. Let us now consider the j-dependent
integral:

a
= - tan —. 42
r2(r? + a?) " T a arctan T (42)

/“j(ﬁn—l)cﬂd jG+n=1) jli+n-1)
TH

We can also integrate the n-dependent terms as

/°° 1 {n(n—2)A(r)+nA’(r) dr_nz(r?{jLaQ) JF, (1 n+2 n+4 _a2)

2 + a2 472 o ~ A(n+2)r3, 2 72 g
—2
+ nin —2) + 2 arctan —. (43)
dry a ry

10



Finally, combining the results from equation ([39), (@), (42)), and (@3], we obtain

jlm=0 = S€C i j6,m=0 (44)
where we define
n(2n — 3) . a2
Lippeo = ——— —1
j0,m=0 S +i(+n >+4(r§{+a2)
2n+1 . r a
+ ( —j(j+n—1)+ )\j&m:()) I arctan —
2 a g
n(r? + a? n+2 n+4 a2
+ <I§2 ) 21 <1’ ) y T |- (45)
TH 2 2 ’T’H
For a consistency check, consider the limit a« — 0 (with both n = 0 and j = 0),
. . CL2 1 ’f‘H a
Clbl_rf(l] Ij:O,é,m:O - [111_I>I(1) [—w + (5 + Aj:Ol,m:O) 7 arctan E}
1
=5 + Aj=0,6,m=0- (46)

This is the same result as for the Kerr black hole, (the Kerr—-Newman black hole for @) = 0),
as is to be expected.

B. Non-zero angular momentum mode (m # 0).

From the basic inequality we have

i + Bty + i)
2h(r)

Tiim > sech? dr, |, (47)
for all A(r,) > 0. By now using the triangle inequality

|a| + [b] > Va? + b2, (48)

we have

) AR (1) | A+ |Ujom (74) + R2(r)
Tjim > sech = dr,
_ 2h(r.)

oo

e | [T [t R "
= Bee 20n) " N 2h(r) Tl

Provided that //(r,) is monotone, we have

h(co 7 .
< i (r,)| sy for H(r) >0
/ iy, = (50)

oo 2h(r) ~LlIn szfg) for 1'(r,) < 0.

11



Let us now rewrite the potential as
Ujtm = Viom — (w —m w(r))2 . (51)

This form of potential is exactly the same as for the 4-dimensional Kerr-Newman black hole,
and thus we simply choose

h(r.) = h(r) = w —mw(r). (52)
Note that this choice for h(r) is always monotonic as a function of r. However, we can see

that h(r) is positive if and only if w > my. This condition is satisfied for m < w/Qy,
(that is m < m,), where the mode does not suffer from super-radiant instability.

1. Negative-angular-momentum modes (m <0).

Note that in this case, for h(r) defined in equation (52),

;Zz(_ozz) - Z((Z)) e —C:nQH 1o leH/w =L (53)
Then
% n [hfz(_oz)] ‘ _ %ma Q). (54)
Note also that in this case we have w — mQy > h(r) > w, so
[ By = [ S < [ e, 5
Then
Ti0m<o > sech? {% In(1 —mQy/w) + /OO %dr*} , (56)
> sech? {1 In(1 —m/m,) + L[jg,m<0} : (57)
2 2wry

It is easy to see that this result is very similar to the result we have for m = 0, with the
replacement Ajp,,—0 — Aje,m<o. We can write down I, explicitly as

n(2n—-3) . a’
it 3 +i0+n >+4(r%{+a2)
2 1
+( B G 1) 4 M) ) P arctan -
9 a TH
n(r + a?) n+2 n+4 a®
MaT9) g (1 . 58
+ 8’[’%{ 2471 9 9 ) 92 ) T?’—[ ( )



2. Low-lying positive-angular-momentum modes (m € (0,m,)).

Recall that for m, > m > 0, h(r) is positive and monotonic as a function of r, for this
situation we first consider

