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On the relationship between a quantum

Markov semigroup and its representation via

linear stochastic Schrödinger equations

FRANCO FAGNOLA∗ and CARLOS MORA†

Abstract

A quantum Markov semigroup can be represented via classical dif-
fusion processes solving a stochastic Schrödinger equation. In this
paper we first prove that a quantum Markov semigroup is irreducible
if and only if classical diffusion processes are total in the Hilbert space
of the system. Then we study the relationship between irreducibil-
ity of a quantum Markov semigroup and properties of these diffusions
such as accessibility, the Lie algebra rank condition, and irreducibil-
ity. We prove that all these properties are, in general, weaker than
irreducibility of the quantum Markov semigroup, nevertheless, they
are equivalent for some important classes of semigroups.
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1 Introduction

A quantumMarkov semigroup (QMS) T is a weakly∗-continuous semi-
group (Tt)t≥0 of completely positive, identity preserving, normal maps
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on a von Neumann algebra. In this paper, we will only be concerned
with QMS on a matrix algebra which are norm-continuous.

These QMS semigroups were introduced in the seventies (as quan-
tum dynamical semigroups) to model the irreversible evolution of an
open quantum system and are now an important tool to investigate
quantum systems and quantum stochastic processes (see [4, 6, 7, 17,
19, 21, 24] and the references therein). The representation of QMS via
solutions of classical stochastic differential equations, already noticed
by A.V. Skorohod [33], is also well-known and plays a key role in quan-
tum trajectory theory (see, e.g. [4] section 3.2.3, [2, 3, 5, 7, 22, 23] and
the references therein). These equations, called stochastic Schrödinger
equations (SSE) (see [16, 25, 26, 27, 28, 30] for recent results), turn
out to be very useful to study open quantum systems through the
interplay between classical and quantum stochastic analysis.

The aim of this note is to study the relationship between irre-
ducibility of a QMS and diffusion processes solving the associated
SSE driven by independent Brownian motions. Our motivation is to
establish a bridge between classical and quantum stochastics, how-
ever, these results may turn out to be useful in the study of open
quantum systems and their numerical simulations via SSEs since irre-
ducibility enables one to apply powerful results from ergodic theory.
Moreover, we want to find the range of solutions to SSE because it can
be thought of as the set of reachable (random) states in a continuous
measurement.

We first give a new characterisation (Theorem 6) irreducible QMS
by a multiple commutator condition looking like the celebrated Lie
algebra rank condition (LARC) and Hörmander condition.

Then we prove our main result (Theorem 8); a QMS is irreducible
if and only if the associated diffusion processes via SSEs are total in
the Hilbert space of the system.

Moreover, we study the relationship with other properties such as
accessibility, the Lie algebra rank condition, and irreducibility. We
prove that irreducibility of a QMS is, in general, a weaker property
than irreducibility of diffusions solving the associated SSEs. It is also
weaker of the LARC and Hörmander condition, although equivalent
for some important classes of semigroups. We thus find a quantum
version of these classical conditions.

The paper is organized as follows. In section 2 we present a short
account of the main results on irreducible QMSs and describe the sup-
port projection at time t of a state evolving under the action of a QMS
together with the characterisation based on the multiple commutator
condition (Theorem 6). In section 3 we introduce SSE, driven by in-
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dependent Brownian motions, and prove (Theorem 8) that a QMS
is irreducible if and only if associated diffusion processes are total in
the Hilbert space of the system. Then we turn our attention to the
range of diffusion processes showing by simple argument and examples
(Example 1) that we cannot expect these diffusion processes to be ir-
reducible. In section 4 we discuss the Stroock and Varadhan support
theorem and the LARC condition showing (Theorem 11 and coun-
terexample 3) that our multiple commutator condition, equivalent to
irreducibility of a QMS, is indeed weaker that the LARC condition.
Finally, in section 5, we show that both the LARC condition and the
multiple commutator condition hold for generic QMSs.

