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YOKONUMA-SCHUR ALGEBRAS
WEIDENG CUI

ABSTRACT. In this paper, we define the Yokonuma-Schur algebra YS,(r,n) as the en-
domorphism algebra of a permutation module for the Yokonuma-Hecke algebra Y, »(q).
We prove that YS,(r,n) is cellular by constructing an explicit cellular basis follow-
ing the approach in [DJM], and we further show that it is a quasi-hereditary cover of
Y, n(q) in the sense of Rouquier following [HM2]. We also introduce the tilting modules
for YS¢(r,n). In the appendix, we define and study the cyclotomic Yokonuma-Schur
algebra in a similar way.

1. INTRODUCTION

1.1. The Yokonuma-Hecke algebra was first introduced by Yokonuma [Yo] as a centralizer
algebra associated to the permutation representation of a Chevalley group G with respect
to a maximal unipotent subgroup of G. Juyumaya [Jul] gave a new presentation of the
Yokonuma-Hecke algebra, which is commonly used for studying this algebra.

The Yokonuma-Hecke algebra Y, ,(¢) is a quotient of the group algebra of the modular
framed braid group (Z/rZ) B,,, where B, is the braid group of type A on n strands.
It can also be regraded as a deformation of the group algebra of the complex reflection
group G(r,1,n), which is isomorphic to the wreath product (Z/rZ)1&,,, where &,, is the
symmetric group on n letters. It is well-known that there exists another deformation of
the group algebra of G(r,1,n), the Ariki-Koike algebra H, , [AK]. The Yokonuma-Hecke
algebra Y, ,(q) is quite different from H,,. For example, the Iwahori-Hecke algebra of
type A is canonically a subalgebra of H, ,, whereas it is an obvious quotient of Y, ,(q),
but not an obvious subalgebra of it.

In the past few years, many people are largely motivated to study Y, ,(¢) in order to
construct its associated knot invariant; see the papers [Ju2], [JuL] and [ChL]. In particular,
Juyumaya and Kannan [Ju2, JuK] found a basis of Y, (¢), and then defined a Markov
trace on it.

Some other people are particularly interested in the representation theory of Y, ,(q),
and also its application to knot theory. Chlouveraki and Poulain d’Andecy [ChPA1] gave
explicit formulas for all irreducible representations of Y, ,(g) over C(g), and obtained
a semisimplicity criterion for it. In their subsequent paper [ChPA2], they defined and
studied the affine Yokonuma-Hecke algebra ﬁn(q) and the cyclotomic Yokonuma-Hecke
algebra Y,f’in(q), and constructed several bases for them, and then showed how to define
Markov traces on these algebras. Moreover, they gave the classification of irreducible rep-
resentations of Yf%(q) in the generic semisimple case, defined the canonical symmetrizing
form on it and computed the associated Schur elements directly.
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1.2.  Recently, Jacon and Poulain d’Andecy [JaPA] constructed an explicit algebraic
isomorphism between the Yokonuma-Hecke algebra Y, ,(¢) and a direct sum of matrix
algebras over tensor products of Iwahori-Hecke algebras of type A, which is in fact a
special case of the results by G. Lusztig [Lu, Section 34]. This allows them to give a
description of the modular representation theory of Y, ,(¢) and a complete classification
of all Markov traces for it. Chlouveraki and Sécherre [ChS, Theorem 4.3] proved that the
affine Yokonuma-Hecke algebra is a particular case of the pro-p-Iwahori-Hecke algebra
defined by Vignéras in [Vi].

Espinoza and Ryom-Hansen [ER] gave a new proof of Jacon and Poulain d’Andecy’s
isomorphism theorem by giving a concrete isomorphism between Y, ,,(¢) and Shoji’s mod-
ified Ariki-Koike algebra J, ,,. Moreover, they showed that Y, ,,(¢) is a cellular algebra by
giving an explicit cellular basis. Combining the results of [DJM] with those of [ER], we
[C1] proved that the cyclotomic Yokonuma-Hecke algebra YTdn(q) is cellular by construct-

ing an explicit cellular basis, and showed that the Jucys-Murphy elements for Yrdn(q) are
JM-elements in the abstract sense introduced by Mathas [Ma3].

