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Families Of Elliptic Curves With The Same Mod

8 Representations

Zexiang Chen

Abstract

Let E : y2 = x3 + ax + b be an elliptic curve defined over Q. We
compute certain twists of the classical modular curve X(8). Searching for
rational points on these twists enables us to find non-trivial pairs of 8-
congruent elliptic curves over Q, i.e. pairs of non-isogenous elliptic curves
over Q whose 8-torsion subgroups are isomorphic as Galois modules. We
also show that there are infinitely many examples over Q.

1 Introduction And Notation

Let E,F be elliptic curves over Q. For each n ≥ 1, we say E and F are n-
congruent with power r if E[n] ∼= F [n] as Galois modules and the Weil pairing
is switched to the power of r ∈ (Z/nZ)∗. That is, if φ : E[n] → F [n] is a
GQ-equivariant isomorphism then ern(P,Q) = en(φP, φQ) for all P,Q ∈ E[n].

For each elliptic curve E, the families of elliptic curves which are n-congruent
to E with power r are parameterised by a modular curve Xr

E(n). That is, each
non-cuspidal point on Xr

E(n) corresponds to an isomorphism class (F, φ) where
F is an elliptic curve and φ : E[n] → F [n] is a GQ-isomorphism which switches
the Weil pairing to the power of r. In fact we only need to focus on r ∈ (Z/nZ)∗

mod squares. The families of elliptic curves parameterised by X1
E(n), n ≤ 5

were computed by Rubin and Silverberg [RS] and the existence and theoretical
construction of Xr

E(n) can be found in [S].
When n ≤ 5, Xr

E(n) have genus 0 and they have infinitely many rational
points. The families of elliptic curves parameterised by Xr

E(n) with r 6= 1 can
be found in [F1], [F2]. When n ≥ 7, Xr

E(n) have genus greater than 1 and so
there are only finitely many rational points on each of these.

One of the motivations to study the equations for n ≥ 7 is to answer Mazur’s
question [M] which concerns whether there are any pairs of non-isogenous n-
congruent curves. Motivated by Mazur’s question, Kani and Schanz [KS] stud-
ied the geometry of the surface that parametrise pairs of n-congruent of elliptic
curves. This prompted them to conjecture that for any n ≤ 12 there are in-
finitely many pairs of n-congruent non-isogenous elliptic curves over Q. It is
understood that we are looking for examples with distinct j-invariants, since
otherwise from any single example we could construct infinitely many by taking
quadratic twists.

The conjecture in the case n = 7 was proved by Halberstadt and Kraus
[HK] where they gave explicit formula for X1

E(7). The equation of X6
E(7) was

computed by Poonen, Schaefer and Stoll [PSS] where they study the equation
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of X6
E(7) to solve the Diophantine equation x2 + y3 = z7. The conjecture in

the case n = 9, 11 was proved by Fisher [F3] where he gave explicit formula for
Xr
E(9) and X

r
E(11) with r = ±1.

In this paper we will give equations for the Xr
E(8), r = 1, 3, 5, 7 and the

families of elliptic curves parameterised by these modular curves. For convention
we writeXE(8) asX

1
E(8). In the last section we will discuss the relation between

the equations we obtain and the classification of modular diagonal surfaces as
described in [KS] which then helps us to generate examples of pairs of non-
isogenous 8-congruent elliptic curves.

Another motivation for studying n-congruence of elliptic curves is the fol-
lowing. It was observed by Cremona and Mazur [CM] that if elliptic curves E
and F are n-congruent then the Mordell-Weil group of F can sometimes be used
to explain elements of the Tate-Shafarevich group of E.

We fix our convention for the classical modular curve. Let X(n) be the
classical modular curve on which each non-cuspidal point corresponds to an
isomorphism class (E, φ) where E is an elliptic curve and

φ : Z/nZ× µn ∼= E[n]

such that

en(φ((a1, ζ1), (a2, ζ2))) =
ζa12

ζa21

.

Equivalently, each non-cuspidal point corresponds to an isomorphism class (E,P,C)
where P is a primitive n-torsion point on E and C is a cyclic subgroup of E of
order n which does not contain any multiple of P . Write Y (n) = X(n)\{cusps}.

We write Q̄ as the algebraic closure of Q and GQ = Gal(Q̄/Q). For each
n ≥ 1 and any field L, write Kn(L) as the function field of X(n)/L. We will
always assume L has characteristic not equal to 2 or 3. Let µn be the set of
n-th roots of unity. We will always write PSL2(Z/nZ) := SL2(Z/nZ)/{±I}.

We state our main results. The families of elliptic curves parameterised by
XE(4) and X

3
E(4) will be given in the appendix.

Theorem 1.1. Let E be an elliptic curve with equation y2 = x3+ax+ b. Then
XE(8) ⊂ A4

t,a0,a1,a2
(Q) has equations f1 = g1 = h1 = 0 where

f1 = −aa22 + 2a0a2 + a21 +
2

9
,

g1 = −2aa1a2 − ba22 + 2a0a1 +
2

3
t,

h1 = −2ba1a2 + a20 − t2 +
a

9
,

with forgetful map XE(8) → XE(4) : (t, a0, a1, a2) 7→ t.

Theorem 1.2. Let E be an elliptic curve with equation y2 = x3 + ax + b and
D = −4a3− 27b2. Then X5

E(8) ⊂ A4
t,a0,a1,a2

(Q) has equations f5 = g5 = h5 = 0
where

f5 = −aa22 + 2a0a2 + a21 +
2D

9
,

g5 = −2aa1a2 − ba22 + 2a0a1 +
2D

3
t,

h5 = −2ba1a2 + a20 +D(−t2 + a

9
).
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with forgetful map X5
E(8) → XE(4) : (t, a0, a1, a2) 7→ t.

Theorem 1.3. Let E be an elliptic curve with equation y2 = x3+ax+ b. Then
X3
E(8) ⊂ A4

t,a0,a1,a2
(Q) has equations f3 = g3 = h3 = 0 where

f3 = −2

9
a2 + 6at2 + 6bt− (−aa22 + 2a0a2 + a21),

g3 =
4

3
a2t+

1

3
ab− 9bt2 − (−2aa1a2 − ba22 + 2a0a1),

h3 = −4

9
a3 + 4a2t2 + 4abt− 2b2 − (−2ba1a2 + a20).

with forgetful map X3
E(8) → X3

E(4) : (t, a0, a1, a2) 7→ t.

Theorem 1.4. Let E be an elliptic curve with equation y2 = x3+ax+ b. Then
X7
E(8) ⊂ A4

t,a0,a1,a2
(Q) has equations f7 = g7 = h7 = 0 where

f7 = 3t2 +
a

9
− aa22 + 2a0a2 + a21,

g7 =
4

3
at+

2

3
b − 2aa1a2 − ba22 + 2a0a1,

h7 = at2 + 2bt− 1

9
a2 − 2ba1a2 + a20.

with forgetful map X7
E(8) → X3

E(4) : (t, a0, a1, a2) 7→ t.

Remark. The families of elliptic curves parameterised by Xr
E(8) can be read

off from the families of elliptic curves parameterised by X r̄
E(4) via the forgetful

map Xr
E(8) → X r̄

E(4) where r̄ = r mod 4.

We will give basic properties of the modular curve X(8) in Section 2. In
Section 3 we will describe the function fields of Xr

E(8) over Q for each r =
1, 3, 5, 7. Then we will prove Theorem 1.1 and 1.2 in Section 4, based on the
observations in Section 3 and the fact there is always a rational point on XE(8).
The proofs of Theorem 1.3 and 1.4 require some cocycle calculations, which we
will give in Section 5, and we will prove Theorem 1.3 and 1.4 in Section 6.

Acknowledgement

I would like to thank Tom Fisher for useful discussion and advice. Most
symbolic computations were done by MAGMA [MAG].

