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Abstract—We present a novel lossless universal source
coding algorithm that uses parallel computational units to
increase the throughput. The length-N input sequence is
partitioned into B blocks. Processing each block indepen-
dently of the other blocks can accelerate the computation
by a factor of B, but degrades the compression quality.
Instead, our approach is to first estimate the minimum
description length (MDL) source underlying the entire
input, and then encode each of the B blocks in parallel
based on the MDL source. With this two-pass approach,
the compression loss incurred by using more parallel units
is insignificant. Our algorithm is work-efficient, i.e., its
computational complexity is O(N/B). Its redundancy is
approximately B log(N/B) bits above Rissanen’s lower
bound on universal coding performance, with respect to
any tree source whose maximal depth is at most log(N/B).

Index Terms—computational complexity, data compres-
sion, MDL, parallel algorithms, redundancy, universal
source coding, work-efficient algorithms.

I. INTRODUCTION

A. Motivation

With the advent of cloud computing and big data
problems, the amount of data processed by computer
and communication systems has increased rapidly. This
growth necessitates the use of efficient and fast compres-
sion algorithms to comply with data storage and network
bandwidth requirements. At present, typical lossless
data compression algorithms, which are implemented
in software, run at least an order of magnitude slower
than the throughput delivered by hard disks; they are
even slower when compared to optical communication
devices. Therefore, lossless compression may be a com-
putational bottleneck.

One obvious approach to speed up compression al-
gorithms is to implement them in special-purpose hard-
ware [1]. Although hardware implementation may accel-
erate compression by approximately an order of magni-
tude, there are still many systems where this does not
suffice. Ultimately, in order for lossless compression to
become appealing for a broader range of applications,
we must concentrate more on efficient new algorithms.

Parallelization is a possible direction for fast source
coding algorithms. By compressing in parallel, we may
obtain algorithms that are faster by orders of magni-
tude. However, with a naive parallel algorithm, which
consists of partitioning the original input into B blocks
and processing each block independently of the other

blocks, increasing B degrades the compression qual-
ity [2]. Therefore, naive parallel compression has limited
potential. Sharing information across blocks can improve
the compression quality of data [3].

B. Related work
Stassen and Tjalkens [4] proposed a parallel com-

pression algorithm based on context tree weighting [5]
(CTW), where a common finite state machine (FSM)
determines for each symbol which processor should
process it. Since the FSM processes the original length-
N input in O(N) time, Stassen and Tjalkens’ method
does not support scalable data rates.

Franaszek et al. [2] proposed a parallel compression
algorithm, which is related to LZ77 [6], where the
construction of a dictionary is divided between multiple
processors. Unfortunately, the redundancy (excess cod-
ing length above the entropy rate) of LZ77 is high.

Finally, Willems [7] proposed a variant of CTW with
O(ND/B) time complexity, where D is the maximal
context depth that is processed. Unfortunately, Willems’
approach will not compress as well as CTW, because
probability estimates will be based on partial information
in between synchronizations of the context trees.

C. Contributions
This paper presents a novel minimum description

length [8] (MDL) source coding algorithm that coordi-
nates multiple computational units running in parallel,
such that the compression loss incurred by using more
computational units is insignificant. Our main contri-
butions are (i) our algorithm is work-efficient [9], i.e.,
it compresses B length-(N/B) blocks in parallel with
O(N/B) time complexity, and (ii) the redundancy of
our algorithm is approximately B log(N/B) bits above
the lower bounds on the best achievable redundancy.

The remainder of the paper is organized as follows.
We review preliminary material in Section II and propose
our new parallel two-pass MDL algorithm in Section III.
Finally, Section IV discusses numerical results.