(o) h(co) w 1
_ — = = > 1. 59
h(—oc0)  h(rg) w-—mQy 1-mQy/w (59)
Then, we have
1 h(co) 1
—|ln | = =——In(1 —mQy/w). 60
TS TR .
Note also that in this case we have w — mQy < h(r) < w, so
* |Ujom + h*(1)] /OO \Vit,m>ol /OO Vie,m>0
——dr, = ’ dr, — = dr,. 61
/_ o 2n) T 2n) T ) 2w - ma) (61)
Then, we arrive at the result
Tit.m=o > sech? 1 In(1 — mQy/w)+ /OO Mdr* (62)
Jem B 2 oo 2(&) — mQH) '
1 1
> sech? ¢ —= In(1 — . Litmso ¢ 63
> sec { 5 n(l —m/m,) + Dol — mjm) je, >o} (63)

where ;-0 is defined by equation (58]).

V. SUPER-RADIANT MODES (m > m,).

It is a good strategy to split the super-radiant modes into two sub-classes depending on the
relative sizes of w? and (w —mQ)?. Note that w? = (w —mQg)? when m = 2w/Qg = 2m..
This suggests that it might be useful to split the super-radiant modes as follows:

o m € [my,2m,).

e m € [2m,, 00).

A. Low-lying super-radiant modes (m € [m,,2m.)).
In this region we have w? > (w — mQy)? and we choose
h(r) = max {w — mw(r), mQy — w}. (64)

We can see that h(r) > 0 and monotone decreasing as we move from spatial infinity to the
horizon, and become a flat horizontal line near the horizon. Note that h(r) > mQy — w
everywhere. By using h(r) as defined in equation (64]), we have

/_‘X’ WOl g, — i) * =In (L) — In(m/m, —1). (65)

o h(r) mQy — w

13



It is now straightforward to show that

> ‘/jfm /oo ‘/jém / ijm ijm
dr, < ——dr, = = : 66
/_Oo 2h(r) = o 2(mQy —w) " 2mQy —w)rg  2w(m/m, — V)ry (66)

where [, is defined in equation (G8]). The last integral we need to perform is

e e @

[e.9]

Note that with our choice of h(r), the integrand in above integral is zero over much of the
relevant range. To be more precise, we are interested only in

ro 2 2.2 2
low __ (w—mQy)* — (w—mw(r))*r*+a
Jm —/7:H Q(mQH—w) A dT’. (68)

The upper limit of integration r( is defined by the condition
m Qg + @ (ro)] = 2w, (69)

or we can write down ry explicitly as

2 - *
ro = \/r,%I + %(r% +a?). (70)

Notice that the upper limit 7o > ry for m € [m., 2m.). Then

m r? + a?

0
I = et / (= () (o) + 2y 2 dr.  (71)
However, for the relevant domain of integration we have
0 < (mw(r)+mQy —2w) < 2(mQy —w). (72)

Then we can conclude that

o r? + a? "o " r —ryg)(r+ry)
J1°W</Q— d:Q/ dr. (73
mosm ) Onme) Ty dr=mtn | s @ g e )

This integral is finite, and one can evaluate it exactly for each value of n. (The integrand is
in fact finite as » — ry by the I'Hopital rule.) By now combining all these results, we have

1 I ME My, 2M 5
Ti0mepm. 2m.) = sech” {—iln(m/m* —1)+ Jmelm. 2m.) ) + Jylgw}- (74)

2ryw(m/m, — 1
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B. Highly super-radiant modes (m > 2m,).
In this region we have (w —mQg)? > w?, so we can choose
h(r) = max {mw(r) —w,w}. (75)

It is not difficult to see that h(r) is both positive and monotone decreasing as we move from
the horizon to spatial infinity. Note also that h(r) > w for the relevant domain. By using
equation (7)), we have

/_Z % dr, = |Inh(r)[? =In <%) = In(m/m, — 1). (76)

We also obtain

> ‘/jfm /OO V'Zm ['Zm
dr, < T dr, = 7
/_oo2h(r) = w0 T T 2wy (77)
where I, is defined in equation (G8) as for the previous cases. Finally, we are left with the
integral
! * h(r)? — (w — mw(r))?
high __
I /_Oo 20 dr,. (78)

