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Abstract

In this paper, we obtain explicit formulae for the number of 7-cycles and the total number of paths of lengths 6
and 7 those contain a specific vertex vi in a simple graph G, in terms of the adjacency matrix and with the help of
combinatorics.
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1. Introduction

In a simple graph G, a walk is a sequence of vertices and edges of the form v0, e1, v1, ..., ek, vk such that the edge ei
has ends vi−1 and vi. A walk is called closed if v0 = vk. If the vertices of a walk are distinct then the walk is called
a path. A cycle is a non-trivial closed walk in which all the vertices are distinct except the end vertices.
It is known that if a graph G has adjacency matrix A=[aij ], then for k = 0, 1, ... , the ij-entry of Ak is the number
of vi − vj walks of length k in G. It is also known that tr(An) is the sum of the diagonal entries of An and di is the
degree of the vertex vi.
In 1971, Frank Harary and Bennet Manvel [4], gave formulae for the number of cycles of lengths 3 and 4 in simple
graphs as given by the following theorems:

Theorem 1.1 [4] If G is a simple graph with adjacency matrix A, then the number of 3-cycles in G is 1
6 tr(A3).

(It is known that tr(A3) =
n
∑

i=1

a
(3)
ii =

∑

j 6=i

a
(2)
ij aij).

Theorem 1.2 [4] If G is a simple graph with adjacency matrix A, then the number of 4−cycles in G is
1
8 [ tr(A

4)−2q−2
∑

j 6=i

a
(2)
ij ], where q is the number of edges in G.

(It is obvious that the above formula is also equal to 1
8 [trA4

− trA2
− 2

∑

j 6=i

a2ij ] )

Theorem 1.3 [4] If G is a simple graph with n vertices and the adjacency matrix A= [aij ], then the number of

5−cycles in G is 1
10 [tr(A

5)+5 tr(A3)− 5

n
∑

i=1

dia
(3)
ii ]

In 2003, V. C. Chang and H. L. Fu [5], found a formula for the number of 6−cycles in a simple graph which is
stated below:

Theorem 1.4 [5] If G is a simple graph with adjacency matrix A, then the number of 6−cycles in G is 1
12 [tr(A

6)−6

tr(A4)+5tr(A3)−4tr(A2)−3

p
∑

i,j=1

a
(3)
ij +12

p
∑

i,j=1

a
(2)
ij −3

p
∑

i=1

[a
(3)
ii ]2 +9

∑

j 6=i

a
(2)
ij (a

(2)
ij −1)aij −6

∑

j 6=i

a
(2)
ij (a

(2)
ij −1)(a

(2)
ij −2)
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−2

p
∑

i=1

a
(2)
ii (a

(2)
ii − 1)(a

(2)
ii − 2)], where p is the number of vertices in G.

Their proofs are based on the following fact:
The number of n-cycles (n= 3, 4, 5, 6) in a graph G is equal to 1

2n (tr(A
n) − x ) where x is the number of closed

walks of length n, which are not n-cycles.

In 1997, N. Alon, R. Yuster and U. Zwick [6], gave number of 7- cyclic graphs. They also gave some formulae
for the number of cycles of lengths 5 , which contains a specific vertex vi in a graph G.
In [6, 11, 12, 13, 15, 16, 18], we have also some bounds to estimate the total time complexity for finding or counting
paths and cycles in a graph.

In our recent works [1, 2], we obtained some formulae to find the exact number of paths of lengths 3, 4 and 5, in a
simple graph G, given below:

Theorem 1.5 [1] Let G be a simple graph with n vertices and the adjacency matrix A= [aij ]. The number of paths

of length 3 in G is
∑

j 6=i

a
(2)
ij (dj − aij − 1).

Theorem 1.6 [1] Let G be a simple graph with n vertices and the adjacency matrix A= [aij ]. The number of paths

of length 4 in G is
∑

j 6=i

[a
(4)
ij − 2a

(2)
ij (dj − aij)]−

n
∑

i=1

[(2di − 1)a
(3)
ii + 6

(

di
3

)

].

Theorem 1.7 [1] Let G be a simple graph with n vertices and the adjacency matrix A= [aij ]. The number of paths

of length 3 in G, each of which starts from a specific vertex vi is
∑

j 6=i

a
(2)
ij (dj − aij − 1).

Theorem 1.8 [1] Let G be a simple graph with n vertices and the adjacency matrix A= [aij ]. The number of paths

of length 4 in G, each of which starts from a specific vertex vi is
∑

j 6=i

[a
(4)
ij − (di + dj − 3aij)a

(2)
ij − (a

(3)
ii + a

(3)
jj +

2

(

dj − 1
2

)

)aij ].

Theorem 1.9 [2] Let G be a simple graph with n vertices and the adjacency matrix A= [aij ]. The number of paths

of length 5 in G is
∑

j 6=i

a
(5)
ij − 2

∑

j 6=i

a
(4)
ij + 2

n
∑

i=1

a
(3)
ii (di−2)+ 4

∑

j 6=i

a
(2)
ij − 2

∑

j 6=i

a
(2)
ij (dj−aij−1)− 4

∑

j 6=i

a
(2)
ij

(

di − aij − 1
2

)

+ 6
∑

j 6=i

aij

(

a
(2)
ij

2

)

− 2
∑

j 6=i

a
(3)
ii a

(2)
ij − 2

n
∑

i=1

a
(3)
ii

(

di − 2
2

)

− 2

n
∑

i=1

(a
(4)
ii −a

(2)
ii − 2

(

di
2

)

−

n
∑

j=1,j 6=i

a
(2)
ij )(di−2)−

∑

j 6=i

aij−

3 tr A4+ 6 tr A3+ 3 tr A2.

Theorem 1.10 [2] If G is a simple graph with n vertices and the adjacency matrix A= [aij ], then the number of

4−cycles each of which contains a specific vertex vi of G is 1
2 [a

(4)
ii − a

(2)
ii − 2

(

di
2

)

−

n
∑

j=1,j 6=i

a
(2)
ij ].

In [6] we can also see a formula for the number of 5-cycles each of which contains a specific vertex vi but, their
formula has some problem in coefficients. In [3] we gave the correct formula as considered bellow :

Theorem 1.11 [3] If G is a simple graph with n vertices and the adjacency matrix A= [aij ], then the number of

5−cycles each of which contains a specific vertex vi of G is 1
2 [a

(5)
ii −5a

(3)
ii −2(di−2)a

(3)
ii −2

n
∑

j=1,j 6=i

a
(2)
ij aij(dj−2)−2

n
∑

j=1,j 6=i

aij(
1
2a

(3)
jj − aija

(2)
ij )].

In this paper we give a formula to count the exact number of cycles of length 7 and the number of cycles of lengths
6 and 7 those contain a specific vertex vi in a simple graph G, in terms of the adjacency matrix of G and with the
helps of combinatorics.
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2. Number of 7- Cycles :

In 1997, N. Alon, R. Yuster and U. Zwick [6], gave number of 7- cyclic graphs. The n- cyclic graph is a graph that
contain a closed walk of length n and these walks are not necessarily a cycle. In this section we obtain a formula
for the number of cycles of length 7 in a simple graph G with the helps of [6].

Method: To count N in the cases those considered below, we first count tr(A7) for the graph of first configu-
ration. This will give us the number of all closed walks of length 7 in the corresponding graph. But, some of these
walks do not pass through all the edges and vertices of that configuration and to find N in each case, we have to
include in any walk, all the edges and the vertices of the corresponding subgraphs at least once. So, we delete the
number of closed walks of length 7 those do not pass through all the edges and vertices. To find these kind of walks
we also have to count tr(A7) for all the subgraphs of the corresponding graph those can contain a closed walk of
length 7.

Theorem 2.1 : If G is a simple graph with n vertices and the adjacency matrix A= [aij ], then the number of

7−cycles in G is 1
14 (tr(A7)− x), where x is equal to

11
∑

i=1

Fi in the cases those are considered below.

