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Littelmann path model for geometric crystals

Reda Chhaibi ∗

Abstract

We construct a path model for geometric crystals in the sense of Berenstein and
Kazhdan. Our model is in every way similar to Littelmann’s and tropicalizes to
his path model. This paper lays the foundational material for the subsequent work
[Chh14] where we examine the measure induced on geometric crystals by Brownian
motion .

If we call Berenstein and Kazhdan’s realization of geometric crystals the group
picture, we prove that the path model projects onto the group picture thanks to a
morphism of crystals that restricts to an isomorphism on connected components.
This projection is in fact the geometric analogue of the Robinson-Schensted cor-
respondence and involves solving a left-invariant differential equation on the Borel
subgroup.

Moreover, we identify the geometric Pitman transform Tw0
introduced by Biane,

Bougerol and O’Connell as the transform giving the path with highest weight, in
the geometric crystal path model. This allows to prove a geometric version of Littel-
mann’s independence theorem. The geometric Robinson-Schensted correspondence
is detailed in a special section, because of its importance.

Finally, we exhibit the Kashiwara and Schützenberger involutions in both the
group picture and the path model.

In an appendix, we explain how the left-invariant flow is related to the image
of the Casimir element in Kostant’s Whittaker model.
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1 Introduction

Let G be a simply-connected complex semi-simple group with Lie algebra g. Let h

be a Cartan subalgebra and a is the subspace of h where simple roots are real-valued.
Equivalently a is the Cartan subalgebra of the split real form of G.

The theory of crystal bases was initiated after Lusztig introduced the canonical
basis for the quantum groups Uq (g) ([Lus10]). At q = 0, one has Kashiwara’s crystal
“basis” which is well behaved in many aspects (see [Kas91]). Littelmann’s work (
[Lit95c], [Lit95b], [Lit95a], [Lit97]) realises crystals as sets of paths in a∗, in the more
general context of Kac-Moody groups. Consequently, Berenstein and Kazhdan ([BK00],
[BK07a]) defined geometric crystals as algebro-geometric objects that degenerate to
Kashiwara crystals after tropicalization. Their construction fundamentally relies on
the fact that totally positive varieties in G are the geometric liftings of combinatorial
G∨-crystals, G∨ being the Langlands dual of G.

In this paper, we construct a path model for geometric crystals, in the same spirit
as Littelmann. The weight function is the endpoint of a path and tensor product of
crystals is given by path concatenation. However root operators are defined as integral
transforms, which are the geometric lifting of Littelmann’s piece-wise reflection scheme.
In fact, the path model we describe is naturally related to geometric crystals for the
Langlads dual G∨. As such, crystal elements are paths in the real Cartan subalgebra
a, instead of a∗.

We start in section 3 by defining a notion of abstract geometric crystal in a less
restrictive sense than the original definition of Berenstein and Kazhdan. Whereas they
defined geometric crystals as affine varieties over C, we will simply consider them as
topological sets with structural maps. This will allow us later to consider the geometric
crystal of continuous paths valued in the real Cartan subalgebra a.

In section 4, we consider the totally positive group elements B inside the Borel
subgroup B, which form the typical positive geometric crystal in the sense of Berenstein
and Kazhdan. This is what we call the group picture. We fix a certain number of
coordinate charts for B (figure 4.19) and detail its geometric crystal structure. If the
geometric liftings of Lusztig’s and Kashiwara’s parametrizations of crystal bases are
well known ([BZ01]), our contribution consists in fitting them together into geometric
crystals. Notice that, instead of defining a positive structure separately (as in [BK07b]
section 3) we will be directly working at the level of the totally non-negative elements
in G. Finally, we will favor using the additive group R instead of the multiplicative
R>0 hence the presence of numerous logarithms.

Fix once and for all a time horizon T > 0. Let C0 ([0, T ], a) be the space of continuous
functions taking values in a and starting from zero. In section 6, we construct a
geometric crystal structure on C0 ([0, T ], a). By rescaling paths using a real parameter
h > 0, we have an entire family of equivalent geometric path models. Taking h→ 0, the
geometric crystal structure tropicalizes to the continuous version of Littelmann’s path
model ([BBO05], [BBO09]). Here, an interesting feature is that the tropical expression
found for root operators ecα is the same regardless of the sign of c ∈ R. In order to
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see that the result matches with previous work, the necessary verifications are made in
subsection 6.2.

A projection p : C ([0, T ], a) → B of a path π onto its group picture is obtained
by solving a left-invariant differential equation on B driven by π (Section 5). If the
solution to this equation, first considered in [BBO05], is written (Bt(π); 0 ≤ t ≤ T ),
then:

p : π 7→ BT (π)

is a morphism of crystals (Theorem 6.11).
Isomorphism classes of geometric crystals in the group picture are indexed by a

single vector λ that is interpreted as a highest weight. By simply transporting the
structure to the path model, we see that in order to obtain the isomorphism class of a
crystal generated by π, a remarkable transform on paths Tw0 has to be applied. Tw0π
plays the role of a dominant path in the geometric path model. The highest weight
λ ∈ a is the endpoint of Tw0π. This transform was introduced in [BBO09] as a geometric
lifting of the Pitman operator Pw0 and will be referred to as the geometric Pitman
transform. A key difference with the ’crystallized’ case obtained in [BBO05, BBO09]
is that the path Tw0π does not belong to the crystal 〈π〉 generated by π. For instance,
it is not defined at zero. It is however invariant under crystal actions. This difference
would explain why the naturality of Tw0 has been elusive, so far. In a sense to be made
precise in section 7, it is a path on the boundary of our geometric crystal.

In that section, we detail the properties of geometric Pitman transforms and ex-
amine the behavior of paths as we move to the edges of a crystal. Such an analysis
is crucial in parametrizing geometric path crystals (section 8). There, we establish a
commutative diagram (figure 8.1) that shows that parametrizations in the path model
and the group picture are parallel. Only then, our choices in parametrizing the group
picture appear as natural.

Thanks to the parametrizations of geometric path crystals, we are able to exhibit a
certain number of isomorphism results in section 9. Theorem 9.1 tells us that, in fact,
the projection p restricts to an isomorphism on connected components. Also, we have
the geometric version of Littelmann’s independence theorem: the crystal structure of
a crystal generated by a path π depends only on the end point of the dominant path
Tw0π (Theorem 9.2). Finally, the group picture is “minimal” in the sense that there
are no automorphisms in the group picture aside from the identity (Theorem 9.3).

In the end, for every T > 0, we obtain a map which is a bijection onto its image
(Theorem 10.4):

C0 ([0, T ], a) −→
(

B, Chighw0 ((0, T ], a)
)

π 7→ (p(π),Tw0π)

Due to the importance of this map, we explain in section 10 why this bijection is the
geometric counterpart of the Robinson-Schensted correspondence (see [Ful97]). There,
we detail the classical Robinson-Schensted correspondence, its generalization thanks to
combinatorial crystals and the continuous tropical correspondence. It is only then that
we can state the geometric Robinson-Schensted correspondence in a form similar to its
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predecessors. We feel that this review is necessary as it is not explicit in the litterature.
The path π plays the role of a word which is inserted into a geometric crystal element by
solving the fore mentioned differential equation. The recording tableau keeping track
of the shape is the highest weight path Tw0π.

Finally, in section 11, we justify why the antimorphisms we introduced as the Kashi-
wara and Schützenberger involutions are indeed as claimed.

In appendix A, when π is a Brownian motion, we explain why the previous left-
invariant differential equation driven by π gives a Markov process whose infinitesimal
generator is closely related to the Casimir element in Kostant’s Whittaker model. In
a way, the present work is the algebraic part of a project we continue in the paper
[Chh14]. There, we perform the geometric Robinson-Schensted correspondence with
a Brownian path as input and describe the output. Decorations of geometric crystals
will naturally appear.

2 Preliminaries

Let us define the (mostly standard) objects we will be using. The reader familiar with
representation theory, including the Lusztig’s canonical bases, can skip this section.

2.1 Classical Lie theory

On the structure of Lie algebras ([Hum72]): Let (g, [·, ·]) be a complex semi-
simple Lie algebra of rank r. The Cartan subalgebra is a maximal abelian subalgebra
denoted by h ≈ Cr. The Lie bracket defines the adjoint action ad : g −→ End(g). For
x, y ∈ g, ad(x)(y) = [x, y]. A fundamental idea in the classification of semi-simple Lie
algebras is that the adjoint action is codiagonalizable, once restricted to h. Hence the
root-space decomposition:

g =
⊕

β∈{0}⊔Φ

gβ = g0 ⊕
⊕

β∈Φ+

(gβ ⊕ g−β)

where g0 = h and Φ ⊂ h∗ is the set of roots. Root spaces are one dimensional:

gβ = {x ∈ g | ∀h ∈ h, ad(h)(x) = β(h)x}

The set of roots can be written as a disjoint union of positive and negative roots
Φ = Φ+

⊔

Φ−, with Φ− := −Φ+. This choice uniquely determines ∆ = (αi)i∈I ⊂ Φ+ a
simple system such that every positive root is a sum with positive integer coefficients of
simple roots - and reciprocally, a simple system uniquely determines a positive system.
Moreover, the simple system ∆ forms a basis of h∗. When convenient, we will index
simple roots by I = {1, 2, . . . , r}. The choice of a simple system ∆ fixes an open Weyl
chamber:

C := {x ∈ a|∀α ∈ ∆, α(x) > 0}

The Cartan subalgebra has a decomposition h = a+ ia with a chosen to be the real
subspace of h where roots are real valued. By Cartan’s criterion, since g is semi-simple,
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the Killing form is non-degenerate. Its restriction to h is in fact a scalar product written
(·, ·). In the identification of h and h∗ thanks to the Killing form, it is customary to
write the coroot β∨ as β∨ = 2β

(β,β) for β ∈ Φ.

For each positive root β ∈ Φ+, we can choose an sl2-triplet (eβ, fβ, hβ = β∨) ∈
gβ×g−β×h such that [eβ , fβ] = hβ. (eα, fα, hα)α∈∆ is the set of simple sl2-triplets, also
known as Chevalley generators. Such a choice gives rise to Lie algebra homomorphisms
φβ : sl2 −→ g such that:







φβ (x) = eβ
φβ (y) = fβ
φβ (h) = hβ

where x =

(

0 1
0 0

)

, y =

(

0 0
1 0

)

, h =

(

1 0
0 −1

)

.

Relations between Chevalley generators are entirely encoded by the Cartan matrix

A =
(

ai,j = αi

(

α∨
j

))

1≤i,j≤r
∈ Mn(Z), and therefore characterizes the Lie algebra

(theorem 2.111 in [Kna02]). The dual Lie algebra g∨ is the semi-simple algebra with
Cartan matrix the transpose of A.

The fundamental weights (ωα)α∈∆ form the dual basis of simple coroots. They form
a Z-basis of the weight lattice:

P := {x ∈ h∗ | ∀α ∈ ∆, x(hα) ∈ Z} =
⊕

α∈∆

Zωα

The dominant weights are P+ :=
⊕

α∈∆Nωα. Similarly, define the fundamental
coweights P∨ := (ω∨

α)α∈∆ ⊂ a as the dual basis of simple roots.
The Lie algebra g has a triangular decomposition g = n⊕ h⊕ u where u ( resp. n)

is the algebra generated by the (eβ)β∈Φ+ (resp. (fβ)β∈Φ+). Moreover, define the pair
of opposite Borel subalgebras (b, b+) by b := n⊕ h and b+ := h⊕ u.

On the structure of Lie groups ([Spr09]): Let G be a simply-connected complex
semi-simple Lie group with Lie algebra g. The Langlands dual G∨ is an adjoint semi-
simple complex Lie group with Lie algebra g∨. The subgroups H, N , U , B and B+

are the subgroups of G with Lie subalgebras h, n, u, b and b+. H is a maximal torus.
N and U are referred to as the lower and upper unipotent subgroups, while B and B+

are the lower and upper Borel subgroups. The exponential map is denoted exp : g → G
and the adjoint representation of the Lie group G is written Ad : G −→ GL(g).

The exponential map exp : g → G lifts the homomorphisms (φβ)β∈Φ+ from the
Lie algebra g to the group G: each φβ gives rise at the group level to a Lie group
homomorphism that embed SL2 in G and that will be denoted in the same way. The
following notations are common for t ∈ C:

thβ = elog(t)hβ = φβ

((

t 0
0 t−1

))

, t 6= 0
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xβ(t) = eteβ = φβ

((

1 t
0 1

))

yβ(t) = etfβ = φβ

((

1 0
t 0

))

x−β(t) = yβ(t)t
−hβ = φβ

((

t−1 0
1 t

))

y−β(t) = t−hβxβ(t) = φβ

((

t−1 1
0 t

))

Also, if γ ∈ P is a weight, it lifts to a character of the torus H whose value on a ∈ H
is denoted aγ .

The Bruhat decomposition states that G is the disjoint union of cells:

G =
⊔

ω∈W

B+ωB+ =
⊔

τ∈W

BτB+

In the largest opposite Bruhat cell BB+ = NHU , every element g admits a unique
Gauss decomposition in the form g = nau with n ∈ N , a ∈ H, u ∈ U . In the
sequel, we will write g = [g]−[g]0[g]+, [g]− ∈ N , [g]0 ∈ H and [g]+ ∈ U for the Gauss
decomposition. Also [g]−0 := [g]−[g]0 and [g]0+ := [g]0[g]+. Useful identities that can
be proven writing the full Gauss decomposition in two forms then identifying terms,
when they exist:

∀(g1, g2) ∈ NHU ×NHU, [g1g2]0+ = [[g1]0+g2]0+ (2.1)

∀(g, a) ∈ NHU ×H, [ga]+ = a−1[g]+a (2.2)

On the representation theory and highest weight modules: We are only con-
cerned by complex finite dimensional modules. Since every homomorphism of Lie alge-
bras lifts to a homomorphism of the corresponding simply connected Lie groups, every
g-module V lifts to a unique Lie group representation G→ GL(V ).

Every module V has a weight space decomposition V =
⊕

µ∈P Vµ where Vµ =
{v ∈ V |∀h ∈ h, hv = µ(h)v}. The non-zero Vµ are called weight spaces, and their vec-
tors weight vectors of weight µ. A highest weight vector in V is a non-zero weight
vector v such that u · v = {0}. It is well known that simple modules are highest weight
modules indexed by dominant weights λ ∈ P+. To every λ ∈ P+ corresponds a unique
highest weight module V (λ). The highest weight vector vλ ∈ V (λ) is unique up to
scalar multiplication.

2.2 Reflection groups and root systems

Weyl group: The Weyl group of G is defined as W := NormG(H)/H, NormG(H)
being the normalizer of H in G. It acts on the torus H by conjugation and hence on
h. To every linear form β ∈ h∗, define the associated reflection sβ on h with:

∀λ ∈ h, sβλ := λ− β (λ) β∨

8



The reflections (sα)α∈∆ are called simple reflections and they generate a finite Coxeter
group isomorphic to W . Define ms,s′ as the order of the element ss′. For w ∈ W , a
reduced expression is given by writing w as product of simple reflections with minimal
length:

w = si1si2 . . . siℓ

A reduced word is such a tuple i = (i1, . . . , iℓ) and the set of reduced words for w ∈W
is denoted by R(w). Since all reduced expressions have necessarily the same length, it
defines unambiguously the length function ℓ : W → N. The unique longest element is
denoted by w0 and we set m = ℓ(w0).

If (s, s′) ∈ W ×W are simple reflections, a braid relationship in W is the equality
between d = ms,s′ terms:

ss′s · · · = s′ss′ . . .

with ms,s′ being the order of ss′. A braid move or a d-move occurs when substituting
ss′s . . . for s′ss′ . . . within a reduced word. An important theorem is the following:

Lemma 2.3 (Matsumoto [Mat64] and Tits [Tit69]). Two reduced expressions of the
same w ∈W can be derived from each other using braid moves.

Representatives: A common set of representatives in G for the generating reflections
(si)i∈I ⊂W is:

s̄i := φi

((

0 −1
1 0

))

= e−eiefie−ei = efie−eiefi

Another common choice is:

¯̄si := s̄−1
i = φi

((

0 1
−1 0

))

= eeie−fieei = e−fieeie−fi

Lemma 2.4 ( [KP85] Lemma 2.3 ). The Weyl group representatives s̄i (resp. ¯̄si) satisfy
the braid relationships:

s̄is̄j s̄i · · · = s̄j s̄is̄j . . .

It allows us to define unambiguously w̄ = ūv̄ if w = uv and ℓ(w) = ℓ(u) + ℓ(v).

However they do not form a presentation of the Weyl group, since for example
(s̄i)

2 = φi(−id) 6= id. The representative w̄0 of the longest element w0 has an important
property we will later use:

Proposition 2.5 ([BVBPBMR95] Lemma 4.9). Via the Ad action, w̄0 acts on the
Chevalley generators as:

∀α ∈ ∆,Ad (w̄0) (eα) = −fα

9



Positive roots enumerations: For w ∈ W , the inversion set of w is defined as
Inv (w) := {β ∈ Φ+, wβ ∈ Φ−}. The length function has a characterization as the
cardinal of the inversion set i.e ℓ(w) = |Inv(w)| for every w ∈W . Moreover:

Lemma 2.6 (see [Hum90]). Let (i1, . . . , ik) be a reduced expression of w ∈ W . Then
for j = 1, 2, . . . , k:

βi,j := si1 . . . sij−1αij

produces all the positive roots in Inv(w). For w = w0, it produces all positive roots.

When the chosen reduced expression is obvious from context, we will drop the
subscript i. There is a very simple yet very useful identity that we will use several
times.

Lemma 2.7 (Corollary 1.3.22 [Kum02]). Let λ ∈ a and w = si1 . . . siℓ a reduced
expression for a Weyl group element w of length ℓ. If (β1, . . . , βℓ) is the associated
positive roots enumeration, then we have:

λ− wλ =
ℓ
∑

k=1

αik(λ)β
∨
k (2.8)

λ− w−1λ =

ℓ
∑

k=1

βk(λ)α
∨
ik

(2.9)

2.3 Involutions

Since w0 ∈W transforms all simple positive roots to simple negative roots, there is an
involution on ∆ (or equivalently the index set I) denoted by ∗ such that:

∀α ∈ ∆, β∗ = −w0α

We define the following group antimorphisms of G by their actions on a torus ele-
ment a ∈ H and the one-parameters subgroups generated by the Chevalley generators.
For convenience, we also give their action at the level of the Lie algebra g.

• The transpose:
aT = a xi(t)

T = yi(t) yi(t)
T = xi(t)

∀α ∈ ∆, hTα = hα eTα = fα fTα = eα

• The positive inverse or Kashiwara involution ( [Kas95] (1.3) ):

aι = a−1 xi(t)
ι = xi(t) yi(t)

ι = yi(t)

∀α ∈ ∆, hια = −hα eια = eα f ια = fα

10



• Schützenberger involution:

S(x) = w̄0

(

x−1
)ιT

w̄−1
0 = w̄−1

0

(

x−1
)ιT

w̄0

It acts as ( relation 6.4 in [BZ01] or using proposition 2.5):

S
(

xi1(t1) . . . xiq(tq)
)

= xi∗q (tq) . . . xi∗1(t1)

∀α ∈ ∆, S(hα) = hα∗ S(eα) = eα∗ S(fα) = fα∗

Notice that S = ι ◦ S ◦ ι

More is said in section 11 about involutions, detailing their effect on crystals and
justifying the terminology.

2.4 On Lusztig’s canonical basis

In the sequel, we will never use Lusztig’s canonical basis in itself. However, we will be
extensively interested in its parametrizations. As such it is important to review this
mathematical object. We will remain elusive concerning its precise definition, though.
Consider the quantum group Uq (g). In [Lus90a] and [Lus90b], Lusztig introduced a
basis B (∞) of the subalgebra Uq (n) called the canonical basis.

Later, in an independent work, Kashiwara introduced crystal bases for integrable
modules whose combinatorics are particularly simple at q = 0. Thanks to the work
of Grojnowski and Lusztig [GL93], Lusztig’s canonical basis and Kashiwara’s global
crystal basis are in fact the same.

Parametrizations: There are two common parametrizations of the canonical basis.
Both depend on a choice of reduced word for the longest Weyl group element w0. Let
i ∈ R(w0) and recall that m = ℓ(w0).

The Lusztig parametrization is a bijection (Proposition 42.1.5 in [Lus10] for in-
stance):

[xi] : Nm → B (∞)
(t1, . . . , tm) 7→ [xi] (t1, . . . , tm)

The string (or Kashiwara) parametrization uses the integer points of a convex polyhe-
dral cone Ci ⊂ Rm+ (proposition 1.5 in [Lit98]) called the string cone. It is given by a
bijection:

[x−i] : Ci ∩ Nm → B (∞)
(c1, . . . , cm) 7→ [x−i] (c1, . . . , cm)

Kashiwara operators (see [HK02]): These are linear operators on Uq(n). Their
action on the canonical basis B (∞) can be independently defined but we only give
a description in the parametrizations associated to i ∈ R(w0). Let α = αi1 be first
simple root in i and 0 be the zero element in Uq(n). The Kashiwara operators ẽα, f̃α :
B (∞) → B (∞)

⊔

{0} satisfy:

11



f̃α ([xi](t1, . . . , tm)) = [xi](t1 + 1, . . . , tm) (2.10)

f̃α ([x−i](c1, . . . , cm)) = [x−i](c1 + 1, . . . , cm) (2.11)

ẽα ([xi](t1, . . . , tm)) = [xi](t1 − 1, . . . , tm) or 0 if t1 = 0 (2.12)

ẽα ([x−i](c1, . . . , cm)) = [x−i](c1 − 1, . . . , cm) or 0 if c1 = 0 (2.13)

Remark 2.14. The Kashiwara operators are quasi-inverses of each other, in the sense
that:

∀b ∈ B (∞) , ẽα ◦ f̃α(b) = b

∀b ∈ B (∞) , ẽα(b) 6= 0 ⇒ f̃α ◦ ẽα(b) = b

Compatibility properties: The desirable properties of the canonical basis are com-
patibility properties regarding highest weight modules. Fix λ ∈ P+ and consider the
highest weight module V (λ) - for the quantum group. Recall that vλ is a highest weight
vector. It is well known that the linear map:

πλ : Uq(n) → V (λ)
n 7→ nvλ

has the kernel:
ker (πλ) =

∑

α∈∆

Uq(n)f
λ(α∨)+1
α

Therefore, the image of B (∞) by πλ is:

B (λ) := B (∞)−B (∞) ∩ kerπλ

DefineB as the disjoint unionB :=
⊔

λ∈P+ B (λ). If µ ≤ λ in the convex ordering given
by the Weyl chamber, we clearly have ker (πλ) ⊂ ker (πµ), hence a natural injection
B (µ) →֒ B (λ). We see that the canonical basis is a direct limit B (∞) = lim

−→
B (λ),

explaining the notation B (∞). We have:

Theorem 2.15 ( [Lus10] ). B (λ) vλ is a basis for V (λ) made of weight vectors.