2 The Modular Curve X(8)

In this section we give the basic properties of the curve X(8). We start by
introducing the structure of X(4). Fix a primitive 4th root of unity i. It is
well-known (see for example [S]) that the modular curve X(4) can be identified
with P1 by

(Eu, Pu, Cu) 7→ u

where

Eu : y2 = x3 − 27(256u8 + 224u4 + 1)x− 54(−4096u12 + 8448u8 + 528u4 − 1)
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is an elliptic curve, Pu = (48u4 − 144u3 + 72u2 − 36u + 3, 1728u5 − 1728u4 +
864u3−432u2+108u) is a primitive 4-torsion point and Cu is generated by Qu =
(48u4−15, i(864u4−54)). The cusps ofX(4) are points satisfying u(16u4−1) = 0
and u = ∞.

Take the model Eu and let x1 and x2 be the x-coordinates of any half point of
Pu and Qu respectively. They satisfy the vanishing of the following polynomials

f = (x1 − 48u4 + 144u3 − 72u2 + 36u− 3)4

+ 1296u(2u− 1)4(4u2 + 1)(x1 − 48u4 − 72u2 − 3)2,

g = (x2 − 48u4 + 15)4 + 1296(16u4 − 1)(x2 + 96u4 + 6)2.

Solving these directly we conclude that the function field of X(8)/L is

K8(L) := L(u,
√

u2 − 1/4,
√

u2 + 1/4,
√
−u)

for any field L containing µ8 and so if ζ is a fixed 8th root of unity then a model
of X(8) in A4

u,X1,X2,X3
/L is given by

X2
1 = u2 − 1

4
, X2

2 = u2 +
1

4
, X2

3 = −u.

The projective closure of this is a smooth curve of genus 5 and the families of
elliptic curves parameterized by X(8) are

Eu,X1,X2,X3 : y2 = x3−27(256u8+224u4+1)x−54(−4096u12+8448u8+528u4−1)

together with a GQ-invariant 8-torsion point Pu,X1,X2,X3 = (Px, Py) and a GQ-
invariant cyclic subgroup 〈Qu,X1,X2,X3 = (Qx, Qy)〉 where

Px = −36(4X5
3 + 4X4

3 + 4X3
3 + 2X2

3 +X3)X2 + 48X8
3 + 144X7

3 + 144X6
3

+ 72X5
3 + 72X4

3 + 36X3
3 + 36X2

3 + 18X3 + 3,

Py = 108(16X9
3 + 32X8

3 + 32X7
3 + 32X6

3 + 24X5
3 + 16X4

3 + 8X3
3 + 4X2

3

+X3)X2 − 1728X11
3 − 3456X10

3 − 4320X9
3 − 3456X8

3 − 2592X7
3

− 1728X6
3 − 1296X5

3 − 864X4
3 − 540X3

3 − 216X2
3 − 54X3,

Qx = −72ζ2X1X2 + (72(ζ3 + ζ)X4
3 + 18(ζ3 + ζ))X1 + (72(ζ3 − ζ)X4

3

− 18(ζ3 − ζ))X2 + 48X8
3 − 15,

Qy = 432X1X2 + (864(−ζ3 + ζ)X8
3 + 432(ζ3 − ζ)X34 + 162(ζ3 − ζ))X1

+ ((−864ζ3 − 864ζ)X8
3 + 432(−ζ3 − ζ)X4

3 + 162(ζ3 + ζ))X2

+ 1728ζ2X8
3 − 108ζ2.

The forgetful morphism X(8) → X(4) is given by (u,X1, X2, X3) 7→ u. In
particular, this is only ramified above the cusps with ramification degree 2. The
function field of X(8) is obtained by adjoining the square roots of three rational
functions of degree 2 on X(4) and the zeroes of these rational functions are the
cusps of X(4).

Let Gn := PSL2(Z/nZ). It is well-known that Gal(Kn(C)/K1(C)) ∼= Gn.
Let H = Gal(K8(C)/K4(C)) then we have an exact sequence

1 → H → G8 → G/H ∼= G4 → 1
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and so H ∼= (Z/2Z)3. The group Gn acts on X(n) by relabeling the n-torsion
points. Explicitly, for each α ∈ Gn and any point (E, φ) ∈ Y (n), α acts on
(E, φ) by

α ◦ (E, φ) = (E,α ◦ φ).

3 The Modular Elliptic Curves

We firstly recall some results of the level four structure and introduce the
algorithm to compute XE(4) in [F1]. Let E : y2 = x3 + ax + b be an elliptic
curve and write c4 = − a

27 , c6 = − b
54 . Take homogenous coordinate (u : v) for

X(4) and define

c4(u, v) = 256u8+224u4v4+v8, c6(u, v) = −4096u12+8448u8v4+528u4v8−v12

Let T = uv(16u4− v4) and Tu, Tv be the partial derivative of T with respect
to u, v respectively. Now pick u, v ∈ C such that c4(u, v) = c4, c6(u, v) =
c6. Then as is shown in [F1], Lemma 8.4 and Theorem 13.2, the isomorphism
XE(4) → X(4) is given by fractional linear map represented by the matrix

(

u −Tv
v Tu

)

and so the isomorphism X(4) → XE(4) is given by fractional linear map repre-
sented by the matrix

(

Tu Tv
−v u

)

.

Under this isomorphism the point ∞ on XE(4) corresponds to E itself. From
now on we will identify XE(4) with P1 by this isomorphism.

Further, based on the observation in [F1] page 31, we conclude that the curve
X3
E(4) can be chosen to be the same as XE(4) (with the same isomorphism to

X(4)) in the sense that if we pick affine coordinate A1
t for XE(4) and

Et : y
2 = x3 − 27aE(t)x− 54bE(t)

are families of elliptic curves parameterised by XE(4) then the families of elliptic
curves parameterised by X3

E(4) are

E′

t := E∆E

t : y2 = x3 − 27∆2
EaE(t)x− 54∆3

EbE(t).

From now on we will write these to be the families of elliptic curves param-
eterised by X3

E(4) and we will give the expressions of aE(t) and bE(t) in the
appendix. In fact this identification can be explained by the following lemma.

Lemma 3.1. Let E be an elliptic curve and E∆E be the quadratic twist of E
by its discriminant ∆E. Let γ : E → E∆E be the natural isomorphism

(x, y) 7→ (x∆E , y∆
3
2

E).

Let p′, q′ be the image of p, q respectively. Then the map φ : E[4] → E∆E [4]

φ(p) = p′ + 2q′, φ(q) = 2p′ + 3q′

is a GQ-equivariant isomorphism.

5



This result can also be found in [BD] Section 7.

Proof. Fix a basis {p, q} for E[4]. For each s ∈ GQ, we identify s with its
image under θ′ : GQ → GL(E[4]) ⊂ GL2(Z/4Z). Take generators v1, v2, v3 for
GL2(Z/4Z) where

v1 =

(

3 0
0 1

)

, v2 =

(

0 1
3 0

)

, v3 =

(

1 1
0 1

)

.

Then it suffices to check that vjφ = φvj , j = 1, 2, 3. Note that v1 fixes
√
∆E

and v2, v3 switch the sign of
√
∆E .

Then a direct computation shows that

v1φ(p) = φv1(p) = 3p′ + 2q′, v1φ(q) = φv1(q) = 2p′ + 3q′,

v2φ(p) = φv2(p) = 2p′ + q′, v2φ(q) = φv2(q) = p′ + 2q′,

v3φ(p) = φv3(p) = p′ + 2q′, v3φ(q) = φv3(q) = 3p′ + q′.

Lemma 3.2. Let t1, . . . , t6 be the cusps of XE(4) which are the images of
± 1

2 ,± i
2 , 0,∞ respectively, under the isomorphism X(4) → XE(4). If we set

m1 = t1 + t2,m2 = t3 + t4,m3 = t5 + t6, l1 = t1t2, l2 = t3t4, l3 = t5t6

and let θj , j = 1, 2, 3 be the roots of x3 + ax + b = 0. Then mj = − 2
3θj and

lj = − 1
9 (2θ

2
j + a) for each j.

Proof. This follows from a direct computation.