Proof: The number of 7−cycles of a graph G is equal to 1
14 (tr(A

7) − x), where x is the number of closed walks
of length 7 that are not 7-cycles. To find x, we have 11 cases as considered below; the cases are based on the
configurations-(subgraphs) that generate all closed walks of length 7 that are not 7-cycles. In each case, N denote
the number of closed walks of length 7 that are not 7-cycles in the corresponding subgraph, M denote the number
of subgraphs of G of the same configuration and Fn, (n= 1, 2, ...) denote the total number of closed walks of length
7 that are not cycles in all possible subgraphs of G of the same configuration. However, in the cases with more that
one figure ( Cases 5, 6, 8, 9, 11), N, M and Fn are based on the first graph of the respective figures and P1, P2, ...
denote the number of subgraphs of G which don’t have the same configuration as the first graph but are counted
in M. It is clear that Fn is equal to N× (M− P1− P2− ...). To find N in each case, we have to include in any walk,
all the edges and the vertices of the corresponding subgraphs at least once.

Case 1: For the configuration of Fig 1, N= 126, M= 1
6 tr(A

3) and F1= 21 tr(A3). (See theorem 1.1)

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆
r

r r

Fig 1

Case 2: For the configuration of Fig 2, N= 84, M= 1
2

n
∑

i=1

a
(3)
ii (di − 2) and F2= 42

n
∑

i=1

a
(3)
ii (di − 2).

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆
r r

r r

Fig 2

Case 3: For the configuration of Fig 3, N= 28, M= 1
2

n
∑

i=1

a
(3)
ii

(

di − 2
2

)

and F3= 14

n
∑

i=1

a
(3)
ii

(

di − 2
2

)

.

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆
rr r

r r

Fig 3
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Case 4: For the configuration of Fig 4, N= 112, M= 1
2

∑

j 6=i

(

a
(2)
ij

2

)

aij and F4= 56
∑

j 6=i

(

a
(2)
ij

2

)

aij .

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆

✁
✁
✁
✁
✁✁

r r

r r

Fig 4

Case 5: For the configuration of Fig 5(a), N= 14, M= 1
2

∑

j 6=i

a
(3)
ii a

(2)
ij . Let P1 denote the number of subgraphs

of G that have the same configuration as the graph of Fig 5(b) and are counted in M. Thus P1= 6×( 1
126 F1), where

1
126 F1 is the number of subgraphs of G that have the same configuration as the graph of Fig 5(b) and 6 is the
number of times that this subgraph is counted in M. Let P2 denote the number of subgraphs of G that have the
same configuration as the graph of Fig 5(c) and are counted in M. Thus P2= 2×( 1

84 F2), where
1
84 F2 is the number

of subgraphs of G that have the same configuration as the graph of Fig 5(c) and 2 is the number of times that this
subgraph is counted in M. Let P3 denote the number of subgraphs of G that have the same configuration as the
graph of Fig 5(d) and are counted in M. Thus P3= 4×( 1

112 F4), where
1

112 F4 is the number of subgraphs of G that
have the same configuration as the graph of Fig 5(d) and 4 is the number of times that this subgraph is counted in

M. Consequently, F5= 7
∑

j 6=i

a
(3)
ii a

(2)
ij −

2
3 F1−

1
3 F2−

1
2 F4 .

❆
❆

❆
❆

❆❆✁
✁
✁

✁
✁✁ ✁

✁
✁
✁
✁✁

r

r r

r

r

r

Fig 5

(c)

✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆❆
r

r r

(a)

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆

✁
✁
✁
✁
✁✁

r r

r r

(d)

✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆❆
r

r r

(b)

Case 6: For the configuration of Fig 6(a), N= 14, M= 1
2

∑

j 6=i

a
(2)
ij aij(dj − 2)(di − 2). Let P1 denote the number of

subgraphs of G that have the same configuration as the graph of Fig 6(b) and are counted in M. Thus P1= 2×( 1
112

F4), where
1

112 F4 is the number of subgraphs of G that have the same configuration as the graph of Fig 6(b) and 2

is the number of times that this subgraph is counted in M. Consequently, F6= 7
∑

j 6=i

a
(2)
ij aij(dj − 2)(di − 2)− 1

4 F4.

✁
✁
✁
✁
✁✁

✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆❆
r

r r

r

Fig 6

(b)

✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆❆
rr

r r r

(a)

Case 7: For the configuration of Fig 7, N= 70, M= 1
10 [ tr(A5)+ 5 tr(A3) − 5

n
∑

i=1

dia
(3)
ii ] (See Theorem 1.3)

and F7= 7tr(A5) + 35 tr(A3) − 35

n
∑

i=1

dia
(3)
ii .



5

❆
❆

❆
❆

✁
✁
✁
✁
❅

❅
❅

❅❅

�
�
�
��

r

r

r

r r

Fig 7

Case 8: For the configuration of Fig 8(a), N= 42, M= 1
2

∑

j 6=i

a
(2)
ij (dj − aij − 1)(aija

(2)
ij ) (See Theorem 1.5).

Let P1 denotes the number of subgraphs of G that have the same configuration as the graph of Fig 8(b) and are
counted in M. Thus P1= 4×( 1

112 F4), where
1

112 F4 is the number of subgraphs of G that have the same configura-
tion as the graph of Fig 8(b) and 4 is the number of times that this subgraph is counted in M. Consequently,

F8= 21
∑

j 6=i

a
(2)
ij (dj − aij − 1)(aija

(2)
ij )− 3

2 F4.

❆
❆

❆
❆

✁
✁
✁
✁
❅

❅
❅

❅❅

�
�
�
��

r

r

r

r r

Fig 8
(b)(a)

✁
✁
✁
✁
✁✁

✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆❆
r

r r

r

Case 9: For the configuration of Fig 9(a), N= 14, M= 1
2 [

n
∑

i=1

(a
(5)
ii − 5a

(3)
ii − 2(di− 2)a

(3)
ii )(di− 2)−2

∑

j 6=i

a
(2)
ij aij(dj −

2)(di − 2) −2
∑

j 6=i

aij(di − 2)(12a
(3)
jj − aija

(2)
ij )] (See Theorem 1.11). Let P1 denote the number of subgraphs of G

that have the same configuration as the graph of Fig 9(b) and are counted in M. Thus P1= 2 × ( 1
42 F8), where

1
42

F8 is the number subgraphs of G that have the same configuration as the graph of Fig 9(b) and 2 is the number

of times that this subgraph is counted in M. Consequently, F9= 7

n
∑

i=1

(a
(5)
ii − 5a

(3)
ii − 2(di − 2)a

(3)
ii )(di − 2)− 14

∑

j 6=i

a
(2)
ij aij(dj − 2)(di − 2) −14

∑

j 6=i

aij(di − 2)(12a
(3)
jj − aija

(2)
ij )− 2

3 F8.

❆
❆

❆
❆

✁
✁
✁
✁
❅

❅
❅

❅❅

�
�
�
��

r

r

r

r r

r

Fig 9
(b)(a)

❆
❆
❆
❆

✁
✁
✁
✁

✂
✂
✂
✂
✂
✂
✂
✂

❅
❅

❅
❅❅

�
�
�
��

r

r

r

r r

Case 10: For the configuration of Fig 10, N= 84, M= 1
2

∑

j 6=i

(

a
(2)
ij

3

)

aij and F10= 42
∑

j 6=i

(

a
(2)
ij

3

)

aij .