12



Therefore, the subsets (B (λ) , λ ∈ P+) of the canonical basis B (∞), once identified
with B (λ) vλ, form compatible bases of highest weight modules.

For b ∈ B (λ), denote by γ(b) its weight in the representation V (λ). Let us record
the expressions for the weight in terms of parametrizations. If b = [xi] (t1, . . . , tm) then,
using the positive roots enumeration (βi,1, . . . , βi,m) associated to i:

γ(b) = λ−
m
∑

j=1

tjβi,j (2.16)

If b = [x−i] (c1, . . . , cm) then:

γ(b) = λ−

m
∑

j=1

cjαij (2.17)

Thanks to the weight map γ and the Kashiwara operators, every set B (λ) is given
the structure of a combinatorial crystal (Definition 4.5.1 in [HK02]). We now introduce
the abstract geometric analogues.

3 Abstract geometric crystals

Definition 3.1. An abstract geometric crystal is a topological space L equipped with
the following continuous structural maps:

• a weight map γ : L→ a.

• εα, ϕα : L→ R defined for every α ∈ ∆

• ecα : L→ L, c ∈ R, α ∈ ∆

and satisfying the following properties for π ∈ L:

(C1) ϕα(π) = εα(π) + α (γ(π))

(C2) γ (ecα · π) = γ (π) + cα∨

(C3) εα (e
c
α · π) = εα (π)− c

(C3’) ϕα (e
c
α · π) = ϕα (π) + c

(C4) e.α are actions: e0 = id and ec+c
′

α = ecα · ec
′

α

Clearly, (C3) and (C3’) are equivalent once (C1) and (C2) are assumed.

Here, unlike the standard object defined by Kashiwara, there is no ghost element
0, the crystal has free actions and coefficients are real. One could use the term ’free
continuous crystal’. Later on, we will also require a certain type of commutation
relations between the actions (e.α)α∈∆, identified as Verma relations. Berenstein and
Kazhdan refer to such structure as a ’pre-crystal’ if Verma relations are not available.
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Generated crystals: Given a subset S of a crystal L, define 〈S〉 as the smallest
subcrystal of L containing S, endowed with the subspace topology. Since intersections
of crystals are crystals, we can define it as:

〈S〉 :=
⋂

S⊂C
subcrystal of L

C

=
{

ec1αi1
· ec2αi2

· . . . eclαik
· x|x ∈ S, k ∈ N, (c1, . . . , ck) ∈ Rk, (i1, i2, . . . , ik) ∈ I

k
}

Crystal connected components: This notion is not to be confused with the topo-
logical notion of connectedness. A crystal is connected if given two elements x and y,
there is k ∈ N, (c1, c2, . . . , ck) ∈ Rk and (i1, i2, . . . , ik) ∈ Ik such that:

y = ec1αi1
· ec2αi2

· . . . eckαik
· x

Any crystal is the disjoint union of its connected components, since ’being connected’
is an equivalence relation. Also a connected component is generated by any of its
elements, and connected components are subcrystals.

Morphism of crystals: A morphism of crystals is a map ψ that preserves the struc-
ture. It is an isomorphism if invertible, and the inverse map is a morphism.

h-Tensor product of crystals: In the sequel, the crystal structure itself will depend
on a parameter h ≥ 0. For h ≥ 0, we define the h-tensor product of two crystals B1

and B2 as the set B1 ⊗h B2 = B1 × B2 endowed with the product topology and the
following structural maps. For h > 0, they are given by:

• γ (b1 ⊗h b2) = γ (b1) + γ (b2)

• εα (b1 ⊗h b2) = εα (b1) + h log
(

1 + e
εα(b2)−ϕα(b1)

h

)

• ϕα (b1 ⊗h b2) = ϕα (b2) + h log
(

1 + e
ϕα(b1)−εα(b2)

h

)

• The actions are defined as ecα (b1 ⊗h b2) = (ec1α · b1)⊗h (e
c2
α · b2)

where

c1 = h log

(

e
c+ϕα(b1)

h + e
εα(b2)

h

e
ϕα(b1)

h + e
εα(b2)

h

)

= h log
(

e
c
h + e

εα(b2)−ϕα(b1)
h

)

− h log
(

1 + e
εα(b2)−ϕα(b1)

h

)

c2 = h log

(

e
ϕα(b1)

h + e
εα(b2)

h

e
ϕα(b1)

h + e
−c+εα(b2)

h

)

= −h log
(

e
−c
h + e

ϕα(b1)−εα(b2)
h

)

+ h log
(

1 + e
ϕα(b1)−εα(b2)

h

)
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Remark 3.2.
c1 + c2 = c

Remark 3.3. The structural maps in the h-tensor product are also continuous in h.
By letting the parameter h → 0, one recovers the same crystalline axioms for tensor
product as in the original work of Kashiwara (Definition 4.5.3 in [HK02]):

• γ (b1 ⊗ b2) = γ (b1) + γ (b2)

• εα (b1 ⊗ b2) = εα (b1) + (εα(b2)− ϕα(b1))
+

• ϕα (b1 ⊗ b2) = ϕα (b2) + (ϕα(b1)− εα(b2))
+

• ecα (b1 ⊗ b2) = (ec1α · b1)⊗ (ec2α · b2)
where

c1 = max (c, εα(b2)− ϕα(b1))− (εα(b2)− ϕα(b1))
+

c2 = min (c, εα(b2)− ϕα(b1)) + (ϕα(b1)− εα(b2))
+

It is easy to check the following:

Proposition 3.4. For all h ≥ 0, B1 ⊗h B2 is a crystal.

Proof. Let us verify axioms for crystals from (C1) to (C4), in the case h > 0, then
h = 0 will follow by a limit argument.

(C1)

ϕα (b1 ⊗h b2)− εα (b1 ⊗h b2)

= ϕα (b2) + h log
(

1 + e
ϕα(b1)−εα(b2)

h

)

− εα (b1)− h log
(

1 + e
εα(b2)−ϕα(b1)

h

)

= ϕα (b2)− εα (b1) + ϕα (b1)− εα (b2)

= α (γ (b1)) + α (γ (b2))

= α (γ (b1 ⊗h b2))

(C2)

γ (ecα · (b1 ⊗h b2))

= γ (ec1α · b1) + γ (ec2α · b2)

= γ (b1 ⊗h b2) + (c1 + c2)α
∨

using the remark that c = c1 + c2, the second axiom is checked.
(C3) We will only check:

εα (e
c
α · (b1 ⊗h b2))
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= εα (e
c1
α · b1) + h log

(

1 + e
εα(e

c2
α ·b2)−ϕα(e

c1
α ·b1)

h

)

= −c1 + εα (b1) + h log
(

1 + e
−c+εα(b2)−ϕα(b1)

h

)

= −c1 + εα (b1)− c+ h log
(

ec + e
εα(b2)−ϕα(b1)

h

)

= εα (b1)− c+ h log
(

1 + e
εα(b2)−ϕα(b1)

h

)

= −c+ εα (b1 ⊗h b2)

(C4) We know that

ecα · ec
′

α · (b1 ⊗h b2) = ec1+c
′

1 · b1 ⊗h e
c2+c′2 · b2

where

c′1 = h log





e
c′+ϕα(b1)

h + e
εα(b2)

h

e
ϕα(b1)

h + e
εα(b2)

h





c1 = h log







e
c+ϕα(e

c′1
α ·b1)

h + e
εα(e

c′2
α ·b2)
h

e
ϕα(e

c′1
α ·b1)
h + e

εα(e
c′2
α ·b2)
h







c′2 = c− c′1

c2 = c− c1

We simplify:

c1 = h log





e
c+ϕα(b1)+c′1

h + e
εα(b2)−c′2

h

e
ϕα(b1)+c′

1
h + e

εα(b2)−c′
2

h





= h log





e
c+c′+ϕα(b1)

h + e
εα(b2)

h

e
c′+ϕα(b1)

h + e
εα(b2)

h





Hence:

c1 + c′1 = h log





e
c+c′+ϕα(b1)

h + e
εα(b2)

h

e
ϕα(b1)

h + e
εα(b2)

h





and

c2 + c′2 = c+ c′ −
(

c1 + c′1
)

= h log

(

e
ϕα(b1)

h + e
εα(b2)

h

e
ϕα(b1)

h + e
−c−c′+εα(b2)

h

)

In the end:

ecα · ec
′

α · (b1 ⊗h b2) = ec1+c
′

1 · b1 ⊗h e
c2+c′2 · b2 = ec+c · (b1 ⊗h b2)
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4 Geometric crystals: the group picture of Berenstein and

Kazhdan

In this section, we introduce totally positive elements in G. Then we define the group
picture B ⊂ B of geometric crystals, which is made of totally positive elements in B. For
the purposes of the next sections, our aim is to specify the coordinate charts of figure
4.19, which are the geometric liftings of Lusztig’s and Kashiwara’s parametrizations of
the canonical basis.

It is important to have in mind that many choices are possible. Figure 4.19 fits with
parametrizations in the path model (figure 8.1), which indicates that we have indeed
made the right choices. Moreover, in these charts, we give explicit expressions of the
weight map in subsection 4.4.

Finally, we state that B is an abstract geometric crystal in theorem 4.23, due to
Berenstein and Kazhdan. Additional structure is also specified.

4.1 On total positivity

For a survey, see [Lus08]. Lusztig got interested in the subject after Kostant pointed out
that the combinatorics of the canonical basis should be related with the combinatorics of
total positivity. Later, he understood that totally positive varieties in G have the same
parametrizations as the canonical basis of the Langlands dualG∨, after a tropicalization
procedure (see [BFZ96], or paragraph 42.2 in [Lus10]).

There are two equivalent definitions for totally non-negative matrices in the classical
case of GLn (C).

Theorem 4.1 (Whitney [Whi52], Loewner [Loe55] ). An invertible n × n matrix is
said to be totally non-negative if all its minors are ≥ 0, or equivalently, if it has a
decomposition

yi1(t1) . . . yim(tm)hxi1(t
′
1) . . . xim(t

′
m)

where h is diagonal with positive entries, yi(t) = etEi+1,i = In+tEi+1,i, xi(t) = etEi,i+1 =
In+ tEi,i+1 (Chevalley matrices) for t ≥ 0. Moreover, the space of totally non-negative
matrices can be characterized as the semi-group generated by such elements.

In [Lus94], Lusztig generalized this definition to arbitrary complex reductive groups,
by taking the semi-group property as a starting point. The following sets are called
totally non-negative parts of G.

• The semi-group generated by a ∈ H such that aγ > 0 for every weight γ: H>0 =
A = exp (a) = H ∩G≥0

• The semi-group generated by the xα(t), t > 0, α ∈ ∆: U≥0

• The semi-group generated by the yα(t), t > 0, α ∈ ∆: N≥0

• Finally, the totally non-negative part of G is denoted G≥0 and is formed by the
semi-group generated by all of them.
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Lusztig proved that totally non-negative elements admit a Gauss decomposition
made of totally non-negative elements, and exhibited parametrizations as products of
Chevalley elements.

Theorem 4.2 ([Lus94] lemma 2.3). Any element g ∈ G≥0 has a unique Gauss decom-
position g = nau with n ∈ N≥0, a ∈ A and u ∈ U≥0.

Theorem 4.3 ([Lus94] proposition 2.7, [BZ97], Proposition 1.1). For any w ∈W with
k = ℓ(w), every reduced word i = (i1, . . . , ik) in R(w) gives rise to a parametrization of
Uw>0 := U≥0 ∩BwB by:

xi : Rk>0 → Uw>0

(t1, . . . , tk) 7→ xi1(t1) . . . xik(tk)

Moreover, for i, i′ ∈ R(w), the maps Ri,i′ := x−1
i′

◦ xi : R
m
>0 → Rm>0 are rational and

substraction free.

Hence the name of totally non-negative varieties for the sets Uw>0, w ∈ W . The
Bruhat decomposition tells us then that the previous maps have disjoint images and
cover the entire non-negative part U≥0 =

⊔

w∈W Uw>0. Of course, after transpose, one
has analogous parametrizations for Nw

>0 := N≥0 ∩B
+wB+.

Afterwards, Berenstein, Fomin and Zelevinsky in a series of papers ([BZ97, FZ99,
BZ01]) completed the picture by defining generalized minors on semi-simple groups,
allowing to define the totally positive varieties as the locus where appropriate minors
are positive. This tool will be defined when needed.

4.2 Coordinates in totally positive varieties

Geometric lifting: Consider a rational expression in k variables a ∈ Q (x1, . . . , xk)
that has no minus sign. Tropicalizing a to [a]trop is tantamount to replacing the al-
gebraic operations (+,×, /) by (min,+,−). A rational expression in the operations
(min,+,−) is now commonly referred to as a tropical expression. Formally, if a and b
are rational subtraction-free functions, then:

[a+ b]trop = min(a, b)

[ab]trop = a+ b

[a/b]trop = a− b

[a ◦ b]trop = [a]trop ◦ [a ◦ b]trop

For example:
[

t2t3
t1 + t3

]

trop

= t2 + t3 −min(t1, t3)

Geometric lifting is the general idea that computations in the tropical world using
the semi-field (R,min,+) have analogues in the geometric world using (R>0,+, .). Here,
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the reader will only need to have in mind that rational and substraction free maps
preserve positivity and can tropicalized. Lusztig’s interest in total positivity lies in
the fact that totally positive varieties are geometric liftings (of parametrizations) of
canonical bases.

Definition 4.4 (Lusztig variety). Define the geometric Lusztig variety as:

Uw0
>0 := U ∩Bw0B ∩G≥0

Such a name is legitimate because changes of parametrization in the G∨-canonical
basis are given by tropicalizing Ri,i′ ([BZ01], theorem 5.2). In other words, using the
notations from subsection 2.4:

[

Ri,i′
]

trop
=
(

[xi′ ]
∨)−1

◦ [xi]
∨ : Nm → Nm

where the superscript ∨ indicates that the corresponding map has to be considered for
the dual.

A similar construction holds if we are interested in the string parametrization of
the G∨-canonical basis:

Definition 4.5 (Kashiwara (or string) variety). Define the geometric string variety
Cw0
>0 as:

Cw0
>0 := Uw̄0U ∩B ∩G≥0

Of course, this definition depends on w̄0, our choice of representative for the longest
element w0 in the Weyl group. The Kashiwara variety also has parametrizations indexed
by reduced words:

Theorem 4.6 ([BZ01]). Every reduced word i ∈ R(w0) gives rise to a bijection:

x−i : Rm>0 → Cw0
>0

(c1, . . . , cm) 7→ x−i1(c1) . . . x−im(cm)

Moreover, for i, i′ ∈ R(w0), the maps R−i,−i′ := x−1
−i′ ◦ x−i : R

m
>0 → Rm>0 are rational

and substraction free.

In the same fashion, changes of parametrizations in string coordinates for the G∨-
canonical basis are the tropicalization of R−i,−i′ ([BZ01], theorem 5.2), i.e:

[

R−i,−i′
]

trop
=
(

[x−i′]
−1
)∨

◦ [x−i]
∨ : Ci ∩ Nm → Ci′ ∩ Nm

A useful relationship between the maps xi and x−i is the following:

Lemma 4.7 ( [BZ01] Lemma 6.1 and Remark 6.2). Let i = (i1, . . . , ij) ∈ R(w) a

reduced expression and
(

β∨1 , . . . , β
∨
j

)

an associated positive coroots enumeration. Then

the following statements are equivalent:

(i)
(

x−i1(c1) . . . x−ij (cj)
)T

= c
−α∨

i1
1 . . . c

−α∨

ij

j xij (tj) . . . xi1(t1)
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(ii)∀1 ≤ k ≤ j, tk = ck
∏

l<k

c
αik

(α∨

il
)

l

(iii)∀1 ≤ k ≤ j, ck = tk
∏

l<k

t
βk(β

∨

l
)

l

Moreover:
j
∏

k=1

c
α∨

ik

k =

j
∏

k=1

t
−w−1β∨

k

k

Proof. The equivalence between the two first statements is immediate using commuta-
tion relations:

(

x−i1(c1) . . . x−ij (cj)
)T

=c
−α∨

ij

j xij (cj) . . . c
−α∨

i1
1 xi1(c1)

=c
−α∨

i1
1 . . . c

−α∨

ij

j

j−1
∏

k=0

xij−k
(cj−k

∏

l<j−k

c
αik

(α∨

il
)

l )

The equivalence between the two last statements can be proved by induction over j.
For j = 1, it is immediate. Then, for j ≥ 1, by induction hypothesis:

cj = tj

j−1
∏

k=1

c
−αij

(α∨

ik
)

k = tj

j−1
∏

k=1

(

tk

k−1
∏

l=1

t
βk(β

∨

l
)

l

)−αij
(α∨

ik
)

Rearranging the double product gives:

cj =tj

(

j−1
∏

k=1

t
−αij

(α∨

ik
)

k

)

j−1
∏

l=1

t
−
∑j−1

k=l
βk(β

∨

l
)αij

(α∨

ik
)

l

=tj

j−1
∏

k=1

t
−αij

(

α∨

ik
+
∑j−1

l=k
βl(β

∨

k
)α∨

il

)

k

Then using the second identity in lemma 2.7 with λ = β∨k :

α∨
ik
+

j−1
∑

l=k

βl(β
∨
k )α

∨
il

=α∨
ik
+ (si1 . . . sik)

−1 β∨k −
(

si1 . . . sij−1

)−1
β∨k

=−
(

si1 . . . sij−1

)−1
β∨k

In the end, as announced:

cj = tj

j−1
∏

k=1

t
αij

(

(

si1 ...sij−1

)

−1
β∨

k

)

k = tj

j−1
∏

k=1

t
βj(β

∨

k
)

k
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The last equality is a straightforward calculation:

j
∏

k=1

c
α∨

ik

k =

j
∏

k=1

(

t
α∨

ik

k

∏

l<k

t
βk(βl)α

∨

ik

l

)

=

j
∏

k=1

t
α∨

ik
+
∑j

l=k+1 βl(βk)α
∨

il

k

Using again the lemma 2.7, we have:

α∨
ik
+

j
∑

l=k+1

βl(βk)α
∨
il
= −w−1β∨k

From the Lusztig variety to the Kashiwara variety: One can map Uw0
>0 to Cw0

>0

in many ways. But only the following one is the correct one. Define

∀u ∈ U ∩Bw0B, η
e,w0 (u) := [w̄−1

0 uT ]−1
−0 = [w̄−1

0 uT ]+w̄0S (u)ι (4.8)

∀v ∈ B ∩ Uw̄0U, η
w0,e (v) := [

(

w̄0v
T
)−1

]+ (4.9)

Theorem 4.10 ( [BZ01], corollary 5.6 ). The map ηe,w0 is a bijection from U ∩Bw0B
to B ∩ Uw̄0U and restricts to a bijection from Uw0

>0 to Cw0
>0. The inverse map is ηw0,e.

The tropicalization of this correspondence is a very interesting map:

Theorem 4.11 ( [BZ01], theorem 5.7 ). Changes of parametrization for the G∨ canoni-
cal basis are obtained by tropicalizing the following rational subtraction-free expressions.
Going from i-Lusztig parameters to i′-string parameters is achieved by tropicalizing:

x−i′ ◦ η
e,w0 ◦ xi

Conversely, in order to obtain i-string parameters from i′-Lusztig parameters, tropical-
ize:

xi′ ◦ η
w0,e ◦ x−i

4.3 Geometric crystal elements

We now define geometric crystals with a notation similar to Kashiwara crystals.

Definition 4.12 (Geometric crystals). Define the geometric crystal of highest weight
λ ∈ a as the set:

B (λ) := Cw0
>0e

λ

The union of all highest weight crystals will be denoted by B, which is nothing but the
set of totally positive elements in B:

B :=
⊔

λ∈a

B(λ) = B≥0
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Later, we will see that B is an abstract crystal in the sense of definition 3.1, thanks
to the work of Berenstein and Kazhdan. Now, the goal of this subsection consists
in exhibiting the correct way of embedding the Lusztig and Kashiwara varieties in B
(figure 4.19).

The highest weight can easily be recovered from any element x ∈ B using the highest
weight map:

Definition 4.13 (Highest and lowest weight, [BK07b] relation 1.6). Define the highest
weight map hw : B → a by:

∀x ∈ B,hw(x) := log[w̄−1
0 x]0

The lowest weight is given by:

∀x ∈ B, lw(x) := log[w̄−1
0 xι]ι0 = w0 hw(x)

Highest weight crystals are disjoint in B and hw−1 ({λ}) = B (λ). Moreover:

Properties 4.14. (i) hw can be extended to B+w0B
+ as:

∀ (z, u) ∈ U × U, t ∈ H,hw (zw̄0tu) = log(t)

(ii) hw is an U × U -invariant function.

(iii)
∀ (x, y) ∈ a2,∀g ∈ B+w0B

+,hw (exgey) = w0x+ hw (g) + y

Proof. (i) If g = zw̄0tu ∈ B+w0B
+, then:

hw (g) = log[w̄−1
0 g]0 = log[w̄−1

0 zw̄0tu]0 = log(t)

(ii) Immediate from (i)

(iii)

hw (exgey) = log[w̄−1
0 exgey]0

= log[w̄−1
0 exw̄0w̄

−1
0 gey ]0

= log[ew0xw̄−1
0 gey ]0

=w0x+ hw (g) + y

Every element x ∈ B (λ) can be written using a certain associated parameter. The
letters u and z will usually refer to an element in Uw0

>0 and the letter v will usually refer
to an element in Cw0

>0. An expression we will often use is:
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Theorem 4.15. For x ∈ B (λ), one can write uniquely:

x = zw̄0e
λu, z ∈ Uw0

>0 , u ∈ Uw0
>0

Mapping x to z (resp. u) is a bijection from B(λ) to Uw0
>0 . The former will be refered to

as the Lusztig parameter associated to x, and the latter the twisted Lusztig parameter.