Remark. Since we identify X3
E(4) with XE(4), so t1, . . . , t6 are also the cusps

of X3
E(4) and so the above lemma also holds for X3

E(4).

We now illustrate the method to compute Xr
E(8), r = 1, 3, 5, 7. For sim-

plicity, assume that x3 + ax + b is irreducible. It follows immediately from
compatibility of the Weil pairing that Xr

E(8) is a cover of X r̄
E(4), where r̄ = r

mod 4. It can be shown that Xr
E(n) is a twist of X(n) (see, for example, [S]). So

X(8) and Xr
E(8) have the same ramification behavior under the forgetful mor-

phism to the level four structure. Thus the forgetful morphism Xr
E(8) → X r̄

E(4)
is only ramified at the points above the cusps of X r̄

E(4).

Lemma 3.3. For each r ∈ (Z/8Z)∗, the function field of Xr
E(8) over Q(E[2])

is

Q(E[2])

(

t,
√

αr,1(t− t1)(t− t2),
√

αr,2(t− t3)(t− t4),
√

αr,3(t− t5)(t− t6)

)

for some appropriate αr,j ∈ Q(E[2]), j = 1, 2, 3. We call these αr,j , j = 1, 2, 3
the scaling factors of Xr

E(8).

Proof. As is described in Section 2, if we fix an affine coordinate u of X(4), then
the function field of X(8) over Q(ζ) is given by

Q(ζ)(u,
√

u2 − 1/4,
√

u2 + 1/4,
√
−u)

6



where ζ is a fixed primitive 8th root of unity.
Fix an affine coordinate t of XE(4) as above. Since t1, . . . , t6 are the images

of ± 1
2 ,± i

2 , 0,∞ respectively, the function field of Xr
E(8) over C has the form

C(t,
√

(t− t1)(t− t2),
√

(t− t3)(t− t4),
√

(t− t5)(t− t6)).

By Lemma 3.2, the rational functions (t−t1)(t−t2), (t−t3)(t−t4), (t−t5)(t−t6)
are defined over Q(E[2]) and are conjugate to each other.

As Xr
E(8) has a model over Q and so it has a model over Q(E[2]). Then the

function field of Xr
E(8) over Q(E[2]) is

Q(E[2])

(

t,
√

αr,1(t− t1)(t− t2),
√

αr,2(t− t3)(t− t4),
√

αr,3(t− t5)(t− t6)

)

for some appropriate αr,1, αr,2, αr,3 ∈ Q(E[2]) which are conjugate to each other.

Corollary 3.4. For each r ∈ (Z/8Z)∗, the equation of Xr
E(8) ⊂ A4

t,a0,a1,a2
(Q)

is determined by the scaling factors αr,j, j = 1, 2, 3. In particular, the equation
of Xr

E(8) over Q is obtained by comparing the coefficients of 1, θj, θ
2
j , j = 1, 2, 3

in the equations

αr,j(t− t2j−1)(t− t2j) = (a0 + a1θj + a2θ
2
j )

2, j = 1, 2, 3.

Proof. The extension of function fields (Xr
E(8)/Q(E[2]))/(Xr

E(8)/Q) is Galois.
Therefore to find a model of Xr

E(8) over Q, it suffices to find enough gener-
ating elements in the function field of Xr

E(8) over Q(E[2]) which are fixed by
Gal(Q(E[2])/Q). Explicitly, we will write wj :=

√

αr,j(t− t2j−1)(t− t2j) and
so w2

j = αr,j(t− t2j−1)(t− t2j) for each j = 1, 2, 3.

By Lemma 3.2, wj = a0 + a1θj + a2θ
2
j for some a0, a1, a2 ∈ Q for each

j = 1, 2, 3. Therefore we obtain equations

αr,j(t− t2j−1)(t− t2j) = (a0 + a1θj + a2θ
2
j )

2, j = 1, 2, 3.

To find a model of Xr
E(8) over Q, it suffices to compare the coefficients

of 1, θj , θ
2
j , j = 1, 2, 3 on both sides of the equations above because these are

invariant under the action of Gal(Q(E[2])/Q).

Remark. In fact it suffices to compare the coefficients of 1, θj, θ
2
j in one of the

equations

αr,j(t− t2j−1)(t− t2j) = (a0 + a1θj + a2θ
2
j )

2, j = 1, 2, 3

because they are conjugate to each other.

Remark. We are free to multiply αr,j by a non-zero squared factor of the form
(u0 + u1θj + u2θ

2
j )

2 because this leads to a change of coordinate in a0, a1, a2.

We can extend the above results to the case when x3 + ax+ b is reducible.
For example, if x3+ ax+ b splits completely over Q, then the rational functions
(t − t2j−1)(t − t2j), j = 1, 2, 3 are defined over Q. So Xr

E(8) ⊂ A4
t,w1,w2,w3

(Q)
has equations

w2
j = αr,j(t− t2j−1)(t− t2j), j = 1, 2, 3

for some appropriate αr,j ∈ Q, j = 1, 2, 3. This is isomorphic to the ones
stated in Theorem 1.1-1.4 because there is a bijection between {a0, a1, a2} and
{a0 + a1θj + a2θ

2
j : j = 1, 2, 3} over Q. The case when x3 + ax + b has exactly

one rational root is similar.
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4 The Modular Curves XE(8) And X
5
E(8)

By Corollary 3.4, to find equations of Xr
E(8) over Q, it suffices to compute the

scaling factors αr,j , j = 1, 2, 3 as introduced in Lemma 3.3. We prove Theorem
1.1 and 1.2 in this section.

Theorem 4.1. We can pick α1,j to be 1 for each j = 1, 2, 3. In particular,
we obtain the equation of XE(8) as stated in Theorem 1.1, together with the
forgetful map XE(8) → XE(4) given by (t, a0, a1, a2) 7→ t.

Proof. There is always a tautological rational point on the curve XE(n) for any
n which corresponds to the pair (E, [1]). The point on XE(4) corresponding to
(E, [1]) is given by the point of infinity under the isomorphism we described in
Section 3. Since we construct XE(8) as a cover of XE(4), there is a point on
XE(8) above t = ∞ which corresponds to (E, [1]). By a change of coordinate
of a0, a1, a2, we may take this point to be t = ∞, a0 = 1, a1 = 0, a2 = 0.

By corollary 3.4, the equation of XE(8) over Q is determined by comparing
the coefficients of 1, θj, θ

2
j in the equations

α1,j(t− t2j−1)(t− t2j) = (a0 + a1θj + a2θ
2
j )

2, j = 1, 2, 3

Taking homogenous coordinates in the above equations we have

α1,j(t− t2j−1s)(t− t2js) = (a0 + a1θj + a2θ
2
j )

2, j = 1, 2, 3

and so the point t = ∞, a0 = 1, a1 = 0, a2 = 0 is now (t : a0 : a1 : a2 : s) = (1 :
1 : 0 : 0 : 0). Substituting this point into the equations, we conclude that we
can take α1,j , j = 1, 2, 3 to be 1.

By compatibility of the Weil pairing, X5
E(8) is also a cover of XE(4). The

proof of Theorem 1.2 is based on the following observations.

Lemma 4.2. Let E be an elliptic curve and fix any basis {P,Q} for E[8]. Then
the map

φ : E[8] → E[8], φ(P ) = 5P, φ(Q) = Q

is GR-equivariant where R = Q(E[2]).

Proof. The non-trivial 2-torsion points 4P, 4Q, 4P + 4Q are R-rational. Let
s ∈ GR and write

s(P ) = A1P +A2Q, g(Q) = A3P +A4Q.

Then s(4P ) = 4P and s(4Q) = 4Q. So A2, A3 are both even. Thus,

φ(s(P )) = φ(A1P +A2Q) = 5A1P +A2Q = 5A1P + 5A2Q = s(φ(P ))

and

φ(s(Q)) = φ(A3P +A4Q) = 5A3P +A4Q = A3P +A4Q = s(φ(Q)).

Lemma 4.3. If the modular curves X5
E(8) and XE(8) are isomorphic over K

as covers of XE(4), then ∆E is a square in K.