❅
❅

❅
❅

❅❅

✂
✂
✂
✂
✂
✂
✂
✂

✏✏✏✏✏✏✏✏

r r

rr

r

Fig 10
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Case 11: For the configuration of Fig 11(a), N= 28, M= 1
2

∑

j 6=i

(

a
(2)
ij

2

)

a
(3)
ii . Let P1 denote the number of

subgraphs of G that have the same configuration as the graph of Fig 11(b) and are counted in M. Thus P1= 2 ×( 1
42

F8), where
1
42 F8 is the number of subgraphs of G that have the same configuration as the graph of Fig 11(b) and 2

is the number of times that this subgraph is counted in M. Let P2 denote the number of subgraphs of G that have
the same configuration as the graph of Fig 11(c) and are counted in M. Thus P2 = 6× ( 1

112 F4), where
1

112 F4 is the
number of subgraphs of G that have the same configuration as the graph of Fig 11(c) and 6 is the number of times
that this subgraph is counted in M. Let P3 denote the number of subgraphs of G that have the same configuration
as the graph of Fig 11(d) and are counted in M. Thus P3= 6× ( 1

84 F10), where
1
84 F10 is the number of subgraphs

of G that have the same configuration as the graph of Fig 11(d) and 6 is the number of times that this subgraph is

counted in M. Consequently, F11= 14
∑

j 6=i

(

a
(2)
ij

2

)

a
(3)
ii −

4
3 F8−

3
2 F4− 2 F10 .

❅
❅

❅

�
�
�

r

r

r

rr

(b)

�
�

�

r r

r

r

rr

(a)

❅
❅

❅
❅

❅❅

r r

rr

(c)

❅
❅

❅
❅

❅❅

✂
✂
✂
✂
✂
✂
✂
✂

✏✏✏✏✏✏✏✏

r r

rr

r

(d)
Fig 11

Now we add the values of Fn arising from the above cases and determine x. By putting the value of x in 1
14 (tr(A

7)−x)
we get the desired formula. �

Example 2.2 In K7, F1= 4410, F2= 35280, F3= 17640, F4= 23520, F5= 17640, F6= 17640, F7= 17640,
F8= 52920, F9= 35280, F10= 17640, F11= 35280 and trA7= 279930. So x= 274890 and by Theorem 2.1, the
number of cycles of length 7 in K7 is 1

14 (279930− 274890) = 360.

3. Number of Cycles Passing the Vertex Vi :

In this section we give formulae to count the number of cycles of lengths 6 and 7, each of which contain a specific
vertex vi of the graph G.

Theorem 3.1 If G is a simple graph with n vertices and the adjacency matrix A= [aij ], then the number of 6−cycles

each of which contains a specific vertex vi of G is 1
2 (a

(6)
ii − x), where x is equal to

17
∑

i=1

Fi in the cases those are

considered below.

Proof: The number of 6−cycles each of which contain a specific vertex vi of the graph G is equal to 1
2 (a

(6)
ii − x),

where x is the number of closed walks of length 6 form the vertex vi to vi that are not 6−cycles. To find x, we have
17 cases as considered below; the cases are based on the configurations-(subgraphs) that generate vi − vi walks of
length 6 that are not cycles. In each case, N denote the number of walks of length 6 from vi to vi that are not
cycles in the corresponding subgraph, M denote the number of subgraphs of G of the same configuration and Fn,
(n= 1, 2, ...) denote the total number of vi − vi walks of length 6 that are not cycles in all possible subgraphs of
G of the same configuration. However, in the cases with more than one figure (Cases 11, 12, 13, 14, 15, 16, 17), N,
M and Fn are based on the first graph of the respective figures and P1, P2,... denote the number of subgraphs of
G which don’t have the same configuration as the first graph but are counted in M. It is clear that Fn is equal to
N × (M− P1−P2−...). To find N in each case, we have to include in any walk, all the edges and the vertices of the
corresponding subgraphs at least once.

Case 1: For the configuration of Fig 12, N= 1, M= a
(2)
ii and F1= a

(2)
ii .
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r r

Fig 12

vi

Case 2: For the configuration of Fig 13, N= 3, M=
∑

j 6=i

a
(2)
ij and F2= 3

∑

j 6=i

a
(2)
ij .

r r r

Fig 13

vi

Case 3: For the configuration of Fig 14, N= 6, M=

(

di
2

)

and F3= 6

(

di
2

)

.

r r r

Fig 14

vi

Case 4: For the configuration of Fig 15, N= 1, M=
∑

j 6=i

a
(2)
ij (dj − aij − 1) and F4=

∑

j 6=i

a
(2)
ij (dj − aij − 1).

(See Theorem 1.7)

r r rr

Fig 15

vi

Case 5: For the configuration of Fig 16, N= 2, M=
∑

j 6=i

a
(2)
ij (di − aij − 1) and F5= 2

∑

j 6=i

a
(2)
ij (di − aij − 1).

r r rr

Fig 16

vi

Case 6: For the configuration of Fig 17, N= 2, M=
∑

j 6=i

aij

(

dj − 1
2

)

and F6= 2
∑

j 6=i

aij

(

dj − 1
2

)

.

✑
✑
✑✑

◗
◗

◗◗
r

r r

r

Fig 17

vi

Case 7: For the configuration of Fig 18, N= 6, M=

(

di
3

)

and F7= 6

(

di
3

)

.

✑
✑
✑✑

◗
◗

◗◗
r

r r

r

Fig 18

vi
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Case 8: For the configuration of Fig 19, N= 8, M= 1
2

∑

j 6=i

a
(2)
ij aij and F8= 4

∑

j 6=i

a
(2)
ij aij .

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆
r

r r

vi

Fig 19

Case 9: For the configuration of Fig 20, N= 12, M=
∑

j 6=i

(

a
(2)
ij

2

)

and F9= 12
∑

j 6=i

(

a
(2)
ij

2

)

.

r r

rr

Fig 20

vi

Case 10: For the configuration of Fig 21, N= 12, M=
∑

j 6=i

(

a
(2)
ij

2

)

aij and F10= 12
∑

j 6=i

(

a
(2)
ij

2

)

aij .

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆

✁
✁
✁
✁
✁✁

r r

r r

Fig 21

vi

Case 11: For the configuration of Fig 22(a), N= 6, M= 1
2

∑

k 6=j, j,k 6=i

a
(2)
jk aijaikajk. Let P1 denote the number

of all subgraphs of G that have the same configuration as the graph of Fig 22(b) and are counted in M. Thus P1=
1× (18 F8), where

1
8 F8 is the number of subgraphs of G that have the same configuration as the graph of Fig 22(b)

and this subgraph is counted only once in M. Consequently, F11= 3
∑

k 6=j, j,k 6=i

a
(2)
jk aijaikajk−

3
4 F8 .

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆

✁
✁
✁
✁
✁✁

r r

r r

Fig 22

vi

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆
r

r r

vi

(a) (b)

Case 12: For the configuration of Fig 23(a), N= 2, M=

n
∑

k 6=j, j,k 6=i

(

a
(2)
jk

2

)

aij . Let P1 denote the number of all

subgraphs of G that have the same configuration as the graph of Fig 23(b) and are counted in M. Thus P1 = 2× ( 1
12

F9), where
1
12 F9 is the number of subgraphs of G that have the same configuration as the graph of Fig 23(b) and

2 is the number of times that this subgraph is counted in M. Consequently, F12= 2

n
∑

k 6=j, j,k 6=i

(

a
(2)
jk

2

)

aij−
1
3 F9.



9

�
�
�
�

r r

rr

r

(a)
Fig 23

vi

r r

rr

(b)

vi

Case 13: For the configuration of Fig 24(a), N= 4, M=
∑

j 6=i

(

a
(2)
ij

2

)

(di − 2). Let P1 denote the number of all

subgraphs of G that have the same configuration as the graph of Fig 24(b) and are counted in M. Thus P1 = 1× ( 1
12

F10), where
1
12 F10 is the number of subgraphs of G that have the same configuration as the graph of Fig 24(b) and

this subgraph is counted only once in M. Consequently, F13= 4
∑

j 6=i

(

a
(2)
ij

2

)

(di − 2)− 1
3 F10.

�
�
�
�

r r

rr

r

(a) (b)
Fig 24

vi

�
�

�
�

��r r

rr

vi

Case 14: For the configuration of Fig 25(a), N= 2, M=
∑

j 6=i

(

a
(2)
ij

2

)

(dj − 2). Let P1 denote the number of all

subgraphs of G that have the same configuration as the graph of Fig 25(b) and are counted in M. Thus P1 = 1× ( 1
12

F10), where
1
12 F10 is the number of subgraphs of G that have the same configuration as the graph of Fig 25(b) and

this subgraph is counted only once in M. Consequently, F14= 2
∑

j 6=i

(

a
(2)
ij

2

)

(dj − 2)− 1
6 F10.