Proof. The existence is a consequence of the definition of B(λ). The uniqueness comes,
as we will see, from exhibiting inverse maps that preserve total positivity.

There is also the possibility of using a parameter v ∈ Cw0
>0 that we will call the

string or Kashiwara parameter associated to x. Such names are justified by the fact
that these choices give a geometric lifting of the parametrizations for crystal bases. In
all the following formulas, the group elements considered belong to the double Bruhat
cell B ∩B+w0B

+ and thus, every Gauss decomposition that we use is allowed.

Definition 4.16 (Parameters associated to a crystal element). Define the following
maps on B:

̺L : B −→ Uw0
>0

x = zw̄0e
λu 7→ z = [w̄−1

0 xι]ι+

̺K : B −→ Cw0
>0

x 7→ v = [w̄−1
0 [x]−]

T
0+

̺T : B −→ Uw0
>0

x = zw̄0e
λu 7→ u = [w̄−1

0 x]+

For x ∈ B, the group elements z = ̺L(x), v = ̺K(x) and z = ̺T (x) will be referred
to as the Lusztig, Kashiwara and twisted Lusztig parameters associated to x.

The following property shows that all highest weight crystals share the same parametriza-
tions, hinting to the compatibility properties of the canonical basis. Recall that ηw0,e

is given in equation (4.9).

Proposition 4.17. Once restricted to B(λ) the maps ̺L, ̺K and ̺T are invertible with
inverses:

bLλ : Uw0
>0 −→ B(λ)

z 7→ x = [zw̄0]−0e
λ = zw̄0e

λ
(

e−λ[zw̄0]
−1
+ eλ

)

bKλ : Cw0
>0 −→ B(λ)

v 7→ x = [ηw0,e (v) w̄0]−0e
λ = [(w̄0v

T )−1]+w̄0v
T [vT ]−1

0 eλ

bTλ : Uw0
>0 −→ B(λ)

u 7→ x = S ◦ ι
(

e−λ[w̄−1
0 uT ]+e

λ
)

w̄0e
λu

Remark 4.18. It is easy to see that with such definitions, ηe,w0 (z) = v.
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x ∈ B(λ)

z ∈ Uw0
>0 v ∈ Cw0

>0 u ∈ Uw0
>0

̺L

̺K
̺T

bLλ

bKλ

bTλ

ηe,w0

ηw0,e

Figure 4.19: Charts for the highest weight geometric crystal B(λ)

In the sequel, we will try to stick to the letters z, v and u when dealing with each
choice of parameter. The figure 4.19 shows the different charts for B(λ), together with
the inverse maps bLλ , b

K
λ and bTλ .

Proof. The fact that these charts preserve total positivity is dealt with later in theorem
4.20. Let us start by writing:

x = zw̄0e
λu

Let us deal with the Lusztig parameter z. It is easy to see that since x ∈ B,
we have x = [x]−0 = [zw̄0]−0e

λ. The second expression is obtained directly by the
identity [zw̄0]−0 = zw̄0[zw̄0]

−1
+ . In order to obtain z from x, making use of the anti-

automorphism ι gives xι = uιe−λw̄0z
ι. Hence:

[

w̄−1
0 xι

]ι

+
=
[

w̄−1
0 uιe−λw̄0z

ι
]ι

+
= (zι)ι = z

The twisted Lusztig parameter u is treated in a similar way. Write:

x =[xι]ι−0

=[uιe−λw̄0]
ι
−0

=
(

[uιe−λw̄0]
ι
+

)−1
w̄0e

λu

=S ◦ ι(y)w̄0e
λu

where we have used the involutive automorphism S ◦ ι and:

y = S ◦ ι

(

(

[uιe−λw̄0]
ι
+

)−1
)

= w̄−1
0 [w̄−1

0 e−λ (uι)T ]ι−w̄0

= [w̄−1
0 e−λuT eλ]+

= e−λ[w̄−1
0 uT ]+e

λ

And in order to obtain u from x, write
[

w̄−1
0 x

]

+
=
[

w̄−1
0 zw̄0e

λu
]

+
= u.
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Finally, for the Kashiwara parameter, if x ∈ B(λ) and ̺K(x) = v, then:

ηw0,e(v) =[
(

w̄0v
T
)−1

]+

=[[w̄−1
0 [x]−]

−1
0+w̄

−1
0 ]+

=[[x]−1
− w̄0[w̄

−1
0 [x]−]−w̄

−1
0 ]+

=w̄0[w̄
−1
0 [x]−]−w̄

−1
0

Therefore:

x =[w̄0[w̄
−1
0 x]−0]−0

=[w̄0[w̄
−1
0 [x]−]−]−0e

λ

=[ηw0,e(v)w̄0]−0e
λ

Another possible expression is indeed:

x =ηw0,e(v)w̄0[η
w0,e(v)w̄0]

−1
+ eλ

=ηw0,e(v)w̄0[
(

w̄0v
T
)−1

w̄0]
−1
+ eλ

=ηw0,e(v)w̄0v
T [vT ]−1

0 eλ

And as announced, the following theorem shows that the maps we considered pre-
serve total positivity:

Theorem 4.20. All maps ̺L, ̺K and ̺T (and their inverses) are rational and subtraction-
free once written in coordinates.

Proof. Notice that:
ηe,w0 ◦ ̺L = ̺K

ι ◦ ̺L ◦ ι = ̺T

We already know that ηe,w0 and its inverse are rational subtraction-free once written in
the appropriate charts (theorems 4.10 and 4.11). The same goes for ι as x−1

iop ◦ι◦xi = id
and x−1

i′
◦ι◦xi. Therefore, the theorem will be proved by dealing only with the mappings

̺L and bLλ .
In order to further reduce the problem, introduce the twist map studied in [BZ97]:

ηw0 : (U ∩Bw0B) −→ (U ∩Bw0B)

z 7→ [w̄−1
0 zT ]+

It is easy to see that η−1
w0

= ι ◦ ηw0 ◦ ι. Moreover, one can show that x−1
i′

◦ ηw0 ◦ xi is
rational and subtraction-free, for every reduced words i′ and i.
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Technically, in proposition 4.17, we only proved that the following correspondence
for the Lusztig parametrization is bijective:

(B ∩ Uw̄0U) eλ −→ U ∩Bw0B

x = [zw̄0]−0e
λ 7→ z = [w̄−1

0 xι]ι+

Therefore, after getting rid of the dependence in λ, we will consider:

ϕ : B ∩ Uw̄0U −→ U ∩Bw0B

x = [zw̄0]−0 7→ z = [w̄−1
0 xι]ι+

and prove that x−1
i ◦ ϕ ◦ x−i(c1, . . . , cm) is rational and subtraction-free in the vari-

ables (c1, . . . , cm), hence preserving total positivity. Applying the monomial change of
variable in lemma 4.7:

(x−i(c1, . . . , cm))
T = c

−α∨

i1
1 . . . c

−α∨

im
m xiop(tm, . . . , t1)

we obtain x−1
i

◦η−1
w0

◦xiop(tm, . . . , t1), which we know is rational and subtraction-free, as
well as its inverse. All intermediate rearrangements were also rational and subtraction-
free, hence the result.

4.4 The weight map

Definition 4.21. Define the weight map γ : B (λ) → a by:

eγ(x) = [x]0

This weight map is the geometric analogue of the classical weight map for crystal
bases. The similarity is particularly obvious when comparing the following result with
equations (2.16) and (2.17). It uses the dual root system as the geometric crystal on
G encodes the combinatorics of the canonical basis for G∨.

Theorem 4.22. Let x ∈ B(λ), z = ̺L(x), v = ̺K(x) and u = ̺T (x). Write for
i ∈ R(w0)

z = xi (t1, . . . , tm)

v = x−i (c1, . . . , cm)

u = xi
(

t′1, . . . , t
′
m

)

And e−t̃k = tk, e
−t̃′

k = t′k and e−c̃k = ck. Then, in terms of coordinates, the weight map
is given by:

γ(x) = λ−

m
∑

k=1

t̃kβ
∨
k

= w0

(

λ−

m
∑

k=1

t̃′kβ
∨
k

)

= λ−

m
∑

k=1

c̃kα
∨
ik
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Proof. For x = [zw̄0]−0e
λ with z = xi (t1, . . . , tm). We apply lemma 4.7 to the opposite

reduced word iop = (im, . . . , i1). As such, the positive roots enumeration is reversed
as well as the order of the parameters t1, . . . , tm. There is a b = x−iop (c1, . . . , cm)

T ∈
B+ ∩Nw̄−1

0 N such that:

z =





m
∏

j=1

t
−w0β

∨

iop,m−j+1

j



 b

The exponents can be simplified as:

− w0β
∨
iop,m−j+1

=− w0sim . . . sij+1α
∨
ij

=si1 . . . sij−1α
∨
ij

=β∨j

Hence:

u =





m
∏

j=1

t
β∨

j

j



 b

Because bw̄0 ∈ NU , we have:

[x]0 = [uw̄0]0e
λ =









m
∏

j=1

t
β∨

j

j



 bw̄0





0

eλ = eλ





m
∏

j=1

t
β∨

j

j





We can deduce the weight map expression in terms of (t′1, t
′
2, . . . , t

′
m) easily from

the above proof. Notice that applying ι to x, changes u to u′ι, λ to −w0λ and γ(x) to
−γ(x). As such, using the expression found for the weight map in Lusztig coordinates,
while considering the opposite word iop:

−γ(x) = −w0λ−
m
∑

k=1

t̃′m−k+1β
∨
iop,k

Hence:

γ(x) = w0λ+

m
∑

k=1

t̃′m−k+1β
∨
iop,k

= w0λ+

m
∑

k=1

t̃′m−k+1(−w0si1 . . . sim−k−1
)α∨

im−k

= w0

(

λ−

m
∑

k=1

t̃′kβ
∨
k

)

In the string parametrization v = ̺S(x) = x−i (c1, . . . , cm). By definition 4.16:

v = [w̄−1
0 [x]−]

T
0+
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Hence:
m
∏

j=1

c
−α∨

ij

j = [v]0 =
[

w̄−1
0 [x]−

]

0
= [w̄−1

0 x]0[x]
−1
0 = eλ[x]−1

0

Rearranging the equation yields the result.

4.5 Examples

We illustrate the previous coordinate systems and maps by a few examples for different
semi-simple groups. We will take x ∈ B and write in coordinates:

z = ̺L(x) ∈ Uw0
>0

v = ̺K(x) ∈ Cw0
>0

A1-type:

G = SL2 =

{

x =

(

a c
b d

)

|ad− bc = 1

}

g = sl2 = {x ∈M2(C) |tr(x) = 0}

H =

{

x =

(

a 0
0 a−1

)

, a ∈ C∗

}

h = Cα∨

where α∨ =

(

1 0
0 −1

)

.

The disjoint union of all highest weight crystals is B:

B =

{(

a 0
b a−1

)

| a > 0, b > 0

}

For x =

(

a 0
b a−1

)

∈ B, if:

λ = hw(x)

z =

(

1 t
0 1

)

v =

(

c−1 0
1 c

)

then, in terms of the matrix x, we have:

λ = log(b)α∨

t = c =
a

b
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A2-type:
G = SL3(C)

g = sl2 = {x ∈M3(C) |tr(x) = 0}

H =







x =





a 0 0
0 b 0
0 0 c



 , abc = 1, (a, b, c) ∈ (C∗)3







h = Cα∨
1 ⊕ Cα∨

2

where α∨
1 =





1 0 0
0 −1 0
0 0 0



 and α∨
2 =





0 0 0
0 1 0
0 0 −1



.

The disjoint union of all highest weight crystals is given by lower triangular totally
positive matrices:

B =











a 0 0
b c 0
d e f



 | acf = 1; a, b, c, d, e, f > 0; be− dc > 0







For a crystal element x =





a 0 0
b c 0
d e f



 ∈ B, if:

λ = hw(x)

z = x121(t1, t2, t3) =





1 t1 + t3 t1t2
0 1 t2
0 0 1





v = x−121(c1, c2, c3) =





1
c1c3

0 0

c−1
3 + c1

c2

c1c3
c2

0

1 c3 c2





then the correspondence ηe,w0 (z) = v gives:

(t1, t2, t3) =
(

c1, c3, c2c
−1
3

)

Moreover, we have:

eλ =





d 0 0

0 be−dc
d

0
0 0 1

be−dc





x =





t1t2 0 0

t2 t3t
−1
1 0

1 t1+t3
t1t2

1
t2t3



 eλ

=







c1c3 0 0

c3 c−1
1 c2c

−1
3 0

1 c1c3+c2
c1c

2
3

1
c2






eλ
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4.6 Geometric crystals in the sense of Berenstein and Kazhdan

Now, we will explain why B is a positive geometric crystal in the sense of Berenstein
and Kazhdan ([BK00], [BK07b]) using their framework. Their construction starts with
the notion of unipotent bicrystal. In our case, the unipotent bicrystal is simply the
cell B ∩ B+w0B

+. Then it can be decorated with structural maps and endowed with
a positive structure. This tantamounts to restricting the structural maps to B, the
totally positive part. The structural maps we inherit satisfy the axioms in definition
3.1 and more.

Define the fundamental additive N -character eχ
−

α : N → C by:

∀(α, β) ∈ ∆2,∀t ∈ R, χ−
α (e

tfβ )) := tδα,β

where δ.,. is the Kronecker delta. It is naturally extended to B by setting ∀x ∈
B,χ−

α (x) = χ−
α ([x]−)

Theorem 4.23. The set B is an abstract geometric crystal once endowed with the
structural maps:

•
γ : B → a

g 7→ log ([g]0)

• For x ∈ B:

εα(x) := χ−
α (x)

ϕα(x) := χ−
α (xι) = α (γ(x)) + εα(x)

• ecα · x =
[

xα

(

ec−1
eεα(x)

)

x
]

−0
= xα

(

ec−1
eεα(x)

)

x xα

(

e−c−1
eϕα(x)

)

An important fact to keep in mind is that the previous group product uses a U ×U
action, and the right action is there to exactly balance the left action. As such, the
resulting group element is still in B ⊂ B.

So far, we made the choice of working directly with the totally positive elements.
Only in this subsection, we will work outside of the totally positive varieties, in order
to present Berenstein and Kazhdan’s construction, from which theorem 4.23 follows
immediately.

The unipotent bicrystal (X, p): A unipotent bicrystal is a couple (X, p) such
that X is a U×U variety, meaning a set with a right and left action of U , and p : X → G
a U × U -equivariant application, meaning it is an application such that the action of
U × U on X and G commute.

Here pick X := B+w0B
+ with the natural left and right group action of U . And

p : B+w0B
+ →֒ G is the inclusion map.
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The unipotent crystal X−: Following [BK07b] section 2, we define X− to be the
unipotent crystal associated to (X, p) by:

X− := p−1(B) = B ∩B+w0B
+

It is nothing but the largest double Bruhat cell inside of the Borel subgroup B. Here
we are dealing with a unipotent bicrystal of type w0 ([BK07b], claim 2.6).

The positive structure ΘX: Now fix λ ∈ a. For every i consider the charts:

bLλ ◦ xi : Rm>0 → B(λ)
bKλ ◦ xi : Rm>0 → B(λ)
bTλ ◦ xi : Rm>0 → B(λ)

In the language of [BK07b], they are the restrictions to the positive octant Rm>0 of
toric charts from Cm to (B ∩ Uw̄0U) eλ. Moreover, because of theorem 4.20, these
toric charts are positively equivalent, defining the same positive structure ΘX on
(B ∩ Uw̄0U) eλ. When looking only at the image of Rm>0 through those charts, one
is dealing only with B(λ).

The positive geometric crystals F(X, p,ΘX): By proposition 2.25 in [BK07b],
the unipotent bicrystal (X, p) gives rise to a geometric crystal:

F(X, p) =
(

X−, γ, ϕα, εα, e
.
α|α ∈ ∆

)

.

By lemma 3.30 in [BK07b], one gets a positive geometric crystal F(X, p,ΘX), meaning
that these structural maps respect the positive structure. Therefore, we can restrict
them to B, which proves theorem 4.23. Notice that the notation for εα and ϕα are
reversed compared to [BK07b].

Tensor product of geometric crystals: Given two geometric crystals X and Y ,
each one endowed with maps (γ, ϕα, εα, e

.
α|α ∈ ∆), Berenstein and Kazhdan define the

tensor product X ⊗ Y as the set X × Y endowed with the following maps:

γ(x⊗ y) = γ(x) + γ(y)

εα(x⊗ y) = εα(x) + log
(

1 + eεα(y)−ϕα(x)
)

ϕα(x⊗ y) = ϕα(y) + log
(

1 + eϕα(x)−εα(y)
)

ecα · (x⊗ y) = ec1α · x⊗ ec2α · y

where

c1 = log
(

ec + eεα(y)−ϕα(x)
)

− log
(

1 + eεα(y)−ϕα(x)
)

c2 = − log
(

e−c + eεα(y)−ϕα(x)
)

+ log
(

1 + eεα(y)−ϕα(x)
)

Claim 2.16 in [BK07b] asserts that X ⊗ Y is a geometric crystal. Notice that this
definition is the same as our h-tensor product of crystals when h = 1, and in proposition
3.4, we checked that claim.
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4.7 Additional structure

Invariant under crystal action: At this level, it is easy to see that the highest
weight is invariant under the crystal actions e.α:

Lemma 4.24.
∀x ∈ B,∀α ∈ ∆,∀c ∈ R,hw (ecα · x) = hw(x)

Proof. Notice that B = (B ∩B+w0B
+)≥0 = (B ∩ Uw̄0U)≥0 · A. Also, the crystal

actions e.α, α ∈ ∆ are given by an action of U ×U , leaving the A factor invariant. This
factor is nothing but ehw(.), hence the result.

Verma relations: Following ([BK00]), for an abstract crystal L and any word i =
(i1, . . . , ik) ∈ Ik (not necessarily reduced), define the map:

e.i : a× L → L

(t, x) 7→ eti = e
β(1)(t)
αi1

· e
β(2)(t)
αi2

. . . e
β(k)(t)
αik

· x

where β(j) = sik . . . sij+1(αij ).
The relations appearing in the next lemma are called Verma relations. If they hold,

one can define unambiguously ew = ei for i ∈ Ik if w = si1 . . . sik .

Lemma 4.25 (lemma 2.1 [BK00]). The following proposition are equivalent:

(i) For any i ∈ Ik and i′ ∈ Ik
′

, if:

w = si1 . . . sik = si′1 . . . si′k′

Then ei = ei′ .

(ii) The following relations hold for every c1, c2 ∈ R:

ec1α · ec2β = ec2β · ec1α

if α(β) = β(α) = 0;

ec1α · e2c1+c2β · ec1+c2α · ec2β = ec2β · ec1+c2α · e2c1+c2β · ec1α

if α(β∨) = −1, β(α∨) = −2;

ec1α ·e3c1+c2β ·e2c1+c2α ·e3c1+2c2
β ·ec1+c2α ·ec2β = ec2β ·ec1+c2α ·e3c1+2c2

β ·e2c1+c2α ·e3c1+c2β ·ec1α

if α(β∨) = −1, β(α∨) = −3.

Proof. (i) ⇒ (ii): If i and i′ are reduced expressions, then by Tits lemma (theorem
2.3), one can obtain i′ from i using braid moves. If α and β are simple roots in ∆ and
satisfy a d-term braid relationship sαsβsα · · · = sβsαsβ . . . , then we obtain:

∀t ∈ a, eα(t)α · e
(sαβ)(t)
β · e

(sαsβα)(t)
α · · · = e

β(t)
β · e

(sβα)(t)
α · e

(sαsβα)(t)
α . . .
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In particular, writing this equation for t in the span of the coweights ω∨
α and ω∨

β , we
find the Verma relations. This is the classical rank 2 reduction. The list of relations
corresponds to the root systems A1 ×A1, A2, BC2, G2.

(ii) ⇒ (i) Conversely, the Verma relations imply ei = ei′ for reduced words. If i
and i′ are not reduced, it is well known that one can reduce them by using braid moves
and by deleting equal successive indices, as they correspond to a product of the form
s2α = id. Therefore, we only need to notice that if i contains two equal successive indices
and i′ is the word obtained by deleting them, then ei = ei′ . Indeed, if i ∈ Ik, k ∈ N
and ij = ij+1 for a certain j then for all t ∈ a:

∀t ∈ a, e

(

sik ...sij+1
(αij

)
)

(t)

αij
e

(

sik ...sij+2
(αij+1

)
)

(t)

αij+1
= id

Proposition 4.26. For the geometric crystal B, Verma relations hold.

Proof. See [BK00]. The proof is carried by direct computations in the group.

W-action on the crystal: As soon as the Verma relations hold on any abstract
crystal L, one can define a W action on L. If w = si1 . . . sik , define:

∀x ∈ L,w · x = e−γ(x)w · x

Proposition 4.27 ( [BK00] ). The W action on a crystal is well defined, and the
weight map is equivariant with respect to this action.

Proof. Equivariance is easily checked on simple reflections, as for α ∈ ∆ and x ∈ L:

γ (sα · x) = γ
(

e−α(γ(x))α · x
)

= γ (x)− α (γ(x))α∨ = sα(γ(x))

Then it carries on to all elements in the Weyl group by writing them as products of
simple reflections, once we know we have defined an action.

Now, in order to check we have an action, consider w = uv ∈ W . By induction on
the length, one can suppose that equivariance for v holds (γ(v · x) = vγ(x)). If i ∈ Ik

(resp. i′ ∈ I l) is a word giving u (resp. v), then their concatenation gives w. Moreover,
with β(j), 1 ≤ j ≤ k + l the corresponding roots and t ∈ a:

etw = eβ
(1)(t)
αi1

. . . eβ
(k)(t)
αik

· eβ
(k+1)(t)
αi′

1

. . . eβ
(k+l)(t)
αi′

l

= evβ
(1)(vt)

αi1
. . . evβ

(k)(vt)
αik

· eβ
(k+1)(t)
αi′

1

. . . eβ
(k+l)(t)
αi′

l

= evtu · etv

Finally, it is easy to check that:

u · (v · x)
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=e−γ(v·x)u ·
(

e−γ(x)v · x
)

=e−vγ(x)u · e−γ(x)v · x

=e−γ(x)w · x

=w · x

5 Paths and groups

Let C (R+, a) be the set of continuous paths valued in the real Cartan subalgebra
a. In this section, we introduce the left-invariant flow (Bt(X))t∈R+ driven by a path
X ∈ C (R+, a). And we explain why it is totally positive. If g ∈ G≥0, the group acts
on the left and induces a transformation on paths:

Tg : C
(

R+, a
)

−→ C
(

R+, a
)

However, if g /∈ G≥0, the resulting paths can blow up in finite time. We provide a
careful analysis which allows to extend the path transform Tg to certain g /∈ G≥0. This
takes us to very close to the root operators in the geometric path model.