8



Proof. Suppose X5
E(8)

∼= XE(8) as covers of XE(4) then there exists a GK -
equivariant isomorphism φ : E[8] → E[8] such that detφ = 5 and φ acts trivially
on E[4]. If we fix a basis {P,Q} for E[8] then we can view φ as a 2× 2 matrix
in terms of its action on {P,Q}. We only need to consider φ in PGL2(Z/8Z)
because multiplications by 3, 5, 7 are automorphisms on E[8] which preserve the
Weil pairing. So we have the following possible matrices to consider

T1 =

(

1 0
4 5

)

, T2 =

(

1 4
0 5

)

, T3 =

(

1 0
0 5

)

, T4 =

(

1 4
4 5

)

.

We see T1 =

(

1 0
1 1

)

−1

T3

(

1 0
1 1

)

, T2 =

(

1 1
0 1

)

−1

T3

(

1 1
0 1

)

and so it

suffices to consider T3 and T4.
Let s ∈ GK and suppose the action of s on E[8] is given by s(P ) = A1P +

A2Q, s(Q) = A3P + A4Q. If φ is given by the matrix T3, then using sφ = φs
we conclude A2, A3 are even. So A1, A4 are odd because the action of s is
invertible. This implies s fixes E[2] and so E[2] is GK-invariant. In particular
∆E is a square in K.

If φ is given by T4, then a direct computation using sφ = φs shows that A2

and A3 have the same parity and A1 + A2 ≡ A1 + A3 ≡ A4 mod 2. Suppose
A2 and A3 are both even then we have exactly the same situation as above and
so ∆E is a square in K. Assume A2 and A3 are both odd. If A1 is odd then
A4 is even and we have s(4P ) = 4P + 4Q, s(4Q) = 4P . So s(4P + 4Q) = 4Q,
in which case ∆E is a square. If A1 is even then A4 is odd and we have
s(4P ) = 4Q, s(4Q) = 4P +4Q. So s(4P +4Q) = 4P , in which case ∆E is again
a square.

Theorem 4.4. We can pick α5,j to be D = −4a3− 27b2 for each j = 1, 2, 3. In
particular, we obtain the equation of X5

E(8) as stated in Theorem 1.2, together
with the forgetful map X5

E(8) → XE(4) given by (t, a0, a1, a2) 7→ t.

Proof. By the Lemma 4.2, there is a Q(E[2])-rational point on X5
E(8) above

t = ∞ which corresponds to (E, φ) where φ is the same map as in Lemma
4.2. Therefore α5,j , j = 1, 2, 3 are squares in Q(E[2]). But there is a unique

quadratic subfield inside Q(E[2]) which is Q(
√
D) where D = −4a3 − 27b2.

By the last remark of Section 3, α5,j can be multiplied by any non-zero
squared factor of the form (u0 + u1θj + u2θ

2
j )

2. This shows that we may pick
α5,j , j = 1, 2, 3 to be 1 or D. But by Lemma 4.3, if α5,j = 1, j = 1, 2, 3 then D is
a square in Q and so we should pick α5,j = D for each j. A direct computation
gives the equation of X5

E(8) as in Theorem 1.2.

5 Cocycles

The proofs of Theorem 1.1 and Theorem 1.2 are based on the fact there is
always a rational point on the curve XE(8). However this is not always true
for X3

E(8) or X7
E(8), for any elliptic curve E. We will prove Theorem 1.3

and 1.4 in the next section. By Corollary 3.4, it suffices to compute α3,j and
α7,j , j = 1, 2, 3.
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It is shown in [S] that Xr
E(n) are twists of X(n). In particular, Xr

E(8)
are twists of XE(8) for each r ∈ (Z/8Z)∗. By Theorem 2.2 in [AEC], for each
curve C/Q, there is a bijection between the twists of C/Q and H1(GQ, Isom(C))
where Isom(C) is the isomorphic group of C. In this section, we will describe
the relation between the scaling factors αr,j , j = 1, 2, 3 introduced in Lemma
3.3 and the element which corresponds to Xr

E(8) in H
1(GQ, Isom(XE(8))). For

simplicity, we again assume that x3 + ax+ b is irreducible.

Lemma 5.1. For each r, let τ be an automorphism on E[8] which switches the
Weil pairing to the power of r. Then for each s ∈ GQ, s 7→ (sτ)τ−1 defines a
cocycle in H1(GQ, Isom(XE(8))) which corresponds to Xr

E(8).

Proof. For each s ∈ Q, (sτ)τ−1 is an automorphism on E[8] preserving the Weil
pairing, which induces an automorphism on XE(8). Note [−1] acts trivially on
XE(8). Then following a similar argument in [S], we conclude that the curve
corresponding to this cocycle is Xr

E(8).

Remark. If (sτ)τ−1 acts trivially on E[4] modulo [−1] for all s ∈ GQ then we
have an isomorphism between XE(8) and X

r
E(8) respecting the level four

structure.

The group H ∼= (Z/2Z)3 is defined to be the kernel of the reduction map
PSL2(Z/8Z) → PSL2(Z/4Z) in Section 2 and H is a subgroup of Isom(XE(8)).
Define H ′ to be the kernel of

GL2(Z/8Z)/{±I} → GL2(Z/4Z)/{±I,±v}

where

v =

(

1 2
2 3

)

and it can be checked that H ′ is Abelian. By Lemma 3.1 the matrix v induces a
GQ-equivariant isomorphism between E[4] and E∆E [4] which switches the Weil
pairing to the power of 3, and so v identifies X3

E(4) with XE(4).
Since H is a subgroup of H ′ and det v 6= 1, the following sequence

0 −−−−→ H −−−−→ H ′
det−−−−→ (Z/8Z)∗ −−−−→ 0

is exact. Viewing g as an automorphism on E[8] modulo [−1], we have a Galois
action sg for each s ∈ GQ. Further we have trivial Galois action on (Z/8Z)∗.

Now viewing H,H ′, (Z/8Z)∗ as GQ-module we obtain a long exact sequence
and in particular we obtain the connecting map

(Z/8Z)∗ → H1(GQ, H).

The image of r ∈ (Z/8Z)∗ can be computed as follows. Pick a lift v′ of r in H ′.
Then the image of r in H1(GQ, H) is s 7→ (sv′)v′−1 for each s ∈ GQ. Therefore,
Xr
E(8) is the curve corresponding to this cocycle by Lemma 5.1.
Recall that each non-cuspidal point on Xr

E(n) corresponds to a pair (F, φ)
where F is an elliptic curve and φ : E[n] → F [n] is a GQ-equivariant isomor-
phism which switches the Weil pairing to the power of r. We consider the image
of 7.
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Lemma 5.2. The image of 7 under (Z/8Z)∗ → H1(GQ, H) induces an isomor-
phism ψ : X7

E(8) → XE(8) subject to the following commutative diagram

X7
E(8)

ψ−−−−→ XE(8)




y





y

X3
E(4)

η−−−−→ XE(4)

where ψ(F, φ) = (F, φ ◦ v′) and η(F, φ) = (F, φ ◦ v).

Proof. For each s ∈ GQ, since
sφ = φ,

(sψ)ψ−1(F, φ) = (F, φ ◦ (sv′)v′−1), (sη)η−1(F, φ) = (F, φ ◦ (sv)v−1).

The Galois conjugate (sψ)ψ−1 induces an automorphism on XE(8) which can
be read off from (sv′)v′−1. So ψ corresponds to the cocycle s 7→ (sv′)v′−1 which
is the image of 7. The diagram commutes because v′ ≡ v mod 4.

We describe the image of 7 in H1(GQ, H) explicitly.

Lemma 5.3. Let v′ =

(

1 2
6 3

)

be a lift of 7 in H ′. For each s ∈ GQ, we identify

s with its image under θ : GQ → GL(E[8]) ⊂ GL2(Z/8Z). Then the action of
s on v′ is given by conjugation. Take generators s1, s2, s3, s4 for GL2(Z/8Z)
where

s1 =

(

7 0
0 1

)

, s2 =

(

5 0
0 1

)

, s3 =

(

0 1
−1 0

)

, s4 =

(

1 1
0 1

)

.

