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Abstract

In this paper we prove the existence of a natural mapping from the surgery exact
sequence for topological manifolds to the analytic surgery exact sequence of N. Higson and
J. Roe. This generalizes the fundamental result of Higson and Roe, but in the treatment
given by Piazza and Schick, from smooth manifolds to topological manifolds. Crucial to
our treatment is the Lipschitz signature operator of Teleman.

We also give a generalization to the equivariant setting of the product defined by
Siegel in his Ph.D. thesis. Geometric applications are given to stability results for rho
classes. We also obtain a proof of the APS delocalised index theorem on odd dimensional
manifolds, both for the spin Dirac operator and the signature operator, thus extending to
odd dimensions the results of Piazza and Schick. Consequently, we are able to discuss the
mapping of the surgery sequence in all dimensions.
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1 Introduction

Let M be a n-dimensional topological manifold, with Γ = π1(M) and let M̃ → M be its
universal covering. We assume n greater than 5 and, initially, odd.

In [25] Sullivan proves that there always exists a Lipschitz manifold structure on M and that
it is unique up to a bi-Lipschitz homeomorphism isotopic to the identity. In [26, 27] Teleman
studies index theory in the Lipschitz context and in [8] Hilsum develops it in the framework
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of unbounded Kasparov theory. In particular there is a signature operator arising from the
Lipschitz structure and this operator determines a well defined class in the K-homology of M .

Thanks to these results it is possible to extend the work by Piazza and Schick [17] (that
follows the one by Higson and Roe [5, 6, 7]) from the smooth to the topological category. Let
us recall that in [17] Piazza and Schick built a natural transformation

Ln+1(ZΓ) //

IndΓ

��

S(M) //

%

��

N (M) //

β

��

Ln(ZΓ)

IndΓ

��
Kn+1(C∗r (Γ)) // Kn+1(D∗(M̃)Γ) // Kn(M) // Kn(C∗r (Γ))

from the surgery exact sequence for smooth manifolds to the analytic surgery exact sequence
of Higson and Roe, using tools and methods in coarse index theory.

In this paper we check that this mapping also exists for the surgery sequence for topological
manifolds. To this aim we will use as key tool the Lipschitz structure given by Sullivan theorem
[25]. In particular we prove that the key results by Wahl, Piazza and Schick, have a true
abstract and K-theoretical meaning, that does not depend on the smooth structure and the
pseudodifferential calculus.

One significant difference between the smooth SES and the topological SES is that the
second one is an exact sequence of groups, whereas the first one is not. In this paper we deal
with the mapping at the set level: to prove that the diagram is commutative as a diagram of
groups, the main difficulty is that the group structure of the topological structure set is rather
quite hard to handle. The following question is wide open:

• is the map % : S(M)→ Kn+1(D∗(M̃)Γ) a homomorphism of groups?

A positive answer to this question would have direct consequences to Conjecture 3.8 in [33],
using the methods in developed in [34].

In the second part of the paper we give another realization of the group K∗(D
∗(M̃)Γ) in

terms of the mapping cone of Kasparov bimodules, in order to generalize to the equivariant
setting a product formula proved by Siegel in his Ph.D. thesis [21]. This product allows us
to give stability results for %-invariants and to prove the delocalized APS index theorem of
Piazza and Schick ([18]) in the odd dimensional case. This last result leads to define a natural
mapping from the SES to the analytic SES of Higson and Roe when dim(M) = n is even, in
both the smooth and the topological setting.

With the same method one can extendd the construction in [18], about the Stolz exact
sequence, to the case of even dimensional manifolds, but this was already proven in [35].

We refer the reader to [17] for a more detailed overview of the problem in the smooth
setting.
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teachings. Moreover I am glad to thank Thomas Schick and Rudolf Zeidler for pointing out
some imprecisions in the first version of the paper. Finally I am grateful to the anonymous
referee for his careful reading of the paper.

2 Signature operator on Lipschitz manifolds

We start recalling fundamental results on Lipschitz manifolds. For further details we refer to
[26, 27, 8, 25, 30].

Definition 2.1. A Lipschitz atlas on a topological manifold M is an atlas such that the map
ϕ ◦ ψ−1 is a Lipschitz homeomorphism for any two charts ϕ : U → Rn and ψ : V → Rn. By
definition a Lipschitz manifold structure on M is a maximal Lipschitz atlas.
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Theorem 2.2 ([25]). Any topological manifold of dimension n 6= 4 has a Lipschitz atlas of
coordinates. For any two such structures L1 and L2, there exists a Lipschitz homeomorphism
h : L1 → L2 isotopic to the identity.

Theorem 2.3 ([26, 8]). Let M be a closed oriented Lipschitz manifold of even dimension.
Then from the complex of L2-differential forms on M (with respect to some choice of a Lipschitz
Riemannian metric g) one obtains a signature operator Dg which is closed and self-adjoint.
Therefore Dg determines a class [D] in K0(M) ' KK(C(M),C) which is independent of the
choice of the metric g. The image of [D] in K0(pt) ' KK(C,C) (i.e., the index of Dg) is the
usual signature of the manifold.

In [9] Hilsum proves that the signature operator gives a KK-class as above in the case of
non compact manifolds too, provided the manifold M is endowed with a metric g such that
it is metrically complete with respect to the induced structure of metric space. Moreover he
showed a result on the finite propagation speed for solutions of the wave equation.

Theorem 2.4 (Hilsum). Let M be an oriented Lipschitz manifold with a Riemannian structure,
such that the manifold is complete as metric space. Let d be the associated distance function
and let D be the associated signature operator. For all t ∈ R, we have that:

supp(eitD) ⊂ {(x, y) ∈M ×M | d(x, y) ≤ t}.

For f ∈ S(R) such that supp(f̂) ⊂ [−a, a], with a > 0, we have that:

supp(f(D)) ⊂ {(x, y) ∈M ×M | d(x, y) ≤ a}.

This theorem will be key in the coarse geometrical setting.

3 The % classes

We refer the reader to [7, sect.1] and [18, sect.1] for notations about coarse geometry and coarse
algebras.

Let N be an oriented topological manifold of dimension n ≥ 5; an element of the topological
structure set of N is given by an orientation preserving homotopy equivalence f : M → N . Two
different homotopy equivalences f : M → N and f ′ : M ′ → N are equivalent if there is a h-
cobordism W between them and a homotopy equivalence F : W → N×[0, 1], such that F|M = f
and F|M ′ = f ′.

Definition 3.1. The topological structure set STOP (N) of N is defined as the set of the
h-cobordism classes of oriented homotopy equivalences.

Given a class [f : M → N ], we set Z = M ∪ −N . Let Γ be the fundamental group of

N . The universal covering Ñ → N is induced by a map u : N → BΓ, namely Ñ = u∗(EΓ),

where BΓ is the classifying space of Γ and EΓ is its universal covering. Let M̃ be the Γ-Galois
covering induced by uM := u ◦ f , then we get a Γ-Galois covering Z̃ = M̃ ∪ −Ñ on Z. Let
F = Z̃ ×Γ C

∗
r (Γ) be the associated Mischenko bundle.

Now, starting from a Lipschitz structure on Z given by Theorem 2.2, consider the L2-forms
complex L2(Z,ΛC(Z)), see [8, Section 2].

We get a differential dZ and an involution τZ ; τZ is the operator ω 7→ ip(p−1)+ n
2 ∗ ω on

forms of degree p. Like in the classical Hodge theory we can define the Lipschitz signature
operator (with coefficients) as

DZ = (dZ − τZdZτZ)

if n is even and
DZ = (τZdZ + dZτZ)

if n is odd.
Like in [8], we have that

(
L2(Z,ΛC(Z)), µ,DZ

)
defines an unbounded class [DZ ] ∈ KK(C(Z),C),

where µ is the representation that associates the multiplication operator µf to a function f .
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3.1 The perturbed signature operator

We want to associate a class in the K-groupK∗(D
∗(M̃)Γ) to a homotopy equivalence f : M → N

and show that this mapping is well defined on the h-cobordism classes.
The key result for what follows is the homotopy invariance of the index class of the signature

operator for compact oriented smooth manifolds, proved by M. Hilsum and G. Skandalis in
[11]. Remember that, in the equivariant setting, this class is given by

IndΓ(DZ) = [F ]⊗C(X)⊗C∗r (Γ) [DZ ] ∈ KK(C, C∗r (Γ)),

where [F ] is the class of Mishchenko bundle in KK(C, C(Z)⊗ C∗r (Γ)).

Theorem 3.2 (Hilsum-Skandalis). Let f : M → N be a homotopy equivalence. Then the class
IndΓ(DZ) ∈ KK(C, C∗r (Γ)) vanishes.

In remark [11, p.95] the authors observe that all arguments can be applied to the Lipschitz
case: we can easily check that the objects do not need be smooth.

Remark 3.3. Of particular interest to us is a byproduct of the proof of Theorem 3.1, namely
the construction of a homotopy Dα between the signature operator DZ = D0 and an invertible
operator D1. This is the reason why the index class IndΓ(DZ) vanishes. Here DZ is the signa-
ture operator twisted by the Mishchenko bundle. Moreover we point out that the perturbation
creates a gap in its spectrum near 0.

Proposition 3.4. The difference D0−D1 is a C*-module compact operator on L2(Z,ΛC(Z)⊗ F)
both in the smooth and in the Lipschitz case.

Proof.

The proof of [11, Theorem 3.3] is based on the construction of an operator Tp,v, that plays the
role of the pull-back of forms.

Let us take the following data:

• a submersion p : M ×Bk → N , where Bk is the unit open disk of Rk;

• a smooth k-form v with compact support on Bk, such that
∫
Bk v = 1. Put then

ω = p∗Bk(v).

Then p∗ : L2(N,ΛC(N)⊗FN )→ L2(M ×Bk,ΛC(M ×Bk)⊗p∗FN ) is a bounded operator and
Tp,v is defined as the operator ξ 7→ q∗(ω∧p∗(ξ)). Consider the following commutative diagram

M ×Bk
p

##

q

{{
t

��
M M ×N

pM
oo

pN
// N

(3.1)

where t = idM × p. We get that, for ξ ∈ L2(N,ΛC(N)⊗FN )

Tp,v(ξ) = q∗(ω ∧ p∗(ξ)) =

= (pM )∗t∗ (ω ∧ (t)∗p∗N (ξ)) =

= (pM )∗ (t∗ω ∧ p∗N (ξ)) .