In general, the transform Tg will be defined thanks to the Gauss decomposition
of gB.(X), when it exists. Let us now introduce the tool of generalized determinantal
calculus in order to test if a group element has a Gauss decomposition and if it is totally
positive.

5.1 On generalized determinantal calculus

We mean by determinantal calculus, the computations involving minors and relations
among them.

In the classical case of GLn (C), the minor ∆I,J(x) of a matrix x ∈ GLn is obtained
as the determinant of the submatrix with rows I and columns J . I and J are subsets of
{1, . . . , n}. It is well known that matrices having a Gauss decomposition are those hav-
ing non-zero principal minors. Moreover, recall from theorem 4.1, that total positivity
also means the positivity of minors.

For our purposes, we need a generalization of these two facts to all complex semi-
simple groups. In a series of papers [BZ97, FZ99, BZ01], Berenstein, Fomin and
Zelevinsky constructed generalized minors and used them to study total positivity.
For x = nau ∈ NHU dense subset of G, define the generalized principal minors in-
dexed by the fundamental weights as ∆ωi(x) := aωi , which is a regular function on all
of G. This can be easily seen from the following definition as matrix coefficients in
fundamental representations:

Lemma 5.1 ([BBO05] section 3). Let vωi
be a highest weight vector for the represen-

tation V (ωi) and 〈·, ·〉 an invariant scalar product. With vωi
normalised, we have:

∀x ∈ G,∆ωi(x) = 〈xvωi
, vωi

〉
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Proof. On the dense subset NHU ⊂ G, write the Gauss decomposition x = nau. Since
the U action fixes vωi

in the representation V (ωi):

〈xvωi
, vωi

〉 = 〈auvωi
, nT vωi

〉 = 〈avωi
, vωi

〉

The result holds using the fact that the torus H acts multiplicatively on highest weight
vectors:

avωi
= aωivωi

The first useful result is:

Proposition 5.2 ([FZ99] Corollary 2.5). An element x ∈ G admits a Gauss decompo-
sition if and only if

∀α ∈ ∆,∆ωα(x) 6= 0

Arbitrary minors are indexed by the fundamental weights and couples of Weyl group
elements:

∀(u, v) ∈W ×W,∆uωi,vωi
(x) := ∆ωi

(

u−1xv̄
)

They can also be given a representation-theoretic definition:

∀(u, v) ∈W ×W,∆uωi,vωi
(x) := 〈xv̄vωi

, ūvωi
〉

This allows to state the second useful result which is a total positivity criterion for
the lower unipotent group N .

Theorem 5.3 (Total positivity criterion - Particular case of Theorem 1.5 in [BZ97] or
Theorem 1.11 in [FZ99]). The group element x ∈ N is totally positive:

x ∈ Nw0
>0

if and only if:
∀w ∈W,∀α ∈ ∆,∆wωα,ωα(x) > 0

5.2 Paths on the solvable group B

Let (Bt(X))t∈R+ be the B-valued path, driven by X and solution of the following
ordinary differential equation:

{

dBt(X) = Bt(X)
(
∑

α∈∆ fαdt+ dXt

)

B0(X) = exp(X0)
(5.4)

The link to Kostant’s Whittaker model is explained in appendix A. This equation
can be understood as being formal if X fails to be regular enough so that the differential
equation has a meaning. The following expression is easy to check ([BBO05] after
transpose) and can be taken as a definition when discarding the smoothness assumption
on X:
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Theorem 5.5.

Bt(X) =





∑

k≥0

∑

i1,...,ik

∫

t≥tk≥···≥t1≥0
e−αi1

(Xt1 )···−αik
(Xtk

)dt1 . . . dtkfi1 · fi2 . . . fik



 eXt

(5.6)

By convention, the term for k = 0 is the identity element. For probabilistic purposes,
X can be taken as a semi-martingale. Then, equation (5.4) has to be viewed as a
stochastic differential equation (SDE) written in the Stratonovich convention.

One can also note that all the algebraic operations on group elements can be in-
terpreted as matrix operations in any finite dimensional representation of the group
G. When X is differentiable, equation (5.4) has to be understood the following way.
In any finite dimensional group representation V , B.(X) is viewed as GL(V )-valued
function of the time parameter:

B.(X) : R+ −→ GL(V )

It is the solution of the system of ordinary differential equations written in matrix form
as:

{

dB(X)
dt

(t) = Bt(X)
(
∑

α∈∆ fα + dX
dt
(t)
)

B0(X) = exp(X0)
(5.7)

Example 5.8 (A1-type). In the case of SL2, in the canonical representation:

dBt(X) = Bt(X)

(

dXt 0
dt −dXt

)

Solving the differential equation leads to:

Bt(X) =

(

eXt 0

eXt
∫ t

0 e
−2Xsds e−Xt

)

Example 5.9 (A2-type). For the canonical representation of SL3, a = {x ∈ R3|x1 +
x2 + x3 = 0}:

dBt(X) = Bt(X)





dX1
t 0 0

dt dX2
t 0

0 dt dX3
t





Solving the differential equation leads to:

Bt(X) =







eX
1
t 0 0

eX
1
t

∫ t

0 e
−α1(Xs) eX

2
t 0

eX
1
t

∫ t

0 e
−α1(Xs)ds

∫ s

0 e
−α2(Xu)du eX

2
t

∫ t

0 e
−α2(Xs)ds eX

3
t







where (α1 = (1,−1, 0), α2 = (0, 1,−1)) are the simple roots.

36



Now define (At(X))t∈R+ and (Nt(X))t∈R+ via the NA decomposition of B.(X) =
N.(X)A.(X):

At(X) = eXt (5.10)

Nt(X) =
∑

k≥0

∑

i1,...,ik

∫

t≥tk≥···≥t1≥0
e−αi1

(Xt1 )···−αik
(Xtk

)fi1 · fi2 . . . fikdt1 . . . dtk (5.11)

Lemma 5.12. A.(X) and N.(X) are solution of the following equations:

dAt(X) = At(X)dXt, A0(X) = exp(X0) (5.13)

dNt(X) = Nt(X)

(

∑

α∈∆

e−α(Xt)fαdt

)

, N0(X) = id (5.14)

Proof. Obvious for the A-part. Then, since Bt(X) = Nt(X)At(X), we have by differ-
entiation (Stratonovich differentiation rule in the stochastic case):

dNt(X)At(X) +Nt(X)dAt(X) = Bt(X)

(

∑

α∈∆

fαdt+ dXt

)

⇔ dNt(X)At(X) +Nt(X)At(X)dXt = Nt(X)At(X)

(

∑

α∈∆

fαdt+ dXt

)

⇔ dNt(X)At(X) = Nt(X)At(X)

(

∑

α∈∆

fαdt

)

⇔ dNt(X) = Nt(X)At(X)

(

∑

α∈∆

fαdt

)

At(X)−1

⇔ dNt(X) = Nt(X)

(

∑

α∈∆

e−α(Xt)fαdt

)

The last step uses the Ad action of the torus on the Chevalley generators.

5.3 Total positivity of the flow

Morally speaking, B.(X) is obtained by infinitesimal increments that are totally non-
negative. Therefore, as totally non-negative matrices form a semigroup, the following
theorem is no surprise:

Theorem 5.15 ([BBO05], lemma 3.4 - Total positivity of the flow B.). Let X ∈
C (R+, a). Then for all t ≥ 0, Bt(X) is totally non-negative. More precisely:

∀t > 0, Bt(X) ∈ Nw0
>0A
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Proof. For t = 0, B0(X) = eX0 ∈ A which is totally non-negative.
For t > 0, clearly we need to prove that Nt(X) ∈ Nw0

>0 or equivalently, thanks to
theorem 5.3 that all minors ∆wωi,ωi

(Nt(X)) , 1 ≤ i ≤ n,w ∈W are positive:

∆wωi,ωi
(Nt(X))

=〈Nt(X)vωi
, w̄vωi

〉

=
∑

k≥0

∑

i1,...,ik

∫

t≥tk≥···≥t1≥0
e−αi1

(Xt1 )···−αik
(Xtk

)dt1 . . . dtk

〈fi1 · fi2 . . . fikvωi
, w̄vωi

〉

Because of lemma 7.4 in [BZ01], we have that:

∀k ∈ N,∀w ∈W, 〈fi1 · fi2 . . . fikvωi
, w̄vωi

〉 ≥ 0

and therefore, we have a sum of non-negative terms. In order to see that ∆wωi,ωi
(Nt(X))

is strictly positive, only one of them needs to be non-zero.
As w̄vωi

generates the one dimensional weight space V (ωi)wωi
, there is some se-

quence i1, . . . , ik such that αi1 + · · · + αik = ωi − wωi and w̄vωi
is proportional to

fi1 · fi2 . . . fikvωi
. Hence a non-zero scalar product.

5.4 Path transforms

The following path transform will play a fundamental role in the sequel.

Definition 5.16. When it exists, for g ∈ G and X a continuous path in a, define:

TgX(t) := log [gBt(X)]0

The previous expression makes sense when gBt(X) has a Gauss decomposition and
[gBt(X)]0 ∈ A, in order to be able to consider its logarithm.

This path transform has the property:

Theorem 5.17 ([BBO09], proposition 6.4). Let X be a continuous path in a and
g ∈ G. Assume that gBt(X) has a Gauss decomposition on an open time interval J .
Then [gBt(X)]−0 solves for t ∈ J :

d[gBt(X)]−0 = [gBt(X)]−0

(

∑

α

fαdt+ d (TgX)t

)

There are certain sets D ⊂ G such that for g ∈ D, gBt(X), t ≥ 0 has always a
Gauss decomposition. The following will play an important role:

D := N · A · U≥0
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Proposition 5.18. For g ∈ D, we have a well-defined path transform:

Tg : C
(

R+, a
)

→ C
(

R+, a
)

such that for X ∈ C (R+, a), TgX is the unique path in a such that:

[gBt(X)]−0 = [g]−Bt(TgX)

Proof. We only need to prove that the path transform is well defined. As for all
t ≥ 0, Bt(X) ∈ G≥0, we have that (AU≥0)Bt(X) ⊂ G≥0, since the totally non-negative
matrices form a semigroup. Hence DBt(X) ⊂ NG≥0, which is a set whose elements
admit a Gauss decomposition (see theorem 4.2).

In order to prove that the equation driving [gBt(X)]−0 is of the required form, use
the previous theorem.

Properties 5.19. Let X be a continuous path. Then:

(i) ∀g1, g2 ∈ G such that g1 ∈ D, g1g2 ∈ D, we have:

Tg1g2 = Tg1[g2]− ◦ Tg2

In particular, ∀u1, u2 ∈ U≥0, Tu1u2 = Tu1 ◦ Tu2 .

(ii) ∀g ∈ D,∀n ∈ N,Tng = Tg

(iii) ∀g ∈ D,∀a ∈ A,TagX = TgX + log a

(iv) ∀g ∈ D,x ∈ a, Tg(X + x) = Tgex(X)

(v) If α ∈ ∆ and g = xα(ξ), ξ > 0, then:

(TgX)
t
= Xt + log

(

1 + ξ

∫ t

0
e−α(Xs)ds

)

α∨

Proof. The proof uses the standard properties of the Gauss decomposition given in
equations 2.1 and 2.2.

(i)

[g1g2Bt(X)]−0 = [g1[g2Bt(X)]−0]−0

⇒ [g1g2]−Bt(Tg1g2X) = [g1[g2]−Bt(Tg2X)]−0 = [g1[g2]−]−Bt(Tg1[g2]− ◦ Tg2X)

⇒ Bt(Tg1g2X) = Bt(Tg1[g2]− ◦ Tg2X)

(ii) [ngBt(X)]−0 = [ng]−B(TgnX) by definition. And on the other hand, is it also
equal to n[gBt(X)]−0 = n[g]−Bt(TgX)

(iii) [agBt(X)]−0 = [ag]−B(TagX) = a[g]−a
−1B(TagX) by definition. And on the

other hand, is it also equal to a[gBt(X)g]−0 = a[g]−Bt(TgX). Then, we have
a−1Bt(Tag(X) = Bt(TgX).

39



(iv) One can check that Bt(X + x) = exp(x)Bt(X)

(v) Direct computation, using the embedding from SL2 into the closed subgroup of
G whose Lie algebra is generated by the sl2-triplets (eα, fα, hα). One can also use
the lemma in the next subsection.

5.5 Extension of the path transform

Now, looking at property (v), it is natural to expect the path transform Txα(ξ) to be
extended to negative values of ξ, although this will depend on the path taken as input.
Let us examine first when a Gauss decomposition exists for xα(ξ)Bt(X), or equivalently
xα(ξ)Nt(X).

Lemma 5.20. For different α and β in ∆:

∀t ≥ 0,∆ωβ (xα(ξ)Nt(X)) = 1

∀t ≥ 0,∆ωα (xα(ξ)Nt(X)) = 1 + ξ

∫ t

0
e−α(Xs)ds

Proof. The first identity is a consequence of proposition 2.2 in [FZ99]. For the second,
we start by using equation (5.11) and work with the highest weight representation
V (ωα). We have:

∆ωα (xα(ξ)Nt(X))

=〈exp(ξeα)Nt(X)vωα , vωα〉

=
∑

k≥0

∑

i1,i2,...,ik

∫

t≥t1≥···≥tk≥0
e−αi1

(Xt1 )−...αik
(Xtk

)dt1 . . . dtk

〈exp(ξeα)fi1 . . . fikvωα , vωα〉

Hence, as we will write the expansion eξeα =
∑

n∈N
ξn

n! e
n
α, we need to consider vectors

of the form:
enαfi1 . . . fikvωα

Now notice that:
∀n ∈ N,∀k ∈ N, enαfi1 . . . fikvωα ∈ V (ωα)µ

where V (ωα)µ is the weight space in V (ωα) corresponding to the weight

µ = ωα + nα−
k
∑

j=1

αij

Weight spaces in V (ωα) corresponding to different weights are orthogonal under the
invariant scalar product 〈., .〉. Therefore, if k 6= n or there is a j such that αij 6= α, we
have:

〈enαfi1 . . . fikvωα , vωα〉 = 0
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Moreover, in the representation V (ωα), we have:

∀n ≥ 2, fnαvωα = 0

Therefore, most terms are zero:

∆ωα (xα(ξ)Nt(X))

=〈vωα , vωα〉+ ξ〈eαfαvωα , vωα〉

∫ t

0
e−α(Xs)ds

=1 + ξ

∫ t

0
e−α(Xs)ds

The last equality is due to the fact that:

eαfαvωα

=[eα, fα]vωα + fαeαvωα

=hαvωα

=vωα

This lemma encourages us to consider paths only up to a certain horizon T and
when applying Txα(ξ) to X ∈ C ([0;T ], a), one can only take ξ ∈ (− 1

∫ T
0 e−α(X)

; +∞). This

can be summarized in the following proposition.

Proposition 5.21. For every α ∈ ∆ and c ∈ R, there is a path transform:

ecα : C ([0;T ], a) −→ C ([0;T ], a)

such that for X ∈ C ([0;T ], a):

ecα ·X = T
xα

(

ec−1
∫T
0 e−α(X)

) (X)

This path transform is in fact the corner stone of the geometric path model we will
now present. For instance, as we will see, we have:

ec+c
′

α = ecαe
c′

α

It is in fact the geometric lifting of the Littelmann operators.

6 Geometric crystals: The path model

In this section, we define a continuous family of Littelmann path models depending
on a parameter q, as well as q-tensor product. For h → 0, we recover the continuous
’frozen’ setting presented at the beginning of [BBO09]. Since all q-Littelmann models
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for q > 0 are equivalent in certain sense, our study will focus on the h = 1 case and
prove that tensor product of crystals is given by the concatenation of their elements.

The path transforms described in the previous section naturally appear as the build-
ing blocks for the Littelmann operators ecα. We will also benefit from the construction
of Berenstein and Kazhdan ([BK00, BK07a, BK07b]) while exhibiting Verma relations
and finally we show that a simple projection exists between the path model and the
group picture B.

6.1 Path models

Let C ([0;T ], a) be set of a-valued continuous functions on [0, T ]. Its elements are loosely
referred to as paths in a. We call a ’model’ a candidate for becoming a crystal. Hence
a path model will be a set of paths endowed with structure maps. The subscript 0 will
indicate that they are starting at zero.

Definition 6.1. A path crystal L is a subset C ([0;T ], a), where a is the real Cartan
subalgebra, endowed with maps γ, εα, ϕα and actions (e.α)α∈∆ such that

• The weight map γ : L→ a gives the endpoint:

γ(π) = π(T )

• L is an abstract geometric crystal as in definition 3.1.

Time reversal duality: Define the duality map ι : C0 ([0;T ], a) → C0 ([0;T ], a) that
associates to each path π its dual πι. It is defined as the time reversal:

πι(t) = π(T − t)− π(T )

A crystal structure is said to behave well with respect to duality if:

e−cα = ι ◦ ecα ◦ ι

ϕα = εα ◦ ι

Remark 6.2. We use the same symbol as the Kashiwara involution, because the two
correspond as we explained in section 11.

Continuous h-Littelmann model: Here we define a family of path models indexed
by h > 0, a parameter that can be understood as temperature ([O’C12]). When
h = 0, we recover the continuous path model introduced and studied in [BBO09] as the
continuous counterpart of Littelmann’s path model.

When h > 0, a continuous h-Littelmann model is a subset L of C0 ([0;T ], a) endowed
with the structure Lh =

(

γ, (εα, ϕα, e
.
α)α∈∆

)

:
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• The weight map γ : L→ a is the endpoint:

γ(π) = π(T )

• εα, ϕα : L→ R defined for every α ∈ ∆ as

εα(π) := h log

(∫ T

0
e−h

−1α(π(s))ds

)

ϕα(π) := α (π(T )) + h log

(∫ T

0
e−h

−1α(π(s))ds

)

• ecα : L→ L, c ∈ R, α ∈ ∆ defined as

ecα · π(t) := π(t) + h log

(

1 +
eh

−1c − 1

eh
−1εα(π)

∫ t

0
e−h

−1α(π(s))ds

)

α∨

When h = 0, we take as defining axioms the limit h→ 0:

εα (π) = − inf
0≤s≤T

α (π(s))

ϕα (π) = α (π(T ))− inf
0≤s≤T

α (π(s))

∀ 0 < t < T, ecα (π) (t) = π(t) + inf
0≤s≤T

α (π(s))α∨ (6.3)

−min

(

inf
0≤s≤t

α (π(s))− c, inf
t≤s≤T

α (π(s))

)

α∨ (6.4)

ecα (π) (0) = π(0) = 0

ecα (π) (T ) = π(T ) + cα∨

Indeed, the limits for εα and ϕα are an immediate application of the Laplace method.
The limit for the root operator comes from re-arranging the geometric expression before
using the Laplace method as well:

ecα · π(t) = π(t) + h log

(

1 +
eh

−1c − 1

eh−1εα(π)

∫ t

0
e−h

−1α(π(s))ds

)

α∨

= π(t) + h log

(

eh
−1c

∫ t

0
e−h

−1α(π(s))ds+

∫ T

t

e−h
−1α(π(s))ds

)

α∨

− h log

(∫ T

0
e−h

−1α(π(s))ds

)

α∨

h→0
→ π(t) + inf

0≤s≤T
α (π(s))α∨ − α∨ min

(

inf
0≤s≤t

α (π(s))− c, inf
t≤s≤T

α (π(s))

)
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Notice that the condition 0 < t < T is essential in the Laplace method, as certain
integral terms disappear at t = 0 and t = T . We claim that this expression is exactly
the same as the one defining the generalized Littelmann operators defined in [BBO09]
section 3. We discuss that point in the next subsection ’h = 0 limit’.

A h-Littelmann model that satisfies the crystal axioms is called a h-Littelmann
crystal. An important fact is that for h > 0, all the continuous h-Littelmann structures
(Lh)h>0 on C0 ([0;T ], a) are equivalent. That is why we can restrict our attention to the
case h = 1. We will use the term “Geometric Littelmann crystal” to refer to the h = 1
model as it is the path model for the geometric crystals introduced by Berenstein and
Kazhdan.

The fact that h-Littelmann crystal structures on C0 ([0;T ], a) are equivalent for
h > 0 can easily be checked by using the rescaling on reals and on paths.

∀x ∈ R, ψh,h′ (x) =
h′

h
x

∀π ∈ C0 ([0;T ], a) , ψh,h′ (π) =
h′

h
π

ψh,h′ intertwines structural maps. Consider two continuous Littelmann structures on
C0 ([0;T ], a) associated to h and h′:

Lh =
(

γ, (εα, ϕα, e
.
α)α∈∆

)

Lh′ =
(

γ′,
(

ε
′

α, ϕ
′

α, e
′.
α

)

α∈∆

)

We have:

γ
′ (

ψh,h′ (π)
)

= ψh,h′ (γ (π))

ε
′

α

(

ψh,h′ (π)
)

= ψh,h′ (εα (π))

ϕ
′

α

(

ψh,h′ (π)
)

= ψh,h′ (ϕα (π))

e
′ψh,h′(c)
α · ψh,h′ (π) = ψh,h′ (e

c
α · π)

Remark 6.5. Our choice of describing this relationship as ’equivalence’ and not ’iso-
morphism’ in the strict sense is because the real parameter c in the actions ecα, α ∈ ∆
is rescaled. The structural maps εα, ϕα are also rescaled. Clearly, this transformation
is more easily seen as a change of underlying semifields.