We [CW] have established an equivalence between a module category of the affine (resp.
cyclotomic) Yokonuma-Hecke algebra f/rn(q) (resp. Yrdn(q)) and its suitable counterpart
for a direct sum of tensor products of affine Hecke algebras of type A (resp. cyclotomic
Hecke algebras), which allows us to give the classification of simple modules of affine
Yokonuma-Hecke algebras and of the associated cyclotomic Yokonuma-Hecke algebras
over an algebraically closed field of characteristic p when p does not divide r, and also
describe the classification of blocks for these algebras. In addition, the modular branching
rules for cyclotomic (resp. affine) Yokonuma-Hecke algebras are obtained, and they are
further identified with crystal graphs of integrable modules for affine lie algebras of type A.
In a subsequent paper, we [C2] have established an explicit algebra isomorphism between
the affine Yokonuma-Hecke algebra ?T,n(q) and a direct sum of matrix algebras over tensor
products of affine Hecke algebras of type A. As an application, we proved that f/rn(q) is
affine cellular in the sense of Koenig and Xi, and studied its homological properties.

1.3. In [DJM], they constructed a cellular basis for the cyclotomic ¢g-Schur algebra S(A)
by firstly constructing a cellular basis for the Ariki-Koike algebra H, ,. They further
obtained a complete set of non-isomorphic irreducible §(A)-modules and showed that it
is quasi-hereditary. Now, there exists a cellular basis on Y, ,(¢) by [ER], it is natural to
try to define and study the corresponding Schur algebra for the Yokonuma-Hecke algebra
Y, »(q) by using this cellular basis.

In this paper, we will define the Yokonuma-Schur algebra YS,(r,n) as the endo-
morphism algebra of a permutation module associated to the Yokonuma-Hecke algebra
Y, (q). Combining the results of [DJM] with those of [SS], we prove that YS,(r,n) is cellu-
lar by constructing an explicit cellular basis, and further prove that it is quasi-hereditary.
We also investigate the indecomposable tilting modules for YS,(r, n) and prove that they
are self-dual.

This paper is organized as follows. In Section 2, we recall the definition of the Yokonuma-
Hecke algebra Y, ,(q) and the construction of a cellular basis of Y, ,(q) following [ER].
In Section 3, we will define the Yokonuma-Schur algebra YS,(r,n) as the endomorphism
algebra of a permutation module associated to the Yokonuma-Hecke algebra Y, ,(g). We
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prove that YS,(r,n) is cellular by constructing an explicit cellular basis, and further prove
that it is quasi-hereditary by combining the results of [DJM] with those of [SS]. In Section
4, following the approach in [HM2], we will construct an exact functor from the category
of YS,(r,n)-modules to the category of Y, ,(¢)-modules. In Section 5, we introduce the
tilting modules for YS,(r,n) and the closely related Young modules for Y, ,(¢) following
[Ma2]. In the appendix, we will generalize these results to define and study the cyclotomic
Yokonuma-Schur algebra by using the cellular basis of Kffn(q) constructed in [C1]. Since
this approach is very similar, we only mention the main results and skip all the details.

Many ideas of this paper originate from the references [DJM, Ma2, SS], although it
should be noted that the basic set-up here is different from theirs; anyhow, we expect
that the Yokonuma-Schur algebra and its cyclotomic analog defined here deserve further
study.

2. CELLULAR BASES FOR YOKONUMA-HECKE ALGEBRAS

In this section, we recall the definition of the Yokonuma-Hecke algebra Y, ,(¢) and the
construction of a cellular basis of Y, ,(q) presented in [ER, Section 4].

Let mmn € N, r > 1, and let {( = e?™/T Let ¢ be an indeterminate. Let &, be
the symmetric group on n letters, which acts on the set {1,2,...,n} on the right by
convention.