Let Csj = (sjv′)v′−1 = sjv
′s−1
j v′−1. Then

Cs1 =

(

1 4
4 1

)

, Cs2 =

(

1 0
0 1

)

, Cs3 =

(

3 4
4 3

)

, Cs4 =

(

1 0
4 1

)

.

Proof. This follows from a direct computation.

Lemma 5.2 and 5.3 give concrete descriptions of X7
E(8) in terms of the image

of 7 under (Z/8Z)∗ → H1(GQ, H
1). On the other hand, the equation of X7

E(8)
is determined by the scaling factors α7,j , j = 1, 2, 3 by Corollary 3.4. The
following lemmas show how these scaling factors are related to the image of 7
in H1(GQ, H).

Lemma 5.4. Let T1, T2, T3 be the non-trivial 2-torsion points of E and M
be the group Map(E[2]\{O}, µ2) where the group operation is defined by (χ1 ◦
χ2)(Tj) = χ1(Tj)χ2(Tj), j = 1, 2, 3. For each s ∈ GQ, we define the action sχ
by χs−1 as we have trivial action on µ2. Then H ∼=M as GQ-module and hence
H1(GQ, H) ∼= L∗/(L∗)2 where L = Q[x]/(x3 + ax+ b).

Proof. Fix a basis {P,Q} for E[8] such that 4P = T1, 4Q = T2. Take generators
S1, S2, S3 for H where

S1 =

(

1 4
4 1

)

, S2 =

(

3 4
4 3

)

, S3 =

(

1 0
4 1

)

.
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For each s ∈ GQ, we identify s with its image under θ : GQ → GL(E[8]) ⊂
GL2(Z/8Z) and the action of GQ on H is given by conjugation sSi = sSis

−1.
We take generators s1, s2, s3, s4 for GL2(Z/8Z) as in Lemma 5.3.

We identify each element χ ∈ M with a triple (e1, e2, e3) where ei ∈ {±1}
in the sense that χ(Ti) = ei. The action of GQ on M is given by sχ = χs−1.

Now define π : H →M explicitly by S1 7→ χ1, S2 7→ χ2, S3 7→ χ3 where

χ1 = (−1,−1, 1), χ2 = (1, 1,−1), χ3 = (1,−1, 1).

Then a direct computation shows that siπ(Sj) = π(siSj) for i = 1, 2, 3, 4 and j =
1, 2, 3 and so π is a GQ-equivariant isomorphism. So H1(GQ, H) ∼= H1(GQ,M).
Finally, by Shapiro’s lemma and Hilbert 90, H1(GQ,M) ∼= L∗/(L∗)2.

Since we assume that x3 + ax+ b is irreducible, so L ∼= Lj for any j = 1, 2, 3

where Lj = Q(θj), and we have an embedding L →֒ ∏3
j=1 Lj .

Lemma 5.5. The image of 7 under (Z/8Z)∗ → H1(GQ, H) ∼= H1(GQ,M) ∼=
L∗/(L∗)2 →֒

∏3
j=1 L

∗

j/(L
∗

j)
2 is (α7,1, α7,2, α7,3).

Proof. By considering the function field of X7
E(8) and XE(8) over Q(E[2])

(Lemma 3.3), the map ψ′ :
√

α7,j(t− t2j−1)(t− t2j) 7→
√

α1,j(t− t2j−1)(t− t2j),
j = 1, 2, 3 induces an isomorphism X7

E(8) → XE(8) over Q(E[2]). Moreover we
have the following commutative diagram

X7
E(8)

ψ′

−−−−→ XE(8)




y





y

X3
E(4)

=−−−−→ XE(4)

For each s ∈ GQ, s acts on E[2] by permuting {T1, T2, T3}. Let σs be the
element in the symmetric group of {1, 2, 3} which corresponds to the action of s
on {T1, T2, T3}. A direct computation shows that the Galois conjugate (sψ′)ψ′−1

acts on XE(8) by

√

α1,j(t− t2j−1)(t− t2j) 7→
s

(
√

α
1,σ

−1
s (j)

α
7,σ

−1
s (j)

)

√

α1,j

α7,j

√

α1,i(t− t2j−1)(t− t2j), j = 1, 2, 3.

This induces a cocycle in H1(GQ,M),

s 7→









s

(
√

α
1,σ

−1
s (1)

α
7,σ

−1
s (1)

)

√

α1,1

α7,1

,

s

(
√

α
1,σ

−1
s (2)

α
7,σ

−1
s (2)

)

√

α1,2

α7,2

,

s

(
√

α
1,σ

−1
s (3)

α
7,σ

−1
s (3)

)

√

α1,3

α7,3









.

ψ′ is an isomorphism from X7
E(8) to XE(8) which fixes the level four structure.

So by Lemma 3.1 and Lemma 5.2 this cocycle corresponds to the image of 7
under the connecting map (Z/7Z)∗ → H1(GQ, H). Then by Shapiro’s lemma

and Hilbert 90, we see that
(

α7,1

α1,1
,
α7,2

α1,2
,
α7,3

α1,3

)

, is the image of 7 under

(Z/8Z)∗ → H1(GQ, H) ∼= H1(GQ,M) ∼= L∗/(L∗)2 →֒
3
∏

i=j

L∗

j/(L
∗

j)
2.
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Finally by Theorem 4.1, we can just take α1,j = 1, j = 1, 2, 3.

In Section 6 we will take some suitable δj ∈ Lj , j = 1, 2, 3. To check α7,j

can be chosen to be δj for each j, it then suffices to check that the preimage of

(δ1, δ2, δ3) under H
1(GQ, H) ∼=

∏3
j=1 L

∗

j/(L
∗

j )
2 is exactly the same as the image

of 7 under (Z/8Z)∗ → H1(GQ, H), which can be read off from Csj , j = 1, 2, 3, 4
in Lemma 5.3.

Remark. We can extend the results in the case when x3 + ax+ b is reducible.
For example, if x3 + ax+ b splits completely over Q, then the Galois action on
M is trivial and so we get

H1(GQ,M) ∼= L∗/(L∗)2 ∼= Q∗/(Q∗)2 ×Q∗/(Q∗)2 ×Q∗/(Q∗)2

directly by Hilbert 90. The case when x3 + ax+ b = 0 has exactly one rational
root is similar.

6 The Curves X
3
E(8) and X

7
E(8)

We will prove Theorem 1.4 following the strategy we described in Section 5.
We will pick suitable δj ∈ Q(E[2]), j = 1, 2, 3 which are conjugate to each other
and show that α7,j can indeed be chosen to be δj for each j. In particular, we
will compute the preimage of (δ1, δ2, δ3) under

H1(GQ, H) ∼= H1(GQ,M) ∼= L∗/(L∗)2 →֒
3
∏

j=1

L∗

j/(L
∗

j)
2

and check it is the same as the image of 7 under (Z/8Z)∗ → H1(GQ, H) by
using Lemma 5.3, 5.4 and 5.5.

Lemma 6.1. Let E be an elliptic curve with equation y2 = x3 + ax + b. Let
θj , j = 1, 2, 3 be the roots of x3 + ax+ b = 0 and

δ1 = (θ1 − θ2)(θ3 − θ1), δ2 = (θ1 − θ2)(θ2 − θ3), δ3 = (θ2 − θ3)(θ3 − θ1).

Then the x-coordinates of the primitive 4-torsion points of E are given by

θ1 ± i
√

δ1, θ2 ± i
√

δ2, θ3 ± i
√

δ3.

Proof. This follows immediately from factorising the 4-division polynomial of E
over Q(E[2]).

We now fix a basis {P,Q} for E[8] such that 2P, 2Q, 2P + 2Q have x-
coordinates θ1 + i

√
δ1, θ2 + i

√
δ2, and θ3 + i

√
δ3 respectively by Lemma 6.1.