II. SOURCE CODING PRELIMINARIES

A. Universal Source coding
Lower bounds on the redundancy serve as benchmarks

for compression quality. Consider length-N sequences
x generated by a stationary ergodic source over a finite
alphabet X , i.e. x ∈ XN . For an individual sequence x,
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Fig. 1: A tree source over X = {0, 1}. The states are
S = {0, 11, 001, 101} and the conditional probabilities
are p(xi = 1|0) = 0.03, p(xi = 1|11) = 0.98, p(xi =
1|001) = 0.95, and p(xi = 1|101) = 0.97.

the pointwise redundancy with respect to (w.r.t.) a class
C of source models is

ρ(x) , l(x)−NĤx,

where l(x) is the length of a uniquely decodable code [6]
for x, and Ĥx is the entropy of x w.r.t. the best model in
C with parameters set to their maximum likelihood (ML)
estimates. Weinberger et al. [10] proved for a source with
K (unknown) parameters that

ρ(x) ≥ K

2
(1− ε) log(N), (1)

where log(·) denotes the base-2 logarithm, and for any
ε > 0, except for a set of inputs whose probability
vanishes as N → ∞. Similarly, Rissanen [11] proved
that, for universal coding of independent and identically
distributed (i.i.d.) sequences, the worst case redundancy
(WCR) is at least |X |−12 log(N)+C|X |+o(1) bits, where
|X | denotes cardinality of X , and C|X | was specified.
Because i.i.d. models are too simplistic for modeling
“real-world” inputs, we use tree sources instead.

B. Tree sources

Let xji denote the sequence xi, xi+1, . . . , xj where
xk ∈ X for i ≤ k ≤ j. Let X ∗ denote the set of
finite-length sequences over X . Define a context tree
source {S,Θ} [5] as a finite set of sequences called
states S ⊂ X ∗ that is complete and proper [5, p.654],
and a set of conditional probabilities Θ = {p(α|s) : α ∈
X , s ∈ S}. We say that s generates symbols following
it. Because S is complete and proper, the sequences of S
can be arranged as leaves on an |X |-ary tree [9] (Fig. 1);
the unique state s that generated xi can be determined
by entering the tree at the root, first choosing branch
xi−1, then branch xi−2, and so on, until some leaf s
is encountered. Let D , maxs∈S |s| be the maximum
context depth. Then the string xi−1i−D uniquely determines
the current state s; the previous symbols xi−1i−L (L ≤ D)
that uniquely determine the current state s are called the
context, and L is called the context depth for state s.

C. Semi-predictive and two-pass source coding

Consider a tree source structure S whose explicit
description requires lS bits, and denote the probabil-
ity of the input sequence x conditioned on the tree
source structure S by pS(x). Using S, the coding length
required for x is lS − log(pS(x)). Define the MDL
tree source structure Ŝ as the tree source structure that
provides the shortest description of the data, i.e.,

Ŝ , arg min
S∈C
{lS − log(pS(x))} ,

where C is the class of tree source models being con-
sidered. The semi-predictive approach [12–14] processes
the input x in two phases. Phase I first estimates Ŝ
by context tree pruning (CTP), which is a form of
dynamic programming for coding length minimization
(c.f. Baron [15] for details). The structure of Ŝ is
then encoded explicitly. Phase II uses Ŝ to encode the
sequence x sequentially, where the parameters Θ̂ are
estimated while encoding x. The decoder first determines
Ŝ, and afterwards uses it to decode x sequentially.

Two-pass MDL codes for tree sources describe both
Ŝ and Θ̂ in Phase I using CTP, and encode x in Phase II.
We use a two-pass approach instead of a semi-predictive
approach, because estimating B sets of parameters in
parallel, one for encoding each of the B blocks in
Phase II, has ρ(x) ≈ 0.5B|S| log(N/B), whereas the
two-pass approach has ρ(x) ≈ 0.5|S| log(N), and the
latter redundancy is smaller.

III. PROPOSED ALGORITHM

We present a new Parallel Two-Pass MDL (PTP-
MDL) algorithm. In order to keep the presentation
simple, we restrict our attention to a binary alphabet,
i.e., X = {0, 1}; the generalization to non-binary
alphabets is straightforward. We will show that PTP-
MDL has O(N/B) time complexity when we restrict
D ≤ log(N/B), while still approaching the pointwise
redundancy bound (1). This enables scalable data rates
without a factor-B increase in the redundancy.