2 Irreducible QMS

Let h = C
d and let T be the QMS on the algebra Md(C) of d × d

matrices generated by

L(x) = i[H,x] +
1

2

m∑

ℓ=1

(−L∗
ℓLℓx+ 2L∗

ℓxLℓ − xL∗
ℓLℓ)

= G∗x+
m∑

ℓ=1

L∗
ℓxLℓ + xG (1)

where L1, . . . , Lm,H ∈Md(C) with H self-adjoint and

G = −
1

2

m∑

ℓ=1

L∗
ℓLℓ − iH.

The representation (1) of the generator L is called a Gorini-Kossa-
kowski-Sudarshan-Lindblad (GKSL) representation of the generator.
It is well-known to exist but it is not unique (see [29] Theorem 30.16
p. 271). In particular, one can always change a GKSL representation
by translating the operators Lℓ by multiples of the identity operator
or increasing m and adding operators Lj which are multiples of the
identity operator.

A representation with the smallest number of operators Lℓ, i.e. the
minimum m, is called minimal. In a minimal GKSL representation
of L, matrices 1l, L1, . . . , Lm are linearly independent ([29] Theorem
30.16 p. 271).

Definition 1 For each non-zero ξ ∈ h we denote by S(ξ) the linear
span of all vectors of the form

ξ, δn1

G (Lℓ1)δ
n2

G (Lℓ2) · · · δ
nk

G (Lℓk)ξ, (2)
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where k ≥ 1, n1, . . . , nk ≥ 0 and 1 ≤ ℓ1, . . . , ℓk ≤ m and δnG is defined
recursively by δ0G(A) = A, δn+1

G (A) = [G, δnG(A)].

The following results are proved in [15] Theorem 6 and 7 (see also
their extensions in [20]).

Theorem 2 Let (Tt)t≥0 be a norm continuous QMS on B(h) with
generator L as in (1) and let Pt = etG. For all unit vector ξ ∈ h and
all t ≥ 0, the support projection of the state T∗t(|ξ〉 〈ξ|) is the closed
linear span of Ptξ and vectors

Ps1Lℓ1Ps2−s1Lℓ2Ps3−s2 . . . Psn−sn−1
LℓnPt−snξ (3)

for all n ≥ 1, 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ t and ℓ1, . . . , ℓn ≥ 1.

A simple argument based on the analyticity of the semigroup (Pt)t≥0

(see [15] Theorem 7) leads to the following simpler characterisation of
the support of T∗t(|ξ〉 〈ξ|) as the linear manifold Pt S(ξ).

Theorem 3 Let (Tt)t≥0 be a norm continuous QMS on B(h) with
generator L as in (1) and let Pt = etG. For all unit vector ξ ∈ h and
all t > 0, the support projection of the state T∗t(|ξ〉 〈ξ|) is the linear
manifold Pt S(ξ) where S(ξ) is the linear span of vectors (2).

Definition 4 A QMS T is irreducible if there exists no non-trivial
subharmonic projection p (Tt(p) ≥ p for all t ≥ 0).

In an equivalent way, a QMS T is irreducible there exists no non-
trivial common invariant subspace for the operators G and Lℓ ([12]
Theorem III.1).

Let F(T ) be the vector space of fixed points of T

F(T ) = {x | Tt(x) = x, ∀t ≥ 0 } .

It is well-known that, if T has a faithful invariant state, then F(T ) is
a sub-∗-algebra of Md(C).

Let N (T ) be the decoherence free algebra of T

N (T ) = {x | Tt(x
∗x) = Tt(x

∗)Tt(x), Tt(xx
∗) = Tt(x)Tt(x

∗) ∀t ≥ 0 } .

We refer to [14] for properties of N (T ). Both F(T ) and N (T ) contain
scalar multiples of the identity matrix 1l; we say that they are trivial
if they do not contain other matrices, i.e. they coincide with C1l.

We recall the following result on irreducible QMSs
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Theorem 5 An irreducible QMS T on Md(C) admits a unique faith-
ful invariant state. Its fixed point set F(T ) and decoherence free sub-
algebra N (T ) are trivial.