�
�
�
�

r r

rr

r

(a) (b)
Fig 25

vi

�
�

�
�

��r r

rr

vi

Case 15: For the configuration of Fig 26(a), N= 2, M=
∑

j 6=i

a
(2)
ij (dj − aij − 1)aij(dj − 2). Let P1 denote the

number of all subgraphs of G that have the same configuration as the graph of Fig 26(b) and are counted in M.
Thus P1 = 2× (16 F11), where

1
6 F11 is the number of subgraphs of G that have the same configuration as the graph

of Fig 26(b) and 2 is the number of times that this subgraph is counted in M. Consequently,

F15= 2
∑

j 6=i

a
(2)
ij (dj − aij − 1)aij(dj − 2)− 2

3 F11.
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�
�
�
�

r r

rr

r

(a) (b)
Fig 26

vi

�
�

�
�

��r r

rr

vi

Case 16: For the configuration of Fig 27(a), N= 4, M= 1
2

∑

j 6=i

a
(3)
jj a

(2)
ij aij . Let P1 denote the number of all subgraphs

of G that have the same configuration as the graph of Fig 27(b) and are counted in M. Thus P1= 2× (18 F8), where
1
8 F8 is the number of subgraphs of G that have the same configuration as the graph of Fig 27(b) and 2 is the
number of times that this subgraph is counted in M. Let P2 denote the number of all subgraphs of G that have
the same configuration as the graph of Fig 27(c) and are counted in M. Thus P2 = 2 × (16 F11), where

1
6 F11 is

the number of subgraphs of G that have the same configuration as the graph of Fig 27(c) and 2 is the number of
times that this subgraph is counted in M. Let P3 denote the number of all subgraphs of G that have the same
configuration as the graph of Fig 27(d) and are counted in M. Thus P3 = 2× ( 1

12 F10), where
1
12 F10 is the number

of subgraphs of G that have the same configuration as the graph of Fig 27(d) and 2 is the number of times that

this subgraph is counted in M. Consequently, F16= 2
∑

j 6=i

a
(3)
jj a

(2)
ij aij− F8−

4
3 F11−

2
3 F10.

❅
❅

❅
❅

❅❅

�
�
�
�
��

r r

rr

(a) (b) (c) (d)
Fig 27

vi

�
�

�
�

��r

rr

vi vi

�
�

�
�

��r r

rr

vi

❅
❅
❅
❅
❅❅r r

rr

Case 17: For the configuration of Fig 28(a), N= 8, M=

(

1
2a

(3)
ii

2

)

. Let P1 denote the number of all sub-

graphs of G that have the same configuration as the graph of Fig 28(b) and are counted in M. Thus P1 = 1 × ( 1
12

F10), where
1
12 F10 is the number of subgraphs of G that have the same configuration as the graph of Fig 28(b) and

this subgraph is counted only once in M. Consequently, F17= 8

(

1
2a

(3)
ii

2

)

−
2
3 F10.

❅
❅

❅
❅

❅❅

�
�
�
�
��

r r

rr

(a) (b)
Fig 28

vi

vi

❅
❅
❅
❅
❅❅r r

rr

Now we add the values of Fn arising from the above cases and determine x. Substituting the value of x in
1
2 (a

(6)
ii − x) and simplifying, we get the number of 6−cycles each of which contains a specific vertex vi of G. �

Example 3.2 In the graph of Fig 29 we have, F1 = 5, F2 = 60, F3 = 60, F4 = 60, F5 = 120, F6 = 60, F7 = 60,
F8 = 80, F9 = 360, F10 = 360, F11 = 180, F12 = 120, F13 = 240, F14 = 120, F15 = 240, F16 = 240, F17 = 120. So,
we have x = 2485. Consequently, by Theorem 3.1, the number of 6−cycles each of which contains the vertex v1 in
the graph of Fig 29 is 60.
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❆
❆

❆
❆

❆❆

✁
✁
✁
✁
✁✁
❆
❆

❆
❆

❆❆✁
✁

✁
✁

✁✁

r r

r r

r r

Fig 29

v1 v2

v6 v3

v5 v4

Theorem 3.3 If G is a simple graph with n vertices and the adjacency matrix A= [aij ], then the number of 7−cycles

each of which contains a specific vertex vi of G is 1
2 (a

(7)
ii − x), where x is equal to

30
∑

i=1

Fi in the cases those are

considered below.

Proof: The number of 7−cycles each of which contains a specific vertex vi of the graph G is equal to 1
2 (a

(7)
ii − x),

where x is the number of closed walks of length 7 form the vertex vi to vi that are not 7−cycles. To find x, we have
30 cases as considered below; the cases are based on the configurations-(subgraphs) that generate vi − vi walks of
length 7 that are not cycles. In each case, N denote the number of walks of length 7 from vi to vi that are not
cycles in the corresponding subgraph, M denote the number of subgraphs of G of the same configuration and Fn,
(n= 1, 2, ...) denote the total number of vi − vi walks of length 7 that are not cycles in all possible subgraphs of
G of the same configuration. However, in the cases with more than one figure (Cases 9, 10, ..., 18, 20,..., 30), N, M
and Fn are based on the first graph of the respective figures and P1, P2,... denote the number of subgraphs of G
which don’t have the same configuration as the first graph but are counted in M. It is clear that Fn is equal to N
× (M− P1−P2−...). To find N in each case, we have to include in any walk, all the edges and the vertices of the
corresponding subgraphs at least once.

Case 1: For the configuration of Fig 30, N= 42, M= 1
2

∑

j 6=i

a
(2)
ij aij and F1 = 21

∑

j 6=i

a
(2)
ij aij .

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆
r

r r

vi

Fig 30

Case 2: For the configuration of Fig 31, N= 34, M= 1
2a

(3)
ii (di − 2) and F2= 17a

(3)
ii (di − 2).

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆
r r

r r

Fig 31

vi

Case 3: For the configuration of Fig 32, N= 18, M=
∑

j 6=i

a
(2)
ij aij(dj − 2) and F3= 18

∑

j 6=i

a
(2)
ij aij(dj − 2).

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆
r r

r r

Fig 32
vi
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Case 4: For the configuration of Fig 33, N= 4, M=
∑

j 6=i

(
1

2
a
(3)
jj aij − a

(2)
ij aij)(dj − 3) and F4= 4

∑

j 6=i

(
1

2
a
(3)
jj aij −

a
(2)
ij aij)(dj − 3).

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆
rr r

r r

Fig 33

vi

Case 5: For the configuration of Fig 34, N= 12, M= 1
2a

(3)
ii

(

di − 2
2

)

and F5= 6a
(3)
ii

(

di − 2
2

)

.

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆
rr r

r r

Fig 34

vi

Case 6: For the configuration of Fig 35, N= 4, M=
∑

j 6=i

a
(2)
ij aij

(

dj − 2
2

)

and F6= 4
∑

j 6=i

a
(2)
ij aij

(

dj − 2
2

)

.

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆
rr r

r r

Fig 35
vi

Case 7: For the configuration of Fig 36, N= 32, M=
∑

j 6=i

(

a
(2)
ij

2

)

aij and F7= 32
∑

j 6=i

(

a
(2)
ij

2

)

aij .

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆

✁
✁
✁
✁
✁✁

r r

r r

Fig 36

vi

Case 8: For the configuration of Figure 37, N=24, M=
∑

j 6=i

(

a
(2)
ij

3

)

aij , F8= 24
∑

j 6=i

(

a
(2)
ij

3

)

aij .