A. Overview

A block diagram of a possible implementation of
the PTP-MDL encoder is shown in Fig. 2. In Phase I,
the PTP-MDL encoder employs B computational units
called parallel units (PUs) that work in parallel to accu-
mulate statistical information on B blocks in O(N/B)
time, and a coordinating unit (CU) that controls the PUs
and computes the MDL source estimate {Ŝ, Θ̂}.

Without loss of generality, we assume N/B ∈
Z+. Define the B blocks as x(1) = x

N/B
1 , x(2) =

x
2N/B
N/B+1, . . . , x(B) = xNN−N/B+1. PU b, where b ∈
{1, . . . , B}, first computes for each depth-D context s
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Fig. 2: Block diagram of the PTP-MDL encoder.

the block symbol counts nαs (b), which are the number of
times α is generated by s in x(b),

nαs (b) ,
b(N/B)∑

i=(b−1)(N/B)+D+1

1{xi
i−D=sα}, α ∈ X ,

where sα denotes concatenation of s and α. For each
state s such that |s| < D, the CU either retains the
children states 0s and 1s in the MDL source, or prunes
them and only retains s, whichever results in a shorter
coding length. Details of the pruning decision appear
in Section III-C3. Note that the serial MDL source
considers the last D symbols from the previous block as
context for counting the first D symbols of the current
block (except the first block). However, using the serial
MDL source is suboptimal in PTP-MDL, because this
source does not reflect the actual symbols compressed
by PTP-MDL.

In Phase II, each of the B blocks is compressed by
a PU. For each symbol xi(b), PU b first determines
the generator state Gi(b), the state s that generated the
symbol xi(b). PU b then assigns xi(b) a probability
according to the parameters that were estimated by the
CU in Phase I, and sequentially feeds the probability
assignments to an arithmetic encoder [6].

The structure of the decoder is similar to that of
Phase II. The approximated MDL source structure Ŝ
and quantized parameters Θ̂ are first derived from the
parallel source description (see Section III-B). Then,
the B blocks are decompressed by B decoding blocks.
In decoding block b, each symbol xi(b) is sequentially
decoded by determining Gi(b), assigning a probability
to xi(b) based on the parameter estimates, and applying
an arithmetic decoder [6].

B. Parallel source description
1) Two-part codes in the PTP-MDL algorithm: Hav-

ing received the block symbol counts nαs (b) from the
PUs, the CU computes the symbol counts generated by
state s in the entire sequence x,

nαs =

B∑
b=1

nαs (b), α ∈ X . (2)

The CU can then compute the ML parameter estimates
of p(1|s) and p(0|s),

θs , θ1s =
n1s

n0s + n1s
and θ0s = 1− θ1s ,

respectively. The ML parameter estimates for each state
s are quantized into one of

Ks ,

⌈√
2π2 ln(2)

(
1

2
− 3

16 ln(2)

)
N

⌉
≈
⌈
1.772

√
N
⌉

(3)
representation levels based on Jeffreys’ prior [16], where
d·e denotes rounding up. The representation levels and
bin edges are computed using a Lloyd-Max proce-
dure [16]. The bin index and representation level for state
s are denoted by ks and rs, respectively. Denoting the
quantized ML estimate of θαs by θ̂αs , we have θ̂1s = rs
and θ̂0s = 1 − rs. Recall that, at the end of Phase I,
the CU has computed the MDL structure estimate Ŝ. If
s ∈ Ŝ, then the first part of the two-part code for symbols
generated by s consists of encoding ks with log(Ks) bits.
The WCR using this quantization approach is 1.047 bits
per state above Rissanen’s redundancy bound [11, 16].

In Phase II, which implements the second part of
the two-part code, each PU b encodes its block x(b)
sequentially. For each symbol xi(b), PU b determines
Gi(b). The symbol xi(b) is encoded according to the
probability assignment p̂(xi(b)) , θ̂

xi(b)
Gi(b)

with an arith-
metic encoder [6]. Thus, the probability assigned by all
B PUs to the symbols in x whose generator state is s is

B∏
b=1

∏
{i: Gi(b)=s, i>D}

p̂(xi(b)) = (rs)
n1
s(1− rs)n

0
s . (4)

Equation (4) provides the same redundancy for two-part
codes in a parallel compression system as we would
obtain in a serial system [15].