Proof. By finite-dimensionality, the QMS T admits an invariant state
ρ and its support projection is subharmonic (see e.g. [12] Theorem
II.1) and non-zero. Thus it must coincide with 1l because T is irre-
ducible and so ρ is faithful.

As a well-known consequence, F(T ) is a ∗-subalgebra of Md(C)
because, for any x ∈ F(T ), by complete positivity, we have Tt(x

∗x) ≥
Tt(x

∗)Tt(x) = x∗x and, by the invariance of ρ, we have

tr (ρ (Tt(x
∗x)− Tt(x

∗)Tt(x))) = tr (ρ (Tt(x
∗x)− x∗x)) = 0

Thus x ∈ N (T ). Since the algebra N (T ) is trivial by [10] Proposition
14, because T is irreducible, also F(T ) is trivial.

We finally show that ρ is the unique invariant state of T . Indeed,
if it is not, then the dimension of the kernel of L∗ is at least 2 and so,
since ker(L∗) is the orthogonal space of the range of L, it follows that
the dimension of R(L) is not bigger than d2−2. This implies that the
dimension of the kernel of L is at least 2 contradicting the triviality
of F(T ). �

The following new characterisation of irreducible QMS can be re-
garded as the starting point of our analysis.

Theorem 6 The following are equivalent:

(1) the QMS T is irreducible,

(2) S(ξ) = h for all non-zero ξ ∈ h,

Proof. (2) ⇒ (1). If the QMS T is not irreducible there exists a
nontrivial subharmonic projection p. The subspace determined by p
is invariant under G and all the Lℓ by Theorem III.1 of [12]. Therefore
for all non-zero ξ in the range of p, S(ξ) is contained in the range of
p.

(1) ⇒ (2). If the QMS T is irreducible it admits a unique faithful
invariant state ρ by Theorem 5. Moreover, since F(T ) = N (T ) (in-
deed both are trivial), by result due to Frigerio and Verri (see Theorem
3.3 of [18]) for any unit vector ξ in C

d

lim
t→∞

T∗t(|ξ〉 〈ξ|) = ρ.

By finite dimensionality, it follows that the state T∗t(|ξ〉 〈ξ|) is faithful
for all t bigger than some t0 < +∞. Hence PtS(ξ) = C

d for all t > t0
by Theorem 3, and so S(ξ) = C

d by the invertibility of Pt. �
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The previous result yields an algebraic condition that implies some
qualitative property of a QMS (see [13, 18, 34] for related algebraic
conditions implying other properties).

3 Stochastic Schrödinger equations

A linear SSE for the QMS generated by (1) is the stochastic differential
equation

dXt(ξ) = GXt(ξ)dt+
m∑

ℓ=1

LℓXt(ξ)dW
ℓ
t , X0(ξ) = ξ (4)

where ξ ∈ C
d and W 1, . . . ,Wm are independent real-valued inde-

pendent Wiener processes on a filtered complete probability space
(Ω,F, (Ft)t≥0,P).

It is well-known that (see e.g. [4] Theorem 2.11 p.29)

〈η,Tt(a)ξ〉 = E [〈Xt(η), aXt(ξ)〉] , T∗t (|ξ〉 〈η|) = E [|Xt(ξ)〉 〈Xt(η)|] .

Moreover, since the operators G,Lℓ are bounded and L(1l) = 0, by [4]
Theorem 2.11, we have also

E

[
‖Xt(ξ)‖

2
]
= ‖ξ‖2 . (5)

The initial condition ξ will be always assumed to be non-zero.
In this way we associate with a generator L a diffusion process on
C
d−{0}. In order to investigate the relationship between irreducibility

the QMS generated by L and the diffusion process (4) we start with
the following result.

Proposition 7 The random variable Xt(ξ) admits the chaos expan-
sion

Xt(ξ) = Pt ξ (6)

+
∑

n≥1,ℓ1,...,ℓn≥1

∫ t

0
dW ℓ1

s1 ..