Let R = Z[][g, ¢, ¢]. The Yokonuma-Hecke algebra Y,.,, = Y, ,,(q) is an R-associative

algebra generated by the elements t1,...,t,, g1, .., gn_1 satisfying the following relations:
9i95 = 9iGi forall i,7 =1,...,n— 1 such that |i — j| > 2;
9i9i+19i = Gi+19igi+1 foralli=1,....,n—2;
titj = t;t; foralli,j =1,...,n; 2.1)
gitj = tjs,9i foralli=1,....n—1land j=1,...,n; ’
iy = foralli=1,...,n;

@ =1+ (q—q Ve foralli=1,...,n—1,

where s; is the transposition (7,7 + 1), and for each 1 <i <n — 1,

r—1
1
. § : S1—S
s=0

Note that the elements e; are idempotents in Y, ,,. The elements g; are invertible, with
the inverse given by

G =9i—(q—q Ye; foralli=1,...,n—1. (2.2)

Let w € &, and let w = s;, ---s;, be a reduced expression of w. By Matsumoto’s

lemma, the element g, := gi, i, - - - g;, does not depend on the choice of the reduced

expression of w, that is, it is well-defined. Let [ denote the length function on &,,. Then
we have

s;w if l S;w > [(w ;
gigw = Y . , (siw) > H{w) (2.3)
Gsiw + (@ — g Heigw if I(siw) < l(w).
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Using the multiplication formulae in (2.3]), Juyumaya [Ju2] has proved that the follow-
ing set is an R-basis of Y, ,:

Brm = {th - tFrg | 0<ki,... .k <r—1andwe &,}. (2.4)

Thus, Y, , is a free R-module of rank r"n!.
Set s:={1,2,...,n}. Let i,k € s and set

1 r—1
ik = tht,;s. (2.5)
s=0
Note that e;; = 1, e; 1, = ey, and that e; ;41 = e;. It can be easily checked that
eak:ei,k forall i,k =1,...,n,
tiejr = €jiti forall i,j,k =1,...,n,
€i jCk, = €} €i; foralli,5,k,1=1,...,n, (2.6)
i€kl = €g,(k),s;(1)Ci foralli=1,...,n—1land k,l=1,...,n,
€j.k9i = GiCjs; ks foralli=1,...,n—1and j,k=1,...,n.
In particular, we have e;g; = g;e; for alli =1,2,...,n— 1.

For any nonempty subset I C s we define the following element E; by

E] = H €55
1,j€l;1<g
where by convention Er =1 if |I| = 1.

We also need a further generalization of this. We say that the set A = {I1, Is, ..., I}}
is a set partition of s if the I;’s are nonempty and disjoint subsets of s, and their union
is s. We refer to them as the blocks of A. We denote by 8P,, the set of all set partitions
of s. For A={I,Is,...,I;;} € 8P, we then define E4 := Hj E;.

We extend the right action of &, on s to a right action on 8P, by defining Aw :=
{hw,...,[yw} € 8P, for w € &,,. Then we can easily get the following lemma.

Lemma 2.1. For A € 8P, and w € &,,, we have
guba = EAuﬁlgw-

In particular, if w leaves invariant every block of A, or more generally permutes some of
the blocks of A, then g, commutes with E 4.

w = (u1,...,pr) is called a composition of n if it is a finite sequence of nonnegative
integers whose sum is n. A composition p is a partition of n if its parts are non-increasing.
We write p = n (resp. A n) if p is a composition (resp. partition) of n, and we define
|pe| == n (resp. |A| :==n).

We associate a Young diagram to a composition p, which is the set

(W] == {(i,7) |i = LTand 1 < j <y}

We will regard [u] as an array of boxes, or nodes, in the plane. For p = n, we define
a p-tableau by replacing each node of [u] by one of the integers 1,2,...,n, allowing no
repeats.
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For o = n, we say that a p-tableau t is row standard if the entries in each row of t
increase from left to right. A p-tableau t is standard if p is a partition, t is row standard
and the entries in each column increase from top to bottom. For a composition u of n,
we denote by t# the u-tableau in which 1,2,...,n appear in increasing order from left to
right along the rows of [u].

The symmetric group &,, acts from the right on the set of u-tableaux by permuting the
entries in each tableau. For any composition p = (i1, ..., pug) of n we define the Young
subgroup &, := &, X --- X &, , which is the row stabilizer of t*.

Let A= (A1,...,\x) and g = (p1, ..., ) be two compositions of n. We say that A> u

if
J J
Z)‘i > Z,ui for all 7 > 1.
=1 i=1

(2
If A pand A # p, we write A > p.