Notice that (pM )∗ is nothing but the integration over N . Assume that k and p are chosen
so that t is a submersion. If we denote the form t∗ω on M × N with k(y, x), it turns out
that Tp,v(ξ) =

∫
N
k(x, y)ξ(x) is an integral operator with smooth kernel and consequently a

smoothing operator.
The operator Y in [11, Lemma 2.1(c)], such that 1 + T ′p,v ◦ Tp,v = dN ◦ Y + Y ◦ dN , is

bounded of order −1 (see the proof of [32, Lemma 2.2] for an explicit expression of Y ).
Now we can follow word by word the proof of [16, Lemma 9.14], using the conventions in

[32, Section 3]. For simplicity let us consider the odd case. The perturbed signature operator
is then given by

Dt = −iUt(dt ◦ St + St ◦ dt) ◦ U−1
t
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where

dt =

(
dM tT ′p,v
0 −dN

)
, St = sign (τZ ◦ Lt) and Ut = |τZ ◦ Lt|

1
2 ,

with

Lt =

(
1 + T ′p,v ◦ Tp,v (1− itγ ◦ Y ) ◦ T ′p,v

Tp,v ◦ (1 + itγ ◦ Y ) 1

)
One can easily see that Lt = 1 + Ht, with Ht smoothing. Moreover one has that |τZ ◦ Lt| =√
L∗tLt =

√
1 +Rt, with Rt smoothing. Observe that 0 < L∗tLt = 1+Rt implies that Rt > −1.

It follows that
√
L∗tLt − 1 = f(Rt), where f(x) =

√
1 + x− 1 is holomorphic on the spectrum

of Rt (-1 is a branch point for f). Since f(0) = 0, we have that f(z) = az + zh(z)z, where h
is a holomorphic function.

Let us point out that if S0 and S1 are smoothing operators and T is a bounded operator,
then S0 ◦ T ◦ S1 is smoothing. Then we immediately get that Ft := |τZ ◦ Lt| − 1 = f(Rt) is
smoothing. With the same argument one can prove that Ut = 1 +Ht with Ht smoothing.

By [16, Lemma A.12], |τZ ◦ Lt|−1 = 1 + F ′t and Ut = 1 + H ′t with F ′t and H ′t smoothing.
Then one obtains that, St = τZ + Gt and dt = dZ + Et, where Gt and Et are smoothing
operators.

Consequently one has that

Dt = −i(1 +Ht) ((d+ Et) ◦ (τZ +Gt) + (τZ +Gt) ◦ (d+ Et)) ◦ (1 +H ′t)

is equal to D + Cf with Cf a compact operator.

Now we have to prove that the Lipschitz Hilsum-Skandalis perturbation is bounded. In the
smooth case we tackled the problem geometrically, here we try with a more analytical approach.
An operator of order −n is a bounded operator between Hs(Z,E) and Hs+n(Z,E), the Sobolev
sections of E of order s and s+ n, for any s. An operator is regularizing if it is of order −∞.
Equivalently one can say that an operator T is regularizing (of order −∞) if Dn ◦ T ◦Dm is a
bounded operator on L2-section for any m,n ∈ Z.

By [8, Proposition 5.6] we know that the signature operator has compact resolvent, therefore
its spectrum is a countable and discrete subset {λn}n∈N of R such that limn−→∞ λ2

n = +∞.
Now let ψ ∈ C∞0 (R) be a rapidly decreasing even function such that ψ(0) = 1. Since

ψ is even, it turns out that ψ(dN + d∗N ) maps even/odd degree forms to even/odd degree
forms and it is a Hilbert-Schmidt operator: the proof of the first statement of [19, Prop.
5.31] works putting ‘Hilbert-Schmidt’ instead of ‘smoothing’. Let us denote its kernel by
k(x, y) ∈ L2(N ×N,End(ΛC(N)⊗FN )).

Define the compact operator Tf : L2(N,ΛC(N) ⊗ FN ) → L2(M,ΛC(M) ⊗ f∗FN ) as the
integral operator with kernel q̄∗(ω ∧ p̄∗k) ∈ L2(M ×N,Hom(ΛC(N) ⊗ FN ,ΛC(M) ⊗ f∗FN )),
where f̄ = f × idN for f equal to p and q as in diagram (3.1).

This operator satisfies the hypothesis of [11, Lemma 2.1]. Indeed, because of our choice of
ψ, we have that 1 − ψ(x) = x · ϕ(x), where ϕ is a rapidly decreasing odd function. Moreover
d∗N ◦ ϕ(dN + d∗N ) = ϕ(dN + d∗N ) ◦ dN , since ϕ is odd. Then we get the following formula

1− ψ(dN + d∗N ) = dN ◦ ϕ(dN + d∗N ) + ϕ(dN + d∗N ) ◦ dN

and by construction T ′fTf = ψ(dN + d∗N )′ψ(dN + d∗N ). Now it is easy to check that there

exists an operator Y ∈ B(L2(N,ΛC(N) ⊗ FN )) such that Y (dom(dN )) ⊂ dom(dN ) and that
1− T ′f ◦ Tf = dN ◦ Y + Y ◦ dN :

1− T ′f ◦ Tf = 1− ψ′ ◦ ψ =

= 1− (1− d ◦ ϕ− ϕ ◦ d)′ ◦ (1− d ◦ ϕ− ϕ ◦ d) =

= 1− (1− d ◦ ϕ− ϕ ◦ d− ϕ′d′ − d′ ◦ ϕ′+
+ d ◦ ϕ ◦ ϕ′ ◦ d+ d ◦ ϕ ◦ d′ ◦ ϕ′ + ϕ ◦ d ◦ ϕ′ ◦ d′ + ϕ ◦ d ◦ d′ ◦ ϕ′) =

= d ◦ ϕ+ ϕ ◦ d− ϕ′d− d ◦ ϕ′ =

= d ◦ Y + Y ◦ d,
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with Y = ϕ(dN + d∗N ) − ϕ(dN + d∗N )′. We simplified some notations and we denoted dN by
d, ϕ(dN + d∗N ) by ϕ and the same for ψ. Moreover we used the following facts: d′N = −dN ,
ϕ ◦ d = d∗ ◦ ϕ and ϕ′ ◦ d′ = (d′)∗ ◦ ϕ′.

It is not difficult to check that the operator Tf is a regularizing operator (and hence a
compact operator), therefore the image of Tf is in the domain of the Lipschitz signature
operator.

Then the boundedness of the Lipschitz Hilsum-Skandalis perturbation follows as in the
smooth case. The only thing we have to care about is the dependence of this construction on
the choice of the metric on N . In particular we have to check that ψ(dN + d∗N ) is Hilbert-
Schmidt no matter which metric we use to take the adjoint.

If we have two different metrics g0 and g1 on N , then by [8, Lemma 5.1] we can complete
the Lip(N)-module Lip(N,ΛC(N) ⊗ FN ) with respect to the two metrics and we obtain two
isomorphic C(N)-Hilbert modules with compatible metrics:

K−1|| · ||1 ≤ || · ||0 ≤ K|| · ||1 ∃K ∈ R+ \ {0}.

Then by the Minmax Theorem |λ0
n| ≤ K2|λ1

n|, where for any n ∈ N, λin is the n-th eigenvalue
of d+ d∗i .

So it is easy to check that if ψ is a rapidly decreasing function on the spectrum of d+ d∗0,
it is rapidly decreasing on the spectrum of d+ d∗1 too. Therefore ψ(d+ d∗) is Hilbert-Schmidt
independently of the metric we choice.

Definition 3.5. Let f : M → N be a homotopy equivalence and Z = M ∪−N . Denote by Cf
the perturbation of DZ arising in the previous remark and call it a trivializing perturbation.
Note that it depends on the homotopy equivalence f .

We recall from [17] that there is an isomorphism of C*-algebras

K(L2(Z,ΛC(Z)⊗F)) ' C∗(Z̃)Γ.

By [15, Proposition 2.1], the above isomorphism gives an isomorphism at the level of multiplier
algebras

B(L2(Z,ΛC(Z)⊗F)) 'M(C∗(Z̃)Γ). (3.2)

This isomorphism is given by the map Lπ defined in [17, Section 2.2.1]. Hence we can go
from the Mishchenko bundle setting to the covering one. From now on Cf will be the element

in M(C∗(Z̃)Γ) associated to Cf ∈ B(L2(Z,ΛC(Z) ⊗ F)) through the map Lπ. Moreover D̃Z

will indicate the operator on the covering induced by the signature without coefficients in the
Mishchenko bundle.

Remark 3.6. Consider a chopping function ψ ∈ Cb(R) with compactly supported Fourier
transform. Thanks to Theorem 2.4 we can prove that the functional calculus through ψ of the
operator D̃Z is an operator of finite propagation. The pseudolocality of D̃Z comes from [8,

6.1]. Hence ψ(D̃Z) ∈ D∗(Z̃)Γ.

Proposition 3.7. The difference between ψ(D̃Z) and ψ(D̃Z + Cf ) belongs to C∗(Z̃)Γ.

Proof. Moving to the Mishchenko bundle setting through (3.2), we should prove that the

difference ψ(DZ) − ψ(DZ + Cf ) belongs to K(L2(Z,ΛC(Z) ⊗ F)). If ψ1(t) = t(1 + t2)−
1
2 , by

[2, Proposition 2.2] we have that [ψ1(DZ), a] belongs to the algebra of compact C*-module

operators. Therefore if we consider the matrices
[
DZ 0
0 DZ+Cf

]
and [ 0 1

1 0 ], their bracket consists

in
[

0 −Cf
Cf 0

]
, that is known to be bounded. Then, after applying the functional calculus through

ψ1, we deduce that the matrix components in the bracket

±(ψ1(DZ)− ψ1(DZ + Cf ))

are compact.
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Now notice that two different chopping functions differ by a function in C0(R). Taking
into account the correspondence stated in (3.2), we have that the resolvent of DZ , given by
(i + DZ)−1, is compact (see [8, Proposition 5.6]) and since φ(t) = (i + t)−1 generates C0(R),
the functional calculus of DZ through a function in C0(R) gives a compact operator. Then if
ψ′ is any chopping function, it turns out that

ψ(DZ)− ψ(DZ + Cf ) = ψ1(DZ)− ψ1(DZ + Cf ) + compacts operators

and the right-hand side term is compact.

Corollary 3.8. The operator χ(D̃Z+Cf ), with χ(x) = x
|x| , is a bounded involution in D∗(Z̃)Γ.

Thanks to Corollary 3.8 we can define a class by setting

%(D̃Z + Cf ) =

[
1

2
(1 + χ(D̃Z + Cf ))

]
∈ K0(D∗(Z̃)Γ).

Now consider the map ϕ : Z → M such that ϕ|N = f and ϕ|−M = −IdM ; we can clearly see

that ϕ is covered by a Γ-equivariant map ϕ̃ : Z̃ → M̃ .