❅
❅

❅
❅

❅❅

✂
✂
✂
✂
✂
✂
✂
✂

✏✏✏✏✏✏✏✏

r r

rr

r

vi

Fig 37

Case 9: For the configuration of Figure 38(a), N= 12, M= 1
2

∑

k 6=j, j,k 6=i

(

a
(2)
jk

2

)

ajkaijaik. Let P1 denote the

number of all subgraphs of G that have the same configuration as the graph of Fig 38(b) and are counted in M.
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Thus P1= 1 × ( 1
24 F10), where

1
24 F10 is the number of subgraphs of G that have the same configuration as the

graph of Fig 38(b) and this subgraph is counted only once in M. Consequently, F9= 6
∑

k 6=j, j,k 6=i

(

a
(2)
jk

2

)

ajkaijaik−

1
2 F10.

❅
❅

❅
❅

❅❅

✂
✂
✂
✂
✂
✂
✂
✂

✏✏✏✏✏✏✏✏

r r

rr

r

vi

Fig 38

✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆❆

✁
✁
✁
✁
✁✁

r r

r r

vi

(a) (b)

Case 10: For the configuration of Fig 39(a), N= 24, M= 1
2

∑

k 6=j, j,k 6=i

a
(2)
jk aijaikajk. Let P1 denote the number

of all subgraphs of G that have the same configuration as the graph of Fig 39(b) and are counted in M. Thus P1=
1 × ( 1

42 F1), where
1
42 F1 is the number of subgraphs of G that have the same configuration as the graph of Fig

39(b) and this subgraph is counted only once in M. Consequently, F10= 12
∑

k 6=j, j,k 6=i

a
(2)
jk aijaikajk−

4
7 F1 .

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆

✁
✁
✁
✁
✁✁

r r

r r

Fig 39

vi

✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆❆
r

r r

vi

(a) (b)

Case 11: For the configuration of Fig 40(a), N= 14, M= 1
2

∑

j 6=i

a
(3)
jj aij . Let P1 denote the number of all sub-

graphs of G that have the same configuration as the graph of Fig 40(b) and are counted in M. Thus P1= 2×( 1
42F1),

where 1
42 F1 is the number of subgraphs of G that have the same configuration as the graph of Fig 40(b) and 2 is

the number of times that this subgraph is counted in M. Consequently, F11= 7
∑

j 6=i

a
(3)
jj aij−

2
3 F1.

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆
r r

r r

(a)

vi

✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆❆
r

r r

(b)

vi

Fig 40

Case 12: For the configuration of Fig 41(a), N= 2, M= 1
2

∑

j 6=i

a
(2)
ij a

(3)
jj . Let P1 denote the number of all subgraphs

of G that have the same configuration as the graph of Fig 41(b) and are counted in M. Thus P1 = 2 × ( 1
42F1),

where 1
42 F1 is the number of subgraphs of G that have the same configuration as the graph of Fig 41(b) and 2

is the number of times that this subgraph is counted in M. Let P2 denote the number of all subgraphs of G that
have the same configuration as the graph of Fig 41(c) and are counted in M. Thus P2 = 2× ( 1

14 F11), where
1
14 F11

is the number of subgraphs of G that have the same configuration as the graph of Fig 41(c) and 2 is the number
of times that this subgraph is counted in M. Let P3 denote the number of all subgraphs of G that have the same
configuration as the graph of Fig 41(d) and are counted in M. Thus P3 = 2 × ( 1

32 F7), where
1
32 F7 is the number

of subgraphs of G that have the same configuration as the graph of Fig 41(d) and 2 is the number of times that

this subgraph is counted in M. Consequently, F12=
∑

j 6=i

a
(2)
ij a

(3)
jj −

2
21 F1 −

2
7 F11 −

1
8 F7.
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❆
❆

❆
❆

❆❆✁
✁
✁

✁
✁✁ ✁

✁
✁
✁
✁✁

r

r r

r

r

r

Fig 41
(c)

vi

vivi vi

✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆❆
r

r r

(a)

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆

✁
✁
✁
✁
✁✁

r r

r r

(d)

✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆❆
r

r r

(b)

Case 13: For the configuration of Fig 42(a), N= 4, M= 1
2

∑

j 6=i

a
(3)
jj aij(di − 1). Let P1 denote the number of all

subgraphs of G that have the same configuration as the graph of Fig 42(b) and are counted in M. Thus P1 =
2 × ( 1

42F1), where
1
42 F1 is the number of subgraphs of G that have the same configuration as the graph of Fig

42(b) and 2 is the number of times that this subgraph is counted in M. Let P2 denote the number of all subgraphs
of G that have the same configuration as the graph of Fig 42(c) and are counted in M. Thus P2 = 2 × ( 1

34 F2),
where 1

34 F2 is the number of subgraphs of G that have the same configuration as the graph of Fig 42(c) and 2 is
the number of times that this subgraph is counted in M. Let P3 denote the number of all subgraphs of G that have
the same configuration as the graph of Fig 42(d) and are counted in M. Thus P3 = 2 × ( 1

24 F10), where
1
24 F10 is

the number of subgraphs of G that have the same configuration as the graph of Fig 42(d) and 2 is the number of

times that this subgraph is counted in M. Consequently, F13= 2
∑

j 6=i

a
(3)
jj aij(di − 1)− 4

21 F1 −
4
17 F2 −

1
3 F10.

❆
❆

❆
❆

❆❆✁
✁
✁

✁
✁✁ ✁

✁
✁
✁
✁✁

r

r r

r

r

r

Fig 42
(c)

vi vivi vi

✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆❆
r

r r

(a)

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆

✁
✁
✁
✁
✁✁

r r

r r

(d)

✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆❆
r

r r

(b)

Case 14: For the configuration of Fig 43(a), N= 4, M= 1
2

∑

j 6=i

a
(3)
ii a

(2)
ij . Let P1 denote the number of all subgraphs

of G that have the same configuration as the graph of Fig 43(b) and are counted in M. Thus P1 = 2 × ( 1
42F1),

where 1
42 F1 is the number of subgraphs of G that have the same configuration as the graph of Fig 43(b) and 2 is

the number of times that this subgraph is counted in M. Let P2 denote the number of all subgraphs of G that have
the same configuration as the graph of Fig 43(c) and are counted in M. Thus P2 = 1× ( 1

18 F3), where
1
18 F3 is the

number of subgraphs of G that have the same configuration as the graph of Fig 43(c) and this subgraph is counted
only once in M. Let P3 denote the number of all subgraphs of G that have the same configuration as the graph of
Fig 43(d) and are counted in M. Thus P3 = 2 × ( 1

32 F7), where
1
32 F7 is the number of subgraphs of G that have

the same configuration as the graph of Fig 43(d) and 2 is the number of times that this subgraph is counted in M.

Consequently, F14= 2
∑

j 6=i

a
(3)
ii a

(2)
ij −

4
21 F1−

2
9 F3−

1
4 F7.

❆
❆

❆
❆

❆❆✁
✁
✁

✁
✁✁ ✁

✁
✁
✁
✁✁

r

r r

r

r

r

Fig 43
(c)

vi

vi

vi vi

✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆❆
r

r r

(a)

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆

✁
✁
✁
✁
✁✁

r r

r r

(d)

✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆❆
r

r r

(b)

Case 15: For the configuration of Fig 44(a), N= 2, M=
∑

j 6=k, j,k 6=i

a
(2)
ij a

(2)
jk aij . Let P1 denote the number of all sub-

graphs of G that have the same configuration as the graph of Fig 44(b) and are counted in M. Thus P1 = 2×( 1
42F1),
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where 1
42 F1 is the number of subgraphs of G that have the same configuration as the graph of Fig 44(b) and 2

is the number of times that this subgraph is counted in M. Let P2 denote the number of all subgraphs of G that
have the same configuration as the graph of Fig 44(c) and are counted in M. Thus P2 = 2× ( 1

34 F2), where
1
34 F2

is the number of subgraphs of G that have the same configuration as the graph of Fig 44(c) and 2 is the number
of times that this subgraph is counted in M. Let P3 denote the number of all subgraphs of G that have the same
configuration as the graph of Fig 44(d) and are counted in M. Thus P3 = 2× ( 1

24 F10), where
1
24 F10 is the number

of subgraphs of G that have the same configuration as the graph of Fig 44(d) and 2 is the number of times that
this subgraph is counted in M. Let P4 denote the number of all subgraphs of G that have the same configuration
as the graph of Fig 44(e) and are counted in M. Thus P4 = 1 × ( 1

18 F3), where
1
18 F3 is the number of subgraphs

of G that have the same configuration as the graph of Fig 44(e) and 1 is the number of times that this subgraph is

counted in M. Consequently, F15= 2
∑

j 6=k, j,k 6=i

a
(2)
ij a

(2)
jk aij−

2
21 F1 −

2
17 F2 −

1
6 F10 −

1
9 F3.