∫ sn−1

0
dW ℓn

snPt−s1Lℓ1Ps1−s2 · · ·Psn−1−snLℓnPsnξ.

Proof. Recall that Pt = etG, i.e., (Pt)t≥0 is the contraction semigroup
generated by G. For all t > 0 and s ∈]0, t[ we have

dPt−sXs(ξ) =
∑

ℓ≥1

Pt−sLℓXs(ξ)dW
ℓ
s
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so that, integrating on [0, t],

Xt(ξ) = Pt ξ +
∑

ℓ≥1

∫ t

0
Pt−sLℓXs(ξ)dW

ℓ
s .

Iterating this formula n times we can write Xt(ξ) as the sum of Ptξ
plus

n∑

k=1

∑

ℓ1,...,ℓk≥1

∫ t

0
dW ℓ1

s1 · · ·

∫ sk−1

0
dW ℓk

sk
Pt−s1Lℓ1 · · ·Psk−1−skLℓkPskξ

and a remainder Rn(ξ) given by

∑

ℓ1,...,ℓn+1≥1

∫ t

0
dW ℓ1

s1 · · ·

∫ sn

0
dW ℓn

sn+1
Pt−s1Lℓ1 · · ·Psn−sn+1

Lℓn+1
Xsn+1

(ξ).

Therefore, putting
c := max

1≤ℓ≤m
‖Lℓ‖ ,

from we can write E

[
‖Rn(ξ)‖

2
]
as

∑

ℓ1,...,ℓn+1≥1

∫ t

0
ds1 · · ·

∫ sn

0
dsn+1 E

[ ∥∥Pt−s1Lℓ1 · · ·Lℓn+1
Xsn+1

(ξ)
∥∥2
]

≤ cn+1mn+1
∑

ℓ1,...,ℓn+1≥1

∫ t

0
ds1 · · ·

∫ sn

0
dsn+1

=
(cm)n+1 tn+1

(n+ 1)!
.

The conclusion follows letting n go to infinity. �

The solution Xt(ξ) to (4), for t > 0 and ξ ∈ C
d fixed, defines a

family of random vectors on Ω. We recall that the essential range
of a C

d-valued random variable Y is the set of all u ∈ C
d such that

P{Y ∈ U} > 0 for each neighbourhood U of u.

Theorem 8 Let (Xt(ξ)t≥0 be the unique solution to (4). The follow-
ing are equivalent:

1. S(ψ) = C
d for all ψ ∈ C

d − {0},

2. for all t > 0 and all ξ ∈ C
d − {0} the essential range of Xt(ξ) is

total in C
d.
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Proof. By the chaos expansion of Proposition 7, for all v ∈ C
d we

have

E

[
|〈v,Xt(ξ)〉|

2
]
= ‖Pt ξ‖

2

+
∑

n≥1,ℓ1,...,ℓn≥1

∫ t

0
ds1 . . .

∫ sn−1

0
dsn |〈v, Pt−s1Lℓ1Ps1−s2 · · ·LℓnPsnξ〉|

2 .

It follows that P {〈v,Xt(ξ)〉 6= 0} = 0 if and only if v is orthogonal to
all vectors Ptξ, Pt−s1Lℓ1Ps1−s2 · · ·LℓnPsnξ with 1 ≤ ℓ1, . . . , ℓn ≤ m,
0 ≤ sn . . . ≤ s1 ≤ t.

Now, if 2 holds, P {〈v,Xt(ξ)〉 6= 0} > 0 for all v ∈ C
d − {0} and v

is not orthogonal to all vectors Ptξ, Pt−s1Lℓ1Ps1−s2 · · ·LℓnPsnξ with
1 ≤ ℓ1, . . . , ℓn ≤ m, 0 ≤ sn . . . ≤ s1 ≤ t. Thus no non-zero vector is
orthogonal to PtS(ξ) by Theorem 3. Since Pt is invertible, and S(ξ)
is a subspace of Cd, it turns out that S(ξ) = C

d.
Conversely, if 1 holds, then, for all non-zero v ∈ C

d, the expectation
of the random variable |〈v,Xt(ξ)〉|

2 is strictly positive by Theorems
2 and 3 so that Xt(ξ) is not orthogonal to v on an event of strictly
positive probability. �

We can now proceed to study the relationship between irreducibil-
ity of a QMS and diffusion process (Xt)t≥0 solving the associated SSE
first recalling the usual definition.