Another fact worth mentioning is the commutation with respect to tensor product:
If Bh and B

′

h are h-Littelmann crystals then

ψh,h′
(

Bh ⊗h B
′

h

)

= ψh,h′ (Bh)⊗h′ ψh,h′
(

B
′

h

)

6.2 Classical Littelmann model as a limit

In [BBO09] definition 3.3, the continuous path model described, which in fact coincides
with Littelmann’s original definition, has the following structural maps:

εα (π) = − inf
0≤s≤T

α (π(s))
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ϕα (π) = α (π(T ))− inf
0≤s≤T

α (π(s))

If 0 ≤ c ≤ εα (π) , E
c
α (π) (t) = π(t)−min

(

0,−c− inf
0≤s≤T

α (π(s))− inf
0≤s≤t

α (π(s))

)

α∨

If − ϕα (π) ≤ c ≤ 0, Ecα (π) (t) = π(t)−min

(

−c, inf
t≤s≤T

α (π(s))− inf
0≤s≤T

α (π(s))

)

α∨

In this subsection, we give explicit indications on why these are exactly the same maps
as our h = 0 limit. The identification is immediate except when it comes to recognizing
our tropical actions e.α (equation (6.3)). It shows that our description has at least
an advantage at h = 0: Only one formula for ecα independently of the sign of c. The
following computation proves they are equivalent. For paths starting from zero, if c ≥ 0:

min

(

inf
0≤s≤t

α(π(s))− c, inf
t≤s≤T

α(π(s))

)

=min

(

inf
0≤s≤t

α(π(s))− c, inf
0≤s≤t

α(π(s)), inf
t≤s≤T

α(π(s))

)

=min

(

inf
0≤s≤t

α(π(s))− c, inf
0≤s≤T

α(π(s))

)

While if c ≤ 0:

min

(

inf
0≤s≤t

α(π(s))− c, inf
t≤s≤T

α(π(s))

)

=− c+min

(

inf
0≤s≤t

α(π(s)), c + inf
t≤s≤T

α(π(s))

)

=− c+min

(

inf
0≤s≤t

α(π(s)), inf
t≤s≤T

α(π(s)), c + inf
t≤s≤T

α(π(s))

)

=− c+min

(

inf
0≤s≤T

α(π(s)), c + inf
t≤s≤T

α(π(s))

)

=min

(

−c+ inf
0≤s≤T

α(π(s)), inf
t≤s≤T

α(π(s))

)

Replacing in each case, min (inf0≤s≤t α(π(s)) − c, inft≤s≤T α(π(s))) in our expression
for ecα recovers Ec, c ≥ 0 and Ec, c ≤ 0.

Remark 6.6. The usual cutting conditions −ϕα(π) ≤ c ≤ εα(π) appear naturally only
when tropicalizing the canonical measure on geometric crystals. We refrain from saying
more as it is the subject of [Chh14]. For now, we can notice that in order for ecα to
preserve continuity at t = 0, one needs c ≤ εα(π). In order to preserve continuity at
t = T , we need −ϕα(π) ≤ c.

6.3 A rank 1 example

In rank 1, crystal actions on paths in a are in fact one dimensional, and via projection
a can be considered as R.
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Connected crystal at h = 1: Let π ∈ C0 ([0;T ], a) be a path and 〈π〉 be the
connected crystal generated by π:

〈π〉 = {πc = ecα · π, c ∈ R} =

{

t 7→ π(t) + log

(

1 + (ec − 1)

∫ t

0 e
−α(π)

∫ T

0 e−α(π)

)

α∨

}

Notice that there is an extremal element η = e−∞
α ·π that does not belong to the crystal,

as it diverges at its endpoint (t = T ):

η (t) = π (t) + log

(

1−

∫ t

0 e
−α(π)

∫ T

0 e−α(π)

)

α∨

The transform e−∞
α is a projection as it gives η when applied to any element of the

crystal, as a consequence of e−∞
α · ecα = e−∞

α . As such, it is clearly not an injective
map. However there is only one real number that is lost in this process, and it is in
fact

∫ T

0 e−α(π). This basic remark will be a key element in parametrizing path crystals.

6.4 Geometric Littelmann model

As announced, we will now restrict our attention to the h = 1 case, which we call the
geometric case. In the next subsection we prove there is a projection morphism to B
the typical crystal in the sense of Berenstein and Kazhdan.

6.4.1 Geometric Littelmann Crystal

A geometric Littelmann crystal L is a subset of C0 ([0;T ], a) endowed with

• A weight map γ : L→ a defined as

γ(π) = π(T )

• For every α ∈ ∆, maps εα, ϕα defined as:

εα(π) := log

(∫ T

0
e−α(π(s))ds

)

ϕα(π) := εα ◦ ι(π) = α (π(T )) + log

(
∫ T

0
e−α(π(s))ds

)

• The Littelmann operators (e.α)α∈∆ are defined as:

ecα · π(t) := π(t) + log

(

1 +
ec − 1

eεα(π)

∫ t

0
e−α(π(s))ds

)

α∨

Example 6.7. The whole set C0 ([0;T ], a) is a geometric Littelmann crystal.
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A little lemma shows how the Littelmann operators are linked to the transform Tg:

Lemma 6.8. For g = xα

(

ec−1
eεα(π)

)

, one has:

∀π ∈ C0 ([0, T ], a) , e
c
α · π = Tgπ

Such an expression for the group element xα

(

ec−1
eεα(π)

)

is no coincidence, as it is

exactly the left action on the crystal B. In fact, we derived it starting from the path
model, which is in a sense independent from the work of Berenstein and Kazhdan.
Then realized we were looking at geometric crystals.

Let L ⊂ C ([0;T ], a) be a geometric Littelmann crystal and π ∈ L. The following
properties show that it is indeed a crystal in the usual sense:

Properties 6.9. (i) ϕα(π) = εα(π) + α (γ(π))

(ii) γ (ecα · π) = γ (π) + cα∨

(iii) εα (e
c
α · π) = εα (π)− c

(iv) ϕα (e
c
α · π) = ϕα (π) + c

(v) e.α are indeed actions as ecα · ec
′

α = ec+c
′

α

(vi) The Littelmann action behaves well with respect to time-reversal:

e−cα = ι ◦ ecα ◦ ι

ϕα = εα ◦ ι

Proof. (i) Obvious.

(ii)

γ (ecα · π)

=π(T ) + log

(

1 +
ec − 1

eεα(π)

∫ T

0
e−α(π(s))ds

)

α∨

=π(T ) + log (1 + (ec − 1))α∨

=γ (π) + cα∨

(iii)

εα (e
c
α · π)

= log







∫ T

0

e−α(π(s))
(

1 + ec−1
eεα(π)

∫ s

0 e
−α(π(u))du

)2 ds
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=log

(

eεα(π)

ec − 1

(

∫ T

0
−
d

ds

(

1

1 + ec−1
eεα(π)

∫ s

0 e
−α(π(u))du

)

ds

))

=log

(

eεα(π)

ec − 1

(

1− e−c
)

)

=εα(π)− c

(iv) Obvious using (i), (ii) and (iii).

(v)

(

ecα · ec
′

α · π
)

(t)

=
(

ec
′

α · π
)

(t) + log

(

1 +
ec − 1

eε(e
c′
α ·π)

∫ t

0
e
−α

(

ec
′

α ·π(s)
)

ds

)

α∨

=
(

ec
′

α · π
)

(t) + log






1 +

ec − 1

eε(π)−c′

∫ t

0

e−α(π(s))
(

1 + ec
′−1

eεα(π)

∫ s

0 e
−α(π(u))du

)2 ds






α∨

=
(

ec
′

α · π
)

(t) + log

(

1 +
ec − 1

eε(π)−c
′

eε(π)

ec′ − 1

∫ t

0
−
d

ds

(

1

1 + ec
′−1

eεα(π)

∫ s

0 e
−α(π(u))du

)

ds

)

α∨

=
(

ec
′

α · π
)

(t) + log

(

1 + ec
′ ec − 1

ec′ − 1

(

1−
1

1 + ec
′−1

eεα(π)

∫ t

0 e
−α(π(s))ds

))

α∨

=
(

ec
′

α · π
)

(t) + log

(

1 + ec
′

ec−1
eεα(π)

∫ t

0 e
−α(π(s))ds

1 + ec
′−1

eεα(π)

∫ t

0 e
−α(π(s))ds

)

α∨

=
(

ec
′

α · π
)

(t) + log





1 + ec+c′−1
eεα(π)

∫ t

0 e
−α(π(s))ds

1 + ec
′−1

eεα(π)

∫ t

0 e
−α(π(s))ds



α∨

=
(

ec+c
′

α · π
)

(t)

(vi)

(ι ◦ ecα ◦ ι) (π)(t)

=ι

(

t 7→ πι(t) + log

(

1 +
ec − 1

eεα(πι)

∫ t

0
e−α(π

ι(s))ds

)

α∨

)

(t)

=π(t) + ι

(

t 7→ log

(

1 +
ec − 1

eϕα(π)

∫ t

0
e−α(π

ι(s))ds

)

α∨

)

(t)
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=π(t) + ι

(

t 7→ log

(

1 +
ec − 1

eϕα(π)
eα(π(T ))

∫ T

T−t
e−α(π(s))ds

)

α∨

)

(t)

=π(t) + ι

(

t 7→ log

(

1 +
ec − 1

eεα(π)

∫ T

T−t
e−α(π(s))ds

)

α∨

)

(t)

=π(t) + log

(

1 +
ec − 1

eεα(π)

∫ T

t

e−α(π(s))ds

)

α∨ − log

(

1 +
ec − 1

eεα(π)

∫ T

0
e−α(π(s))ds

)

α∨

=π(t) + log

(

1 +
ec − 1

eεα(π)

(∫ T

0
e−α(π(s))ds−

∫ t

0
e−α(π(s))ds

))

α∨ − cα∨

=π(t) + log

(

ec −
ec − 1

eεα(π)

∫ t

0
e−α(π(s))ds

)

α∨ − cα∨

=π(t) + log

(

1 +
e−c − 1

eεα(π)

∫ t

0
e−α(π(s))ds

)

α∨

As for ϕα = εα ◦ ι, it is obvious.

6.4.2 Tensor products of crystals and concatenation of paths

In this subsection, we will see that the seemingly complicated definition for the tensor
product of crystals is in fact easily coded within a path model using the concatenation
of paths. Define the concatenation of two paths π1 : [0, T ] → a and π2 : [0, S] → a as
the path π1 ∗ π2 : [0, T + S] → a given by:

π1 ∗ π2 (t) =

{

π1(t) if 0 ≤ t ≤ T
π1(T ) + π2 (t− T ) otherwise

Theorem 6.10.

θ : C0 ([0;T ], a) ⊗ C0 ([0;S], a) → C0 ([0;T + S], a)
π1 ⊗ π2 7→ π1 ∗ π2

is a crystal isomorphism. In fact, the following properties are true:

(i) γ (π1 ∗ π2) = γ (π1 ⊗ π2)

(ii) εα (π1 ∗ π2) = εα (π1 ⊗ π2) or equivalently ϕα (π1 ∗ π2) = ϕα (π1 ⊗ π2)

(iii) ecα (π1 ∗ π2) = θ (ecα (π1 ⊗ π2))

Proof. Given those properties, θ clearly transports the crystal structure. The fact that
it is invertible with a morphism as inverse map is obvious. Let us show these relations:

(i)

γ (π1 ∗ π2)

=π1 ∗ π2 (T + S)

=π1(T ) + π2(S)

=γ (π1 ⊗ π2)
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(ii)

εα (π1 ∗ π2)

= log

(
∫ T+S

0
e−α(π1∗π2(s))ds

)

= log

(∫ T

0
e−α(π1(s))ds+ e−α(π1(T ))

∫ S

0
e−α(π2(s))ds

)

=εα (π1) + log
(

1 + eεα(π2)−α(γ(π1))−εα(π2)
)

=εα (π1) + log
(

1 + eεα(π2)−ϕα(π2)
)

=εα (π1 ⊗ π2)

(iii) One first needs to remember that

ecα (π1 ⊗ π2) = ec1α · π1 ⊗ ec2α · π2

with

ec1 =
ec+ϕα(π1) + eεα(π2)

eϕα(π1) + eεα(π2)

ec2 =
eϕα(π1) + eεα(π2)

eϕα(π1) + e−c+εα(π2)

We will compute both parts of the concatenated path θ (ecα (π1 ⊗ π2)) separately.
The first half is, using 0 ≤ t ≤ T :

θ (ecα (π1 ⊗ π2)) (t) = ec1α · π1(t) = π1(t) + α∨ log

(

1 +
ec1 − 1

eεα(π1)

∫ t

0
e−α(π1(s))ds

)

But as:

ec1 − 1

eεα(π1)

=

ec+ϕα(π1)+eεα(π2)

eϕα(π1)+eεα(π2)
− 1

eεα(π1)

=
eϕα(π1) (ec − 1)

eεα(π1)
(

eϕα(π1) + eεα(π2)
)

=
ec − 1

eεα(π1) + eεα(π2)−α(γ(π1))

=
ec − 1

eε(π1∗π2)

We get:
∀0 ≤ t ≤ T, θ (ecα (π1 ⊗ π2)) (t) = ecα · (π1 ∗ π2) (t)
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Moving on to the second half:

θ (ecα (π1 ⊗ π2)) (T + t)

=ec1α · π1(T ) + ec2α · π2(t)

=π1(T ) + c1α
∨ + π2(t) + log

(

1 +
ec2 − 1

eεα(π2)

∫ t

0
e−α(π2(s))ds

)

α∨

=π1 ∗ π2(T + t) + c1α
∨ + log

(

1 +
ec2 − 1

eεα(π2)

∫ t

0
e−α(π2(s))ds

)

α∨

Then, as:

ec2 − 1

eεα(π2)

=

eϕα(π1)+eεα(π2)

eϕα(π1)+e−c+εα(π2)
− 1

eεα(π2)

=
1− e−c

eϕα(π1) + e−c+εα(π2)

We get:

θ (ecα (π1 ⊗ π2)) (T + t)

=π1 ∗ π2(T + t) + c1α
∨ + log

(

1 +
ec − 1

ec+ϕα(π1) + eεα(π2)

∫ t

0
e−α(π2(s))ds

)

α∨

=π1 ∗ π2(T + t) + c1α
∨+

log

(

1 +
ec − 1

ec+ϕα(π1) + eεα(π2)
eα(γ(π1))

(
∫ T+t

0
e−α(π1∗π2(s))ds− eεα(π1)

))

α∨

But

1−
ec − 1

ec+ϕα(π1) + eεα(π2)
eα(γ(π1))+εα(π1)

=1−
ec − 1

ec+ϕα(π1) + eεα(π2)
eϕα(π1)

=
eϕα(π1) + eεα(π2)

ec+ϕα(π1) + eεα(π2)

=e−c1

So that:

θ (ecα (π1 ⊗ π2)) (T + t)

=π1 ∗ π2(T + t) + c1α
∨ + log

(

e−c1 +
ec − 1

ec+ϕα(π1) + eεα(π2)
eα(γ(π1))

∫ T+t

0
e−α(π1∗π2(s))ds

)

α∨
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=π1 ∗ π2(T + t) + log

(

1 + ec1
ec − 1

ec+ϕα(π1) + eεα(π2)
eα(γ(π1))

∫ T+t

0
e−α(π1∗π2(s))ds

)

α∨

=π1 ∗ π2(T + t) + log

(

1 +

ec−1
ec+ϕα(π1)+eεα(π2)

eα(γ(π1))

1− ec−1
ec+ϕα(π1)+eεα(π2)

eα(γ(π1))+εα(π1)

∫ T+t

0
e−α(π1∗π2(s))ds

)

α∨

=π1 ∗ π2(T + t) + log

(

1 +
(ec − 1) eα(γ(π1))

ec+ϕα(π1) + eεα(π2) − (ec − 1) eϕα(π1)

∫ T+t

0
e−α(π1∗π2(s))ds

)

α∨

=π1 ∗ π2(T + t) + log

(

1 +
ec − 1

eϕα(π1) + e−α(γ(π1))+εα(π2)

∫ T+t

0
e−α(π1∗π2(s))ds

)

α∨

=π1 ∗ π2(T + t) + log

(

1 +
ec − 1

eεα(π1∗π2(s))

∫ T+t

0
e−α(π1∗π2(s))ds

)

α∨

=ecα (π1 ∗ π2) (T + t)

6.5 Projection onto the group picture

We define the projection map as:

p : L → B = (B ∩B+w0B
+)≥0

π 7→ BT (π)

We claim that p is injective if L is connected, and its image contains a B (λ) as soon as
the intersection is non-empty. This will be a consequence of being an isomorphism of
crystals if restricted to a connected component (section 9). For now, let us just show
that p transports structures:

Theorem 6.11. p is a morphism of abstract crystals, as the following properties hold:

(i) γ (π) = γ (p (π))

(ii) p ◦ ι = ι ◦ p where ι stands for path duality on the left-hand side and for the
Kashiwara involution on the right-hand side.

(iii) εα = εα ◦ p or equivalently ϕα = ϕα ◦ p

(iv) ecα · p (π) = p (ecα · π)

Proof. (i)
γ (p (π)) = γ (BT (π)) = π(T ) = γ (π)

(ii)

p ◦ ι (π)

=p (πι)
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=





∑

k≥1

∑

i1,...,ik

∫

T≥tk≥···≥t1≥0
e−αi1

(πι(t1))···−αik
(πι(tk))fi1fi2 . . . fikdt1 . . . dtk



 eπ
ι(T ) + eπ

ι(T )

Since:

e−αi1
(πι(t1))···−αik

(πι(tk))fi1fi2 . . . fik

=e−αi1
(π(T−t1))···−αik

(π(T−tk))+αi1
(π(T ))···+αik

(π(T ))fi1fi2 . . . fik

=e−αi1
(π(T−t1))···−αik

(π(T−tk))e−π(T )fi1fi2 . . . fike
π(T )

We obtain:

p ◦ ι (π)

=





∑

k≥1

∑

i1,...,ik

∫

T≥tk≥···≥t1≥0
e−αi1

(π(T−t1))···−αik
(π(T−tk))e−π(T )fi1fi2 . . . fike

π(T )dt1 . . . dtk





e−π(T ) + e−π(T )

=e−π(T )



id+
∑

k≥1

∑

i1,...,ik

∫

T≥tk≥···≥t1≥0
e−αi1

(π(T−t1))···−αik
(π(T−tk))fi1fi2 . . . fikdt1 . . . dtk





=









∑

k≥1

∑

i1,...,ik

∫

T≥tk≥···≥t1≥0
e−αi1

(π(T−t1))···−αik
(π(T−tk))fik . . . fi2fi1dt1 . . . dtk + id



 eπ(T )





ι

=









∑

k≥1

∑

i1,...,ik

∫

T≥t1≥···≥tk≥0
e−αi1

(π(t1))···−αik
(π(tk))fik . . . fi2fi1dt1 . . . dtk + id



 eπ(T )





ι

=









∑

k≥1

∑

i1,...,ik

∫

T≥tk≥···≥t1≥0
e−αi1

(π(t1))···−αik
(π(tk))fi1fi2 . . . fikdt1 . . . dtk + id



 eπ(T )





ι

=(BT (π))ι

=ι ◦ p (π)

(iii) The two propositions are equivalent as in both the path model and Berenstein
and Kazhdan’s model, εα = ϕα ◦ ι.

εα ◦ p(π) = χ−
α (BT (π)) = χ−

α (NT (π))

All that remains to be proven is eχ
−

α (NT (π)) =
∫ T

0 e−α(π(s))ds. Both expressions
coincide for T = 0, and have the same derivatives with respect to T .
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(iv)

ecα · p (π)

=ecα · BT (π)

=xα

(

ec − 1

eεα(BT (π))

)

·BT (π) · xα

(

e−c − 1

eϕα(BT (π))

)

=BT (Tgπ)

where g = xα

(

ec − 1

eεα(π)

)

=BT (ecα · π)

=p (ecα · π)

6.6 Verma relations in the path model

Thanks to the previous subsection, we know that the geometric crystals given by the
path model, in a certain sense, sit above the group picture B. The Verma relations are
also valid at the path level: Given a geometric Littelmann crystal L, for any i ∈ Ik,
k ∈ N consider the map e.i as in subsection 4.7. The analogue of proposition 4.26 holds:

Proposition 6.12. In the Littelmann geometric path model, ei depends only on:

w = si1 . . . sik ∈W

Proof. For π ∈ C0 ([0, T ], a), t ∈ a and i, i′ words defining the same Weyl group element
consider:

η = eti · π

η′ = eti′ · π

Now let us prove that η = η′. Because the Littelmann path operators can be expressed
thanks to the operator T., there are two elements u, u′ ∈ U such that:

η = Tuπ, η
′ = Tu′π

Furthermore, after applying the crystal morphism p = BT (.):

BT (η) = [uBT (π)]−0, BT (η
′) = [u′BT (π)]−0

But since the Verma relations hold for the group picture (proposition 4.26):

BT (η) = BT (η
′)

Now, using the fact that [uBT (π)]−0 = uBT (π)[uBT (π)]
−1
+ write:

g = [w̄−1
0 BT (η)

ι]+

54



= [w̄−1
0

(

[uBT (π)]
−1
+

)ι
BT (π)

ιuι]+

= [w̄−1
0 BT (π)

ι]+u
ι

Symetrically, g = [w̄−1
0 BT (π)

ι]+u
ι = [w̄−1

0 BT (π)
ι]+(u

′)ι. Hence u = u′ and η = η′.

Let us remark that one can also prove the Verma relations for the path model
by direct computation on paths, though it is more complicated. Instead of group
operations, one has to do multiple integrations by parts. We only give a partial sketch
in the simply-laced case.