Definition 3.9. Let f : M → N be a homotopy equivalence between two compact oriented
Lipschitz manifolds. Consider Z = M ∪ −N and its covering Z̃ associated, as above, to a
classifying map u : Z → BΓ. Let D̃Z be the Lipschitz signature operator and let Cf be the
trivializing perturbation associated to f . We define

%(f : M → N) := ϕ̃∗

[
1

2
(1 + χ(D̃Z + Cf ))

]
∈ K0(D∗(M̃)Γ)

and
%Γ(f : M → N) = u∗%(f : M → N) ∈ K0(D∗Γ).

Proposition 3.10. The %-class does not depend on the choice of the Lipschitz structure.

Proof. The second part of Theorem 2.2 can be formulated as follows: let L1 and L2 be two
different Lipschitz structures on Z, then there exists a bi-Lipschitz homeomorphism φ : Z → Z,
isotopic to the identity through a path φt and such that φ∗(L2) = L1, where φ∗ : C(Z)→ C(Z)
is the induced *-homomorphism. Because of the functoriality of Teleman’s construction we
know that φ∗(%1) = %2, where %1 and %2 are the invariants associated to two different Lipschitz
structures. The isotopy φt induces a paths of *-isomorphisms φt∗ : D∗(Z̃)Γ → D∗(Z̃)Γ. Then
φt∗(%1) gives a homotopy between %2 and %1.

3.2 Perturbed signature operator on manifolds with cylindrical ends

In this section we are going to check that the construction we made for % and %Γ are well
defined on the structure set STOP (N).

For this purpose we will use the results presented in [32, 18, 17], where the authors have
developed the theory in the smooth setting. Their methods are rather abstract and they also
hold in the Lipschitz context.

In order to develop the theory for manifolds with cylindrical ends, we are going to use the
same notations as [17, 2.19].

The geometrical setting is the following: let f : M → N and f ′ : M ′ → N be two topo-
logical structures for N ; let W be a cobordism between ∂0W = M and ∂1W = M ′ and let
W∞ be the manifold with the infinite semi-cylinder ∂W × R≤0 attached to the boundary; let
V = N × [0, 1] and let V∞ be the complete cylinders with base ∂V = N ; there is a homotopy
equivalence F : W∞ → V∞ which has the product form F∂ × idR≤0

on the cylindrical ends,
where F∂0

= f : M → N and F∂1
= f ′ : M ′ → N , both of them being homotopy equivalences.

Thanks to the results presented in [9] we have a well defined Lipschitz signature complex
on the manifold X = W∞ ∪ −V∞. Notice that ∂0X = Z and ∂1X = Z ′.
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First of all we need a generalization of Theorem 3.2 for manifolds with cylindrical ends.
This result is given by [32, Proposition 8.1], where a perturbation of the signature operator is
associated to the homotopy equivalence F . Such a perturbation makes the operator invertible,
as in the usual case.

Remark 3.11. As well as in the case presented in Theorem 3.2, the generalization developed
in [32, Proposition 8.1] is still valid in the Lipschitz setting.

The goal of this section is to check that the %-class is well defined on the h-cobordism
classes: as pointed out in [17, Proposition 4.7], this is obtained by the combination of [32,
Theorem 8.4] and [17, Corollary 3.3].

In [32, Theorem 8.4] all constructions work in the Lipschitz framework, where we do not

consider the parameter ε. Wahl builds a perturbation Ccyl
F of the signature operator, supported

on the cylindrical ends, from the perturbations on Z and Z ′; hence she constructs a homotopy
of operators between DX + Ccyl

F and an other operator that, thanks to the Bunke’s relative
index theorem, has vanishing index.

For the proof of the equality we just mentioned, the only not obvious point in the Lipschitz
case is the one concerning the relative index theorem proved in [3], since what remains of the
proof uses abstract theory of unbounded operators and spectral flow methods.

It is worth formulating Bunke’s Theorem in the Lipschitz case and giving a sketch of its
proof.

3.2.1 Bunke’s relative index theorem for Lipschitz manifolds

The idea of the theorem is the following: let X be a manifold, let E → X be a bundle and D
a Fredholm operator on the sections of this bundle; if there exists a hypersurface Y in X such
that the operator is invertible near Y , we can cut the manifold (and the bundle) along Y and
we can paste a semicylinder to the boundary of both parts obtained after cutting, extending
the bundle and the operator along the semicylinder. Then we obtain an operator whose index
equals the index of the original operator.

More precisely we are considering the following data: the Lipschitz manifold X we have de-
fined in the previous subsection, the Hilbert module L2(X,ΛC(X)⊗F) of L2-forms onX twisted
by the Mishchenko bundle, that we are going to denote by H0; a regular operator G that is the
twisted Lipschitz signature operator, possibly perturbed by a bounded operator; we suppose
that there is a Lipschitz function with compact support f ≥ 0 and (G2 + f)−1 ∈ B(H0,H2)
(here H2 is the maximal domain of the square of the signature operator).

Definition 3.12. Let LipK(X) be the set of bounded Lipschitz functions h such that for all
ε > 0 there exists a compact C ⊂ X, with ||dh|X\C ||L∞ < ε. Let us call CK(X) the closure of
LipK(X) in the sup-norm.

For the comfort of the reader, we recall the theorem stated in the Lipschitz setting. Let
Ei → Xi, i = 1, 2, be the two C∗(Γ)-C* bundles ΛC(Xi)⊗Fi, with operator Gi, associated to
them as above. Let Wi∪Yi Vi be a partition of Xi where Yi is a compact hypersurface. Assume
that there is a commutative diagram of isomorphisms of all structures

Ψ: E1|U(Y1)
//

��

E2|U(Y2)

��
ψ : U(Y1) // U(Y2)

ψ|Y1
: Y1

//

OO

Y2

OO

where U(Yi) is a tubular neighbourhood of Yi, for i = 1, 2. We cut Xi at Yi, glue the pieces
together interchanging the boundary components and obtain X3 := W1 ∪Y V2 and X4 :=
W2 ∪Y V1. Moreover, we glue the bundles using Ψ, which yields A-C* bundles E3 → X3 and
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E4 → X4 and we assume that Gi, i = 3, 4 are again invertible at infinity. We define [Xi] as
the class [H0

i ,
Gi

G2
i +f

] ∈ KK(CK(Xi), C
∗(Γ)). The algebra CK(X) is unital. Hence, there is an

embedding i : C→ CK(X) and an induced map

i∗ : KK(CK(X), C∗r (Γ))→ KK(C), C∗r (Γ)).

Set {Xi} := i∗[Xi] ∈ KK(C, C∗r (Γ)) for i = 1, . . . , 4.

Theorem 3.13 ([3]).

{Xl}+ {X2} − {X3} − {X4} = 0.

Here are two facts:

• thanks to [26, Theorem 7.1] we have the following Rellich-type result: the inclusion
H2 ↪→ H0 is compact;

• for any f Lipschitz function compactly supported on X, the multiplication operator
f : H2 → H0 is compact. And this also holds for the Clifford multiplication by grad(f),
the gradient of f .

Let R(λ) be the bounded operator (G2 + f + λ)−1 ∈ B(H0,H2), for λ ≥ 0; because of the
Rellich-type result, we know that R(λ) defines a compact operator in B(H0) and that there is
a positive constant C such that ||R(λ)|| ≤ (C + λ)−1.

Lemma 3.14. The integral

F =
G

π

∫ ∞
0

λ−
1
2R(λ)dλ

is convergent and defines an operator in B(H0).

Lemma 3.15. The operator [D,R(λ)] extends to a bounded operator that coincides with

−R(λ)grad(f)R(λ).

Moreover such an operator is compact.

Proof. See [3, Lemma 1.7 and Lemma 1.8].

Lemma 3.16. For any h ∈ CK(X), h(F 2 − I) ∈ K(H0).

Proof. We have(
G

π

∫ ∞
0

λ−
1
2R(λ)dλ

)(
G

π

∫ ∞
0

λ−
1
2R(λ)dλ

)
=

G2

π2

(∫ ∞
0

λ−
1
2R(λ)dλ

)2

+
G

π

[∫ ∞
0

λ−
1
2R(λ)dλ,

G

π

] ∫ ∞
0

λ−
1
2R(λ)dλ =

G2

π2

(
G2 + f

)−1 − G

π

∫ ∞
0

λ−
1
2R(λ)grad(f)R(λ)dλ

∫ ∞
0

λ−
1
2R(λ)dλ ∼

G2

π2

(
G2 + f

)−1
,

where in the third step we have used Lemma 3.15. Here ∼ means “equal modulo compacts”.
Hence

h(F 2 − I) ∼ h f

G2 + f

that is compact, since the multiplication by f is compact.

Lemma 3.17. For any h ∈ CK(X), [F, h] ∈ K(H0).
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Proof. Since we chose G as a perturbation of the signature operator D and since the pertur-
bation becomes compact under bounded transform, we have that

[F, h] ∼
[
D

π

∫ ∞
0

λ−
1
2R(λ)dλ, h

]
=

D

π

[∫ ∞
0

λ−
1
2R(λ)dλ, h

]
+

[
D

π
, h

] ∫ ∞
0

λ−
1
2R(λ)dλ =

D

π

∫ ∞
0

λ−
1
2 [R(λ), h] dλ+ grad(h)

∫ ∞
0

λ−
1
2R(λ)dλ ∼

D

π

∫ ∞
0

λ−
1
2 [R(λ), h] dλ.

The term in the last line is compact as in the proof of [3, Lemma 1.12].

Lemma 3.18. Let f and f1 be two positive and compactly supported Lipschitz functions such
that (G2 + f)−1, (G2 + f1)−1 ∈ B(H0,H2). Then the two associated operators F, F1 differ each
other by a compact operator.

Proof. See [3, Lemma 1.10].

The lemmas we presented yield to the following result.

Proposition 3.19. The pair (H0, F ) defines a Kasparov (CK(X), C∗r (Γ))-module and its class
in KK(CK(X), C∗r (Γ)) does not depend on the choice of f .

After checking this technical part, the proof of Theorem 3.13 is completely abstract and it
follows in the Lipschitz case as in the smooth one.

Now we treat another fundamental result proved by Piazza ans Schick: the delocalized
Atiyah-Patodi-Singer index theorem. As noticed in [17, Section 5.2], the proof of the delocalized
APS index theorem is based on abstract functional analysis for unbounded operators on Hilbert
spaces. The reader can check that it almost completely works in the Lipschitz context as well
as in the smooth one and we will not give all the details again.