❆
❆

❆
❆

❆❆✁
✁
✁

✁
✁✁ ✁

✁
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✁
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r

r r

r

r

r
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(c)
vi

vivi vi

✁
✁
✁
✁
✁✁

❆
❆
❆
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✁
✁
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❆

❆
❆

❆❆

✁
✁
✁
✁
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r r

r r

(d)

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆
r

r r

(b)

✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆❆
r r

r rvi
(e)

Case 16: For the configuration of Figure 45(a), N= 2, M=
∑

j 6=k, j,k 6=i

a
(2)
jk ajkaij(dk − 2). Let P1 denote the number

of all subgraphs of G that have the same configuration as the graph of Figure 45(b) and are counted in M. Thus
P1 = 2 × ( 1

24 F10), where
1
24 F10 is the number of subgraphs of G that have the same configuration as the graph

of Fig 45(b) and 2 is the number of times that this subgraph is counted in M. Let P2 denote the number of all
subgraphs of G that have the same configuration as the graph of Fig 45(c) and are counted in M. Thus P2 = 1× ( 1

18
F3), where

1
18 F3 is the number of subgraphs of G that have the same configuration as the graph of Fig 45(c) and

1 is the number of times that this subgraph is counted in M.

Consequently, F16= 2
∑

j 6=k, j,k 6=i

a
(2)
jk ajkaij(dk − 2)− 1

6 F10 −
1
9 F3.

✁
✁
✁
✁
✁✁

✁
✁
✁
✁
✁✁

❆
❆

❆
❆

❆❆
r

r r

r
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(b)

vivi
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❆
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❆❆
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r r r

(a)

✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆❆
r r

r rvi
(c)

Case 17: For the configuration of Figure 46(a), N= 4, M=
∑

j 6=i

a
(2)
ij aij(dj − 2)(di − 2). Let P1 denote the num-

ber of all subgraphs of G that have the same configuration as the graph of Figure 46(b) and are counted in M.
Thus P1= 2 × ( 1

32 F7), where
1
32 F7 is the number of subgraphs of G that have the same configuration as the

graph of Figure 46(b) and 2 is the number of times that this subgraph is counted in M. Consequently, F17= 4
∑

j 6=i

a
(2)
ij aij(dj − 2)(di − 2) − 1

4 F7.

✁
✁
✁
✁
✁✁

✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆❆
r

r r

r
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(b)
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❆

❆
❆❆
rr

r r r

(a)

vivi

Case 18: For the configuration of Figure 47(a), N= 2, M= 1
2

∑

k 6=j, j,k 6=i

(dj − 2)(dk − 2)aijaikajk. Let P1 denotes

the number of all subgraphs of G that have the same configuration as the graph of Figure 47(b) and are counted in
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M. Thus P1= 1× ( 1
24 F10), where

1
24 F10 is the number of subgraphs of G that have the same configuration as the

graph of Figure 47(b) and 1 is the number of times that this subgraph is counted in M.

Consequently, F18=
∑

k 6=j, j,k 6=i

(dj − 2)(dk − 2)aijaikajk−
1
12 F10.

✁
✁
✁
✁
✁✁

✁
✁
✁
✁
✁✁

❆
❆
❆
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❆❆
r

r r

r
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(b)

✁
✁
✁
✁
✁✁

❆
❆
❆

❆
❆❆
rr

r r r

(a)
vi
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Case 19: For the configuration of Figure 48, N= 14, M= 1
2 [a

(5)
ii − 5a

(3)
ii − 2(di− 2)a

(3)
ii − 2

n
∑

j=1,j 6=i

a
(2)
ij aij(dj − 2)− 2

n
∑

j=1,j 6=i

aij(
1
2a

(3)
jj −aija

(2)
ij )] (See Theorem 1.11) and F19= 7 [a

(5)
ii − 5a

(3)
ii − 2(di− 2)a

(3)
ii − 2

n
∑

j=1,j 6=i

a
(2)
ij aij(dj − 2)− 2

n
∑

j=1,j 6=i

aij(
1
2a

(3)
jj − aija

(2)
ij )].

❆
❆

❆
❆

✁
✁
✁
✁
❅

❅
❅

❅❅

�
�
�
��

r

r

r

r r

Fig 48

vi

Case 20: For the configuration of Fig 49(a), N= 6, M= 1
2

∑

k 6=j, j,k 6=i

a
(2)
jk (dk − ajk − 1)(ajkaijaik) (See Theo-

rem 1.5). Let P1 denote the number of all subgraphs of G that have the same configuration as the graph of Figure
49(b) and are counted in M. Thus P1= 2 × ( 1

32 F7), where
1
32 F7 is the number of subgraphs of G that have the

same configuration as the graph of Figure 49(b) and 2 is the number of times that this subgraph is counted in M.

Consequently, F20= 3
∑

k 6=j, j,k 6=i

a
(2)
jk (dk − ajk − 1)(ajkaijaik)−

3
8 F7.

❆
❆

❆
❆

✁
✁
✁
✁
❅

❅
❅

❅❅

�
�
�
��

r

r

r

r r

vi

vi

Fig 49
(b)(a)
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❆
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❆

❆❆
r

r r

r

Case 21: For the configuration of Fig 50(a), N= 12, M=
∑

j 6=i

a
(2)
ij (dj − aij − 1)(a

(2)
ij aij) (See Theorem 1.7). Let

P1 denote the number of all subgraphs of G that have the same configuration as the graph of Figure 50(b) and are
counted in M. Thus P1= 2×( 1

32 F7), where
1
32 F7 is the number of subgraphs of G that have the same configuration

as the graph of Figure 50(b) and 2 is the number of times that this subgraph is counted in M. Let P2 denote the
number of all subgraphs of G that have the same configuration as the graph of Figure 50(c) and are counted in M.
Thus P2= 2 × ( 1

24 F10), where
1
24 F10 is the number of subgraphs of G that have the same configuration as the

graph of Figure 50(c) and 2 is the number of times that this subgraph is counted in M.

Consequently, F21= 12
∑

j 6=i

a
(2)
ij (dj − aij − 1)(a

(2)
ij aij)−

3
4 F7− F10.
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❆
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✁
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Fig 50

(b)(a)
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Case 22: For the configuration of Fig 51(a), N= 6, M= 1
2

∑

j 6=i

a
(2)
ij (dj − aij − 1)(a

(3)
jj aij) (See theorem 1.7). Let

P1 denote the number of all subgraphs of G that have the same configuration as the graph of Figure 51(b) and
are counted in M. Thus P1= 2 × ( 1

24 F10), where
1
24 F10 is the number of subgraphs of G that have the same

configuration as the graph of Figure 51(b) and 2 is the number of times that this subgraph is counted in M. Let
P2 denote the number of all subgraphs of G that have the same configuration as the graph of Figure 51(c) and are
counted in M. Thus P2= 6×( 1

12 F9), where
1
12 F9 is the number of subgraphs of G that have the same configuration

as the graph of Figure 51(c) and 6 is the number of times that this subgraph is counted in M. Let P3 denotes the
number of all subgraphs of G that have the same configuration as the graph of Figure 51(d) and are counted in
M. Thus P3= 1× ( 1

12 F21), where
1
12 F21 is the number of subgraphs of G that have the same configuration as the

graph of Figure 51(d) and 1 is the number of times that this subgraph is counted in M. Let P4 denote the number of
all subgraphs of G that have the same configuration as the graph of Figure 51(e) and are counted in M. Thus P4=
2× ( 1

32 F7), where
1
32 F7 is the number of subgraphs of G that have the same configuration as the graph of Figure

51(e) and 2 is the number of times that this subgraph is counted in M. Let P5 denote the number of all subgraphs
of G that have the same configuration as the graph of Figure 51(f) and are counted in M. Thus P5= 1 × (14 F29),
where 1

4 F29 is the number of subgraphs of G that have the same configuration as the graph of Figure 51(f) and 1

is the number of times that this subgraph is counted in M. Consequently, F22= 3
∑

j 6=i

a
(2)
ij (dj − aij − 1)(a

(3)
jj aij)−

1
2

F10− 3 F9−
1
2 F21−

3
8 F7−

3
2 F29.