A1 case: In the case that α (β∨) = β (α∨) = 0, the actions e.α and e.β commute,
which proves the required Verma relation for type A1:

ec1α · ec2β = ec2β · ec1α

A2 case: By writing t = c1ω1 + c2ω2, the Verma relationship becomes

ec1α · ec1+c2β · ec2α = ec2β · ec1+c2α · ec1β

A tedious computation gives the following lemma, that we give without proof:

Lemma 6.13. If α (β∨) = β (α∨) = −1, then

ec1α · ec1+c2β · ec2α · π(t) = π(t)

+ α∨ log









1 +
(

ec1+c2 − 1
)

∫ t

0 e
−α(π(s))

(

1 + (ec1 − 1)
∫ s
0 e

−β(π(u))du
∫ T
0 e−β(π(u))du

)

∫ T

0 e−α(π(s))
(

1 + (ec1 − 1)
∫ s

0
e−β(π(u))du

∫ T
0 e−β(π(u))du

)









+ β∨ log









1 +
(

ec1+c2 − 1
)

∫ t

0 e
−β(π(s))

(

1 + (ec2 − 1)
∫ s
0 e

−α(π(u))du
∫ T
0 e−α(π(u))du

)

∫ T

0 e−β(π(s))
(

1 + (ec2 − 1)
∫ s

0
e−α(π(u))du

∫ T
0 e−α(π(u))du

)









By inspecting the formula, one realizes that is symmetric in α and c1 on the one
hand, and β and c2 on the other hand. As such, by swapping those variables in the left
hand-side term, one gets the Verma relation for type A2:

ec1α · ec1+c2β · ec2α = ec2β · ec1+c2α · ec1β

ADE case: Root systems from the ADE classifications have Dynkin diagrams with
single edges as α (β∨) = −1 in all cases. Hence, the only Verma relations needed are of
type A1 and A2 and ew is unambiguously defined for any element w in a Weyl group
of ADE type.
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7 Paths on the edge and the geometric Pitman transform

A novelty in the path model approach to geometric crystals is the appearance of ex-
tended paths. Indeed, in order to parametrize geometric path crystals, we will need to
consider paths whose endpoint or starting point is not defined anymore, as we move to
the ’edges’ of the crystal. This allows a simple compactification that does not involve
the geometry of Bruhat cells. A visual sketch is given in figure 7.1.

The highest weight path of a connected crystal 〈π0〉 will be given by the geometric
Pitman transform Tw0 applied to any π ⊂ 〈π0〉.

Figure 7.1: Sketch of extremal paths corresponding to a geometric Littelmann path π
with Lusztig parameter g ∈ Uw0

>0

0
T

π

ηhigh = Tw0π

ηlow = e−∞
w0

π

Tg

Tw0

e−∞
w0

7.1 High path transforms

A first example giving extended paths was introduced in [BBO05]: for every simple
root α, define the following transform of a continuous path π ∈ C(R∗

+, a), such that
e−α(π) is integrable at the neighborhood of 0:

∀t > 0,Tα(π)(t) := π(t) + log

(∫ t

0
e−α(π(s))ds

)

α∨
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These degenerate to the tropical Pitman operators Pα∨ := limε→0 εTαε
−1 where:

∀t > 0,Pα∨(π)(t) = π(t)− inf
0≤s≤t

α (π(s))α∨

Notice that Tα(π) is not defined at zero. Therefore, contrary to the tropical case,
composing the transforms (Tα)α∈∆ requires some care. It was also proven that the
(Tα)α∈∆ satisfy the braid relationships. We give a simpler proof shortly.

Theorem 7.2 ([BBO05]). If w̄ = s̄i1 . . . s̄ik is a representative in G of w ∈W written
in a reduced fashion and π is a continuous path, then:

eTw(π)t := [w̄−1Bt(π)]0

is well defined for t > 0 and

Tw = Tαik
◦ · · · ◦ Tαi2

◦ Tαi1

Moreover, the operators (Tα)α∈∆ satisfy the braid relationships.

The operator Tw0 arises then in a very natural way as the highest weight path trans-
form for the geometric Littelmann model. Indeed, considering a connected geometric
crystal, because crystal actions are free, there is no such thing as a dominant path that
could be preferred, unlike the h = 0 case considered in [BBO09], or the original setting
considered by Littelmann. Hence the idea of finding an invariant under crystal actions
that will play that role. In the group picture, we have already introduced a notion of
highest weight in definition 4.13 which fullfills that purpose as invariant (lemma 4.24).
Now that we have at our disposal the projection map p, it is natural to transport the
definition of highest weight from the group picture.

Definition 7.3. If π ∈ C([0, T ], a) the associated highest weight is given by:

hw(π) := hw(BT (π))

And evidently:

Proposition 7.4. If π ∈ C([0, T ], a) then:

hw(π) = Tw0(π)(T )

Now, going back to discussing the braid relations, we make a simple remark:

∀t > 0, Tξ−α∨
xα(ξ)

(π)(t) = π(t) + log

(

1

ξ
+

∫ t

0
e−α(π(s))ds

)

α∨

ξ→+∞
−→ Tα(π)(t)

This will allow us to give a simpler proof of the braid relations for (Tα)α∈∆ using the
path transform properties 5.19 as suggested at the end of [BBO09] (section 6.6).

57



Proof of theorem 7.2. We will show that the operators (Tα)α∈∆ satisfy the braid re-
lationships as a consequence of the fact that the representatives (s̄α)α∈∆ also satisfy
them.

Let π a continuous path in a and fix g ∈ H>0U
w
>0 such that:

g = ξ
hik
k xik

(

1

ξk

)

. . . ξ
hi1
1 xi1

(

1

ξ1

)

for parameters ξi > 0. We will make use of the approximants:

s̄i(t) := φi

((

t −1
1 0

))

= yi

(

−
1

t

)

thixi

(

1

t

)

(7.5)

¯̄si(t) := φi

((

t 1
−1 0

))

= yi

(

1

t

)

thixi

(

−
1

t

)

(7.6)

which converges respectively to s̄i and ¯̄si = s̄−1
i1

as the parameter goes to zero. Let us
start by writing:

∀t > 0, eTg(π)(t) = [gBt(π)]0

=

[

ξ
hik
k xik

(

1

ξk

)

. . . ξ
hi1
1 xi1

(

1

ξ1

)

Bt(π)

]

0

=

[

yik

(

1

ξk

)

¯̄sik(ξk) . . . yi1

(

1

ξ1

)

¯̄si1(ξ1)Bt(π)

]

0

Here we need to make ξj successively go to zero in the decreasing order j = k, . . . , 1.
Let us prove by induction that at the step k ≥ j > 1, we get the quantity:

[

sik . . . sij+1yij

(

1

ξj

)

¯̄sij(ξj) . . . yi1

(

1

ξ1

)

¯̄si1(ξ1)Bt(π)

]

0

(7.7)

Since Bt(π) is totally positive inside B (theorem 5.15), then for all j = k, . . . , 1, it is
also the case for

gj = ξ
hij
j xij

(

1

ξj

)

. . . ξ
hi1
1 xi1

(

1

ξ1

)

Bt(π)

Therefore, the minors ∆ωα
(

sij+1 . . . sik
−1gj

)

are non zero, a topologically open property
that stays valid for the ξj in a neighborhood of zero. Hence, taking those limits and
considering those Gauss decompositions is allowed.

First, at step j = k, we can get rid of yik

(

1
ξk

)

∈ N :

eTg(π)(t) =

[

yik

(

1

ξk

)

¯̄sik(ξk) . . . yi1

(

1

ξ1

)

¯̄si1(ξ1)Bt(π)

]

0

ξk→0
−→

[

¯̄sik . . . yi1

(

1

ξ1

)

¯̄si1(ξ1)Bt(π)

]

0
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Now, assume that equation 7.7 is proven for step j:

[

sik . . . sij+1yij

(

1

ξj

)

¯̄sij(ξj) . . . yi1

(

1

ξ1

)

¯̄si1(ξ1)Bt(π)

]

0

Here, write:

sik . . . sij+1yij

(

1

ξj

)

= exp

(

1

ξj
Ad(sik . . . sij+1)fij

)

sik . . . sij+1

And since Ad(sik . . . sij+1)fij ∈ g−sik ...sij+1
αij

⊂ n, one has:

[

sik . . . sij+1yij

(

1

ξj

)

¯̄sij (ξj) . . . yi1

(

1

ξ1

)

¯̄si1(ξ1)Bt(π)

]

0

=

[

exp

(

1

ξj
Ad(sik . . . sij+1)fij

)

sik . . . sij+1
¯̄sij (ξj) . . . yi1

(

1

ξ1

)

¯̄si1(ξ1)Bt(π)

]

0

=

[

sik . . . sij+1
¯̄sij(ξj) . . . yi1

(

1

ξ1

)

¯̄si1(ξ1)Bt(π)

]

0

ξj→0
−→

[

sik . . . sij+1sij . . . yi1

(

1

ξ1

)

¯̄si1(ξ1)Bt(π)

]

0

The previous limit gives step j − 1.
At the end, we get:

[

sik . . . si1Bt(π)
]

0
=
[

w̄−1Bt(π)
]

0
= exp (Twπ(t))

On the other hand, because the group elements belong to the appropriate sets, we can
use the composition property among properties 5.19:

∀t > 0, Tg (π) (t) = T
ξ
hik
1 xik

(

1
ξk

) ◦ · · · ◦ T
ξ
hi1
1 xi1

(

1
ξ1

) (π) (t)

−→ Tαk
◦ · · · ◦ Tα1(π)(t)

The previous limit makes sense if and only if for every j = 1, . . . , k, e
−αij

(Tsi1 ...sij−1
π)

is integrable. Later, we have a much precise description of this integrability property,
but for now, we already know thanks to the previous computation that the Gauss
decompositions exist at every level. Therefore, the highest path transforms (Tα)α∈∆
must have been applied to paths with the appropriate integrability property. Identifying
both limits, the braid relationships are proven:

∀t > 0,Tαk
◦ · · · ◦ Tα1(π)(t) = Twπ(t)
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7.2 Low path transforms

Define e−∞
α : C0 ([0;T ), a) → C0 ([0;T ), a) as

∀0 ≤ t < T, e−∞
α · π(t) := π(t) + log

(

1−

∫ t

0 e
−α(π)

∫ T

0 e−α(π)

)

α∨

Notice that T is excluded and that this path transform makes sense even if
∫ T

0 eα(π) =
∞. The notation obviously comes from the fact that e−∞

α = limc→−∞ ecα, hence the
name of ’low’ path transforms.

Clearly, e−∞
α is a projection in the sense that ecα · e−∞

α = e−∞
α · ecα = e−∞

α and it

stabilizes paths π such that
∫ T

0 e−α(π) = +∞. In fact, we can associate such transforms
to each element of the Weyl group:

Definition 7.8. Given a reduced expression w = si1 . . . sil for w ∈ W and ℓ(w) = l,
e−∞
w is defined unambiguously as

e−∞
w = e−∞

αil
. . . e−∞

αi1

Proof. A first proof uses lemmma 7.9 and the braid relations for (Tw)w∈W . A second
proof consists of using the Verma relations in order to check the claim in the case of a
braid move: w = sisjsi · · · = sjsisj . . . . Indeed let (β1, β2, β3, . . . ) and (β′1, β

′
2, β

′
3, . . . )

the two positive roots enumerations associated to each reduced word.

∀t ∈ a, etw = eβ1(t)αi
· eβ2(t)αj

· · · = e
β′

1(t)
αj · e

β′

2(t)
αi . . .

Then take t = −Mµ with µ in the open Weyl chamber, M a real number, and have M
go to +∞.

The name of ’high’ path transforms for (Tw)w∈W is justified by the fact that they
are dual to ’low’ path transforms:

Lemma 7.9.
e−∞
α ◦ ι = ι ◦ Tα

And for w ∈W :
e−∞
w ◦ ι = ι ◦ Tw

Proof. The first identity is a quick computation. The second one is a consequence.

Remark 7.10. Notice that it does not make sense to apply the duality map ι after e−∞
w

for w ∈ W , since it produces a path lacking an endpoint. Though, an extended duality
holds, as we will see.

Moreover, the transforms (Tw)w∈W are not projections.

Of course e−∞
w0

is special projection as:

∀α ∈ ∆,∀c ∈ R, e−∞
w0

· ecα = ecα · e−∞
w0

= e−∞
w0

The following proposition shows that it is constant on the crystal’s components:
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Proposition 7.11. If π1 and π2 are connected then e−∞
w0

· π1 = e−∞
w0

· π2

Proof. Being connected means that there are real numbers (c1, . . . , cl) and indices
(i1, . . . , il) such that:

π2 = ec1αi1
. . . eclαil

π1

Then:
e−∞
w0

· π2 = e−∞
w0

· ec1αi1
. . . eclαil

π1 = e−∞
w0

· π1

In theorem 8.21, we will see that the converse is true giving a connectedness crite-
rion.

7.3 A certain property of the Weyl co-vector

While moving to the edges of geometric crystals, we will obtain paths that can blow-
up in finite time. The direction taken to go to infinity will be of utmost importance,
involving the Weyl co-vector:

ρ∨ :=
∑

α∈∆

ω∨
α =

1

2

∑

β∈Φ+

β∨

We will need a little property linking ρ∨ and the weak Bruhat order.

Lemma 7.12. Let w = si1si2 . . . sik ∈ W with ℓ(w) = k. It defines a positive roots
enumeration (β1, β2, . . . , βk). Then:

•
ρ∨ − wρ∨ = β∨1 + β∨2 + · · · + β∨k

• ℓ(sαw) = ℓ(w) + 1 if and only if −α (ρ∨ − wρ∨) ≥ 0

Proof. The first statement comes as an application of lemma 2.7. Concerning the
second, following Bourbaki ( [Bou02], Ch. V, §3, Th. 1, (ii)), ℓ (sαw) = 1 + ℓ (w) is
equivalent to saying that C and w (C) are on the same side of the wall associated to α.
As the Weyl co-vector is inside C, it tantamounts to α (wρ∨) > 0. In the end:

−α
(

ρ∨ − wρ∨
)

> −1

The proof is finished once we notice that the left-hand side is an integer.

Remark 7.13. If w is taken as w0 the longest element, we recover the identity we used
to define the Weyl co-vector.
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7.4 Extended path types

The paths transforms (Tw)w∈W ( resp. (e−∞
w )w∈W ) give paths that lack a starting (resp.

an ending) point. In order to examine the possible asymptotics, let us first start by a
simple lemma:

Lemma 7.14. If π ∈ C ([0, T ], a) then for all w ∈W :

Twπ(t) = w−1π(0) + log(t)
(

ρ∨ − w−1ρ∨
)

+ cw + o(1)

where cw is a constant depending only on w and o(1) goes to zero as t→ 0.

Proof. By induction on ℓ(w). If ℓ(w) = 0, then w = e and the result is obvious (ce = 0).
If w = usα with u ∈W and ℓ(w) = ℓ(u) + 1, then:

Tw = Tα ◦ Tu

Using the induction hypothesis, for s > 0:

e−α(Tuπ(s)) = e−α(u
−1π(0)+cu)+o(1)s−α(ρ

∨−uρ∨)

Lemma 7.12 applied to w−1 tells us that −α(ρ∨ − u−1ρ∨) ≥ 0, and e−α(Tuπ(s)) is
integrable at the neighborhood of zero. Since integrating equivalents is allowed, and
using that α (ρ∨) = 1:

∫ t

0
e−α(Tuπ)

=e−α(u
−1π(0)+cu)+o(1)

∫ t

0
s−α(ρ

∨−u−1ρ∨)ds

=e−α(u
−1π(0)+cu)+o(1) t1−α(ρ

∨−u−1ρ∨)

1− α(ρ∨ − u−1ρ∨)

=e−α(u
−1π(0)+cu)+o(1) t

(uα)(ρ∨)

(uα)(ρ∨)

Then:

Twπ(t) = Tuπ(t) + α∨ log

∫ t

0
e−α(Tuπ)

= u−1π(0) + log(t)
(

ρ∨ − u−1ρ∨
)

+ cu+

− α
(

u−1π(0) + cu
)

α∨ + log
t(uα)(ρ

∨)

(uα)(ρ∨)
α∨ + o(1)

= w−1π(0) + log(t)
(

ρ∨ − u−1ρ∨ + (uα)(ρ∨)α∨
)

+ sαcu − α∨ log
(

(uα)(ρ∨)
)

+ o(1)

= w−1π(0) + log(t)
(

ρ∨ − w−1ρ∨
)

+ sαcu − α∨ log
(

(uα)(ρ∨)
)

+ o(1)

Set cw = sαcu − α∨ log ((uα)(ρ∨)).
Finally, in order to prove that cw depends only on w and not the reduced expression

used, we invoke the fact that the asymptotic development is unique and Tw depends
only on w.
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For completeness, we give an explicit expression for the constants cw, w ∈ W ,
without proof, as we will not use them:

Lemma 7.15.
∀w ∈W, cw = w−1

∑

β∈Inv(w)

log
(

β(ρ∨)
)

β∨

where Inv(w) is the set of inversions of W .

Lemma 7.14 suggests to allow paths with undefined starting point, and to dis-
tinguish between them depending on their asymptotic behaviour at t = 0, hence a
definition:

Definition 7.16. For T > 0, we say that a path π ∈ C ((0, T ], a) is a high path of type
w ∈W when the following asymptotic development holds at 0:

π(t) = log(t)
(

ρ∨ − w−1ρ∨
)

+ cw + o(1)

The set of all high paths of type w ∈W in C ((0, T ], a) is denoted Chighw ((0, T ], a).

Remark 7.17. As ce = 0, Chighe ((0, T ], a) = C0 ([0, T ], a).

By duality, having in mind remark 7.9:

Definition 7.18. For T > 0, we say that a path π ∈ C0 ([0;T ), a) is a low path of type
w ∈W when the following asymptotic development holds at T :

∃Cπ, π(t) = Cπ + log(T − t)
(

ρ∨ − w−1ρ∨
)

+ cw + o(1)

The set of all low paths of type w ∈W in C ([0, T ), a) is denoted Cloww ([0, T ), a).

Remark 7.19. A low path π of type e has a continuous extension at t = T by letting
π(T ) = Cπ, hence:

Clowe = C0 ([0, T ], a)

Both high and low paths will be referred to as extended paths. Clearly, the extended
paths of type w0 deserve a special name. As such, high (resp. low) paths of type w0

will be referred to as highest (resp. lowest) paths. In that sense, the geometric Pitman
transform gives the highest path of a crystal.

8 Parametrizing geometric path crystals

In this section, we will show how connected components of a geometric Littelmann
path crystal are parametrized by the totally positive group elements. In the same
fashion as in the group picture (section 4), we will associate to every path its Lusztig
parameter, an element in Uw0

>0 or equivalently a Kashiwara parameter in Cw0
>0. More

precisely, we fix a time horizon T > 0, then consider a path π ∈ C0 ([0, T ], a) and
the crystal 〈π〉 it generates. We will show how Lusztig parameters and Kashiwara
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(or string) parameters can be retrieved from a path. The expressions found for string
coordinates are geometric liftings of the formulas used in the classical Littelmann path
model. Basically, we construct maps for every reduced word i ∈ R(w0), m = ℓ(w0):

̺Li : 〈π〉 → (R>0)
m

̺Ki : 〈π〉 → (R>0)
m

The maps ̺Li (resp. ̺Ki ) give the Lusztig (resp. Kashiwara) parameters for a path, in
the sense that the diagram 8.1 is commutative (corollaries 8.6 and 8.17). This completes
the group picture from figure 4.19 and shows that indeed parametrizations of both the
group picture and the path model are parallel.

Uw0
>0 (R>0)

m 〈π〉 (R>0)
m Cw0

>0

B(λ)

̺K
i x−i̺L

ixi

p p−1

bL
λ

̺L

bK
λ

̺K

Figure 8.1: Parametrizations for a connected crystal 〈π〉, with π ∈ C0([0, T ], a) and
λ = Tw0π(T )

Finally, for the purpose of greater generality, we will also consider a possibly infinite
time horizon. In such a case, paths will need to have a drift inside the Weyl chamber
(subsection 8.5).

8.1 String parameters for paths

8.1.1 Definition

Let i ∈ R(w0). For any path π ∈ C0 ([0, T ], a), define ̺
K
i (π) as the sequence of numbers

c = (c1, c2, . . . , cm) recursively as:

ck =
1

∫ T

0 e
−αik

(

Tsi1 ...sik−1
π
)

Theorem 8.2. The map ̺Ki is well-defined on C0 ([0, T ], a) and takes values in Rm>0.
Moreover, for π ∈ C0 ([0, T ], a), the m-tuple ̺Ki (π) allows to recover π from the highest
weight path Tw0π.

The proof is given soon after a few discussions.
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8.1.2 Extracting string parameters

Building up on lemma 7.14, we will see when it is possible to apply (Tα)α∈∆ depending
on a path’s type. The importance of the weak Bruhat order is quite remarkable. Also,
the use of the geometric Pitman operator Tα for α ∈ ∆ corresponds to the loss of
exactly one real number:

Proposition 8.3. Let w ∈W and α ∈ ∆ such that ℓ(wsα) = ℓ(w) + 1.
(1) If π is a high path of type w then c = 1

∫ T
0 e−α(π)

> 0 and η = Tαπ has type wsα.

(2) Reciprocally, given a high path η with type wsα and a positive c > 0, there is a
unique high path π of type w such that c = 1

∫ T

0
e−α(π)

> 0 and η = Tαπ. It is given by:

∀0 < t ≤ T, π(t) = η(t) + log

(

c+

∫ T

t

e−α(η)
)

α∨

Proof. (1) Using lemma 7.12, if π is a high path of type w and ℓ(wsα) = ℓ(w)+1, then
e−α(π) is integrable at the neighborhood of zero, hence c > 0.

Thanks to the proof of 7.14, we have seen that η = Tαπ will have the required
asymptotics at t = 0, so that it will be of type wsα.

(2) By composing the equality η = Tαπ with e−α(.):

e−α(η(t)) =
e−α(π(t))

(

∫ t

0 e
−α(π)

)2 = −
d

dt

1
∫ t

0 e
−α(π)

Then after integration between t > 0 and T :

∀t > 0,

∫ T

t

e−α(η) =
1

∫ t

0 e
−α(π)

− c

Reinjecting this relation in the definition of η, we have:

∀t > 0, π(t) = η(t) + α∨ log

(

c+

∫ T

t

e−α(η)
)

Finally, all that is left is to check that π has the type w. The asymptotic development
at 0 follows from a computation similar to the proof of lemma 7.14. Indeed, since η is
of type wsα, we have the following asymptotics for e−α(η) at zero:

e−α(η(t)) = e−α(cwsα )+o(1)t−α(ρ
∨−sαw−1ρ∨)

As −α(ρ∨− sαw
−1ρ∨) ≤ −1 (lemma 7.12), integrating e−α(η) gives a divergent integral

at zero. Therefore, we have the following equivalent for t→ 0:

∫ T

t

e−α(η)
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∼ e−α(cwsα )+o(1)

∫ T

t

s−α(ρ
∨−sαw−1ρ∨)ds

=e−α(cwsα )+o(1)

[

s1−α(ρ
∨−sαw−1ρ∨)

]T

t

1− α(ρ∨ − sαw−1ρ∨)

∼
e−α(cwsα )+o(1)

(wα) (ρ∨) t(wα)(ρ
∨)

Because ℓ(wsα) = ℓ(w)+ 1, wα is a positive root and wα(ρ∨) > 0. Thus, we can write:

π(t)

= log(t)
(

ρ∨ − sαw
−1ρ∨

)

+ cwsα + log

(

c+
e−α(cwsα )+o(1)

(wα) (ρ∨) t(wα)(ρ∨)

)

α∨ + o(1)

= log(t)
(

ρ∨ − sαw
−1ρ∨ − (wα)(ρ∨)α∨

)

+ sαcwsα − log
(

(wα)(ρ∨)
)

α∨ + o(1)

= log(t)
(

ρ∨ − w−1ρ∨
)

+ sαcwsα − log
(

(wα)(ρ∨)
)

α∨ + o(1)

Noticing that sαcwsα − log ((wα)(ρ∨))α∨ = cw concludes the proof.