We extend the partial order above to tableaux as follows. If v is a row standard
A-tableau and 1 < k < n, then the entries 1,2,...,k in v occupy the diagram of a
composition; let v denote this composition. Let A and p be two compositions of n.
Suppose that s is a row standard A-tableau and that t is a row standard p-tableau. We
say that s dominates t, and we write s >t if 5, I t|;, for all k. If s >t and s # t, then we
write s > t.

Following [ChPA1, Section 4.3], the combinatorial objects appearing in the repre-
sentation theory of the Yokonuma-Hecke algebra Y, , will be r-compositions (resp. 7-
partitions). By definition, an r-composition (resp. r-partition) of n is an ordered r-tuple
p= (W, 1@ u)) of compositions (resp. partitions) p(¥) such that Y25 _, |u®)| = n.
We denote by C, (resp. P,,) the set of r-compositions (resp. r-partitions) of n. The
Young diagram [p] of an r-composition p is the ordered r-tuple of the Young diagram of
its components.

Let g = (™M, 1@, ..., 1)) be an r-composition of n. A p-tableau t = (t1), ... ")) is
obtained by placing each node of [p] by one of the integers 1,2, ..., n, allowing no repeats.
We will call the number n the size of t and the t*)’s the components of t.

For each p € C, ), a p-tableau is called row standard if the numbers increase along any
row (from left to right) of each diagram in [u]. For each A € P,,,, a A-tableau is called
standard if the numbers increase along any row (from left to right) and down any column
(from top to bottom) of each diagram in [A]. For pu € €, ,,, we denote by r-Std(u) the set
of row standard p-tableaux of size n, which is endowed with an action of &,, from the
right by permuting the entries in each p-tableau. For A € P, ,,, let Std(A) denote the set
of standard A\-tableaux of size n.

For each p € C, ,,, we denote by t* the standard p-tableau in which 1,2,...,n appear
in increasing order from left to right along the rows of the first diagram, and then along
the rows of the second diagram, and so on. For each p = (uM, u®, ... u()) € Crn, We
have a Young subgroup

S, = Gﬂ(l) X GH(z) S X 6“(7‘)7
which is exactly the row stabilizer of t*.

For each p € C,,, and a row standard p-tableau s, let d(s) be the unique element of

S, such that s = t*d(s). Then d(s) is a distinguished right coset representative of &, in



6 WEIDENG CUI

Sy, that is, I(wd(s)) = l(w) + (d(s)) for any w € &,,. In this way, we obtain a bijection
between the set r-Std(p) of row standard p-tableaux and the set D, of distinguished
right coset representatives of &, in G,,.

Let p € €, and t be a p-tableau. For j =1,...,n, we define p,(j) = k if j appears in
the k-th component t*) of t. When t = t*, we write p,(j) instead of py (7).

We now define a partial order on the set of r-compositions, which is similar to the case
of compositions.

Definition 2.2. Let A = (AW A® .. Ay and p = (uM, @, ..., 1)) be two r-
compositions of n. We say that A dominates p, and we write A > p if and only if

k—1 l k—1 l
POILRIED BPYEED ST S
i=1 j=1 i=1 j=1
for all k and [ with 1 <k <rand!>0.If A> p and X\ # p, we write A > p.

We now fix once and for all a total order on the set of r-th roots of unity via setting
CGe:=CF"Tforl <k <r SetS:= {¢1,¢2,-..,¢ -} Then we define a set partition Ay € 8P,
for any r-composition A.

Definition 2.3. Let A= (A, ... X)) ¢ Cy.. Suppose that we choose all 1 < i) < iy <
-+ < ip < 1 such that A \G2) o A@) gre the nonempty components of [A]. Define
ay = Z?:l IA@3)| for 1 < k < p. Then the set partition Ay associated with X is defined
as

A)\ = {{1,...,&1},{(11+1,...,a2},...,{ap_1—|—1,...,n}},

which may be written as Ay = {I1,Is,...,I,}, and is referred to the blocks of Ay in the
order given above.