The only proof to be modified is [17, Prop 5.33]. Assume the context and the notation
understood, then we state the following Proposition.

Proposition 3.20. Given a Dirac type operator D, the operator (1 + D2)−1 : L2 → H2 is a
norm limit of finite propagation operators Gn : L2 → H2 with the property that [ϕ,Gn] : L2 →
H2 is compact for any compactly supported continuous function on M .

Proof. It is an easy computation showing that

1

1 + x2
=

∫ +∞

−∞

e−|t|

2
e−itxdt.

Let f : R→ R be a C∞ function such that

• 0 ≤ f ≤ 1,

• f = 1 on a neighbourhood of 0,

• f has compact support.

Define Gn =
∫ +∞
−∞ f

(
t
n

)
e−|t|

2 e−itDdt.

Finite propagation: since f
(
t
n

)
e−|t|

2 has compact support, Gn has finite propagation speed.

Pseudolocality: thanks to the above formula, (1+D2)−1−Gn =
∫ +∞
−∞ (1−f

(
t
n

)
) e
−|t|

2 e−itDdt.

Notice that (1 − f
(
t
n

)
) e
−|t|

2 is C∞ and moreover it is a rapidly decreasing function on the
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spectrum of D. By [19, Prop 5.31], (1 +D2)−1−Gn is a bounded operator from Hm to Hk for
any m, k ∈ N, hence Gn is pseudolocal because so is (1+D2)−1. Indeed, using Jacobi identities
for commutators and the fact that [ϕ,D] = c(dϕ), [ϕ, (1 + D2)−1] = (1 + D2)−1c(dφ)D(1 +
D2)−1 + (1 + D2)−1Dc(dφ)(1 + D2)−1) is compact, because the Clifford multiplication c(dϕ)
is compact.

In fact we need less: it is sufficient to show that (1 + D2)−1 − Gn is a bounded operator
from L2 to H3 and then, by Rellich Theorem, the commutator [ϕ, (1 +D2)−1 −Gn] turns out
to be a compact operator from L2 to H2. To prove this, we only need that the third derivative

of (1− f
(
t
n

)
) e
−|t|

2 has a bounded supremum norm (less than being rapidly decreasing).
In fact, under these hypotheses and by the properties of the Fourier transform, we get that

||(1 +D2)−1 −Gn||L2→H3 =

∣∣∣∣∣
∣∣∣∣∣
((

1− f
(
t

n

))
e−|t|

2

)′′′∣∣∣∣∣
∣∣∣∣∣
∞

(3.3)

is bounded. Moreover
((

1− f
(
t
n

))
e−|t|

2

)′′′
is equal to

− 1

n3
f ′′′
(
t

n

)
e−|t| +

3

n2
f ′′
(
t

n

)
|t|e−|t| − 3

n
f ′
(
t

n

)
e−|t| −

(
1− f

(
t

n

))
|t|3e−|t|

that clearly goes to zero as n goes to infinity. This also holds in the Lipschitz case.

Now we can state the delocalized Atiyah-Patodi-Singer index theorem, that also holds in
the Lipschitz context.

Theorem 3.21 ([17]). If i : C∗(X̃)Γ ↪→ D∗(X̃)Γ is the inclusion and j∗ : D∗(∂X̃)Γ → D∗(X̃)Γ

is the map induced by the inclusion j : ∂X̃ ↪→ X̃, we have

i∗(IndΓ(DX + Ccyl
F )) = j∗(%(D∂X + CF∂

)) ∈ K0(D∗(X̃)Γ).

Using the functoriality of the classifying map u ◦ F ∪ u : X̃ → EΓ and the map Φ :=
π1 ◦ (F ∪ −idV×[0,1]) we obtain

i∗Φ̃∗(IndΓ(DX + Ccyl
F )) = %(F∂) ∈ K0(D∗(Ṽ )Γ)

i∗u∗Φ̃∗(IndΓ(DX + Ccyl
F )) = %Γ(F∂) ∈ K0(D∗Γ).

Observe that %Γ is additive on disjoint unions as ∂X = Z ∪ −Z ′ and in particular that

%(F∂) = %(f)− %(f ′).

Combining this with [32, Theorem 8.4], we finally have that

%(f) = %(f ′),

and similarly for %Γ, hence they are well defined on STOP (N).

4 Mapping surgery to analysis: the odd dimensional case

We refer the reader to [17, Section 4] for the definitions that we are going to recall:

• N (N) is the set of normal maps. Its elements are degree 1 normal maps [f : M → N ]
where M is an oriented manifold. Two such maps are equivalent if there is a normal
cobordism between them. There is a map β : N (N) → Kn(N) such that [f : M → N ]
goes to the class f∗[DM ] − [DN ] ∈ K∗(N), where [DM ] and [DV ] are the K-homology
classes of the signature operators. The map β already appears in the work of Higson and
Roe where it is proved to be well defined.
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• The map IndΓ : Ln+1(ZΓ) → Kn+1(C∗r (Γ)) has been defined by Wahl, following the
results of Hilsum-Skandalis [11] and Piazza-Schick [18]. Recall that an element x ∈
Ln+1(ZΓ) is represented by a quadruple (F : W → X × [0, 1], u : X → BΓ) with W a
cobordism between two orientable manifolds ∂1W and ∂2W , X an orientable manifold,
F : (W,∂W )→ (X × [0, 1], ∂(X × [0, 1])) a degree one normal map of pairs, f1 := F|∂1W

and f2 := F|∂2W oriented homotopy equivalences and u : X → BΓ a classifying map. Let
f = f1 t f2 denote the restriction of F to ∂W . Consider Z := W t X × [0, 1] and Z∞
the manifold obtained attaching an infinite cylinder to the boundary ∂Z. Since f is a
homotopy equivalence, one can perturb the signature operator only on the cylindrical
ends and the obtained operator has a well defined index in Kn+1(C∗r (Γ)), that is the
image of (F : W → X × [0, 1], u : X → BΓ) through the map IndΓ.

Now we can state the main theorem.

Theorem 4.1. Let N be an n-dimensional closed oriented topological manifold with funda-
mental group Γ. Assume that n ≥ 5 is odd. Then there is a commutative diagram with exact
rows

Ln+1(ZΓ) //

IndΓ

��

STOP (N) //

%

��

N TOP (N) //

β

��

Ln(ZΓ)

IndΓ

��
Kn+1(C∗r (Γ)) // Kn+1(D∗(Ñ)Γ) // Kn(N) // Kn(C∗r (Γ))

and through the classifying map u : N → BΓ of the universal cover Ñ of N , we have the
analogous commutative diagram that involves the universal Higson-Roe exact sequence

Ln+1(ZΓ) //

IndΓ

��

STOP (N) //

%Γ

��

N TOP (N) //

βΓ

��

Ln(ZΓ)

IndΓ

��
Kn+1(C∗r (Γ)) // Kn+1(D∗Γ) // Kn(BΓ) // Kn(C∗r (Γ))

Remark 4.2. Let us recall the fact that, despite STOP (N) has a group structure, we do not
deal with it and the top row is considered just as a sequence of sets, as in the smooth case.

Thanks to the results of the previous section we can check that the results in [17, Sections
4.2 and 4.3] hold in terms of the category of topological manifolds instead of the one of smooth
manifolds: all proofs are still valid in the Lipschitz context. Thanks to the work of C.Whal
[32, Theorem 9.1], that can be combined with Theorem 2.4, the first vertical arrow is well
defined in the Lipschitz setting. The second one is also well defined for the previous section.
Concerning the third one there are no significant problems.

The same method used in Proposition3.10 applies to the class of the signature and its index
class, then all vertical arrows do not depend on the chosen Lipschitz structure.

One has to check the commutativity of the three squares.

• The third square is obviously commutative: let (f : M → N) be a normal map in
N TOP (N), it is sent horizontally to the same map forgetting that it is normal and then
through IndΓ to the difference IndΓ(DM ) − IndΓ(DN ); on the other hand β(f : M →
N) = f∗[DM ]− [DN ], that gives, through the analytic assembly map, the index class just
founded.

• Let us study the second square: let (f : M → N) be a structure in STOP (N), it goes
to the same map forgetting that f is a homotopy equivalence; the %-class %(f), as in
Definition 3.9, is the push-forward through ϕ̃ of the class[

1

2
(1 + χ(D̃Z + Cf ))

]
∈ K0(D∗(Z̃)Γ);

this goes horizontally to the class in K0(D∗(Z̃)Γ/C∗(Z̃)Γ) that represents, by Paschke
duality, the K-homology class of the signature operator of Z; then by functoriality of ϕ̃∗
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and the fact that β(f : M → N) = f∗[DM ] − [DN ], we obtain the commutativity of the
second square.

• For the commutativity of first square, the proof is exactly the same as in [17, 4.10]. Let
a ∈ Ln+1(ZΓ) and let (f : M → N) be a structure in STOP (N). The commutativity of
the first square means that the following equation holds:

i∗(IndΓ(a)) = %(a[f : M → N ])− %([f : M → N ]) ∈ K0(D∗(Z̃)Γ);

this is proved identifying the right hand side with the class predicted by the APS delo-
calized index theorem, that, as we know, holds in the Lipschitz case too. The proof is
based on an addition formula, as in [32, 7.1], and algebraic identifications of %-classes,
that the reader can check still holding, word-for-word, in the Lipschitz case.

5 Products

Let M and N be two Cartesian products with a common factor, namely M = M1 ×M2 and
N = N1×M2, and let f1 : M1 → N1 be a homotopy equivalence. Therefore f = f1×id : M → N
is a homotopy equivalence.

Observe that the signature operator on Z = M ∪(−N) has this form: DZ = D1⊗̂1+1⊗̂D2,
i.e. the graded tensor product of the signature operator D1 on M1 ∪ (−N1) and the signature
operator D2 on M2.

As before we construct from f a bounded operator Cf that produces an invertible pertur-
bation DZ + Cf . Notice that, from the construction in [11] and as it has been pointed out in
[32, (6.1)], the operator Cf has the form Cf1

⊗̂1, where all grading operators are understood
in the graded tensor product. We have

DZ + Cf = (D1 + Cf1
)⊗̂1 + 1⊗̂D2

so we can associate an invertible perturbation of DZ to an invertible perturbation of D1.
We would like to state a product formula involving the %-class invariant of the first factor

and the K-homology class of the second one. For this aim it will be useful to give another
realization of the group K∗(D

∗(X̃)Γ).
In [13, II.2] the Grothendieck group of a functor ϕ : C → C′ is defined as the set of triples

(E,F, α), where E and F are objects in the category C and α is an isomorphism ϕ(E)→ ϕ(F ) in
the category C′, modulo the following equivalence relation: two triples (E,F, α) and (E′, F ′, α′)
are equivalent if there exist two isomorphisms f : E → E′ and g : F → F ′ such that the following
diagram

ϕ(E)
α //

ϕ(f)

��

ϕ(F )

ϕ(g)

��
ϕ(E′)

α′ // ϕ(F ′)

commutes.
In [13, II.3.28] it is shown that, when ϕ is the restriction of vector bundles over a space

X to a closed subspace Y , one obtains the relative K-group K(X,Y ) as the K-theory of the
mapping cone of the inclusion i : Y ↪→ X.