Proof of theorem 8.2. Start with π ∈ C0 ([0, T ], a). It is a high path of type e. When
composing the geometric Pitman operators (Tα)α while respecting the weak Bruhat
order, we obtain paths whose types are climbing the Hasse diagram, until we reach
Tw0π. At each step, exactly one positive real number is lost using proposition 8.3.

This drawing sums up the situation in the case of A2:

w0

s1s2s2s1

s1 s2

e

Tα1

Tα2

Tα1

Figure 8.4: Extracting string parameters and climbing Hasse diagram of type A2
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8.1.3 Inversion lemma

The inversion lemma is a bijective correspondence between NT (π) and the string pa-
rameters ̺Ki (π). Its proof is inspired from theorem 6.5 in [BBO09].

Theorem 8.5. For i ∈ R(w0) and π ∈ C0 ([0, T ], a):

x−i ◦ ̺
K
i (π) =

[

w̄0
−1NT (π)

]T

0+

or equivalently:

NT (π) =

[

(

w̄0

(

x−i ◦ ̺
K
i (π)

)T
)−1

]−1

−

Proof. In fact, this works with w ∈W and i = (i1, . . . , ij) ∈ R(w). Write:

[

w̄−1NT (π)
]

0+

=
[

w̄−1NT (π)
]−1

−
w̄−1NT (π)

=
[

w̄−1NT (π)
]−1

−
s̄−1
ij
. . . s̄−1

i1
NT (π)

=
[

w̄−1NT (π)
]−1

−
s̄−1
ij

[si1 . . . sij−1
−1NT (π)]−

[

si1 . . . sij−1
−1NT (π)

]−1

−
s̄−1
ij−1

[si1 . . . sij−2
−1NT (π)]−

[

si1 . . . sij−2
−1NT (π)

]−1

−
s̄−1
ij−2

. . .

. . . s̄−1
i2

[s̄−1
i1
NT (π)]−

[

s̄−1
i1
NT (π)

]−1

−
s̄−1
i1
NT (π)

=
[

s̄−1
ij

[si1 . . . sij−1
−1NT (π)]−

]

0+
[

s̄−1
ij−1

[si1 . . . sij−2
−1NT (π)]−

]

0+

. . .
[

s̄−1
i1
NT (π)

]

0+

Notice that each element xk =
[

s̄−1
ik

[s̄−1
ik−1

. . . s̄−1
i1
NT (π)]−

]

0+
, 1 ≤ k ≤ j, in the previous

product, belongs to the reduced Bruhat cell Ns̄−1
ik
N∩B+. Using theorem 4.5 in [BZ01],

we know xk is of the form xk = y−ik(ck) where:

c
−α∨

ik

k =[xk]0

=[s̄−1
ik

[si1 . . . sik−1

−1NT (π)]−]0

=[s̄−1
ik

[si1 . . . sik−1

−1BT (π)]−]0

=[si1 . . . sik
−1BT (π)[si1 . . . sik−1

−1BT (π)]
−1
0+]0

=e
Tsi1 ...sik

π−Tsi1 ...sik−1
π
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Hence we obtain exactly the string parameters

ck =
1

∫ T

0 e
−αik

(Tsi1 ...sik−1
π)

And
[w̄−1NT (π)]0+ = y−ij(cj) . . . y−i1(c1)

Taking the transpose concludes the proof.
Finally, in order to see that the second expression can be deduced from the first,

write

NT (π)

=
[

(

w̄0[w̄0
−1NT (π)]

−1
− w̄−1

0 NT (π)
)−1
]−1

−

=
[

(

w̄0[w̄0
−1NT (π)]0+

)−1
]−1

−

=

[

(

w̄0

(

x−i ◦ ̺
K
i (π)

)T
)−1

]−1

−

As a corollary, we get the commutativity of the right side in the diagram 8.1:

Corollary 8.6.

∀i ∈ R(w0),∀π ∈ C0 ([0, T ], a) , x−i ◦ ̺
K
i (π) = ̺K ◦ p(π)

Proof. Theorem 8.5 and definition 4.16 because [p(π)]− = NT (π).

8.2 Lusztig parameters for paths

In the same fashion, we define Lusztig parameters for a path and show how to extract
them.

8.2.1 Definition

Let i ∈ R(w0). For any path π ∈ C0 ([0, T ], a), define ̺
L
i (π) as the sequence of numbers

t = (t1, t2, . . . , tm) recursively as:

tk =
1

∫ T

0 e
−αik

(

e−∞

si1
...sik−1

π

)

Theorem 8.7. The map ̺Li is well-defined on C0 ([0, T ], a) and takes values in Rm>0.
Moreover, for π ∈ C0 ([0, T ], a), the m-tuple ̺Li (π) allows to recover π from the lowest
weight path e−∞

w0
π.

Let us now explain how to prove this theorem carefully using duality.
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8.2.2 Extracting Lusztig parameters

Let w ∈W . It is obvious that if π′ ∈ Chighw ((0, T ], a) then ι(π′) makes sense and belongs
to Cloww ([0, T ), a). The symmetric situation is not quite true, since one cannot apply
the duality map ι to low paths. But we still have:

Lemma 8.8 (Extended duality lemma). Let w ∈ W . If π ∈ Cloww ([0, T ), a) is a low

path of type w, there is a unique π′ ∈ Chighw ((0, T ], a) such that:

π =
(

π′
)ι

Proof. Simply take for 0 ≤ t < T , π′(t) = π(T − t) − Cπ, where Cπ is the constant
appearing in the definition of low paths. It is immediate that it satisfies all the require-
ments.

Remark 8.9. Mapping π to π′ can be thought of as an extension of the duality map
to low paths.

Remark 8.10. Putting together the previous lemma and lemma 7.9, one sees that the
path transforms (e−∞

w )w∈W and (Tw)w∈W are in extended duality.

Thus, we can prove analogous statements to the previous case:

Proposition 8.11. Let w ∈W and α ∈ ∆ such that ℓ(wsα) = ℓ(w) + 1.
(1) If π is a low path of type w then c = 1

∫ T
0 e−α(π)

> 0 and η = e−∞
α π has type wsα.

(2) Reciprocally, given η, a low path with type wsα, and a positive c > 0, there is a
unique low path π of type w such that c = 1

∫ T
0 e−α(π)

> 0 and η = e−∞
α π. It is given by:

∀0 ≤ t < T, π(t) = Txα(c)η(t) = η(t) + log

(

1 + c

∫ t

0
e−α(η)

)

α∨

Proof. (1) Using lemma 8.8, we get π′ a high path of type w. Using proposition 8.3,
we have:

c =
1

∫ T

0 e−α(π)
=
e−α(π

′(T ))

∫ T

0 e−α(π′)
> 0

And:
η = e−∞

α π = e−∞
α ◦ ι(π′) = ι ◦ Tα(π

′)

which is a low path of type wsα since Tα(π
′) ∈ Chighwsα ((0, T ], a).

(2) Again, using the extended duality lemma, there exists η′ ∈ Chighwsα ((0, T ], a) such
that η = ι(η′). The result is proven by using (2) from proposition 8.3. In order to
recover π from η, rather than rearranging the formula from proposition 8.3, let us
direcly solve:

η(t) = π(t) + α∨ log

(

1− c

∫ t

0
e−α(π)

)
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with π as unknown and η as variable. By evaluating the e−α(.) on each side of the
previous equality:

e−α(η(t)) =
e−α(π(t))

(

1− c
∫ t

0 e
−α(π)

)2

This expression can be integrated and rearranged as:

(

1 + c

∫ t

0
e−α(η)

)(

1− c

∫ t

0
e−α(π)

)

= 1

As such, since η has type wsα, we have that
∫ T

0 e−α(η) = +∞. Hence:

c =
1

∫ T

0 e−α(π)

Also by replacing log
(

1− c
∫ t

0 e
−α(π)

)

by − log
(

1 + c
∫ t

0 e
−α(η)

)

, we get the result:

π(t) = η(t) + log

(

1 + c

∫ t

0
e−α(η)

)

α∨ = Txα(c)η(t)

Proof of theorem 8.7. Apply iteratively proposition 8.11. Successive projections give
low paths whose types goes down the Hasse diagram. At every composition, exactly
one positive real parameter is lost.

This drawing illustrates the situation in the case of A2:
This time, a path transform we already encountered appears:

Theorem 8.13. Given a lowest path η, a reduced word i = (i1, . . . , im) ∈ R (w0) and
strictly positive parameters (t1, . . . , tm) ∈ Rm>0, there is a unique path π ∈ C0 ([0, T ], a)
such that:

• e−∞
w0

π = η

• ηj = e−∞
si1 ...sij

π = e−∞
αij

· ηj−1

• tj =
1

∫ T

0
e
−αij

(ηj−1)

It is given by:
π = Tzη

where
z = xi1 (t1) . . . xim (tm) ∈ Uw0

>0
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Figure 8.12: Extracting Lusztig parameters and going down the Hasse diagram of type
A2

e

s2s1

s1s2 s2s1

w0

e−∞
α1

e−∞
α2

e−∞
α1

Proof. At each level, ηj−1 = Txαij
(ξj)ηj . Then, using the composition property among

properties 5.19:

π = Txαi1
(ξ1) ◦ Txαi2

(ξ2) ◦ · · · ◦ Txαij
(ξj) (η) = Tz (η)

Remark 8.14. A similar statement holds for paths of type w, using group elements in
Uw>0. And this z ∈ Uw0

>0 is the Lusztig parameter, as we will see shortly.

Corollary 8.15. A connected component generated by a path π0 can be parametrized
by the totally positive part Uw0

>0 thanks to the bijection:

Uw0
>0 → 〈π0〉
z 7→ Tz

(

e−∞
w0

· π0
)

Proof. Recall that η = e−∞
w0

π does not depend on π ∈ 〈π0〉, but only on the connected
component. And every path in π ∈ 〈π0〉 is uniquely determined by an u ∈ Uw0

>0 such
that π = Tuη thanks to the previous theorem.

8.2.3 Inversion lemma

Again, we have a bijective correspondence between NT (π) and the Lusztig parameters

̺Li (π) ∈ R
ℓ(w0)
>0 :
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Theorem 8.16. For η ∈ Cloww0
([0, T ), a), let π = Tgη be is a crystal element with Lusztig

parameters encoded by g = xi1 (t1) . . . xim (tm) = xi ◦ ̺
L
i (π) ∈ Uw0

>0 . Then:

NT (π) = [gw̄0]−

or equivalently
g = [w̄−1

0 NT (π)ι]ι+ = [w̄−1
0 BT (π)ι]ι+

Proof. This can be deduced from theorem 8.5. However, we choose to give a separate
proof that is easily adapted to the case of T = ∞. First, in order to see that both
identities are equivalent, since w̄−1

0

(

[gw̄0]
−1
0+

)ι
w̄0 ∈ B, write:

g =[gι]ι+

=[w̄−1
0

(

[gw̄0]
−1
0+

)ι
w̄0g

ι]ι+

=[w̄−1
0

(

gw̄0[gw̄0]
−1
0+

)ι
]ι+

Therefore:
NT (π) = [gw̄0]− = gw̄0[gw̄0]

−1
0+

if and only if:
g = [w̄−1

0 NT (π)ι]ι+

One can also add the torus part and write:

g = [w̄−1
0 NT (π)ι]ι+ = [w̄−1

0 BT (π)ι]ι+

Now, let us prove the above statement using a similar decomposition to the one
used in the proof of theorem 8.5:

[

w̄−1
0 BT (πι)

]

+

=
[

w̄−1
0 BT (πι)

]−1

−0
w̄−1
0 BT (πι)

=
[

w̄−1
0 BT (πι)

]−1

−0
s̄−1
im

[

si1 . . . sim−1
−1BT (πι)

]

−0

·
[

si1 . . . sim−1
−1BT (πι)

]−1

−0
s̄−1
im−1

[

si1 . . . sim−2
−1BT (πι)

]

−0

·
[

si1 . . . sim−2
−1BT (πι)

]−1

−0
s̄−1
im−2

[

si1 . . . sim−3
−1BT (πι)

]

−0

. . . . . . . . . . . .

·
[

si1
−1BT (πι)

]−1

−0
s̄−1
i1
BT (πι)

=
[

s̄−1
im

[

si1 . . . sim−1
−1BT (πι)

]

−0

]

+

·
[

s̄−1
im−1

[

si1 . . . sim−2
−1BT (πι)

]

−0

]

+

·
[

s̄−1
im−2

[

si1 . . . sim−3
−1BT (πι)

]

−0

]

+

. . . . . . . . . . . .
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·
[

s̄−1
i1
BT (πι)

]

+

In the previous equation, we have a product of m terms, each of the form xj =
[s̄−1
ij
b]−1
−0s̄

−1
ij
b = [s̄−1

ij
b]+, 1 ≤ k ≤ m with b =

[

si1 . . . sij−1
−1BT (πι)

]

−0
. As it be-

longs to the reduced double Bruhat cell U ∩BsijB, we can use theorem theorem 4.5 in
[BZ01] and write xj = xαij

(tj). The quantity tj will be computed at the end. Hence:

[w̄−1
0 BT (πι)]+ = xim (tm) . . . xi2 (t2)xi1 (t1)

or equivalently:
[w̄−1

0 BT (π)ι]ι+ = xi1 (t1)xi2 (t2) . . . xim (tm)

Now, all that is left is to prove that the Lusztig parameters for π are nothing but
the quantities tj, j = 1, . . . ,m. We have:

xαij
(tj)

=
[

s̄−1
ij

[

si1 . . . sij−1
−1BT (πι)

]

−0

]

+

=
[

si1 . . . sij
−1BT (πι)

]−1

−0
s̄−1
ij

[

si1 . . . sij−1
−1BT (πι)

]

−0

=e
−Tsi1 ...sij

◦ι(π)(T ) [
si1 . . . sij

−1BT (πι)
]−1

−
s̄−1
ij

[

si1 . . . sij−1
−1BT (πι)

]

−
e
Tsi1 ...sij−1

◦ι(π)(T )

=e
−Tsi1 ...sij

◦ι(π)(T )
yje

Tsi1 ...sij−1
◦ι(π)(T )

where yj = y−αij
(cj) ∈ B

+ ∩Ns̄−1
ij
N . Necessarily:

c
−α∨

ij

j = [yj]0

= e
Tsi1 ...sij

◦ι(π)(T )−Tsi1 ...sij−1
◦ι(π)(T )

= exp

(

log

∫ T

0
e
−αij

(Tsi1 ...sij−1
◦ι(π))

α∨
ij

)

Therefore:

cj =
1

∫ T

0 e
−αij

(Tsi1 ...sij−1
◦ι(π))

And:

tj = cj exp
(

−αij

(

Tsi1 ...sij−1
◦ ι(π)(T )

))

=
1

∫ T

0 e
−αij

(ι◦Tsi1 ...sij−1
◦ι(π))

=
1

∫ T

0 e
−αij

(e−∞

si1
...sij−1

(π))
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Again, as a corollary, we have the commutativity of the left side in the diagram 8.1:

Corollary 8.17.

∀i ∈ R(w0),∀π ∈ C0 ([0, T ], a) , xi ◦ ̺
L
i (π) = ̺L ◦ p(π)

Proof. Theorem 8.16 and definition 4.16.

8.3 Crystal actions in coordinates

The actions (e.α)α∈∆ have a very simple expression in the appropriate charts for a
connected crystal. Clearly, this property is a geometric lifting of the equations from
(2.10) to (2.13) for Kashiwara operators.

Proposition 8.18. Consider a path π ∈ C0 ([0, T ], a), i ∈ R(w0) and α = αi1 . If:

̺Li (π) = (t1, . . . , tm)

̺Ki (π) = (c1, . . . , cm)

Then for every ξ ∈ R:

̺Li

(

eξα · π
)

=
(

eξt1, . . . , tm

)

̺Ki

(

eξα · π
)

=
(

eξc1, . . . , cm

)

Remark 8.19. Here, we do not require twisting the Kashiwara operators like in [BZ01]
section 5.2.

We will need the following important property of the highest and lowest path trans-
forms.

Lemma 8.20. For π ∈ C0 ([0, T ], a), α ∈ ∆ and ξ ∈ R::

e−∞
α ·

(

eξα · π
)

= e−∞
α · π

Tα ·
(

eξα · π
)

= Tα · π

Proof. The first identity is obvious and has already been referred to. The second one
can be proved either by direct computation or by using the extended duality between
e−∞
α and Tα.

Proof of proposition 8.18. Write:

̺Li

(

eξα · π
)

=
(

t′1, . . . , t
′
m

)

̺Ki

(

eξα · π
)

=
(

c′1, . . . , c
′
m

)
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The previous lemma along with the definitions for Lusztig and Kashiwara parameters
(see subsections 8.2 and 8.1) tell us that:

∀j ≥ 2, tj = t′j , cj = c′j

Moreover:

t1 = c1 =
1

∫ T

0 e−α(π)

and:

t′1 = c′1 =
1

∫ T

0 e−α(eξ·π)
=

1

eεα(eξ·π)
=

1

eεα(π)−ξ
= eξt1 = eξc1

8.4 Connectedness criterion

Because of the previous investigations, it is easy to give a simple criterion that forces
two paths to belong to the same connected component.

Theorem 8.21. Consider two paths π and π′ in C0 ([0, T ], a). The following proposi-
tions are equivalent:

(i) π and π′ are connected.

(ii )
(

e−∞
w0

(π)t, 0 ≤ t < T
)

=
(

e−∞
w0

(π′)t, 0 ≤ t < T
)

(iii)
(Tw0(π)t, 0 < t ≤ T ) =

(

Tw0(π
′)t, 0 < t ≤ T

)

Proof. Proposition 7.11 says that (i) implies (ii), while corollary 8.15 gives the converse.
In order to prove the equivalence between (i) and (iii), notice that π and π′ are con-

nected if and only if the same holds for their duals. Therefore, we have an equivalence
between (i) and:

(

e−∞
w0

◦ ι(π)t, 0 ≤ t < T
)

=
(

e−∞
w0

◦ ι(π′)t, 0 ≤ t < T
)

Applying lemma 7.9, we have the result.

8.5 The case of infinite time horizon

Most of the previous results carry on the case where T = ∞. We will explain how to
proceed in order to construct Lusztig parameters for a path π ∈ C0(R+, a).

Clearly, low path transforms can be applied to paths in C0 (R+, a). And:
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Lemma 8.22. Let π ∈ C0 (R+, a) such that π(t) ∼
t→∞

µt with α (µ) > 0. Then:

∫ ∞

0
e−α(π) <∞

And
e−∞
α π(t) ∼

t→∞
sα(µ)t

Proof. The first assertion is clear. For the second, note that:

log

∫ ∞

t

e−α(π(s))ds ∼
t→∞

−α (µ) t

Therefore:

e−∞
α π(t) = π(t) + log

(

1−

∫ t

0 e
α(π)

∫∞
0 eα(π)

)

α∨

= π(t) + log

(
∫ ∞

t

eα(π)
)

α∨ − log

(
∫ ∞

0
eα(π)

)

α∨

∼
t→∞

sα(µ)t

Hence the idea, that in this case, path types should depend on asymtotical behavior.

Definition 8.23 (Low path types in infinite horizon). We say that a path π ∈ C0 (R+, a)
is a low path of type w ∈W when it has a drift in wC:

∃µ ∈ wC, π(t) ∼
t→∞

µt

The set of all low paths of type w ∈W in C (R+, a) is denoted Cloww ([0, T ), a).

Lusztig parameters also have a straightforward definition. Let i ∈ R(w0). For any
path π ∈ C0 (R+, a) with drift in the Weyl chamber, define ̺Li (π) as the sequence of
numbers t = (t1, t2, . . . , tm) recursively as:

tk =
1

∫∞
0 exp

(

−αik

(

e−∞
si1 ...sik−1

π
))

Thanks to the previous lemma, all tj are > 0. Finally the inversion lemma 8.16 is valid
with infinite horizon. It is proven by simply taking T to infinity.
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9 Isomorphism results

It is now easy to see that the projection map p restricts to an isomorphism on connected
components.

Theorem 9.1. Let π0 ∈ C0 ([0, T ], a) and 〈π0〉 be the connected crystal it generates.
Set λ = Tw0π0 (T ). Then the projection is an isomorphism of crystals:

p : 〈π0〉 → B (λ)
π 7→ BT (π)

Proof. The target set is indeed the appropriate one as:

∀π ∈ 〈π0〉,hw (BT (π)) = Tw0π (T ) = Tw0π0 (T ) = λ

thanks to theorem 8.21. The inverse map is constructed using the corollary 8.15.

9.1 Littelmann’s independence theorem

As a corollary, we have the geometric analogue of Littelmann’s independence theorem
( Isomorphism Theorem in [Lit95c]):

Theorem 9.2 (Geometric Littelmann independence theorem). For any connected geo-
metric path crystal L ⊂ C0 ([0, T ], a), the crystal structure only depends on the endpoint
λ = Tw0π (T ) of the highest path Tw0π.

9.2 Minimality of group picture

Thanks to Littelmann’s independence theorem, we have seen that there are a lot of
different but isomorphic path crystals. And all of them project (thanks to the map p)
to a certain B(λ), what we called the group picture. Now one can ask the question of
how minimal this group picture is. A reasonable answer can be the fact that there are
very few crystal morphisms on the group picture B(λ). Lifting the problem at the level
of the path model allows an easy proof of the following.

Theorem 9.3. Let f : B(λ) → B(µ) be a map such that:

{

∀α ∈ ∆,∀c ∈ R, f ◦ ecα = ecα ◦ f
∀α ∈ ∆, εα ◦ f = εα

If λ = µ, then f = id.