2) Coding lengths in Phases I and II: In Phase I,
the structure Ŝ is described with the natural code [5].
For a binary alphabet, |naturalŜ | ≤ 2|Ŝ| − 1 bits; this
is the model redundancy of PTP-MDL. The parameters
Θ̂ are described as the |Ŝ| indices ks in the order
in which the leaves of Ŝ are reached in a depth-first
search [9]; this description can be implemented with
arithmetic coding [6]. The corresponding coding length
is the parameter redundancy of PTP-MDL. We denote
the length of the descriptions of Ŝ and Θ̂ generated in
Phase I by lIS bits. Using (3),
lIS = |naturalS |+ |S| log(Ks) (5)

/ [2|S| − 1] + |S|
[
log(1.772) +

1

2
log(N)

]
.

In Phase II, the coding length is mainly determined by
symbol probabilities conditioned on generator states as
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given by (4). There are two additional terms that affect
the coding length in Phase II. First, coding redundancy
for each arithmetic encoder with log(N) bits of precision
requires O(1) ≤ 2 bits [6]. Second, symbols with
unknown context at the beginning of x(b); we encode
the first D symbols of each block x(b) directly using D
bits per block. Denoting the combined length of all B
codes in Phase II by lIIS bits, we have

lIIS / B ·(D + 2)−
∑
s∈S

[n1s log(rs)+n0s log(1−rs)]. (6)

Combining (5) and (6), we have the following result for
the redundancy.

Theorem 1: [15] The pointwise redundancy of the
PTP-MDL algorithm over the ML entropy of the input
sequence x w.r.t. the MDL souce structure Ŝ satisfies

ρ(x) < B

[
log

(
N

B

)
+ 2

]
+
|Ŝ|
2

[log (N) +O (1)] .

Note that the redundancy for naive
parallel compression is upper bounded by
B
[
log
(
N
B

)
+ 2 + |Ŝn|

2 [log (N) +O (1)]
]
, where

Ŝn is the estimated tree structure with the largest
number of states among the B tree structures.

C. Phase I
1) Computing block symbol counts: Computational

unit b computes nαs (b) for all 2D depth-D leaf contexts
s. In order for PU b to compute all block symbol counts
in O(N/B) time, we define the context index ci(b) of
the symbol xi(b) as

ci(b) ,
D−1∑
j=0

2jxj+i−D(b), (7)

where i ∈ {D + 1, . . . , N/B} and xj+i−D(b) ∈ {0, 1},
hence ci(b) ∈ {0, . . . , 2D − 1}. Note that ci(b) is the
binary number represented by the context s = xi−1i−D(b).
Hence, it can be used as a pointer to the address con-
taining the block symbol count nαs (b) for s = xi−1i−D(b).
Moreover, the property

ci+1(b) =
ci(b)

2
+ 2D−1xi(b)−

xi−D(b)

2
(8)

enables the computation of all N/B−D context indices
of the symbols of x(b) in O(N/B) time complexity.

2) Constructing context trees: Because we restrict
our attention to depth-D contexts, it suffices for PU b
to compute {nαs (b)}α∈X , s∈XD , all the block symbol
counts of all the leaf contexts of a full depth-D context
tree. Information on internal nodes of the context tree,
whose depth is less than D, is computed from the block
symbol counts of the leaf contexts.

If |s| = D, then the CU gets {nαs (b)}α∈X from the
PUs and computes nαs with (2). Alternatively, |s| < D,

the CU recursively derives nαs by adding up the symbol
counts of children states, i.e.,

nαs = nα0s + nα1s, ∀α ∈ X . (9)

3) Computing the MDL source {Ŝ, Θ̂}: For each state
s, we either retain the children states 0s and 1s in the
tree or merge them into a single state, according to
which decision minimizes the coding length. The coding
length ls of the two-part code that describes the symbols
generated by s is

ls =

Part I︷ ︸︸ ︷
log(Ks)

Part II︷ ︸︸ ︷
−n0s log(1− rs)− n1s log(rs) . (10)

We now derive the coding length required for state s,
which is denoted by MDLs. For |s| = D, n0s and n1s
are computed with (2), ls is computed with (10), and
MDLs = ls. For |s| < D, we compute nαs hierarchically
with (9), after already having processed the children
states. In order to decide whether to prune the tree, we
compare MDL0s+MDL1s with ls. Because retaining an
internal node requires the natural code [5] to describe
that node (with 1 bit),

MDLs =

{
ls if |s| = D

1 + min {MDL0s + MDL1s, ls} else .