In [22], G. Skandalis used the same idea: considering an element x in KK(A,B) as a functor
from K(A) to K(B) through the Kasparov product, one can construct a relative K-group K(x)
and one can also prove that it is isomorphic to the K-theory of a mapping cone C*-algebra.
Moreover this relative K-group fits in a long exact sequence

. . . // K(B ⊗ C0(0, 1)) // K(x) // K(A) // . . .

such that the boundary map is given by the Kasparov product with x.
More generally, if we fix a separable C*-algebra D, we can consider an element x in

KK(A,B) as a functor from KK(D,A) to KK(D,B), through the Kasparov product with
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x on the right and we can still obtain a relative KK-group K(D,x) that turns out to be iso-
morphic to the group KK(D,Cψ), where Cψ is the mapping cone C*-algebra of a suitable
*-homomorphism ψ.

So we have seen that constructing relative KK-groups corresponds, in a philosophical way,
to taking the Grothendieck group of a functor or, in a more concrete way, to taking the
Grothendieck group of a mapping cone. We want to construct a long exact sequence of groups
such that the boundary map is the assembly map. Notice that the difficulty resides in the fact
that the assembly map is not induced by a morphism nor by a Kasparov product on the right.
But it is still possible to construct a group.

5.1 The analytic structure set and products

Let X be a proper and cocompact Γ-space, we would like to give an explicit construction of
the cycles of K∗(D

∗(X)Γ) in terms of Kasparov bimodules, so that one can define a product
by means of Kasparov products.

In [20] J. Roe shows that the following diagram

K∗+1(D∗(X)Γ/C∗(X)Γ)
Ind //

P

��

K∗(C
∗(X)Γ)

∼=
��

KK∗Γ(C0(X),C)
µΓ
X // K∗(C∗r (Γ))

(5.1)

is commutative. Here P is given by the Paschke duality and µΓ
X is the assembly map defined

by Kasparov in [14]. Let us recall some notation and definitions. For any Γ-C*-algebras A and
B, there exists a descent homomorphism

jΓ : KKΓ(A,B)→ KK(Ao Γ, B o Γ)

which is functorial and compatible with respect to Kasparov products. It associates to an
equivariant KK-cycle [H,φ, F ] the Kasparov bimodule [H o Γ, φ̃, F̃ ], where

• H o Γ is the Ao Γ-B o Γ-bimodule given by the completion of Cc(Γ, H), with the usual
Cc(Γ, B)-valued inner product and left Cc(Γ, A)-action;

• φ̃ is the extension to Ao Γ of the representation of Cc(Γ, A) induced by φ ;

• F̃ is the extension to H o Γ of the operator F that associates to γ 7→ α(γ) the element
γ 7→ F (α(γ)) on Cc(Γ, H).

Moreover we know that for any proper and cocompact Γ-space X one can construct an
imprimitivity C(X/Γ)-C0(X)oΓ-bimodules EX . Since C(X/Γ) is unital EX defines an element
in KK(C, C0(X) o Γ).

Definition 5.1. The assembly map µΓ
X is defined as the composition

KK∗Γ(C0(X),C)
jΓ // KK∗(C0(X) o Γ, C∗r (Γ))

[EX ]⊗−// K∗(C∗r (Γ)) .

Let us sketch how the commutativity of the diagram (5.1) is proved: if F ∈ B(L2(X)) is
an element of D∗(X)Γ such that F 2 = 1 and F ∗ = F modulo C∗(X)Γ, a representative for

µΓ
X

[
L2(X), ϕ : C0(X)→ B(L2(X)), F

]
is given in the following way. Since we can assume that F is exactly of finite propagation, it
defines an operator Fc on the pre-Hilbert space L2

c(X) of the compactly supported L2-functions
of X. One can endow L2

c(X) with the following CΓ-valued inner product

〈f, g〉CΓ(γ) = 〈fγ , g〉C
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where 〈fγ , g〉C is the standard inner product between g and the function f translated by γ.
With a standard double completion of the pair (L2

c(X),CΓ) we obtain an Hilbert module over

C∗r (Γ) that we denote by L2
Γ(X). Now Fc extends to an adjointable operator F̃ on L2

Γ(X) and

the class [L2
Γ(X), 1⊗ ϕ̃, F̃ ] ∈ KK(C, C∗r (Γ)) is equal to µΓ

X

[
L2(X), ϕ, F

]
.

Remark 5.2. Notice that if F is invertible, then F̃ is also invertible.

Moreover one can prove that L2
Γ(X) is a complemented sub-Hilbert module of L2(X) o Γ.

In fact if φ : X → [0, 1] is a compactly supported function such that∑
γ∈Γ

(φ2)γ = 1,

then the projection

p =
∑
γ∈Γ

φ · φγ
−1

[γ] ∈ C0(X) o Γ

has as range the C∗r (Γ)-module L2
Γ(X). Actually the projection p gives the class [EX ] ∈

KK(C, C0(X) o Γ) used in the Definition 5.1 of the assembly map.

Definition 5.3. Let X be as above. A Γ-equivariant analytic structure cycle on X consists of
the following data:

• an equivariant selfadjoint Kasparov bimodule (H,φ, T ) ∈ EΓ(C0(X),C) ;

• a Kasparov bimodule (E(t), ψ(t), S(t)) ∈ (C, C∗r (Γ)[0, 1)), such that E(0) = EX ⊗C0(X)oΓ

H o Γ, ψ(0) = id⊗C0(X)oΓ φ (that from now on we will denote in short by id⊗ φ), S(0)

is a T̃ -connection and S(1) is invertible. Here φ̃ and T̃ are as in the definition of the
descent homomorphism. That is the class of (E(0), ψ(0), S(0)) is equal to µΓ

X(H,φ, T ).

Such a cycle is said to be degenerate if both (H,φ, T ) and (E(t), ψ(t), S(t)) are degenerate
Kasparov bimodules.

Definition 5.4. Let (Hi, φi, Ti, E(t)i, ψ(t)i, Si(t)), i = 0, 1, be two Γ-equivariant analytic struc-
ture cycles.

We will say that they are homotopic if there exists a path (Hs, φs, Ts, Es(t), ψ(t)s, Ss(t))
of Γ-equivariant analytic structure cycles that joins them. Then we denote by SΓ

j (X) the
Grothendieck group generated by all homotopy classes of Γ-equivariant analytic structure cycles
on X.

We can define in an analogous way a group SΓ
∗ (X,A), where A is any Γ-C*-algebra, using

the assembly map with coefficient µΓ
X,A : KKΓ(C0(X), A)→ KK(C, Ao Γ).

Remark 5.5. Note that one can give the definition of SΓ
∗ (X,A) also when Γ is a groupoid

instead of a group.

Proposition 5.6. There is a commutative diagram

· · · // Kj(C
∗(X)Γ) //

β

��

Kj(D
∗(X)Γ) //

α

��

Kj(D
∗(X)Γ/C∗(X)Γ) //

P

��

· · ·

· · · // KKj−1(C, C∗r (Γ)⊗ C0(0, 1)) // SΓ
j−1(X) // KKj−1

Γ (C0(X),C) // · · ·

whose vertical arrows are isomorphisms.

Proof. Let
(
L2(X), φ : C0(X)→ B(L2(X))

)
be the Γ-equivariant C0(X)-module used to con-

struct the algebra D∗(X)Γ. The map P is given by the Paschke duality. The homomorphism
β is given by the composition of the isomorphism between C∗(X)Γ and C∗r (Γ), and the Bott
periodicity. Let us describe the homomorphism α : K0(D∗(X)Γ)→ K1(µΓ

X). It associates to a
projection p over D∗(X)Γ the cycle (H,ϕ, F, E(t), ψ(t), S(t)), where
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• (H,ϕ, F ) = (L2(X), ϕ, 2p− 1);

• (E(t), ψ(t), S(t)) is given by the path constantly equal to (L2
Γ(X), id⊗ ϕ̃, F̃ ), that is the

triple built in the discussion at the beginning of the present section.

Observe that L2
Γ(X) is nothing but EX ⊗C0(X)oΓ L

2(X) o Γ and that F̃ is invertible by
construction (see Remark 5.2).

The homomorphism β associates to a projection p over C∗(X)Γ the Kasparov bimodule

[L2
Γ(X), id⊗ φ̃, G(t)], where G(t) is the loop of invertible elements F̃ (1−e2iπt)−1 over C∗(X)Γ,

given by the Bott periodicity.
The second square is obviously commutative. Concerning the first one, since (L2(X), φ, F )

is degenerate as Kasparov bimodule, it is easy to produce a homotopy of cycles between
(0, 0, 0, L2

Γ(X), id⊗ ϕ̃, G(t)) and α(i∗[p]) = [H,ϕ, F, L2
Γ(X), id⊗ ϕ̃, S(t)], where S(t) is the con-

stant path equal to F̃ . To do that, observe that G
(

1
2

)
= F̃ and that Gs(t) = G

(
(1− s)t+ 1

2s
)

does the job.

Remark 5.7. Let ϕ : A → B a C*-algebras morphism and Cϕ its mapping cone. Then we
obtain naturally the long exact sequence of K-groups

· · · // K∗(SB) // K∗(Cϕ) // K∗(A)
ϕ∗ // K∗(B) // · · ·

whose boundary morphism is induced by ϕ. Conversely, if we start from a homomorphism
K∗(A) → K∗(B) induced by a morphism ϕ : A → B, then this homomorphism fits into a
sequence as above.

As explained before, the idea behind the construction of SΓ
j (X) is considering the assembly

map as a functor. But instead of a Kasparov product on the right, we have the assembly map,
that is the composition of the descent morphism and a Kasparov product on the left, and
instead of the K-theory of a mapping cone of C*-algebras we obtain the Grothendieck group
of a ”mapping cone” of Kasparov bimodules.