❆
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❆
❆
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✁
✁
✁
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❅

❅❅
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Fig 51
(b)(a)
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r
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❅
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r

r
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(f)

Case 23: For the configuration of Figure 52(a), N= 2, M= 1
2 [
∑

j 6=i

[a
(5)
jj −5a

(3)
jj −2(dj−2)a

(3)
jj −2

∑

k 6=j

a
(2)
jk ajk(dk−2)−2

∑

k 6=j

ajk(
1
2a

(3)
kk − ajka

(2)
jk )]aij ] (See Theorem 1.11). Let P1 denote the number of all subgraphs of G that have the

same configuration as the graph of Fig 52(b) and are counted in M. Thus P1 = 2 × ( 1
14 F19), where

1
14 F19 is the

number of subgraphs of G that have the same configuration as the graph of Figure 52(b) and 2 is the number of
times that this subgraph is counted in M. Let P2 denote the number of all subgraphs of G that have the same
configuration as the graph of Figure 52(c) and are counted in M. Thus P2= 1×( 1

12 F21), where
1
12 F21 is the number

of subgraphs of G that have the same configuration as the graph of Figure 52(c) and 1 is the number of times that

this subgraph is counted in M. Consequently, F23=
∑

j 6=i

[a
(5)
jj − 5a

(3)
jj − 2(dj − 2)a

(3)
jj − 2

∑

k 6=j

a
(2)
jk ajk(dk − 2)− 2

∑

k 6=j

ajk(
1
2a

(3)
kk − ajka

(2)
jk )]aij −

2
7 F19 −

1
6 F21.
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Fig 52

(c)(b)(a)

vi vi vi

Case 24: For the configuration of Figure 53(a), N= 4, M= 1
2 [(a

(5)
ii −5a

(3)
ii −2(di−2)a

(3)
ii )(di−2)−2

∑

j 6=i

a
(2)
ij aij(dj−

2)(di − 2)− 2
∑

j 6=i

aij(di − 2)(
1

2
a
(3)
jj − aija

(2)
ij )] (See Theorem 1.11). Let P1 denote the number of all subgraphs of G

that have the same configuration as the graph of Fig 53(b) and are counted in M. Thus P1 = 1 × ( 1
12 F21), where

1
12 F21 is the number of subgraphs of G that have the same configuration as the graph of Figure 53(b) and 1 is the
number of times that this Fig is counted in M. Consequently,

F24= 2[(a
(5)
ii − 5a

(3)
ii − 2(di − 2)a

(3)
ii )(di − 2)− 2

∑

j 6=i

a
(2)
ij aij(dj − 2)(di − 2)− 2

∑

j 6=i

aij(di − 2)(
1

2
a
(3)
jj − aija

(2)
ij )]− 1

3 F21.
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✂

r

r

r
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Fig 53
(b)(a)

vi vi

Case 25: For the configuration of Figure 54(a), N= 2, M=
∑

j 6=i

[a
(4)
ij − (di + dj − 3aij)a

(2)
ij − (a

(3)
ii + a

(3)
jj +

2

(

dj − 1
2

)

)aij ](dj−2)aij (See Theorem 1.8). Let P1 denote the number of all subgraphs of G that have the same

configuration as the graph of Fig 54(b) and are counted in M. Thus P1 = 2 × (16 F20), where
1
6 F20 is the number

of subgraphs of G that have the same configuration as the graph of Figure 54(b) and 2 is the number of times that
this subgraph is counted in M. Let P2 denote the number all subgraphs of G that have the same configuration as
the graph of Figure 54(c) and are counted in M. Thus P2= 1× (16 F22), where

1
6 F22 is the number of subgraphs of

G that have the same configuration as the graph of Figure 54(c) and 1 is the number of times that this subgraph is

counted in M. Consequently, F25 = 2
∑

j 6=i

[a
(4)
ij − (di + dj − 3aij)a

(2)
ij − (a

(3)
ii + a

(3)
jj + 2

(

dj − 1
2

)

)aij ](dj − 2)aij−

2
3 F20−

1
3 F22.
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Fig 54

(c)(b)(a)

vi vi vi

Case 26: For the configuration of Figure 55(a), N= 2, M=
∑

j 6=i

[(a
(3)
ij − (di + dj − 1)aij)a

(2)
ij −

∑

k 6=i,j

(a
(2)
ik aik −
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aikaijajk)ajk −

∑

k 6=i,j

(a
(2)
jk ajk − aikaijajk)aik](dj − 2). Let P1 denote the number of all subgraphs of G that have

the same configuration as the graph of Fig 55(b) and are counted in M. Thus P1 = 1 × ( 1
12 F21), where

1
12 F21

is the number of subgraphs of G that have the same configuration as the graph of Fig 55(b) and 1 is the number
of times that this subgraph is counted in M. Let P2 denote the number of all subgraphs of G that have the same
configuration as the graph of Fig 55(c) and are counted in M. Thus P2 = 1× (16 F22), where

1
6 F22 is the number of

subgraphs of G that have the same configuration as the graph of Fig 55(c) and 1 is the number of times that this
subgraph is counted in M. Consequently,

F= 2
∑

j 6=i

[(a
(3)
ij − (di + dj − 1)aij)a

(2)
ij −

∑

k 6=i,j

(a
(2)
ik aik − aikaijajk)ajk −

∑

k 6=i,j

(a
(2)
jk ajk − aikaijajk)aik](dj − 2)− 1

6 F21

−
1
3 F22 .
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Fig 55

(c)(b)(a)
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Case 27: For the configuration of Figure 56(a), N= 4, M=
∑

j 6=i

[a
(2)
ij aij ×

∑

k 6=i,j

(

a
(2)
ij

2

)

]. Let Let P1 denote

the number of all subgraphs of G that have the same configuration as the graph of Fig 56(b) and are counted in
M. Thus P1 = 1× ( 1

12 F21), where
1
12 F21 is the number of subgraphs of G that have the same configuration as the

graph of Fig 56(b) and 1 is the number of times that this subgraph is counted in M. Let P2 denote the number of all
subgraphs of G that have the same configuration as the graph of Fig 56(c) and are counted in M. Thus P2 = 2× ( 1

24
F10), where

1
24 F10 is the number of subgraphs of G that have the same configuration as the graph of Fig 56(c) and

2 is the number of times that this subgraph is counted in M. Let P3 denote the number of all subgraphs of G that
have the same configuration as the graph of Fig 56(d) and are counted in M. Thus P3 = 2× ( 1

12 F9), where
1
12 F9

is the number of subgraphs of G that have the same configuration as the graph of Fig 56(d) and 2 is the number
of times that this subgraph is counted in M. Let P4 denote the number of all subgraphs of G that have the same
configuration as the graph of Fig 56(e) and are counted in M. Thus P4 = 2 × (16 F20), where

1
6 F20 is the number

of subgraphs of G that have the same configuration as the graph of Fig 56(e) and 2 is the number of times that
this subgraph is counted in M. Let P5 denote the number of all subgraphs of G that have the same configuration
as the graph of Fig 56(f) and are counted in M. Thus P5 = 2 × ( 1

