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Abstract. The random graph is an infinite graph with the universal property

that any embedding ofG−v extends to an embedding ofG, for any finite graph.
In this paper we show that this graph embeds in the curve graph of a surface

Σ if and only if Σ has infinite genus, showing that the curve system on an

infinite genus surface is “as complicated as possible”.

1. Introduction

In this paper we will prove

Theorem 1.1. The random graph embeds into the curve graph C(Σ) if and only if
Σ has infinite genus.

We adopt the terminology that an embedding of a graph f : G→ H is a one-to-
one map on the vertices so that (u, v) is an edge in G if and only if (f(u), f(v)) is
an edge in H. (This is also called an induced subgraph elsewhere in the literature.)

The one-ended, infinite genus, orientable surface with one boundary component
is a subsurface of any orientable infinite genus surface [Ric63]. The choice of a disk
on Σ, the one-ended orientable surface of infinite genus without boundary, thus
induces an embedding of the curve graph C(Σ) into the curve graph of an arbitrary
orientable infinite genus surface. Therefore, for one direction of the theorem, it
suffices to produce an embedding of the random graph into C(Σ) when Σ is the
one-ended orientable surface of infinite genus.

The other direction is perhaps more surprising, since it is tempting to view an
infinite-type surface of finite genus as already quite complicated. However, Ehrlich,
Even, and Tarjan [EET76] showed that there are graphs that cannot be realized as
the incidence graph of a collection of planar intervals (in their language, there are
graphs not of planar type), and we employ their construction to demonstrate the
necessity of infinite genus.

Rado [Rad67] showed that every countable graph embeds in the random graph,
however we focus on the random graph for its combinatorial properties. The first
order theory of the random graph, in the graph language, is not edge stable in the
model-theoretic sense [TZ12]. It follows that

Corollary 1.2. The first order theory of the curve graph of an infinite genus surface
is not edge stable.

The lack of edge stability implies that the theory of the curve graph is also unsta-
ble in the model theoretic sense. With Gabriel Conant, we prove a complementary
result for finite-type surfaces [BCG16]; the theory of C(Σ) for a finite-type surface Σ
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is edge stable. The combination of these two results show that the model-theoretic
dividing line of edge stability and the topological dividing line of finite-type coin-
cide for curve graphs. It is unknown whether or not the curve graph of a finite-type
surface is stable.

Erdős and Rényi introduced the random graph from a probabilistic point of view,
constructing a graph on countably many vertices by adding edges with probability
1
2 . The result of this construction is almost surely isomorphic to a unique object,
which we call the random graph [ER63]. Rado gave an explicit construction of the
random graph: take as vertices the natural numbers N. Given x < y, add an edge
(x, y) if the xth bit of the binary expansion of y is 1 [Rad67]. The random graph
enjoys a universal property, known as the extension property; for any finite graph
G, if G − v embeds into the random graph then this embedding can be extended
to G.

The other graph of interest in this article is the curve graph of an infinite genus
surface, with or without boundary. A simple closed curve on a surface is essential if
no component of the complement is a disk, and non-peripheral if no component of
the complement is an annulus. For brevity, we will use curve to mean the isotopy
class of an essential non-peripheral simple closed curve. The intersection number
of two curves (denoted i(α, β)) is the minimum cardinality of the intersection taken
over all transverse realizations of α and β.

Fix a surface Σ. The curve graph C(Σ) has as vertices the curves on Σ, and
an edge between the vertices corresponding to curves α and β when i(α, β) =
0. (As an aside, this construction can be extended to a definition of a higher-
dimensional simplicial complex of interest in its own right, but we will focus on the
1-skeleton [Har81, MM99, MM00].) When Σ is of finite-type, C(Σ) is well-known
to be δ-hyperbolic and infinite-diameter, with automorphism group isomorphic to
the mapping class group of Σ [Iva97,MM99]. Recent work has focused on different
analogues of C(Σ) when Σ is of infinite-type, more satisfying from a geometric
viewpoint [Bav16,AFP15,AV16,FP15,DFV16].