In terms of the natural code, if |s| = D, then s is a leaf
of the full depth-D context tree, and its natural code is
empty; else |s| < D, and the natural code requires 1 bit
to encode whether s ∈ S. The symbols generated by s
are encoded either by retaining the children states (this
requires a coding length of MDL0s + MDL1s bits), or
by pruning the children states and retaining state s with
coding length ls. If |s| = D, then we do not process
deeper contexts. The CTP has O(N/B) time complexity
because the tree has O(N/B) states.

D. Phase II
In Phase II, PU b knows Ŝ and {rs}s∈Ŝ . PU b encodes

x(b) sequentially; for each symbol xi(b), it determines
Gi(b). An O(N/B) algorithm for determining Gi(b)
for all the symbols of x(b) utilizing (7,8) is described
by Baron [15]. After determining Gi(b), the symbol
xi(b) is encoded according to the probability assign-
ment p̂(xi(b)) , θ̂

xi(b)
Gi(b)

with an arithmetic encoder [6].
In order to have O(N/B) time complexity and O(1)
expected coding redundancy per PU, arithmetic coding
is performed with log(N) bits of precision [6], where
we assume that the hardware architecture performs arith-
metic with log(N) bits of precision in O(1) time.

E. Decoder
The B decoding blocks can be implemented on B

PUs. Decoding block b decodes x(b) sequentially; for
each symbol xi(b), it determines Gi(b). The same
O(N/B) algorithm used in Phase II for determining
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Fig. 3: The performance of PTP and naive parallel com-
pression algorithms using MDL and Markov encoders.

Gi(b) for all the symbols of x(b) can be used in the
B decoding blocks. After determining Gi(b), the symbol
xi(b) is decoded according to the probability assignment
p̂(xi(b)) , θ̂

xi(b)
Gi(b)

with an arithmetic decoder [6] that has
O(N/B) time complexity.

Theorem 2: [15] With computations performed with
log(N) bits of precision defined as O(1) time, the PTP-
MDL encoder and decoder each require O(N/B) time.

IV. NUMERICAL RESULTS
This last section presents numerical results that com-

pare the coding lengths of the parallel two-pass and
naive parallel algorithms for different encoder settings
and different numbers of parallel blocks. Two encoders
are considered: MDL encoder (context tree pruning), and
full depth Markov encoder (no pruning).

We test the average coding lengths over 2,000 rep-
etitions for signals of length N = 10, 000 generated
by the context tree source with 4 states as described
in Fig. 1. The maximum context depth D is set to be
5 ≤ log (N/B) for both MDL and Markov encoders.
Hence the Markov encoder will run with 25 = 32 states.
For the MDL encoder, context tree pruning estimates the
number of states |Ŝ| to be around 4, which is the number
of states in the original source. Note that the coding
length for a Bernoulli encoder, which uses D = 0, is
greater than the coding lengths of the other encoders,
and hence is not included in our results.

Fig. 3 shows our numerical results. It can be seen
that PTP-MDL gives the best compression among the
encoders, because the redundancy due to the source
description lIS is higher for the Markov source than the
MDL source due to the larger number of states.

Comparing the coding lengths for PTP-MDL and
naive parallel compression, we can see that the rate
of increase in coding length is higher for naive par-
allel compression. Both PTP-MDL and naive parallel

compression suffer from the same coding redundancy,
and redundancy due to unknown context for each block.
However, the parameter redundancy due to source de-
scription is approximately B times larger for naive
parallel than for PTP-MDL.

In summary, for context tree sources of depth D ≤
log (N/B), PTP-MDL can compress data in O(N/B)
time while achieving a redundancy within B log(N/B)
bits above Rissannen’s lower bound on universal coding
performance.
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