Definition 9 The diffusion process (Xt)t≥0 is called irreducible on
C
d −{0} if, for all X0 = ξ ∈ C

d −{0} and all open set O ⊆ C
d −{0},

there exists t > 0 such that

P {Xt(ξ) ∈ O} > 0.

Clearly, even if the QMS associated with G,Lℓ is irreducible, the
diffusion process (Xt(ξ))t≥0 in C

d −{0} may not be. This is the case,
for instance, when the non-zero vector ξ has real components and
matrices G,Lℓ have real entries.

This is not just a matter of phase and length of vectors Xt(ξ)
because, if d > 2, the diffusion process takes values in a manifold
of real dimension d which is strictly smaller than the real dimension
2(d−1) of the complex projective space CPd−1 obtained on taking the
quotient with respect to a complex scalar.

Moreover, these situations indicate that irreducibility of the QMS
associated with G,Lℓ is much weaker than irreducibility of

1. the diffusion process solving (4) in C
d − {0},
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2. the diffusion process on the unit sphere of Cd obtained by nor-
malization of vectors Xt(ξ),

3. the diffusion process on the complex projective space CP
d−1 as-

sociated with the solution of (4).

We finish this section by showing another example illustrating that
irreducibility of (4) is stronger than irreducibility QMS.

Example 1 Suppose that the operators Lℓ are anti-selfadjoint, namely
L∗
ℓ = −Lℓ for ℓ = 1, . . . ,m. Then, by the Ito formula,

d 〈Xt(ξ),Xt(ξ)〉 =
〈
Xt(ξ), (G

∗ +
∑

ℓ

L∗
ℓLℓ +G)Xt(ξ)

〉
dt

+
∑

ℓ

〈Xt(ξ), (L
∗
ℓ + Lℓ)Xt(ξ)〉 dW

ℓ
t = 0.

It follows that ‖Xt(ξ)‖ = ‖ξ‖ for all t > 0, namely the range of the
diffusion process is contained in the unit sphere of Cd.

It is not hard, however, to produce an irreducible QMS with anti-
selfadjoint operators Lℓ. We may consider, for instance d = 2,m = 1,
L = iσ2, H = σ3 where σ1, σ2, σ3 are the Pauli matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

In this case we have

δG(L) = δ−iH(L) = [−iσ3, σ2] = 2σ1, δG(L)L = 2iσ3

so that S(ξ) = C
2 for all ξ ∈ C

2 − {0}.

Further examples will be discussed in the next section.

4 The range of solutions to linear SSE

Useful tools from control theory are available to study the range of
solutions to SSE (see the survey [31] Sect.6) For equation (4) let us
replace the Wiener processes W ℓ by piecewise polygonal approxima-
tions

W ℓ,n
t =W ℓ,n

k/n + (nt− k)
(
W ℓ,n

(k+1)/n −W ℓ,n
k/n

)
,

k

n
≤ t ≤

k + 1

n
.

A celebrated result by Stroock and Varadhan [35] shows that, for any
d× d matrix G̃, the solutions of

dX
(n)
t (ξ) = G̃X

(n)
t (ξ)dt+

m∑

ℓ=1

LℓX
(n)
t (ξ)dW ℓ,n

t , X
(n)
0 (ξ) = ξ (7)

9



converge almost surely to Xt(ξ) uniformly in t on any compact interval
to the solution of

dXt(ξ) = G̃Xt(ξ)dt+

m∑

ℓ=1

LℓXt(ξ) ◦ dW
ℓ
t , X0(ξ) = ξ (8)

where ◦ denotes the Stratonovich integral, namely, in terms of the Ito
integral, to the solution of

dXt(ξ) =

(
G̃+

1

2

m∑

ℓ=1

L2
ℓ

)
Xt(ξ)dt+

m∑

ℓ=1

LℓXt(ξ)dW
ℓ
t , X0(ξ) = ξ.