Proof. Let x ∈ B(λ) and y = f(x) ∈ B(µ). We start by lifting the problem to the path
model. This means that we consider π and π′ in C0 ([0, T ], a) such that:

x = p(π) = BT (π), y = p(π′) = BT (π
′)

and
Tw0π(T ) = λ,Tw0π(T ) = µ
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Therefore, we see B(λ) ≈ 〈π〉 and B(µ) ≈ 〈π′〉 as path crystals. Let us prove that for
all k ∈ N, i ∈ Ik and (c1, . . . , ck) ∈ Rk:

1
∫ T

0 exp
(

−αik

(

e
ci1
αi1

· · · e
cik−1
αik−1

π′
)) =

1
∫ T

0 exp
(

−αik

(

e
ci1
αi1

· · · e
cik−1
αik−1

π
))

Indeed, using the same notations in the path model and in the group picture, this is
equivalent to:

εαik

(

e
ci1
αi1

· · · e
cik−1
αik−1

π′
)

=εαik

(

e
ci1
αi1

· · · e
cik−1
αik−1

y
)

=εαik

(

e
ci1
αi1

· · · e
cik−1
αik−1

f(x)
)

=εαik
◦ f
(

e
ci1
αi1

· · · e
cik−1
αik−1

x
)

=εαik

(

e
ci1
αi1

· · · e
cik−1
αik−1

π
)

Taking all the cj to −∞ and i a reduced word for w0, one finds that the Lusztig
parameters of π and π′ coincide (see subsection 8.2). Then the same goes for x and y.
And if λ = µ, we have x = y.

Note that the condition λ = µ can be deduced from elsewhere if for instance γ(x) =
γ(y). Hence the following remark.

Remark 9.4. λ = µ is for instance implied by:

γ ◦ f = γ

Remark 9.5. The previous theorem means that in the path model, there is a relatively
large amount of isomorphic crystals. In the group picture, however the only crystal
automorphism of B (λ) is the identity. In that sense, the group picture is “minimal”.

10 Robinson-Schensted correspondence(s)

Before stating the geometric Robinson-Schensted correspondence, we recall the classical
one and its generalizations using crystal bases.

Classical Robinson-Schensted correspondence (see [Ful97]): An integer par-
tition λ is a tuple λ1 ≥ λ2 ≥ · · · ≥ 0 such that |λ| :=

∑

i λi < ∞. Every partition λ
can be visually represented as a Young diagram, a collection of left-justified cells: λ1
cells on the first row, λ2 on the second etc...

Example 10.1. The Young diagram associated to the partition λ = (5, 3, 2) is:
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Consider an alphabet of r letters A = {1, . . . , r}. A semi-standard (resp. standard)
Young tableau is a filling of a Young diagram using the alphabet, such that the entries
are weakly (resp. strictly) increasing from left to right and strictly increasing down the
columns. We will use the abbreviations SST (resp. ST) for “semi-standard tableau”
(resp. “standard tableau”). In any case, the shape of a tableau P is the integer partition
obtained by erasing its entries and is denoted sh(P ).

Now let us describe an operation called row insertion. For a tableau T and a letter
x ∈ A, one forms a new tableau that has one more entry labelled by x. Start with the
first row and insert x at the leftmost position that is strictly larger than x, in order
to preserve the weakly increasing property from left to right. If that position is taken
by a letter y > x, replace it by x and continue the same procedure with y on the next
row. We say that y has been bumped. If x is at least as large as all the entries of the
current row, x is appended at the end. The procedure then stops.

The Robinson-Schensted correspondence is given by applying the algorithm with
the following specifications:

• Input: a word w ∈ A(N)

• Algorithm: do row insertions of letters to obtain a tableau P and record the
growth in Q.

• Output: a pair (P,Q) of tableaux where P is a SST and Q is a ST.

Theorem 10.2 (see [Ful97] RSK correspondence (ii) p.40). The Robinson-Schensted
correspondence:

RS : A(N) −→ {(P,Q) , P SST, Q ST | sh(P ) = sh(Q)}

is bijection.

It is well-known that the combinatorics of Young tableaux are strongly connected to
the representation theory of GLr. For example, irreducible representations of GLr are
labeled by Young diagrams λ and are denoted V (λ). Each V (λ) has a basis indexed by
semi-standard tableaux P of shape λ (the Gelfand-Tsetlin basis for instance). Moreover,
if V = Cr is the vector representation, irreducible submodules of V ⊗T for T ∈ N are
labelled by standard tableaux Q with T boxes and at most r rows:

V ⊗T =
⊕

Q ST with T boxes

VQ (10.3)

where each VQ is isomorphic to a certain V (λ) with λ = sh (Q). The tableau Q is
constructed by recording which box is added upon tensoring by a new V .

Let us observe the above equality. The right-side has a basis labelled by pairs of
tableaux of same shape. The left-hand side has monomial tensors as a basis and these
naturally match words in r letters. Therefore, the Robinson-Schensted correspondence
is a bijection between good bases. A more precise relationship was first discovered by
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Date, Jimbo and Miwa [DJM90] and involves the quantum group Uq (glr) at q = 0.
This was the starting point of Kashiwara’s work on crystal bases.

The representation theory of Uq (glr) is essentially the same as that of GLr and
equation (10.3) holds as an equality between Uq (glr)-modules. In the limit as q → 0,
each VQ is spanned by monomial tensors. As these are labelled by words, one can ask
which words span a module VQ. Date, Jimbo and Miwa understood that the answer is
exactly given the Robinson-Schensted correspondence: one has to consider the words
that are mapped to a pair of tableaux with Q being the second member.

Kashiwara crystal generalization: Let B (κ) be a highest weight crystal, with
highest weight κ ∈ P+. The previous paragraph corresponds to the particular case of
κ = nω1 in type A. Now fix a time horizon T ∈ N. For every 0 ≤ t ≤ T , given a tensor
product of crystal elements b1 ⊗ b2 ⊗ . . . bt ∈ B (κ)⊗t, one can record as ηt ∈ P+ the
isomorphism class of the crystal it generates. Then define p (b) ∈ B as b = b1⊗b2⊗. . . bT
seen as a element in the highest weight crystal it generates. Hence the map:

RS : B (κ)⊗T −→
{

(b, η) ∈ B× (P+)
T

| hw(b) = η(T )
}

b1 ⊗ b2 ⊗ . . . bT 7→ (b, (ηt; t = 0, 1, 2, . . . , T ))

The previous map is a bijection only when κ is minuscule. This fact is more easily
seen after reformulating the above thanks to the Littelmann path model [Lit95c], as
we will now explain. Let Π be the set of piece-wise linear paths in P ⊗ Q ⊂ a, also
known as the Littelmann module. Let Π+ be the set of dominant paths i.e the subset
of piece-wise linear paths with values in the closed Weyl chamber. If πκ is a dominant
path in a with κ as endpoint, thanks to Littelmann’s independence theorem, we have
a crystal isomorphism 〈πκ〉 ≈ B (κ). Since tensor product is simply modelled by
concatenation, we can identify B (κ)⊗T ≈ 〈πκ〉

⊗T with the subset of Π made of paths
that are concatenations of T smaller parts from 〈πκ〉.

In this identification, the input of the Robinson-Schensted correspondence is just
a path π = π1 ∗ · · · ∗ πT in the Littelmann module, with each πi ∈ 〈πκ〉. The first
member in the output is π seen as an element of 〈π〉 ≈ B (λ) →֒ B. One can for
instance just encode π thanks to its Kashiwara parameters. This projection map is
denoted p : Π → B and p(π) can be seen as an integer point lying in a dual string
cone C∨

i ( for the dual group compared to subsection 2.4). The second member records
the only dominant path in the intermediate crystals generated by π1 ∗ . . . . . . πt for t =
0, 1, . . . , T . It is given by the Pitman transform Pw0π [BBO05]. In that paper, Biane,
Bougerol and O’Connell recognized that the path transform Pitman had introduced
with probabilistic motivations is the crystal operator that gives the dominant path in
a connected Littelmann module (in rank 1 case). The Robinson-Schensted map then
becomes:

RS : Π −→ {(b, η) ∈ B×Π+ | hw(b) = η(T )}
π 7→ (p (π) , (Pw0πt; 0 ≤ t ≤ T ))

In the minuscule case, one only needs to record the path (Pw0πt; 0 ≤ t ≤ T ) at integer
times because 〈πκ〉 is made of straight paths.
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Continuous case: Biane, Bougerol and O’Connell [BBO05, BBO09] noticed that
path crystals can be defined in a continuous setting. A continuous time horizon has to
be considered and the Littelmann module Π is replaced by the space of all continuous
functions C0 ([0, T ], a). Dominant paths are the ones valued in the closed Weyl chamber.
From their work, one can formulate a Robinson-Schensted with exactly the same form
as above. The projection map p is understood as the map pi that associates to every
path its string parameters and highest weight continuous crystals B (λ) are convex
polytopes inside the dual string cone C∨

i .
Notice that the Pitman transform is the same for both the continuous and combi-

natorial settings. In fact, one can embed the classical Littelmann path model in the
continuous one.

Geometric case: As we have proved, concatenation is still a model for tensor product
for geometric crystals. Hence, a path π ∈ C0 ([0, T ], a) can be seen as a tensor product
of smaller paths. The path crystal it generates can be projected onto its group picture,
which is an intrinsic realization of a B (λ) for a certain λ ∈ a.

Theorem 10.4 (Geometric Robinson-Schensted correspondence). For each T > 0, we
have a bijection:

RS : C0 ([0, T ], a) −→
{

(x, η) ∈ B × Chighw0 ([0, T ], a) | hw(x) = η(T )
}

π 7→ (BT (π) , (Tw0πt; 0 < t ≤ T ))

Proof. By theorem 8.2, the knowledge of a path π ∈ C0 ([0, T ], a) is exactly equivalent
to that of knowing the string parameters and the highest weight path. And thanks to
corollary 8.17, the string parameters along with the highest weight λ = Tw0π(T ) are
encoded by BT (π) ∈ B(λ).

After this presentation, the analogy with the classical Robinson-Schensted corre-
spondence is clear. The path π plays the role of a word. Elements in B, the crystal
elements, play the role of semi-standard tableaux. Highest paths play the role of shape
dynamic. Finally the condition:

hw(x) = Tw0π(T )

is the equivalent of saying that the P tableau and the Q tableau have the same shape.

11 Involutions and crystals

11.1 Kashiwara involution

The Kashiwara involution was defined at the level of the enveloping algebra as the
unique anti-automorphism satisfying

eια = eα, f ια = fα hια = −hα

It can naturally be lifted to a group anti-automorphism, and we have seen on the path
model that it is the group picture counterpart of duality: π 7→ π (T − t)− π (T ).
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11.2 Schützenberger involution

This map was originally introduced by Schützenberger as an involution on semi-standard
tableaux of a given shape. As tableaux with n letters of a given shape λ can be iden-
tified with the highest weight crystal B (λ) of type An, it can be seen as an involution
on highest weight crystals.

11.2.1 Definition in the group picture

Definition 11.1 (Schützenberger involution on G).

∀x ∈ G,S (x) = w−1
0 (x−1)iTw0 = w0(x

−1)iTw−1
0

Remark 11.2. This is defined “coordinate free” on the entire group.

Remark 11.3. Both definitions agree because w2
0 belongs to Z(G), the center of G, as

a consequence of the following lemma.

Lemma 11.4. For each w, define t(w) = ww−1. We have:

t(w) = eiπ(ρ
∨−wρ∨)

In particular:
t(w0) = w2

0 = ei2πρ
∨

Proof. Using the notations from preliminaries, if i = (i1, . . . , ik) ∈ R (w) and (β∨1 , . . . , β
∨
k )

the associated positive roots enumeration:

t(w) = s̄i1 . . . s̄ik s̄ik . . . s̄ik

= φik

(

eiπh
)si1 ...sik−1

φik−1

(

eiπh
)si1 ...sik−2

. . . φi2

(

eiπh
)si1

φi1

(

eiπh
)

= exp

(

iπ

k
∑

k=1

si1 . . . sij−1hij

)

= exp

(

iπ

k
∑

k=1

β∨k

)

= exp
(

iπ
(

ρ∨ − wρ∨
))

Properties 11.5. • S is an involutive anti-automorphism on the group.

•
∀k ∈ N, (i1, . . . , ik) ∈ Ik, S (xi1 (t1) . . . xik (tk)) = xi∗

k
(tk) . . . xi∗1 (t1)

•
S (w̄0) = w̄0
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•
∀x ∈ B+w0B

+,hw (S (x)) = hw (x)

Proof. It is easy to see that S is an anti-automorphism as the composition of three anti-
automorphisms (inverse, transpose and Kashiwara involution ι) and an automorphism
(conjugation by w̄0), hence the first property. The second property is known to Beren-
stein and Zelevinsky (relation 6.4 in [BZ01]) and is a consequence of Ad (w̄0) ei = −fi∗

(proposition 2.5). The rest is easy to check by direct computation.

Since S stabilizes the geometric crystal B and preserves the highest weight, it is
indeed an involution on highest weight crystals B (λ). But it is not a morphism of
crystals.

11.2.2 Definition in the path model

Definition 11.6 (Schützenberger involution on paths).

∀π ∈ C0 ([0, T ], a) , S (π) := −w0π
ι

As usual, this definition in fact agrees with the group picture after projection.

Theorem 11.7.
p ◦ S = S ◦ p

where on the right-hand side, S stands for the Schüzenberger involution on the group,
and the left-hand side it is considered in the path model.

Proof. Consider a smooth path π. Since S ◦ ι is an automorphim, the left-invariant
equation solved by S ◦ ι (Bt (π)) is:

dS ◦ ι (Bt (π)) = S ◦ ι (Bt (π)) d(S ◦ ι)
(

∑

fα + dπt

)

= S ◦ ι (Bt (π))

(

∑

α∈∆

fα∗ −w0dπt

)

= S ◦ ι (Bt (π))

(

∑

α∈∆

fα −w0dπt

)

Then:
S ◦ ι (Bt (π)) = Bt (−w0π)

Replacing π by πι gives the result for all smooth paths:

S (Bt (π)) = Bt (−w0π
ι)

The smoothness assumption can then be discarded.

83



Remark 11.8. In the path model, S does not preserve connected components, but
thanks to the previous theorem, it stabilizes highest weight crystals in the group picture.
As such it preserves isomorphism classes of path crystals using Littelmann’s indepen-
dence theorem.

As pointed out in [BBO09] p. 1552 lemma 4.19 the following can be taken as a
definition for the Scützenberger involution for An crystals. We prove the analogous
statement in the geometric setting:

Theorem 11.9. The Schützenberger involution is the unique map S on geometric
crystals (resp. path crystals up to crystal isomorphism) such that:

• γ ◦ S (x) = w0γ (x)

• εα ◦ S (x) = ϕα∗ (x) or equivalently ϕα ◦ S (x) = εα∗ (x)

• ∀c ∈ R, ecα · S (x) = S
(

e−cα∗ · x
)

Proof. Computations can be carried out very easily both in the group or on the path
model.

For uniqueness, if S and S′ satisfy those properties, then SS′ is an automorphism
of (path) crystals. In the group picture, there is no crystal automorphism aside from
the identity (subsection 9.2), hence the uniqueness up to isomorphism.

A Kostant’s Whittaker model

For more algebraic details, we refer to the first section in [Sev00] as it gives a very good
summary of Kostant’s work on the Whittaker model and Whittaker modules. Here, we
will mainly be interested in the image of the Casimir operator in the Whittaker model,
seen as a left-invariant differential operator on the lower Borel subgroup B.

The universal enveloping algebra:

Invariant differential operators: Every X ∈ g can be viewed as a left-invariant
differential operator of order 1. Its action on smooth functions is given by:

∀f ∈ C∞ (G) ,Xf(g) := lim
t→0

f(getX )− f(g)

t

From such a point of view, it is easy to envision invariant different operators of arbitrary
order. They should be obtained by composing elements X1,X2, . . . ,Xk in g acting as
differential operators. Their identification is subject to possible relations due to the Lie
bracket [ , ].

This notion is formalized in algebra as the universal enveloping algebra U(g).
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Definition from universal property: The universal enveloping algebra of g

is constructed as the quotient of the tensor algebra
⊕

n g
⊗n by the two sided ideal

generated by ab − ba − [a, b], a, b ∈ g. It has the universal property that any Lie
algebra homomorphism f : g → A, where A is a unital algebra, factors into f = g ◦ i.
g : U(g) → A is unique and i : g → U(g) is the inclusion.

Definition with generators and relations: An alternative definition uses gen-
erators and relations, with only the Cartan matrix A = (aij)1≤i,j≤n as input data. U(g)
is the unital associative algebra generated by Fi,Hi, Ei with 1 ≤ i ≤ n with relations:

[Hi,Hi] = 0

[Ei, Fj ] = δi,jHi

[Hi, Ej ] = aijHi

[Hi, Fj ] = −aijHi

Serre relations for i 6= j :

0 =

1−aij
∑

s=0

(−1)s
(

1− aij
s

)

E
1−aij−s
i EjE

s
i

0 =

1−aij
∑

s=0

(−1)s
(

1− aij
s

)

F
1−aij−s
i FjF

s
i

Center:
Z(g) := {x ∈ U(g)|∀y ∈ U(g)[x, y] = 0}

The center Z(g) forms a commutative algebra. It is at the heart of both classical and
quantum integrable systems.

In Hamiltonian mechanics the Lie bracket is interpreted as a Poisson bracket and the
center is an algebra of Poisson commuting functions. These functions are the observ-
ables that are integrals of motion. In quantum mechanics, the story is a bit different.
Observables are differential operators acting on the Hilbert space of wave functions.
Commuting observables give simultaneously measurable observables, which is a very
desirable property. The center is a commutative algebra of differential operators, and
the Lie bracket is simply the commutator [A,B] = AB −BA.

The integrability property means that we have a maximal number of independent
invariants. Chevalley’s theorem tells us that the maximal number of independent cen-
tral elements is r, the rank of Lie algebra.

Theorem A.1 (Chevalley). Z(g) is a polynomial algebra with r independent generators
I1, I2, . . . , Ir. Z(g) = C[I1, I2, . . . , Ir]
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Casimir element: The only element of order 2 in the center is the Casimir element
Ω. If (X1, . . . ,Xn) is an orthonormal basis of h with respect to the Killing form, then:

Ω := 1
2

∑n
i=1X

2
i +

1
2

∑

β∈Φ+ (fβeβ + eβfβ)

= 1
2

∑n
i=1X

2
i +

∑

β∈Φ+ fβeβ + ρ∨
(A.2)

The second expression uses the Weyl covector ρ∨, which is the vector in a such that
α (ρ∨) = 1 for every simple root α. ρ∨ is also the half sum of all positive coroots. In
a way, Ω is the simplest and most important element. In representation theory, it is
used in order to prove the reducibility of certain classes of representations. In analysis,
because it is of order 2, it can be considered as a heat kernel, when elliptic. In order
to see how it is related to the left-invariant differential equation (5.4) on B, we need to
exhibit an element of U(b).

Reduction to U(b): Let χ : U −→ C be the standard (additive) character on U :

∀α ∈ ∆, χ
(

eteα
)

= t

Let C∞ (G) be the space of continuously differentiable functions on G and consider the
subspace:

C∞
χ (G) :=

{

f ∈ C∞ (G) | ∀u ∈ U, f(gu) = f(g)eχ(u)
}

The subset BB+, the cell where a Gauss decomposition holds, is dense in G. Hence, any
function in C∞

χ is entirely determined by its restriction to the lower Borel subgroup B.
Moreover, differential operators in U (g) are reduced to elements of U (b) when acting
on such functions. By simple differentiation and restriction to C∞(B), Ω reduces to:

Ωχ =

n
∑

i=1

X2
i +

∑

α∈∆

fα + ρ∨ (A.3)

Whittaker model W (b): The algebraic construction by Kostant tantamounts to
reducing central elements to elements in U(b). We reproduce the presentation of [Sev00]
while keeping the same notations. χ, at the level of the Lie algebra, extends to U (u)
and gives a direct sum:

U (u) = C1⊕ kerχ

Since U(g) = U(b) ⊗ U (u) because of the Poincaré-Birkhoff-Witt basis theorem, we
have:

U(g) = U(b)⊕ Iχ

where Iχ = U(g) ker χ is the left ideal generated by kerχ. Now let ρχ be the canonical
projection:

ρχ : U(g) −→ U(b)

It defines the Whittaker model for the center thanks to:
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Theorem A.4 (Kostant, Theorem 2.4.2 in [Kos78]). Let W (b) = ρχ (Z(g)). The map:

ρχ : Z(g) −→W (b)

is an isomorphism.

One can easily compute the image of the Casimir element Ωχ = ρχ (Ω): if β is a
simple root, eα acts like 1 after reduction while if β ∈ Φ+ −∆, it acts like 0. From the
second line in equation (A.2), we recover the same operator as in equation (A.3). This
is simply the algebraic derivation of the reduction stated in the previous paragraph.

Ωχ ∈ U(b) is interpreted as an operator on the solvable group B. The Laplacian
∆a =

1
2

∑n
i=1X

2
i is the infinitesimal generator of Brownian motion on a ≈ Rn. Hence,

Ωχ as a whole is the infinitesimal generator of a Markov process driven by a simple
Euclidian Brownian motion on a. This Markov process is exactly the one defined by
equation (5.4), if the driving path X is a Brownian motion. In this context, which we
pursue in [Chh14], equation (5.4) is interpreted as a stochastic differential equation.

Quantum Toda Hamiltonian: Let χ− : N −→ C be the standard (additive) char-
acter on N :

∀α ∈ ∆, χ−
(

etfα
)

= t

We can consider a further reduction to the space of χ−χ-binvariant functions:

C∞
χ−χ(G) :=

{

f ∈ C∞ (G) | ∀n ∈ N,u ∈ U, f(ngu) = e−χ
−(n)f(g)eχ(u)

}

Since a function in C∞
χ−χ

(G) is entirely determined by its values on A = exp(a), we have

the identification C∞
χ−χ

(G) ≈ C∞(a). In this identification, the operator Ωχ reduces to
a Schödinger operator on a ≈ Rr known as the quantum Toda Hamiltonian:

H = ∆a + ρ∨ −
∑

α

e−α(x) (A.5)

The quantum Toda Hamiltonian will also appear in [Chh14], being related to the highest
weight dynamic.
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