In fact, it is not hard to see that every finite graph G embeds in the curve graph
of a surface for some closed surface of genus g. We outline a simple proof. Suppose
G has n vertices. Let Σ0 indicate a closed surface of genus large enough so that Σ0

contains a collection of n curves in minimal position that pairwise intersect once1,
and identify these curves with the vertices of G arbitrarily. For each edge between a
pair of vertices of G, add a handle near the intersection of the corresponding curves
on Σ0, and thread one of the curves through the handle so that the new curves on
the new surface do not intersect. The identification of the vertices of G with the
resulting curve system extends to an embedding of G into the curve graph C(Σ) of
the resulting surface Σ, by construction.

Remark 1.3. This leaves open the problem of determining the minimal genus such
that every finite graph on n vertices embeds in the curve graph of that genus
(cf. [KK14, Question 1.1]). The above construction provides the bound O(n2).

This implies that every finite graph embeds into the curve graph of an infinite
genus surface, and it suggests that this curve graph of an infinite genus surface
should be quite complicated. Note, however, that this alone does not guarantee the

1Genus dn−1
2
e suffices. Such a system of curves has been referred to as a complete 1-system in

the literature.
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Figure 1. A collection of curves and a partial graph embedding
that cannot extend.

presence of the random graph. Also note that it is apparent that the random graph
does not embed in the curve graph of any finite type surface surface: A complete
subgraph of the curve graph of a surface of genus g with n punctures has size at
most 3g− 3 +n, whereas every finite complete graph embeds in the random graph.

Moreover, the curve graph of an infinite genus surface cannot itself be isomorphic
to the random graph. Fix an infinite genus surface Σ. Pick a separating curve2 γ
and two curves α, β, one in each component of Σ \ γ. Let G be the graph in figure
1. We can embed G − v into C(Σ) according to the labeling in the figure, but an
extension to v would imply the existence of a curve disjoint from γ that intersects
both α and β, a contradiction since γ is separating.

2. Proof of Theorem 1.1

Proof. We deal with the forward implication first, showing that the presence of the
random graph in the curve graph implies that Σ has infinite genus. It is evidently
enough to show that there is a finite graph which does not embed in C(Σ) when Σ has
finite genus, since any finite graph embeds in the random graph. This construction
is due to Ehrlich, Even, and Tarjan when g = 0 [EET76]; it is simple enough to
include completely.

Suppose that Σ has genus g < ∞, and choose a finite graph G that admits no
topological embedding G→ Σg,0 into the closed surface of genus g (a large complete
graph will do). Consider the graph G′ obtained by adding a vertex that subdivides
each edge of G, so that there are now |V (G)| old vertices and |E(G)| new vertices

of G′. Let Ĝ indicate the complementary graph of G′, and note that: (1) each new

vertex v of Ĝ is incident to all other vertices of Ĝ, except for the two old vertices
that are incident to the edge of G corresponding to v, and (2) each old vertex is
incident to every other old vertex.

Suppose that Ĝ is realized by a curve system Γ on Σ in minimal position. The
subdivision of the vertices of Ĝ into new and old vertices gives a subdivision of
Γ into new and old curves. For each old curve γ, select a point pγ ∈ γ in the
complement of its intersections with the other curves of Γ, and contract γ \ pγ to

a point. Because the old vertices of Ĝ are all incident to each other, when we do
this contraction to each old curve one-by-one, we obtain |V (G)| on vertices on Σg,0.

2Such a curve always exists: If γ is non-separating, choose a curve that intersects it once, and take
a regular neighborhood of the union. The boundary of this neighborhood is a separating curve.
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Figure 2. A possible choice for ai and bi at handle i.

Moreover, because the new vertices of Ĝ are all incident to each other, the new
curves become a system of disjoint arcs connecting these vertices. By construction
the resulting arcs provide a topological embedding of G into Σg,0, a contradiction.