Thus, choosing

G̃ = G−
1

2

m∑

ℓ=1

L2
ℓ (9)

solutions of (7) converge to solutions of (4).
Equation (8) has the form

dxt = G̃xtdt+

m∑

ℓ=1

Lℓxtuℓ(t)dt, x0 = ξ (10)

where uℓ are piecewise constant functions. This is an ordinary (non-
autonomous) differential equation, functions uℓ are controls and (10
is a bilinear control system.

Unfortunately there are no general necessary and sufficient condi-
tion for deciding when a bilinear system is controllable.

A well-known necessary condition for controllability ([32] Theorem
2.3) is the Lie algebra rank condition

Definition 10 The Lie algebra rank condition (LARC) holds if the
linear manifold generated by vectors

G̃ξ, Lℓξ, [G̃, Lℓ]ξ, [Lℓ1 , Lℓ2 ]ξ, [G̃, [G̃, Lℓ]]ξ, [G̃, [Lℓ1 , Lℓ2 ]]ξ, ... (11)

is C
d for all non zero ξ.

The LARC implies that the control system (10) is accessible namely
the set of points (xs)0≤s≤t reachable from ξ with some choice of piece-
wise constant controls uℓ contains a non-empty open set in C

d for all
t > 0.

It is worth noticing here that the linear manifold spanned by vec-
tors (11) may depend on the particular choice of the operators G and
Lℓ in the GKSL representation of the generator L as shows the next
example. For this reason, from now on, we consider only minimal
GKSL representations of L.

10



Example 2 Let h = C
2, let H be a self-adjoint matrix which is not

a multiple of the identity 1l, Lℓ = 0 for all ℓ ≥ 1 and let T the QMS
on C

2 defined by Tt(x) = eitHxe−itH .
The LARC does not hold because the dimension of the linear man-

ifold (11) is at most 1 for all non zero ξ ∈ C
2. However, if we consider

a GKSL representation of the generator L(x) = i[H,x] with operators
Lℓ = 0 for all ℓ > 1,

L1 = z1l, G = −
|z|2

2
1l− iH

for some non zero complex number z, the linear manifold (11) contains
the vectors ξ and Hξ. It follows that the LARC condition holds for
all vectors ξ which are not eigenvectors of H.

Clearly T is not irreducible because any eigenprojection of H is
an harmonic projection for T .

Theorem 11 If the LARC holds for some minimal GKSL, then the
QMS generated by L is irreducible.

Proof. Indeed, if the QMS generated by L is not irreducible, for any
GKSL representation of L by means of operators G, Lℓ, by Theorem
III.1 of [12], there exists a non-trivial subspace V invariant for G and
all Lℓ. This subspace is also invariant for the operators G̃ and Lℓ

because of (9). It follows that, for all ξ ∈ V, the linear manifold
generated by vectors (11) is contained in V. �

It is worth noticing here that vectors (11) may not be contained in
S(ξ). Indeed, there is no reason why G̃ξ should be contained in S(ξ).

The converse of Theorem 11 is not true, indeed, there exist irre-
ducible QMSs with a given GKSL of their generator which do not
satisfy the LARC condition as shows the following example.

Example 3 Let T be the QMS on B(C3) generated by

L(x) = G∗x+ L∗xL+ xG

where L,H are the 3× 3 matrices

L =




0 1 0
−1 0 0
0 0 0


 , H =




0 0 −i
0 0 0
i 0 0


 (12)

and

G = −
1

2
L∗L− iH =




−1/2 0 −1
0 −1/2 0
1 0 0




11



Since L is anti-self-adjoint its invariant subspaces are generated by
eigenvectors (1, i, 0), (−1, i, 0), (0, 0, 1) of −iL. One immediately checks
that no one-dimensional or two-dimensional subspace generated by
these vectors, which is obviously L2 invariant, is H invariant, therefore
it is not G invariant and the QMS T is irreducible.