Let T1 = 4P, T2 = 4Q, T3 = 4P + 4Q be the non-trivial 2-torsion points so that
T1 = (θ1, 0), T2 = (θ2, 0) and T3 = (θ3, 0).

Lemma 6.2. For each s ∈ GQ, we identify s with its image under θ : GQ →
GL(E[8]) ⊂ GL2(Z/8Z). Fix generators s1, s2, s3, s4 for GL2(Z/8Z) as in
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Lemma 5.3. Then

s1(
√

δ1) = −
√

δ1, s1(
√

δ2) = −
√

δ2, s1(
√

δ3) =
√

δ3,

s2(
√

δ1) =
√

δ1, s2(
√

δ2) =
√

δ2, s2(
√

δ3) =
√

δ3,

s3(
√

δ1) =
√

δ2, s3(
√

δ2) =
√

δ1, s3(
√

δ3) = −
√

δ3

s4(
√

δ1) =
√

δ1, s4(
√

δ2) =
√

δ3, s4(
√

δ3) = −
√

δ2.

Proof. Fix a primitive 8th root of unity ζ so that ζ2 = i. We have

s1 =

(

7 0
0 1

)

, s2 =

(

5 0
0 1

)

, s3 =

(

0 1
−1 0

)

, s4 =

(

1 1
0 1

)

.

Since sj(ζ) = ζdet sj so s1(ζ) = ζ7, s2(ζ) = ζ5, s3(ζ) = ζ, s4(ζ) = ζ. Therefore
s1(i) = −i, s2(i) = i, s3(i) = i, s4(i) = i. The actions of sj , j = 1, 2, 3, 4 on E[4]
are given by

s1(2P ) = −2P, s1(2Q) = 2Q, s1(2P + 2Q) = −2P + 2Q,

s2(2P ) = 2P, s2(2Q) = 2Q, s2(2P + 2Q) = 2P + 2Q,

s3(2P ) = −2Q, s3(2Q) = 2P, s3(2P + 2Q) = 2P − 2Q,

s4(2P ) = 2P, s4(2Q) = 2P + 2Q, s4(2P + 2Q) = 4P + 2Q.

By considering the x-coordinates of these points, we have

s1(θ1 + i
√

δ1) = θ1 + i
√

δ1, s1(θ2 + i
√

δ2) = θ2 + i
√

δ2, s1(θ3 + i
√

δ3) = θ3 − i
√

δ3,

s2(θ1 + i
√

δ1) = θ1 + i
√

δ1, s2(θ2 + i
√

δ2) = θ2 + i
√

δ2, s2(θ3 + i
√

δ3) = θ3 + i
√

δ3,

s3(θ1 + i
√

δ1) = θ2 + i
√

δ2, s3(θ2 + i
√

δ2) = θ1 + i
√

δ1, s3(θ3 + i
√

δ3) = θ3 − i
√

δ3,

s4(θ1 + i
√

δ1) = θ1 + i
√

δ1, s4(θ2 + i
√

δ2) = θ3 + i
√

δ3, s4(θ3 + i
√

δ3) = θ2 − i
√

δ2.

By considering the actions of sj , j = 1, 2, 3, 4 on E[2] we have

s1(θ1) = θ1, s1(θ2) = θ2, s1(θ3) = θ3,

s2(θ1) = θ1, s2(θ2) = θ2, s2(θ3) = θ3,

s3(θ1) = θ2, s3(θ2) = θ1, s3(θ3) = θ3,

s4(θ1) = θ1, s4(θ2) = θ3, s4(θ3) = θ2.

Therefore, we conclude that

s1(
√

δ1) = −
√

δ1, s1(
√

δ2) = −
√

δ2, s1(
√

δ3) =
√

δ3,

s2(
√

δ1) =
√

δ1, s2(
√

δ2) =
√

δ2, s2(
√

δ3) =
√

δ3,

s3(
√

δ1) =
√

δ2, s3(
√

δ2) =
√

δ1, s3(
√

δ3) = −
√

δ3

s4(
√

δ1) =
√

δ1, s4(
√

δ2) =
√

δ3, s4(
√

δ3) = −
√

δ2.

Each sj , j = 1, 2, 3, 4 acts on E[2] by permuting {T1, T2, T3}. So for each
j we write σsj to be the element in the symmetric group of {1, 2, 3} which
corresponds to the action of sj on {T1, T2, T3}.
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Lemma 6.3. We have

s1

(

√

δσ−1
s1

(1)

)

√
δ1

= −1,

s1

(

√

δσ−1
s1

(2)

)

√
δ2

= −1,

s1

(

√

δσ−1
s1

(3)

)

√
δ3

= 1,

s2

(

√

δσ−1
s2

(1)

)

√
δ1

= 1,

s2

(

√

δσ−1
s2

(2)

)

√
δ2

= 1,

s2

(

√

δσ−1
s2

(3)

)

√
δ3

= 1,

s3

(

√

δσ−1
s3

(1)

)

√
δ1

= 1,

s3

(

√

δσ−1
s3

(2)

)

√
δ2

= 1,

s3

(

√

δσ−1
s3

(3)

)

√
δ3

= −1,

s4

(

√

δσ−1
s4

(1)

)

√
δ1

= 1,

s4

(

√

δσ−1
s4

(2)

)

√
δ2

= −1,

s4

(

√

δσ−1
s4

(3)

)

√
δ3

= 1.

Proof. This follows from a direct computation by using Lemma 6.2.

We now prove Theorem 1.4.

Proof. We identify each s ∈ GQ with its image under θ : GQ → GL(E[8]) ⊂
GL2(Z/8Z) and pick generators s1, s2, s3, s4 for GL2(Z/8Z) as in Lemma 5.3.
Then by Lemma 6.3 and Shapiro’s Lemma, the preimage of (δ1, δ2, δ3) under

H1(GQ,M) ∼= L∗/(L∗)2 →֒ ∏3
j=1 L

∗

j/(L
∗

j)
2 is a cocycle cs which can be de-

scribed as

cs1 = (−1,−1, 1), cs2 = (1, 1, 1), cs3 = (1, 1,−1), cs4 = (1,−1, 1).

By Lemma 5.4, the preimage of csj under H1(GQ, H) ∼= H1(GQ,M) is Csj for
each j = 1, 2, 3, 4, where Csj , j = 1, 2, 3, 4 are matrices given in Lemma 5.3.
But by Lemma 5.3, Csj , j = 1, 2, 3, 4 are used to describe the image of 7 under
(Z/8Z)∗ → H1(GQ, H). This shows that the image of 7 under

(Z/8Z)∗ → H1(GQ, H) ∼= H1(GQ,M) ∼= L∗/(L∗)2 →֒
3
∏

j=1

L∗

j/(L
∗

j)
2

is (δ1, δ2, δ3). Then by Lemma 5.5, α7,j can be chosen to be δj for each j.
Theorem 1.4 follows from comparing the coefficients of 1, θj, θ

2
j in the equations

α7,j(t− t2j−1)(t− t2j) = (a0 + a1θj + a2θ
2
j )

2, j = 1, 2, 3.

We now prove Theorem 1.3.

Proof. The connecting map (Z/8Z)∗ → H1(GQ, H) is a group homomorphism.
Therefore, the image of 5 under

(Z/8Z)∗ → H1(GQ, H) ∼= H1(GQ,M) ∼= L∗/(L∗)2 →֒
3
∏

j=1

L∗

j/(L
∗

j)
2
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is the product of the image of 3 and the image of 7. So α3,j = α5,j · α7,j in
L∗

j/(L
∗

j)
2. We have shown in Theorem 4.4 that α5,j = D for each j = 1, 2, 3

where D = −4a3 − 27b2. Therefore,

α3,1 = Dα7,1 = (θ2 − θ3)
2(θ1 − θ2)

3(θ3 − θ1)
3.

Since ((θ1 − θ2)(θ3 − θ1))
2
is a square in L1 so we can take α3,1 to be (θ2 −

θ3)
2(θ1 − θ2)(θ3 − θ1). Similarly we can rescale α3,2 and α3,3 so that

α3,2 = (θ3 − θ1)
2(θ1 − θ2)(θ2 − θ3), α3,3 = (θ1 − θ2)

2(θ3 − θ1)(θ2 − θ3).