32 F7), where
1
32 F7 is the number of subgraphs

of G that have the same configuration as the graph of Fig 56(f) and 2 is the number of times that this subgraph is

counted in M. Consequently, F= 4
∑

j 6=i

[a
(2)
ij aij ×

∑

k 6=i,j

(

a
(2)
ij

2

)

]− 1
3 F21−

1
3 F10−

2
3 F9−

4
3 F20−

1
4 F7.
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(d)
Fig 56
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(f)

Case 28: For the configuration of Figure 57(a), N=8, M= (12a
(3)
ii )
∑

j 6=i

(

a
(2)
ij

2

)

. Let P1 denote the number of all

subgraphs of G that have the same configuration as the graph of Fig 57(b) and are counted in M. Thus P1 = 1× ( 1
12

F21), where
1
12 F21 is the number of subgraphs of G that have the same configuration as the graph of Fig 57(b) and
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1 is the number of times that this subgraph is counted in M. Let P2 denote the number of all subgraphs of G that
have the same configuration as the graph of Fig 57(c) and are counted in M. Thus P2 = 1× ( 1

24 F10), where
1
24 F10

is the number of subgraphs of G that have the same configuration as the graph of Fig 57(c) and 1 is the number
of times that this subgraph is counted in M. Let P3 denote the number of all subgraphs of G that have the same
configuration as the graph of Fig 57(d) and are counted in M. Thus P3 = 3 × ( 1

24 F8), where
1
24 F8 is the number

of subgraphs of G that have the same configuration as the graph of Fig 57(d) and 3 is the number of times that
this subgraph is counted in M. Let P4 denote the number of all subgraphs of G that have the same configuration
as the graph of Fig 57(e) and are counted in M. Thus P4 = 2 × ( 1

32 F7), where
1
32 F7 is the number of subgraphs

of G that have the same configuration as the graph of Fig 57(e) and 2 is the number of times that this subgraph is

counted in M. Consequently, F= (4a
(3)
ii )
∑

j 6=i

(

a
(2)
ij

2

)

−
2
3 F21−

1
3 F10− F8−

1
2 F7.

❅
❅

❅

�
�
�

r

r

r

rrvi

(b)

�
�

�

rrr

r

r

rr
vi

(a)

❅
❅

❅
❅

❅❅

r r

rr
vi

(c)

❅
❅

❅
❅

❅❅

✂
✂
✂
✂
✂
✂
✂
✂

✏✏✏✏✏✏✏✏

r r

rr

r

vi

(d)

Fig 57

❅
❅

❅
❅

❅❅

r r

rrvi

(e)

Case 29: For the configuration of Figure 58(a), N= 4, M= 1
2

∑

j 6=i

[(dj − aij − 1)a
(3)
jj a

(2)
ij aij ]. Let P1 denote the

number of all subgraphs of G that have the same configuration as the graph of Fig 58(b) and are counted in M.
Thus P1 = 1 × ( 1

12 F21), where
1
12 F21 is the number of subgraphs of G that have the same configuration as the

graph of Fig 58(b) and 1 is the number of times that this subgraph is counted in M. Let P2 denote the number of all
subgraphs of G that have the same configuration as the graph of Fig 58(c) and are counted in M. Thus P2 = 4× ( 1

24
F10), where

1
24 F10 is the number of subgraphs of G that have the same configuration as the graph of Fig 58(c) and

4 is the number of times that this subgraph is counted in M. Let P3 denote the number of all subgraphs of G that
have the same configuration as the graph of Fig 58(d) and are counted in M. Thus P3 = 4× ( 1

12 F9), where
1
12 F9

is the number of subgraphs of G that have the same configuration as the graph of Fig 58(d) and 4 is the number
of times that this subgraph is counted in M. Let P4 denote the number of all subgraphs of G that have the same
configuration as the graph of Fig 58(e) and are counted in M. Thus P4 = 1 × (16 F22), where

1
6 F22 is the number

of subgraphs of G that have the same configuration as the graph of Fig 58(e) and 1 is the number of times that
this subgraph is counted in M. Let P5 denote the number of all subgraphs of G that have the same configuration
as the graph of Fig 58(f) and are counted in M. Thus P5 = 2 × ( 1

32 F7), where
1
32 F7 is the number of subgraphs

of G that have the same configuration as the graph of Fig 58(f) and 2 is the number of times that this subgraph is

counted in M. Consequently, F= 2
∑

j 6=i

[(dj − aij − 1)a
(3)
jj a

(2)
ij aij ]−

1
3 F21−

2
3 F10−

4
3 F9−

2
3 F22−

1
4 F7.

❅
❅

❅

�
�
�

r

r

r

rrvi

(b) (e)

�
�

�

rrr

r

r

rr
vi

(a)

❅
❅

❅
❅

❅❅

r r

rr
vi

(c)

❅
❅

❅
❅

❅❅

✂
✂
✂
✂
✂
✂
✂
✂

✏✏✏✏✏✏✏✏

r r

rr

r

vi

(d)
Fig 58

❅
❅

❅

�
�
�

r

r

r

rr

vi ❅
❅

❅
❅

❅❅

r r

rrvi

(f)

Case 30: For the configuration of Figure 59(a), N= 4, M= 1
2

∑

j 6=i

(

a
(2)
ij

2

)

a
(3)
jj . Let P1 denote the number of all

subgraphs of G that have the same configuration as the graph of Fig 59(b) and are counted in M. Thus P1 = 1× (16
F22), where

1
6 F22 is the number of subgraphs of G that have the same configuration as the graph of Fig 59(b) and
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1 is the number of times that this subgraph is counted in M. Let P2 denote the number of all subgraphs of G that
have the same configuration as the graph of Fig 59(c) and are counted in M. Thus P2 = 1× ( 1

24 F10), where
1
24 F10

is the number of subgraphs of G that have the same configuration as the graph of Fig 59(c) and 1 is the number
of times that this subgraph is counted in M. Let P3 denote the number of all subgraphs of G that have the same
configuration as the graph of Fig 59(d) and are counted in M. Thus P3 = 3 × ( 1

24 F8), where
1
24 F8 is the number

of subgraphs of G that have the same configuration as the graph of Fig 59(d) and 3 is the number of times that
this subgraph is counted in M. Let P4 denote the number of all subgraphs of G that have the same configuration
as the graph of Fig 59(e) and are counted in M. Thus P4 = 2 × ( 1

32 F7), where
1
32 F7 is the number of subgraphs

of G that have the same configuration as the graph of Fig 59(e) and 2 is the number of times that this subgraph is

counted in M. Consequently, F= 2
∑

j 6=i

(

a
(2)
ij

2

)

a
(3)
jj −

2
3 F22−

1
6 F10−

1
2 F8−

1
4 F7.

❅
❅

❅

�
�
�

r

r

r

rr

vi

(b)

�
�

�

rrr

r

r

rr

vi

(a)

❅
❅

❅
❅

❅❅

r r

rr
vi

(c)

❅
❅

❅
❅

❅❅

✂
✂
✂
✂
✂
✂
✂
✂

✏✏✏✏✏✏✏✏

r r

rr

r

vi

(d)

Fig 59

❅
❅

❅
❅

❅❅

r r

rrvi

(e)

Now we add the values of Fn arising from the above cases and determine x. Substituting the value of x in
1
2 (a

(7)
ii − x) and simplifying, we get the number of 7−cycles each of which contains a specific vertex vi of G. �

Example 3.4 In the graph of Fig 29 we have, F1 = 420, F2 = 1020, F3 = 1080, F4 = 240, F5 = 360, F6 = 240,
F7 = 960, F8 = 480, F9 = 360, F10 = 720, F11 = 420, F12 = 120, F13 = 240, F14 = 240, F15 = 240, F16 = 240,
F17 = 480, F18 = 120, F19 = 840, F20 = 360, F21 = 1440, F22 = 720, F23 = 120, F24 = 240, F25 = 240, F26 = 240,
F27 = 240, F28 = 240, F29 = 240, F30 = 120,. So, we have x = 13020. Consequently, by Theorem 3.3, the number
of 7−cycles each of which contains the vertex v1 in the graph of Fig 29 is 0.
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