Clearly

G̃ = G−
1

2
L2 = −iH =




0 0 −1
0 0 0
1 0 0




and [ G̃, L ] = [G,L ]. Straightforward computations yield

[ G̃, L ] =




0 0 0
0 0 −1
0 1 0


 ,

so that, defining

X1 = [ G̃, L ] X2 = −G̃, X3 = −L

we find a basis of the Lie algebra of the rotation group SO(3), which
satisfies the commutation relations

[X1,X2 ] = X3, [X2,X3 ] = X1, [X3,X1 ] = X2.

Consequently iterated commutators of X1,X2,X3 do not give other
operators. Let e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) be the canoni-
cal orthonormal basis of C3. It is now immediate to check that

X1e2 = e3, X1e3 = −e2, X2e1 = −e3

X2e3 = e1, X3 e1 = e2, X3 e2 = −e1

and Xkek = 0 for k = 1, 2, 3. It follows that the linear manifold S(ek)
is two-dimensional for all k = 1, 2, 3 and the (11) condition does not
hold.

5 Generic QMSs

In this section we show that irreducibility of generic QMSs is equiva-
lent to the LARC condition with respect to the natural GKSL repre-
sentation of L.

Generic QMSs arise in the stochastic limit of a open discrete quan-
tum system with generic Hamiltonian, interacting with Gaussian fields

12



through a dipole type interaction (see [1, 8, 9]). Here, as in the pre-
vious sections, the system space is finite-dimensional h = C

d with
orthonormal basis (ek)k≤j≤d. The operators Lℓ, in this case labeled
by a double index (ℓ, k) with ℓ 6= k, are

Lℓk = γ
1/2
ℓk |ek〉 〈eℓ|

where are γℓk ≥ 0 positive constants and the Hamiltonian H is a self-
adjoint operator diagonal in the given basis whose explicit form is not
needed here. The generator L is

L(x) = i[H,x] +
1

2

∑

ℓ 6=k

(−L∗
ℓkLℓkx+ 2L∗

ℓkxLℓk − xL∗
ℓkLℓk) . (13)

The converse of Theorem 11 holds for generic QMS.

Theorem 12 A generic QMS is irreducible if and only if the LARC
condition holds.

Proof. The restriction of L to the algebra of diagonal matrices coin-
cides with the generator of a time continuous classical Markov chain
with states 1, . . . , d and jump rates γℓk (see [1, 8]). It is easy to see
as in [11] that the QMS generated by (13) is irreducible if and only if
the classical Markov chain is irreducible, i.e. for all pair of states ℓ,m
with ℓ 6= k, there exist n ≥ 1 and states j1, . . . , jn such that

γℓj1γj1j2 . . . γjnk > 0. (14)

There is no loss of generality in assuming that each ji is not equal to
any j1, . . . , ji−1, together with ji 6= ℓ. Indeed, if ji = ji′ , we can delete
all states ji′ , . . . , ji−1 in the sequence of transitions ℓ → j1 → . . . →
jn → k. Consequently, we find the commutation relation

[Lji ji+1
, Lji−1 ji ] = Lji ji+1

Lji−1 ji =
(
γji−1jiγjiji+1

)1/2 ∣∣eji+1

〉 〈
eji−1

∣∣

and compute the iterated commutator

[Ljnk, [Ljn−1jn , . . .]] = (γℓj1γj1j2 . . . γjnk)
1/2 |ek〉 〈eℓ| .

For all non-zero ξ =
∑

1≤j≤d ξjej ∈ C
d, choose an ℓ such that ξℓ 6= 0

and note that

[Ljnk, [Ljn−1jn , . . .]]ξ = ξℓ (γℓj1γj1j2 . . . γjnk)
1/2 ek.

It follows that, if the QMS is irreducible, i.e. (14) holds, then also
the LARC condition holds. This, together with Theorem 11, implies
that irreducibility and the LARC condition are equivalent for generic
QMSs. �
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