Definition 5.8. Let Y,Z be two spaces and assume that a group Γ acts on Y and Z in a
proper and cocompact way. Let f : Y → X be a Γ-equivariant continuous map. We can define
a homomorphism

f∗ : SΓ
j (Y )→ SΓ

j (X)

such that f∗[H,φ, T, E(t), ψ(t), S(t)] = [H,φ ◦ f, T, E ′(t), ψ′(t), S′(t))].
Here (E ′(t), ψ′(t), S′(t)) is the concatenation of the path we are going to describe and

the path (E(t), ψ(t), S(t)). The first one is the path connecting the Kasparov bimodules

(EX ⊗C0(X)oΓ H o Γ, id ⊗ (φ̃ ◦ f), S′) and (EY ⊗C0(Y )oΓ H o Γ, id ⊗ φ̃, S), where S′ is a

T̃ -connection on EY ⊗C0(Y )oΓ H o Γ. This path always exists thanks to the functoriality
of the assembly map: since µΓ

Y = µΓ
X ◦ f∗ : KKΓ(C0(Y )) → K0(C∗r (Γ)), it turns out that

(EX ⊗C0(X)oΓHoΓ, id⊗ (φ̃ ◦ f), S′) and (EY ⊗C0(Y )oΓHoΓ, id⊗ φ̃, S) define the same class.
Moreover the class obtained does not depend on the choice of this path.

Lemma 5.9. Let Y,X be two Riemannian manifolds and assume that a group Γ acts on Y
and X freely, isometrically and such that Y/Γ is compact. Let f : Y → X be a Γ-equivariant
continuous coarse map and let V : HY → HX be an isometry that covers f in the D∗-sense
([18, Definition 1.7]). Then the following diagram

Kj(D
∗(Y )Γ)

f∗ //

α

��

Kj((D
∗(X)Γ)

α

��
SΓ
j−1(Y )

f∗ // SΓ
j−1(X)

commutes.
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Proof. Let (HY , φY : C0(Y ) : B(HY )) and (HX , φX : C0(X) : B(HX)) the representations used
to construct the algebras D∗(Y )Γ and D∗(X)Γ. Let p be a projection over D∗(Y )Γ. Remember
that f∗[p] = [AdV (p)] ∈ K0(D∗(X)Γ). Then we get two elements of SΓ

1 (X):

• the first one is α([AdV (p)]) = [HX , φX , T, EX , id ⊗ φ̃X , S]. Here T = 2AdV (p) − 1,

EX = EX ⊗C0(X)oΓ HX o Γ and S is the path constantly equal to a T̃ -connection;

• the second one is f∗(α[p]) = [HY , φY ◦ f∗, U, E ′(t), ψ′(t), S′(t)]. Here U = 2p − 1 and

(E ′(t), ψ′(t), S′(t)) is the path connecting (EX ⊗C0(X)oΓ H o Γ, id ⊗ (φ̃ ◦ f), S′) and

(EY ⊗C0(Y )oΓ H o Γ, id⊗ φ̃, S), where S′ is a Ũ -connection on EY ⊗C0(Y )oΓ H o Γ.

We have to prove that these two classes are the same.
Consider the projection Q = V V ∗, then we can decompose α([AdV (p)]) in two direct

summands:

α([AdV (p)]) = [QHX , φX , T1, REX , id⊗ φ̃X , S1]⊕ [(1−Q)HX , φX , T2, (1−R)EX , id⊗ φ̃X , S2],

where T1 = QTQ, T2 = (1 − Q)T (1 − Q), R is a Q̃-connection and S1 and S2 are defined
similarly.

The second summand is clearly degenerate and, since to the following diagram

C0(X)
f∗ //

ϕX
**

C0(Y )
ϕY // B(HY )

AdV'
��

B(QHX)

commutes, modulo compacts operators, the first one is equal to f∗(α[p]).

Remark 5.10. If we define the group K̂Γ
j (X) as in definition 5.3, but dropping the condition

of S(1) being invertible, we get that the map

K̂Γ
j (X) 3 [H,φ, T, E(t), ψ(t), S(t)] 7→ [H,φ, T ] ∈ KKj

Γ(C0(X),C)

is a group isomorphism. Indeed one can easily check that the kernel of this map is isomorphic
to KKj(C, C∗r (Γ)⊗ C0(0, 1]), that is trivial since C∗r (Γ)⊗ C0(0, 1] is a cone. The inverse map
is obviously given by

[H,φ, T ] 7→ [H,φ, T, E , id⊗ φ̃, S]

where S is the path constantly equal to any T̃ -connection.

Definition 5.11. Let Γ be a discrete group, we can define the following exact sequence of
groups

. . . // KK∗(C, C∗r (Γ)⊗ C0(0, 1)) // SΓ
∗

// K̂Γ
∗

// . . .

as the direct limit of

. . . // KK∗(C, C∗r (Γ)⊗ C0(0, 1)) // SΓ
∗ (X) // K̂Γ

∗ (X) // . . .

over all cocompact Γ-subspaces X of EΓ.

Thus we obtain the same groups defined in [18, Definition 1.11]. This follows easily from
Proposition 5.6 and Lemma 5.9.

Let
ξ = [H1, φ1, T1, E1(t), ψ1(t), S1(t)] ∈ SΓ1

j (X1)

and let
λ = [H2, φ2, T2, E2(t), ψ2(t), S2(t)] ∈ K̂Γ2

i (X2),

where X1 and X2 are two proper and cocompact spaces with respect to Γ1 and Γ2 respectively.
Let (H1⊗̂H2, φ1⊗̂φ2, T ) be an exterior Kasparov product of (H1, φ1, T1) and (H2, φ2, T2). Let
(E(t), ψ(t), S(t)) be the restriction to the diagonal of the Kasparov product of (E1(t), ψ1(t), S1(t))
and (E2(t), ψ2(t), S2(t)) (that is a Kasparov C-A-bimodule, where A is equal to the algebra
C∗r (Γ1)⊗ C∗r (Γ2)⊗ C0([0, 1]2 \ {1} × [0, 1])).
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Definition 5.12. We define a product

SΓ1
j (X1)× K̂Γ2

i (X2)→ SΓ1×Γ2
j+i (X1 ×X2)

that associates to ξ × λ the class

ξ � λ := [H1⊗̂H2, φ1⊗̂φ2, T, E(t), ψ(t), S(t)]

where the entries are as described above. The product is compatible with homotopies in both
factors and so it is well defined.

Remark 5.13. A similar product is defined in an obvious way on KKj−1(C, C∗r (Γ1)⊗C0(0, 1))
and K̂Γ1

j (C(X1),C). It is natural in the sense that the following diagram

· · · // KKj(C, A)× K̂Γ2
i (X2) //

��

SΓ1
j (X1)× K̂Γ2

i (X2) //

��

K̂Γ
j (X1)× K̂Γ2

i (X2) //

��

· · ·

· · · // KKj+i(C, B) // SΓ1×Γ2
j+i (X1 × X̃2) // K̂Γ1×Γ2

j+i (X1 ×X2)) // · · ·

is commutative. Here A = C∗(X̃1)Γ1 ⊗ C0(0, 1) and B = C∗(X̃1 × X̃2)Γ1×Γ2 ⊗ C0(0, 1).

Lemma 5.14. Let Y,X,Z be three spaces and assume that a group Γ1 acts properly and
cocompactly on Y and X and Γ2 acts properly and cocompactly on Z. Let f : Y → X be a
Γ-equivariant continuous map. Then the following diagram

SΓ1
i (Y )× K̂Γ2

j (Z)
f∗×id //

��

SΓ1
i (X)× K̂Γ2

j (Z)

��
SΓ1×Γ2
j+i (Y × Z)

(f×idZ)∗ // SΓ1×Γ2
j+i (X × Z)

where the vertical arrows are given by 5.12, is commutative.

Proof. This is straightforward since (φ1 ⊗ φ2) ◦ (f × idZ)∗ = (φ1 ◦ f∗)⊗ φ2.

5.2 Stability of % classes

5.2.1 The signature operator

Let f : M → N be a structure in STOP (N) and %(f) be the associated %-class in K∗(D
∗(Z̃)Γ).

Let us see the different realisations of this class with respect to the different models of the
analytical structure set.

• In K0(D∗(Z̃)Γ) we have the element
[

1
2 (1 + χ(D̃Z + Cf ))

]
.

• In SΓ
1 (Z̃) this element turns into[

H,φ, F, E , id⊗ φ̃, G
]
,

where F =
(
χ(D̃Z + Cf )

)
, E = EZ ⊗C0(Z)oΓ H o Γ and G is the path constantly equal

to the F̃ -connection used in the proof of Proposition 5.6.

• Finally observe that the image of the last element through the natural map SΓ
1 (Z̃)→ SΓ

1

is the image of %Γ ∈ K0(D∗Γ) by means of the obvious isomorphism.
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Proposition 5.15. Let M1 and N1 be two n-dimensional Lipschitz manifolds with n odd and
let M2 be an m-dimensional Lipschitz manifold with m even. Let M be M1 ×M2, let N be
N1 ×M2 and let f1 : N1 → M1 be a homotopy equivalence. Let Γi be the fundamental groups
of Mi, with i = 1, 2. We have that

%(f1 × idM2
) = %(f1) � [D2] ∈ SΓ1×Γ2

1 (M̃1 × M̃2)

and the same holds for %Γ.

Proof. Let Z1 = M1 ∪N1 and Z2 = M1 ×M2 ∪N1 ×M2.
The class %(f1) is represented in SΓ1

1 (Z1) by the cycle[
H1, φ1, F1, E1, id⊗ φ̃1, G1

]
,

where F1 = χ(D̃Z1 + Cf1).

The class [D2] ∈ K̂Γ2
1 (M2) is represented by[

H2, φ2, F2, E2, id⊗ φ̃2, G2

]
,

where F2 = ψ(D̃M2).
Finally the class %(f1 × idM2) ∈ SΓ1×Γ2

1 (Z1 ×M2) is represented by[
H1 ⊗H2, φ1 ⊗ φ2, F, E1 ⊗ E2, id⊗ φ̃1 ⊗ φ̃2, G

]
,

where F = χ(D̃Z1
⊗ 1 + 1⊗ D̃M1

+ Cf1×idM2
).

We have to prove the identity of the last class mentioned with the product %(f) � [D2] ∈
SΓ1×Γ2

1 (Z1 ×M2) given by[
H1 ⊗H2, φ1 ⊗ φ2, F

′, E1 ⊗ E2, 1⊗ φ̃1 ⊗ φ̃2, G
′
]
,

where F ′ = χ(D̃Z1 + Cf )⊗ 1 + 1⊗ ψ(D̃M2).