Definition 2.4. Let A= (A, ... X)) € €, ,,, and let a3, := 2?21 IA@G)| (1 <k <p)be
defined as above. Then we define

u) = ual,iluag,iz te uap,ipv

where u; 1, = H;’:Ll#k(ti —@)forl<i<nand1<k<r.

Definition 2.5. Let A € C,.,,. We set Uy := uxE4,, and define z) = Zwee,\ ql(“’)gw.
Then we define the element my of Y,.,, as follows:

my ‘= U)‘x)‘ = UAEAXT)\'

Let x denote the R-linear anti-automorphism of Y. ,,, which is determined by g = ¢;
andt;—:tjforlgign—landlgjgn.

Definition 2.6. Let A € C,.,,, and let s and t be two row standard A-tableaux. We then
define mg = gé(s)mAgd(t).

For each A € P, let Y? fl‘ be the R-submodule of Y, , spanned by m,, with u,v €
Std(p) for various p € P, such that p > A.
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Theorem 2.7. (See [ER, Theorem 20].) The algebra Y, , is a free R-module with a
cellular basis

Brn = {ms |5, t € Std(X) for some r—partition X of n},

that is, the following properties hold:

(i) The R-linear map determined by mg — mes (Mgt € Bryy) is an anti-automorphism
onYyn.

(i) For a given h € Y, p, p € Pryy and t € Std(p), there exist ro¢(h) € R such that for
all s € Std(p), we have

meth = Z ot (h)msy mod Y,I?’#,
veStd(p)

where Ty (h) may depend on v,t and h, but not on s.

For each A € P,,, let My be the image of my under the algebra homomorphism
Yrn = Yen/Yr 2. We denote by S* the right Y, n-submodule of Y., /Y] A generated by
T, which is called the Specht module associated to A. By Theorem 27}, S is a free R-
module with basis {mxgq() |t € Std(A)}. We can define an associative symmetric bilinear
form on S* by

MAYd(s)9a(eyMA = (MAGd(s), MAYd(r))ma  mod Yo

Let tad S* = {u € S* | (u,v) = 0 for all v € S*}. Consequently, rad S* is a Y, -
submodule of S*. Let D* = S* /rad S for each A € Prn. By a general theory of cellular
basis, if R = K is an algebraically closed field of characteristic p > 0 such that p does not
divide 7, the set {D* # 0| X € P,.,,} gives a complete set of non-isomorphic irreducible
Y, ,-modules. In fact, by [ER, Theorem 7 and (46)] (see also [JaPA, §4.1] and [CW,
Theorem 6.3]), {\ € P,.,, | D # 0} is just the set X, ,, where

Kim = {)\ EPrnl A= ()\(1), e )\(T)) with each A\ being an e—restricted partition}.

3. YOKONUMA-SCHUR ALGEBRA AND ITS CELLULAR BASIS

For an r-composition A of n, a A-tableau S = (SM,... S} is a map S : [A\] —
{1,...,n}x{1,...,r}, which can be regarded as the diagram [A], together with an ordered
pair (i,k) (1 <i <n,1 <k <r) attached to each node. Given A € P,,, and p € G, ,
a A-tableau S is said to be of type p if the number of (i, k) in the entry of S is equal to

,ugk). Given s € Std(X), u(s), a A-tableau of type u, is defined by replacing each entry m
in s by (4, k) if m is in the i-th row of the k-th component of t+.

We define a total order on the set of pairs (i,k) by (i1,k1) < (i, ko) if k1 < ko, or
k1 = kg and iy < ip. Let A € P, ,, and p € G, ,,. Suppose that S = (S(l), . ,S(r)) is a
A-tableau of type . S is said to be semistandard if each component S*) is non-decreasing
in rows, strictly increasing in columns, and all entries of S*) are of the form (i,1) with
[ > k. We denote by To(A, i) the set of semistandard A-tableaux of type p.

Let us consider the special case when r = 1. Suppose that A, u € C;,,. A A-tableau S
of type u is said to be row semistandard if the entries in each row of S are non-decreasing.
S is said to be semistandard if A € Py, S is row semistandard and the entries in each
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column are strictly increasing. Assume that A,u € €y, and put Dy, = Dy N D;l.
Then Dy, is the set of minimal length elements in the double cosets Gx\&,,/S, and the
map d — p(t*d) gives a bijection between the set D ap and the set of row semistandard
A-tableaux of type p.