For the other direction, we will provide an explicit construction of a family of
curves on the one-ended orientable infinite genus surface whose intersection relation
is exactly described by the random graph. Our approach is in two parts; first we
will give a countable collection of multicurves with this property, then describe
how to add handles to convert these multicurves to curves without changing the
intersection relation of the curve system or the homeomorphism type of the surface.

Rado’s construction fits more naturally into the setting of multicurves, so we
first define a multicurve complex mC(Σ) analogous to the curve complex. Let the
vertices of mC(Σ) be finite sets of disjoint curves. For multicurves U, V ∈ mC(Σ), let
i(U, V ) be the sum of intersection numbers i(α, β) over all α ∈ U, β ∈ V . In analogy
with the curve graph, there is an edge in mC(Σ) between U, V if i(U, V ) = 0. (The
multicurve graph has also been called the clique graph in the literature [KK14]).
Below, we write multicurves additively, e.g. α+ β is the multicurve {α, β}.

To fix notation, let Σ1 be the one-ended orientable surface of infinite genus.
Note that the random graph is self-complementary (that is, the complement graph
is isomorphic to the random graph), so we will work with the complement of Rado’s
model: let x, y ∈ N with x < y be adjacent when the xth bit in the binary expansion
of y is 0. We describe below a map [·] : N → mC(Σ1) so that, for x < y, the
intersection number i([x], [y]) is equal to the xth bit in the binary expansion of y.
Such a map induces an embedding of the random graph into mC(Σ1).

Realize Σ1 in R3 as the regular neighborhood of the lattice on points N×{0, 1}×
{0}. With this embedding the ‘centers’ of ‘holes’ of Σ1 occur at (n+ 1

2 ,
1
2 , 0) with

n ∈ N. The intersection of Σ1 with the coordinate plane R×R×{0} is the disjoint
union of countably many circles and a real line. Let ai be the circle component
in the strip (i − 1, i) × R × {0}, and let bi be the Dehn twist of ai around the
intersection of the half-plane {i − 1

2} × (−∞, 12 ) × R with Σ. In other words, ai
winds around the ith hole of Σ, and i(ai, bj) = δi,j , as pictured in Figure 2.

Given a natural number x, let xi be the ith binary digit in the expansion of x.
We define

[x] = bx +

dlog2 xe∑
i=0

xi · ai.
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Figure 3. An illustration of geometric realizations of [0] and [4].

Figure 3 shows [0] and [4]. By construction this is our desired map and the inter-
section relation among the multicurves {[n]}n∈N is given by the random graph.

At this point one would like to blindly add handles to realize these multicurves
as curves. However, for each bit there are infinitely many curves that need to be
connected to the handle encoding that bit, so care must be exercised. Consider a
new realization of Σ1 in R3, as the regular neighborhood of the lattice on N×N×{0}.
The centers of ‘holes’ are now at (x + 1

2 , y + 1
2 , 0) for x, y ∈ N2

≥0. This naturally

indexes the rows and columns of the embedding (row n is the regular neighborhood
of points of the form (x, n, 0), and the columns are similarly indexed). We take
ai, bj as before (along the x-axis). For a multicurve [x] = bx +

∑
i xi · ai, construct

the curve c(x) by connecting each ai or bi in [x] to row x + 1 by a pair of vertical
lines along column i, and then connect these arcs to one another along the ‘back’
of Σ1; figure 4 shows c(2) and c(5). For x < y, we can realize c(x) and c(y)
so that when x and y use a common column c(x) passes outside of c(y); hence
i(c(x), c(y)) = i([x], [y]). (Note that, when curves intersect once, this intersection
is necessarily essential [FM12].) We conclude that {c(n)}n∈N is the vertex set of an
embedding of the random graph in C(Σ1).

�

Remark 2.1. The embedding of the random graph given by {c(n)}n∈N is far from
unique. Each curve bi is constructed by a single Dehn twist. Varying the powers
of each twist defining a bi individually yields systems of curves in distinct mapping
class group orbits. The extended mapping class group of Σ is isomorphic to the
graph automorphisms of C(Σ) in the case of the infinite genus surface with one end,
so these embeddings are also combinatorially inequivalent [HV14].
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