Since D̃Z1
⊗ 1 + 1⊗ D̃M1

+Cf1×idM2
= (D̃Z1

+Cf )⊗ 1 + 1⊗ D̃M2
and that χ and ψ differ

by a function in C0(R), the identity follows from [2].
Trivially this holds for %Γ too.

We would like that, after fixing a non zero K-homology class λ, under suitable assumptions
the product with this element is an injective map.

To prove that, we need to define a new group that we will denote by T Γ1,Γ2
∗ (X1, X2) (notice

that the order of X1 and X2 is not irrelevant).

Definition 5.16. A cycle of T Γ1,Γ2

j (X1, X2) consists of the following data:

• a Kasparov bimodule (H,φ, T ) ∈ EΓ1×Γ2 (C0(X1)⊗ C0(X2),C);

• a Kasparov bimodule (Es, ψs, Ss) ∈ EΓ1 (C0(X1), C∗r (Γ2)⊗ C[0, 1]), where E0 is equal to

EX2
⊗C0(X2)oΓ2

H o Γ2, ψ0 = id⊗ φ̃ and S0 is any T̃ -connection;

• a Kasparov bimodule (E ′t,s, ψ′t,s, S′t,s) ∈ E (C, C∗r (Γ1)⊗ C∗r (Γ2)⊗ C0(T )), where T is the

triangle
{

(t, s) ∈ [0, 1]2 \ {1, 1} | t ≤ s
}

, E ′0,s = EX1
⊗C0(X1)oΓ1

EsoΓ1, ψ′0,s = id⊗ ψ̃ and

S′0,s is any S̃s-connection;

modulo homotopies of cycles, defined in a obvious way.

Remark 5.17. To have an intuition of what this group is, accordingly with the idea in Remark
5.7, one can think of it as the restriction to the triangle T =

{
(t, s) ∈ [0, 1]2 \ {1, 1} | t ≤ s

}
of

the product of the ”mapping cone” µΓ1

X1
and the ”mapping cylinder” of µΓ2

X2
. This idea was

used in Definition 5.12 too.
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Lemma 5.18. The group T Γ1,Γ2
∗ (X1, X2) is isomorphic to SΓ1×Γ2(X1 ×X2).

Proof. Define the homomorphism Φ: T Γ1,Γ2
∗ (X1, X2)→ SΓ1×Γ2(X1 ×X2) given by(

(H,φ, T ), (Es, ψs, Ss), (E ′t,s, ψ′t,s, S′t,s)
)
7→
(
H,φ, T, E ′t,t, ψ′t,t, S′t,t

)
.

Define the following homomorphism

Ψ: (H,φ, T,Ht, αt, Ut) 7→
(
(H,φ, T ), (Es, ψs, Ss), (E ′t,s, ψ′t,s, S′t,s)

)
where

• (Es, ψs, Ss) is the path constantly equal to (EX2 ⊗C0(X2)oΓ2
H o Γ2, id ⊗ φ̃, S), with S

any T̃ -connection;

• for all fixed t ∈ [0, 1), (E ′t,s, ψ′t,s, S′t,s) is the paths constantly equal to (Ht, αt, Ut).

It is easy to check that the third condition in Definition 5.16 is satisfied and that Φ and Ψ are
inverse to each other.

Proposition 5.19. Let λ be a class in K̂Γ2
i (X2). If there exists a class ζ ∈ KK−i(C∗r (Γ2),C)

such that µΓ2

X2
(λ)⊗C∗r (Γ2) ζ = n with n 6= 0, then

�λ : SΓ1
i (X1)⊗ Z

[
1

n

]
→ SΓ1×Γ2

i+j (X1 ×X2)⊗ Z
[

1

n

]
is injective. In particular if µΓ2

X2
(λ)⊗C∗r (Γ2) ζ = 1, then the product with λ is honestly injective.

Proof. To prove the Lemma we are going to build a left inverse for �λ. Define the map cζ as
the composition of the following ones:

• the isomorphism Ψ: SΓ1×Γ2
∗ (X1 ×X2)→ T Γ1,Γ2

∗ (X1, X2),

• the evaluation at s = 1, evs=1 : T Γ1,Γ2
∗ (X1, X2)→ SΓ1

∗ (X1, C
∗
r (Γ2)), given by(

(H,φ, T ), (Es, ψs, Ss), (E ′t,s, ψ′t,s, S′t,s)
)
7→
(
(E1, ψ1, S1), (E ′t,1, ψ′t,1, S′t,1)

)
• the morphism SΓ1

∗ (X1, C
∗
r (Γ2))→ SΓ1

∗−i(X1) given by

(H,φ, T, E(t), ψ(t), S(t)) 7→ (H ′, φ′, T ′, E ′(t), ψ′(t), S′(t)),

where (H ′, φ′, T ′) is any Kasparov product of (H,φ, T, E(t)) and ζ, and (E ′(t), ψ′(t), S′(t))
is any Kasparov product of (E(t), ψ(t), S(t)) and ζ.

It is easy to check that evs=1 ◦ Ψ ◦ �λ : SΓ1
i (X1) → SΓ1

i+j(X1, C
∗
r (Γ2)) is just the exterior

product with µΓ2

X2
(λ). Then, by hypothesis, cζ(x � λ) = n · x for any x ∈ SΓ1

i (X1). After
inverting n, we get an inverse for �λ.

Remark 5.20. The same argument fits to prove that if we fix an element x ∈ K̂Γ2
i (X2)

satisfying the above condition, then the vertical arrows of the following diagram

· · · //
KKj(C, A)

//

�x

��

S
Γ1
j

(X1)
//

�x

��

K̂
Γ1
1 (X1)

//

�x

��

· · ·

· · · //
KKj+i(C, B) ⊗ Z

[
1
n

] //
S

Γ1×Γ2
j+i

(X1 ×X2) ⊗ Z
[

1
n

] //
K̂

Γ1×Γ2
1 (X1 ×X2) ⊗ Z

[
1
n

] // · · ·

are rationally injective. Here A = C∗(X1)Γ1 ⊗C0(0, 1) and B = C∗(X1×X2)Γ1×Γ2 ⊗C0(0, 1).
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We can obtain the condition of Lemma 5.19 under certain hypotheses on Γ2: we impose
that the group has a γ element, this means that there exists a C*-algebra on which Γ acts
properly and elements

η ∈ KKΓ(C, A) and d ∈ KKΓ(A,C),

such that γ = η ⊗A d ∈ KKΓ(C,C) satisfies p∗γ = 1 ∈ KKEΓoΓ(C0(EΓ), C0(EΓ)), where
EΓ is the classifying space for proper actions of Γ and p : EΓ o Γ → Γ is the homomorphism
defined by p(z, g) = g. We refer the reader to [28, 29].

The existence of the γ element implies that the Baum-Connes assembly map (with coeffi-
cients) is split injective and that the group is K-amenable: this last property gives the existence

of a non trivial element ζ ∈ KK(C∗r (Γ2),C) such that, if ξ = [L2(X̃2), D] ∈ KKΓ2(X̃2,C) is
the class given by an equivariant elliptic operator D, then µΓ2

X̃2
(D) ⊗C∗r (Γ2) ζ is equal to the

Fredholm index of the induced operator on X̃2/Γ.

Corollary 5.21. Let M2 be an even dimensional Lipschitz manifold with fundamental group
Γ2 such that it has a γ element and [D2] ∈ K∗(M2) has non zero index. If f1 : N1 → M1 and
f ′1 : N ′1 7→ M1 are homotopy equivalences between odd dimensional Lipschitz manifolds, with
different %-class invariants, then

[f1 × idM2
] 6= [f ′1 × idM2

] ∈ STOP (M1 ×M2).

5.2.2 Dirac operators and positive scalar curvature

We would like to apply the methods of the previous sections to get similar results about the
secondary invariants described in [18].

Let us recall [18, Definition 1.6]: let (M, g) be a Riemannian spin manifold of dimension
n > 0, with fundamental group Γ. If g has uniformly positive scalar curvature then the Dirac

operator /DM is invertible and χ( /̃DM ), the bounded transform of the lift of /DM to the universal

covering of M , defines a class %g ∈ D∗(M̃)Γ.
Thanks to that and the APS-delocalized Theorem, for n odd, one obtains the following

commutative diagram

Ωspin
n+1(M) //

β

��

Rspin
n+1(M) //

IndΓ

��

Posspin
n (M) //

%

��

Ωspin
n (M)

β

��
Kn+1(M) // Kn+1(C∗r (Γ)) // Kn+1(D∗(M̃)Γ) // Kn(M)

where M is a compact space with fundamental group Γ and universal covering M̃ . The first
row in the diagram is the Stolz exact sequence, see for instance [18, Definition 1.39].

In the SΓ
∗ (M) picture of the analytic structure set, the class %g is given by the quadruple

[L2(M, /S), C(M), /DM , χ̃( /DM )].

Here the last term is the constant path χ̃( /DM ) because the operator is invertible and there is
no need to perturb it.

Remark 5.22. If (M, g) has positive scalar curvature and (N,h) is another Riemannian man-
ifold, then for ε > 0 small enough, (M ×N, g × εh) has positive scalar curvature. Hence if M
admits a metric with positive scalar curvature, so does M ×N .

Proposition 5.23. Let M be a spin manifold of dimension n and let g be a Riemannian
metric with positive scalar curvature on M . Let N be a spin manifold of dimension m and h
a Riemannian metric such that (M ×N, g × h) has positive scalar curvature. Then

%g � [ /Dh] = %g×h ∈ SΓ1×Γ2
n+m (M ×N),

where Γ1 and Γ2 are the fundamental groups of M and N respectively and [ /Dh] is the class of
the Dirac operator on N in Km(N).
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Proof. We can prove the result as in 5.15. Moreover since the class %g is represented by a

quadruple whose last term is the constant path χ̃( /Dh), it turns out that we can prove it in an
easier way (see for instance [21, Proposition 6.2.13]).

Corollary 5.24. Let M be a spin manifold of odd dimension n with fundamental group Γ1

and let g1 and g2 be two Riemannian metrics with positive scalar curvature on M such that
%g1
6= %g2

∈ SΓ
n(M). Let (N,h) be a Riemannian spin manifold of even dimension m with

fundamental group Γ2, such that the index of [ /DN ] ∈ Km(N) is k 6= 0, Γ2 has a γ element and
gi × h has positive scalar curvature on M ×N , for i = 1, 2.

Then

[g1 × h] 6= [g2 × h] ∈ Posspin
n+m(M ×N)⊗ Z

[
1

k

]
.

Proof. We can use the arguments we used for Lemma 5.19 to obtain immediately the result.

5.3 The delocalized APS index Theorem in the odd-dimensional case

Another application of the product formula is the proof of the delocalized APS index theorem
for odd dimensional cobordisms.