Theorem 1.3 follows from comparing the coefficients of 1, θj , θ
2
j in the equation

α3,j(t− t2j−1)(t− t2j) = (a0 + a1θj + a2θ
2
j )

2, j = 1, 2, 3.

Remark. The points on Xr
E(8), r = 1, 3, 5, 7, appear in pairs. In other words,

if (t, a0, a1, a2) ∈ Xr
E(8) then (t,−a0,−a1,−a2) ∈ Xr

E(8) because there is a
non-trivial automorphism on Xr

E(8) given by

(F, φ) 7→ (F, φ ◦ [3]).

Remark. Theorem 1.1-1.4 can be generalised to any field of characteristic not
equal to 2 or 3 by exactly the same method.

7 The Modular Diagonal Surfaces

For each n ≥ 1 and ǫ ∈ (Z/nZ)∗, Kani and Schanz classify the type of modular
diagonal surface Zn,ǫ which are constructed as the quotient of X(n)×X(n) by

∆ǫ = {(g, αǫ(g)) : g ∈ PSL2(Z/nZ)}

where αǫ ∈ Aut(PSL2(Z/nZ)) is defined by conjugation by the element

(

ǫ 0
0 1

)

Each point on the surface corresponds to a pair of elliptic curves which are n-
congruent and the Weil pairing is switched to the power of ǫ [KS]. We are now go-
ing to study briefly of these surfaces in terms of the models ofXr

E(8), r = 1, 3, 5, 7
we got and explain how it helps to give numerical examples. In particular, we
will show that there are infinitely many pairs of non-isogenous elliptic curves
which are 8-congruent with power r.

Remark

By a result of Mazur, there are only finitely many l such that rational l-isogeny
exists and so we only have finitely many sections on the surface which correspond
to copies of X0(l). To find infinitely many pairs of non-isogenous elliptic curves
which are 8-congruent, it suffices to find a curve C with infinitely many rational
points and a point on C which does not correspond to isogenous curves. Since
the intersection of C with X0(l) is either X0(l) or a finite set of points, so only
finitely many points on C correspond to isogenous curves.
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For each j 6= 0, 1728,∞, there exists a unique elliptic curve Ea of the form
E : y2 = x3 + ax + a such that the j-invariant j(Ea) = j and so for j 6=
0, 1728,∞ we take the representative Ea in the class of C-isomorphic elliptic
curves containing Ea.

We start with the model Sa,1 = XEa
(8) we got in the previous section and

now we consider a being a variable. Then the irreducible part of Sa,1 with
a 6= 0,− 27

4 gives an open subscheme of Z8,1, which we call Z8. In [KS], it is
shown that the Z8,1 is a rational surface and we will verify this and give explicit
birational map between Sa,1 and P2.

Proposition 7.1. The explicit birational map A2
p,q → Sa,1 is given by (p, q) 7→

(a, t, a0, a1, a2) where

a =
−8(q + 1)(q2 + 2)2h1(p, q)

3

(q − 1)(q4 + 3q2 − 2p)(q6 + 3q4 + q2 − p2 − 1)2h2(p, q)
,

t = − (q2 + 2)h3(p, q)h4(p, q)

3(q − 1)(q4 + 3q2 − 2p)(q6 + 3q4 + q2 − p2 − 1)h5(p, q)

h1(p, q) = q6 − 3

2
q5 + 3q4 +

1

2
q3p− 9

2
q3 − 3

2
q2p+

1

2
q2 + 3qp− q − 1

2
p2 +

1

2

h2(p, q) = q6 − 3q5 + 3q4 + q3p− 9q3 − 3q2p+ 6qp− 2q + 2

h3(p, q) = q6 − 3

2
q5 + 3q4 +

1

2
q3p− 9

2
q3 − 3

2
q2p+

1

2
q2 + 3qp− q − 1

2
p2 +

1

2

h4(p, q) = q10 − 2q9 + 10q8 + 2q7p− 8q7 − 8q6p+ 26q6 + 12q5p− 6q5

+ q4p2 − 32q4p+ 16q4 − 6q3p2 + 6q3p− 4q3 + 11q2p2

− 16q2p+ q2 + 4qp− 4q + 2p2 + 2

h5(p, q) = q6 − 3q5 + 3q4 + q3p− 9q3 − 3q2p+ 6qp− 2q + 2

and we do not give images a0, a1, a2 here due to massive expressions (we will
show how to obtain them in the proof).

Proof. We start with Sa,1 (setting b = a in Theorem 1.1) and Sa,1 is birational
to the surface defined by the following equations:

f ′

1 = −a+ 2a0 + a21 + 2a22,

f ′

2 = −2aa1 − a+ 2a0a1 − 2ta2,

f ′

3 = −2aa1 + a20 + aa22 − t2.

by (a, t, a0, a1, a2) 7→ (a, 1
3a2

, a0
a2
, a1
a2
, −t
a2
). We use f ′

1, f
′

2 to write a, t in terms of
a0, a1, a2

a = 2a0 + a21 + 2a22, t =
−2aa1 − a+ 2a0a1

2a2
.

Then we have

f ′ = −a20a21 − 2a20a1 + a20a
2
2 − a20 − 2a0a

4
1 − 3a0a

3
1 − 4a0a

2
1a

2
2 − a0a

2
1 − 10a0a1a

2
2

+ 2a0a
4
2 − 2a0a

2
2 − a61 − a51 − 4a41a

2
2 −

1

4
a41 − 6a31a

2
2 − 3a21a

4
2 − a21a

2
2

− 8a1a
4
2 + 2a62 − a42.
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Sending a0 to Aa0+B
a32

and a1 to a1
a2

where

A = −a21 − 2a1 + a22 − 1,

B = −2a41 − 3a31 − 4a21a
2
2 − a21 − 10a1a

2
2 + 2a42 − 2a22

we conclude the surface is birational to the vanishing of

h′ = a20 − (a61a
2
2 + 3a51a2 + 3a41a

2
2 +

9

4
a41 + 9a31a2 + a21a

2
2 + 9a21 + 2a1a2 − a22 + 1).

This is a genus zero curve defined over Q(a1) with a rational point given by

a0 =
3a1 − 3

2a
2
1 +

1
2a

3
1

a1 − 1
, a2 = − 1

a1 − 1
.

Hence using standard parametrization of the genus zero curve with a rational
point, together with the intermediate steps we worked above we obtain the
required parametrization.

The proposition allows one to classify all elliptic curves E such that the
curve XE(8) has non-trivial rational points.

Corollary 7.2. There exist infinitely many pairs of non-isogenous elliptic curves
which are directly 8-congruent.

Proof. This follows immediately from the Remark above and Proposition 6.1.

We now consider a similar construction of the modular surface corresponding
to Xr

E(8) which helps to find numerical examples for r = 3, 5, 7. We start with
the model Xr

E(8), set b = a and view a as a variable. We call the resulting
variety Sa,r.

Proposition 7.3. There exists infinitely many pairs of non-isogenous elliptic
curves which are 8-congruent with power 5.

Proof. Consider the genus 0 curve on Sa,5 parameterized by A1
p, defined by

a2 = 0,

a =
27

8

(p2 − 12p+ 12)2

(p2 − 12)2
, t = −1

2

p2 − 12p+ 12

p2 − 12
,

a0 =
−243

32

(p2 − 12p+ 12)3(p2 − 4p+ 12)

(p2 − 12)4
,

a1 =
81

8

(p2 − 12p+ 12)2(p2 − 4p+ 12)

(p2 − 12)3
.