Again the integrand is zero over much of the domain of integration. That is, we are only
interested in

oo 2 2.2 2
high __ w? — (w—mw(r))’r*+a
J /m 50 dr. (79)

Here the lower bound of integration, r¢, is now defined by
mw(ry) = 2w, (80)

implying

Recall that m > 2m, in this region, we have

2 2
roza,/r;—lza\/”;“ 1 =1y (82)

The integral JM& is finite. (In fact, the integrand is finite as r — rg, and falls of as 1/r? as
r — 00.) After assembling all results we have, we finally obtain

1 Litm>om :
Titm>am, > sech® < ~In(m/m, — 1) + Spbmz2me | Jhigh & (83)
e 2 QTHLU
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VI. SUMMARY OF THE GENERAL CASE.

Collecting the results for the low-lying and highly super-radiant modes, together with the
non-super-radiant modes, we have the following bounds for the transmission probabilities:

( sech? {% In(1 —m/m.) + ﬁ[j(m} for m < 0;
sech? {27“}{0-) Ijgm} for m = 0;
Tjem > 4 sech? {—% In(1 —m/m,) + m[jem} for 0 < m < my; (84)
sech? {—% In(m/m, — 1)+ mfﬂm + Jﬂgw} for m, < m < 2m,;
\ sech? {% In(m/m, — 1) + ﬁ[j(m + J,]?;gh} for m > 2m,..

Here m, is the “critical” azimuthal angular momentum defined by m, = w/Qy, while the
quantity Ijs, is defined in equation (5S).

VII. FOUR-DIMENSIONAL CASE n = 0.

When n = 0 the Myers—Perry spacetime reduces to the usual Kerr spacetime. Further-
more, the separation constant and effective potential reduce to those discussed in refer-
ence [11. Ultimately the bounds on the greybody factors reduce (as they should) to those of
reference [11.

VIII. FIVE-DIMENSIONAL CASE n = 1.

Let us now take a look at a special case with only one extra dimension n = 1. These are
the (34+1+1)-dimensional [five-dimensional] Myers—Perry black holes. In this case we have

the simplification
A—=rP4a®—p (85)

A brief computation, starting from equation (58)), now yields

_ 3 1 ) aQly 3 . 3 Ty a
In—lz = 2 52 )\m B t —_— . 86
jem <8aQH 8 T 4 ) i <2 J 8ady A g reren TH (86)

Interestingly, J'° has a very simple bound in five-dimensional space-time. For n = 1, we
have

m

low
I

(ro — 7m)- (87)

<mQpy(ro—rg) = w

n=1 Ty

Let us now consider J"&": this also takes a simpler form in five-dimensional space-time

high _ Fma [ 2w— moo(r)
JoEh| / - { G ) dr. (88)
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For the relevant domain of integration, 2w > mw(r), then we can conclude that

) e 1
Imet| < ma/ dr = 10y, Lot TH (89)
n=1 vo (r—=rE)(r+7TH) Ty ro — TH

Collecting results, we finally deduce a quite explicit bound for scalar emission from five-
dimensional simply rotating Myers—Perry black holes. The bound is given by:

( sech? {% In(1 —m/m.) + 2T1{w[j";11} for m < 0;
sech? {27,2w I;}fnl} for m = 0;
Tj(;‘r:l) > { sech? {—% In(1 —m/m.,) + mlffml} for 0 < m < my;
sech? {—% In(m/m, — 1) + mlj’ﬁl + W (1 — rH)} for m, <m < 2my;
\ sech? {% In(m/m, — 1)+ 2T1{w[j"g11 + % 1n \/%} for m > 2m,,.
(90)

Here I7; 1 is as given in equation (88).

IX. DISCUSSION.

In this article we have established certain rigorous bounds on the greybody factors (mode
dependent transmission probabilities) for the Myers—Perry black holes. We have also ob-
tained (mutatis mutandis) certain rigorous bounds on the emission rates for the super-radiant
modes. In the absence of exact results, (the relevant differential equations seem highly re-
sistant to explicit analytic solution), quantitative bounds along these lines seem to be the
best one can do.
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