We will do it for the perturbed signature operator, the theorem for the Dirac operator on
a spin manifold with positive scalar curvature is completely analogous.

Because of motivations well explained in [17, Remark 4.6], we will prove the theorem at the
cost of inverting 2. We recall that here and in [17] the signature operator on an odd dimensional
manifold is not the odd signature operator of Atiyah, Patodi and Singer, but the direct sum
of two (unitarily equivalent) versions of this operator.

Since in the statement of the delocalized APS index theorem in the odd dimensional case we
will compare the % invariant of the boundary with the index of the APS odd signature operator
on the cobordism, it is worth to specify the notation we shall follow: on an odd dimensional
manifold we denote by DAPS the odd signature operator of Atiyah, Patodi and Singer and we
denote by D the odd signature operator that we used so far.

The strategy of the proof is to reduce the odd dimensional case to the even dimensional one
through the product by the K-homology class of the signature operator on the circle. Then it
is useful to review the behavior of the signature operator with respect to cartesian products of
manifolds. For a detailed treatment we refer the reader to sections 5 and 6 of [31].

Let W be an n-dimensional manifold with boundary ∂W endowed with a cocompact free
Γ-action. We assume that n is odd and that the boundary of W is composed by a pair of
homotopy equivalent manifolds. Let j : ∂W ↪→ W and j′ : ∂W × R ↪→ W × R be the obvious
inclusions. Let us recall some useful facts:

• the even signature operator DW×S1 is equivalent to the direct sum of two copies of
the exterior product DAPS

W ⊗̂1 + 1⊗̂DAPS
S1 , see [31, Section 6.3]. Since DS1 is the sum

of two equivalent versions of DAPS
S1 , one has that DW×S1 is equivalent to DAPS

W ⊗̂1 +

1⊗̂DS1 . Consequently the higher index of (DW×S1 +Ccyl
F×id)+ is equal to the class given

by the product 1
2 [IndΓ(DAPS

W + Ccyl
F )] � [DS1 ], where here � : Ki(C

∗
r (Γ)) × Kj(S

1) →
Ki+j(C

∗
r (Γ× Z));

• the operator DAPS
∂W×S1 is equivalent to the exterior product of the even dimensional signa-

ture operator D∂W and the odd dimensional signature operator DAPS
S1 , see [31, Section

6.1]. Thus we obtain that the odd dimensional operator D∂W×S1 is equivalent to the ex-
terior product of the even dimensional signature operator D∂W and the odd dimensional
signature operator DS1 . In particular this means that %(D∂W +CF∂

)� [DS1 ] is equal to

%(D∂W×S1 + CF∂×id), where here � : SΓ
i (W̃ )×Kj(S

1)→ SΓ×Z
i+j (W̃ × R).

Remark 5.25. Notice that, since DAPS
S1 is nothing else than the Dirac operator on the circle

and since DS1 is unitarily equivalent to two copies of DAPS
S1 , its index is two times the generator

of C∗r (Z). Now KK(C∗r (Z),C) ∼= KK(C(S1),C) by Fourier transform and KK(C(S1),C) ∼=
Hom(K0(C(S1)),Z), by [4, Theorem 7.5.5] for instance. So choosing any homomorphism from
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K0(C(S1)) to Z that sends the index of DAPS
S1 to 1, we obtain a class ζ ∈ KK(C∗r (Z),C) that

satisfies the assumptions of Lemma 5.19, with n = 2.

Theorem 5.26. If i : C∗(W̃ )Γ ↪→ D∗(W̃ )Γ is the inclusion and j∗ : D∗(∂W̃ )Γ → D∗(W̃ )Γ is

the map induced by the inclusion j : ∂W̃ ↪→ W̃ , we have

i∗

(
1

2
IndΓ(DAPS

W + Ccyl
F )

)
= j∗(%(D∂W + CF∂

)) ∈ K0(D∗(W̃ )Γ)⊗ Z
[

1

2

]
,

where 1
2 IndΓ(DAPS

W + Ccyl
F ) ∈ K0(C∗(W̃ )Γ)⊗ Z

[
1
2

]
.

Proof. Let W be as above. Because of Proposition 5.6 and Lemma 5.9 we will prove the
theorem in the SΓ

∗ (·) setting.

Let ΠD : SΓ
0 (W̃ ) ⊗ Z

[
1
2

]
→ SΓ×Z

0 (W̃ × R) ⊗ Z
[

1
2

]
and ΠC : K1(C∗(W̃ )Γ) ⊗ Z

[
1
2

]
→

K1(C∗(W̃ × R)Z×Γ) ⊗ Z
[

1
2

]
be the morphism induced by the product with the of class of

the signature operator DS1 in K1(S1). By Lemma 5.19, we have that

i∗

(
1

2
IndΓ(DAPS

W + Ccyl
F )

)
= jS(%(D∂W + CF∂

)) (5.2)

holds if and only if

ΠD

(
i∗

(
1

2
IndΓ(DAPS

W + Ccyl
F )

))
= ΠD(jS(%(D∂W + CF∂

)))

holds.
But by Remark 5.13 it turns out that

ΠD

(
i∗

(
1

2
IndΓ(DAPS

W + Ccyl
F )

))
= i∗

(
ΠC

(
1

2
IndΓ(DAPS

W + Ccyl
F )

))
and, and by [31, Section 6.3], that

ΠC

(
1

2
IndΓ(DAPS

W + Ccyl
F )

)
= IndΓ(DW×S1 + Ccyl

F×id).

Moreover by Lemma 5.14 it follows that

ΠD(jS(%(D∂W + CF∂
))) = j′S(ΠD(%(D∂W + CF∂

)))

and, by Proposition 5.23, that

ΠD (%(D∂W + CF∂
)) = %(D∂W×S1 + CF∂×id).

Thus we have that (5.2) holds if and only if

i∗

(
IndΓ(DAPS

W×S1 + Ccyl
F×id)

)
= j′S (%(D∂W×S1 + CF∂×id))

holds. But, since W × S1 is even dimensional, the equality on the right-hand side holds by
3.21 and the Theorem is proved.

If W is a Spin Riemannian manifold with boundary, such that the metric on the boundary
has positive scalar curvature, then we can state the analogous theorem for the % invariants
associated to Dirac operators.

Theorem 5.27. If i : C∗(W̃ )Γ ↪→ D∗(W̃ )Γ is the inclusion and j∗ : D∗(∂W̃ )Γ → D∗(W̃ )Γ is

the map induced by the inclusion j : ∂W̃ ↪→ W̃ , we have

i∗(IndΓ( /DW )) = j∗(%( /D∂W )) ∈ K0(D∗(W̃ )Γ).

Notice that in this case it is not necessary to invert 2. Moreover the proof of the theorem is
very similar to the case of the signature operator, but easier because we do not have to perturb
the Dirac operator to obtain an invertible operator.
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6 Mapping surgery to analysis: the even dimensional case

The extension to the odd dimensional case of the delocalized APS index theorem allows us
to state the following result (with proof almost identical to the the one given in the odd
dimensional case).

Theorem 6.1. Let N be an n-dimensional closed oriented topological manifold with funda-
mental group Γ. Assume that n ≥ 5 is even. Then there is a commutative diagram with exact
rows

Ln+1(ZΓ) //

IndΓ

��

STOP (N) //

%

��

N TOP (N) //

β

��

Ln(ZΓ)

IndΓ

��
Kn+1(C∗r (Γ))⊗ Z

[
1
2

]
// Kn+1(D∗(Ñ)Γ)⊗ Z

[
1
2

]
// Kn(N)⊗ Z

[
1
2

]
// Kn(C∗r (Γ))⊗ Z

[
1
2

]
and through the classifying map u : N → BΓ of the universal cover Ñ of N , we have the
analogous commutative diagram that involves the universal Higson-Roe exact sequence

Ln+1(ZΓ) //

IndΓ

��

STOP (N) //

%Γ

��

N TOP (N) //

βΓ

��

Ln(ZΓ)

IndΓ

��
Kn+1(C∗r (Γ))⊗ Z

[
1
2

]
// Kn+1(D∗Γ)⊗ Z

[
1
2

]
// Kn(BΓ)⊗ Z

[
1
2

]
// Kn(C∗r (Γ))⊗ Z

[
1
2

]
The same is true if we consider the surgery exact sequence for smooth manifolds.

Remark 6.2. Thanks to Theorem 5.27, we can enunciate the analogous statement for the Stolz
sequence. With the same notations as in subsection 5.2.2, we obtain the following commutative
diagram

Ωspin
n+1(M) //

β

��

Rspin
n+1(M) //

IndΓ

��

Posspin
n (M) //

%

��

Ωspin
n (M)

β

��
Kn+1(M) // Kn+1(C∗r (Γ)) // Kn+1(D∗(M̃)Γ) // Kn(M)

with n ≥ 5 even.

Corollary 6.3. Corollaries 5.21 and 5.24 are true irrespective of the dimesions of M and N .
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[30] P. Tukia and J. Väisälä. Lipschitz and quasiconformal approximation and extension. Ann.
Acad. Sci. Fenn. Ser. A I Math., 6(2):303–342 (1982), 1981.

[31] Charlotte Wahl. Product formula for Atiyah-Patodi-Singer index classes and higher sig-
natures. J. K-Theory, 6(2):285–337, 2010.

[32] Charlotte Wahl. Higher ρ-invariants and the surgery structure set. J. Topol., 6(1):154–192,
2013.

[33] Shmuel Weinberger and Guoliang Yu. Finite part of operator K-theory for groups finitely
embeddable into Hilbert space and the degree of nonrigidity of manifolds. Geom. Topol.,
19(5):2767–2799, 2015.

[34] Zhizhang Xie and Guoliang Yu. Higher rho invariants and the moduli space of positive
scalar curvature metrics. arXiv:1310.1136.

[35] Zhizhang Xie and Guoliang Yu. Positive scalar curvature, higher rho invariants and local-
ization algebras. Adv. Math., 262:823–866, 2014.


	1 Introduction
	2 Signature operator on Lipschitz manifolds
	3 The  classes
	3.1 The perturbed signature operator
	3.2 Perturbed signature operator on manifolds with cylindrical ends
	3.2.1 Bunke's relative index theorem for Lipschitz manifolds


	4 Mapping surgery to analysis: the odd dimensional case
	5 Products
	5.1 The analytic structure set and products
	5.2 Stability of  classes
	5.2.1 The signature operator
	5.2.2 Dirac operators and positive scalar curvature

	5.3 The delocalized APS index Theorem in the odd-dimensional case

	6 Mapping surgery to analysis: the even dimensional case
	References