Setting p = 2 we obtain a pairs of elliptic curves

E :y2 = x3 + 54x+ 216 20736p1

F :y2 = x3 − 522x+ 18936 103680bv1

which are non-isogenous and 8-congruent with power 5.
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If E is 5-isogenous to F then F is 8-congruent to E with power 5 and
therefore we have a copy of X0(5) on Sa,5 which corresponds to pairs of of 5-
isogenous curves. Let Er : y2 = x3 + arx + br be the families of elliptic curves
parameterized by X0(5), where

ar = −27r4 + 324r3 − 378r2 − 324r− 27,

br = 54r6 − 972r5 + 4050r4 + 4050r2 + 972r + 54

The Fr, which is 5-isogenous to Er, is

y2 + (1− r)xy− ry = x3 − rx2 − 5t(r2 +2r− 1)x− r(r4 +10r3 − 5r2 +15r− 1)

and has j-invariant (r4+228r3+494r2−228r+1)3

r(r2−11r−1)5 . By considering the j-mapX4
E(8) →

X(1) we obtain the value of t which corresponds to Fr . Then the point onX5
E(8)

corresponding to Fr is

t = r2 + 1, a0 = −1944r(r3 − 11r2 + 7r + 1)(r3 − 7r2 − 11r − 1),

a1 = 324r(r2 − 12r − 1)(r2 + 1), a2 = 108r(r2 − 6r − 1).

To find a copy of X0(5) on Sa,5 we replace both ar, br by a3r/b
2
r and rescale

the coordinates t, a0, a1, a2. Similarly we can find points corresponding to 3-
isogenous curves on Sa,3 and points corresponding to 7-isogenous curves on
Sa,7.

Proposition 7.4. There are infinitely many pairs of non-isogenous elliptic
curves which are 8-congruent with power 3.

Proof. We search for a genus 0 curve on Sa,3. Consider the genus 0 curve on
Sa,3 parameterised by A1

r

a = −135

4

(r2 − 2r − 15
8 )(r

2 + 1
8 )

(r2 − r + 11
8 )(r

2 + r + 3
8 )(r

2 + 2r − 1
8 )
,

t =
1

2

(r2 − 2r − 15
8 )(r

2 + 1
8 )

(r2 − r + 11
8 )(r2 + r + 3

8 )
,

a0 = −135
(r2 − 2r + 21

8 )(r2 − 1
2r − 3

8 )(r
2 + 1

8 )
2(r2 + 1

2r +
5
8 )(r

2 + 6
5r +

17
40 )

(r2 − r + 11
8 )2(r2 + r + 3

8 )
2(r2 + 2r − 1

8 )
3

,

a1 = 0, a2 = 6
(r2 − 1

2r − 3
8 )

2(r + 1
8 )

(r2 − r + 11
8 )(r

2 + r + 3
8 )(r

2 + 2r − 1
8 )
.

Then the curves corresponding to r = 0 are non-isogenous and the result follows.

The families of curves parameterized by X0(3) are Er : y2 = x3 + arx + br
where ar = 18r− 27, br = 9r2 − 54r+ 54. So the curve Fr which is 3-isogenous
to Er corresponds to

t = 1− r, a0 = 36r2 − 126r + 108, a1 = 15r − 18, a2 = 3r − 6

on X3
Er

(8).
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Proposition 7.5. There are infinitely many pairs of non-isogenous elliptic
curves which are 8-congruent with power 7.

Proof. We start with the model Sa,7 and we take the section t = 0. Then
we obtain a curve C which has 2 irreducible components, one of which is not
reduced. We take the reduced one, say C1, which is a genus 1 curve and it has
a rational point

p : a = −9, t = 0, a0 = 3, a1 = 1, a2 = 0

and so C1 is isomorphic to

C′ : y2 = x3 + x2 − 538x+ 4628

which has rank 1. Finally, we search a point on C1 given by

a = −135

32
, t = 0, a0 =

75

32
, a1 =

5

4
, a2 =

−1

3

and this point gives a pair of non-isogenous curves

E1 : y2 = x3 − 1080x− 17280, E2 : y
2 = x3 + 7931250x− 8519850000.

The families of curves parameterized by X0(7) are Er : y2 = x3 + arx + br
where

ar = −27r8 + 324r7 − 1134r6 + 1512r5 − 945r4 + 378r2 − 108r − 27,

br = 54r12 − 972r11 + 6318r10 − 19116r9 + 30780r8 − 26244r7

+ 14742r6 − 11988r5 + 9396r4 − 2484r3 − 810r2 + 324r+ 54,

and so the curve Fr which is 7-isogenous to Er corresponds to

t =
r6 − 7r5 − 14r4 + 53r3 − 34r2 + r + 1

r2 − r + 1
,

a0 = 12(−r8 + 15r7 − 72r6 + 125r5 − 113r4 + 48r3 + 5r2 − 7r − 1),

a1 =
2r6 − 26r5 + 80r4 − 50r3 − 20r2 + 14r + 2

r2 − r + 1
, a2 =

2

3
,

on X7
Er

(8).

Remark

The surface Z8,7 is a surface of general type, and one might expect to take more
effort to find rational points on Sa,7.

We now give some examples with small conductors.

Example

By searching rational points on X5
E(8) we obtain a curve F which is non-

isogenous to E and 8-congruent to E with power 5, where

E :y2 = x3 + x2 − 17x− 33 96a2

F :y2 = x3 − 8x2 − 333056x+ 59636736 1056d2

We give the traces of Frobenius of the curves at first several places
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Prime 2 3 5 7 11 13 17 19 23 29 31
Traces of Frobenius(E) 0 1 2 -4 4 -2 -6 -4 0 2 4
Traces of Frobenius(F) 0 1 2 4 -1 -2 2 4 0 -6 4

and they are congruent mod 8 except p = 11. Further, at p = 3, both curves
have split multiplicative reduction and we have v3(∆E) = 1, v3(∆F ) = 5 which
agrees with Proposition 2 in [KO].

Example

By searching rational points on X3
E(8) we obtain a curve F which is non-

isogenous to E and 8-congruent to E with power 3, where

E :y2 + xy + y = x3 − x2 − 2x 99a1

F :y2 = x3 − 975159243x+ 11681563877190 1683b1

We give the traces of Frobenius of the curves at first several places

Prime 2 3 5 7 11 13 17 19 23 29 31
Traces of Frobenius(E) 7 0 4 6 7 6 2 2 4 2 4
Traces of Frobenius(F) 7 0 4 6 -7 6 1 2 4 2 4

and they are congruent mod 8 except p = 11, 17. Further at p = 11 both curves
have split multiplicative reduction and we have v11(∆E) = 1, v11(∆F ) = 3
which agree with Proposition 2 in [KO].

We made some effort to minimise and reduce the equation XE(8) and find
some examples of triples of elliptic curves which are directly 8-congruent to each
other.

Example 7.6. Elliptic curves 129a1, 645e1 and 23349a1 are directly 8-congruent
to each other.

Example 7.7. Elliptic curves 561a1, 235059g1 and 171105h1 are directly 8-
congruent to each other.

Appendix

Let E : y2 = x3 + ax + b be an elliptic curve. Let c4 = − a
27 , c6 = − b

54 . The
families of elliptic curves parameterised by X3

E(4) are

E∆E

t : y2 = x3 − 27∆2
EaE(t)x − 54∆3

EbE(t)

where

aE(t) = c4t
8 + 8c6t

7 + 28c24t
6 + 56c4c6t

5 + (−42c34 + 112c26)t
4

+ 56c24c6t
3 + (252c44 − 224c4c

2
6)t

2 + (264c34c6 − 256c36)t+ (81c54 − 80c24c
2
6),

bE(t) = c6t
12 + 12c24t

11 + 66c4c6t
10 + (44c34 + 176c26)t

9 + 495c24c6t
8

+ 792c44t
7 + 924c34c6t

6 + (−2376c54 + 3168c24c
2
6)t

5 + (−5841c44c6 + 6336c4c
3
6)t

4

+ (−1188c64 − 4224c34c
2
6 + 5632c46)t

3 + (−4158c54c6 + 4224c24c
3
6)t

2

+ (−2916c74 + 4464c44c
2
6 − 1536c4c

4
6)t+ (−1215c64c6 + 2240c34c

3
6 − 1024c56).
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