Let d € Dy, and put S = p(t*d), T = A(t*d™1). Then S and T are both row
semistandard, and we have

Z ¢ Wz, = Z ¢®@g, = Z @@z gs. (3.1)

y€Dy weGAdS,, z€Dy
A(tHy)=T u(trz)=S
For any K € C,,, we define its type a(k) by a(k) = (ni,...,n,) with n; = |k
Assume that A € P,.,, and p € C,.,,. We define a subset ‘J'ar()\, w) of To(A, ) by

To (A p) = {S € To(\, 1) [a(X) = a(p)}.

Take S € To(\, p). One can check that S € T (A, p) if and only if each entry of S*) is of
the form (i, k) for some i. Moreover, if s € Std(A) is such that pu(s) = S with S € T4 (A, p),
then the entries of the i-th component of s consist of numbers a; + 1,...,a;11, where
a; = Si_% np. In particular, d(s) € &, for a = a(X).

Take S € Tf (A, ). Let 51 = first(S), which is the unique element of Std(X) satisfying
the property that p(s1) = S and that s1 > s for any s € Std(A) such that p(s) = S. Let
a = a(A) = a(p). Then d = d(s1) € S,, which is given as d = (dy,...,d,) with dj a
distinguished double coset representative in &, \S,, /& u(k) - From BI) we have

> Dongag = > 0w = hgaz, (3.2)
s€Std(X) weG\dG,,
n(s)=S

where h = 3" g,, the sum running over certain elements v € Sy.
For each p € G, ,,, let M¥ =m,Y, ,. The following lemma gives a basis of M* as an
R-module.

Lemma 3.1. For each p € C,.p,, {mpugq|d € Dy} is an R-basis of MH.

Proof. Since myugq = > Upgwa for each d € D, and hence {m,gq} is linearly

weS,,
independent. Since myt; = (p, ymyu by [ER, Lemma 11(4)] and myg, = ¢"™“m,, for
w € &, then the set {mygq|d € Dy} spans M* by [24). Thus, {mugq|d € Dy}, or

O

equivalently, {m,,gqq) |t € r—Std(u)} is an R-basis of M.

We now construct a basis of M* related to the cellular basis {me}. For S € T& (A, p)
and t € Std(X), we define

met = Z g dENHED)
5€Std(A)
H(s)=S

We have
Lemma 3.2. Let S € Tg (A, p) and t € Std(X). Then mg; € MH.
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Proof. By ([B.2]) we have

s€Std(A)
m(s)=S

= """z, gah* Usgago-

Since h = Y gy, where v € Sy, hence Uy commutes with h* by [ER, Lemma 11(3)].
Since d € &, with & = (), Uy commutes with g by the same reason. Noting that
a = a(X) = a(u), we have Uy = Uy,. Thus, we see that

Tpggh Ux = 2 Upgyh™ € mp Y, = M*,
and mgg € M* as required. O
Proposition 3.3. For each p € C,.,,, M* is free with an R-basis

{mse| S € TS (A, p) and t € Std(X) for some X € Py, }.

Proof. The basis elements ms; contained in the expression of mg; are disjoint for different
mgy. It follows that mg; are linearly independent. By Lemma Bl M* is a free R-module,
and its rank is equal to the number of {mg} given in the proposition by [SS, Lemma
2.5(i1) and Corollary 4.5(ii)]. Hence, any element in M# can be written as a linear
combination of various mg; with coefficients in the quotient field of R. But since the set
{ql(d(ﬁ)”l(d(t))mst} is an R-basis of Y, ,, these coefficients are actually in R. This proves
the proposition. ]

Let pu,v € G, be such that a(n) = a(v) = a. Put o = (n1,...,n,). Let us take
d € Dyp N B,. We have d = (dy,...,d,) with dj, € D, k), with respect to &y, . Then

we can define a map gpfw MY — MH* by

SDZV (ml/h) = Z ql(w)Uquh

weS,dS,
for all h € Y, . In fact, by (B.I]), we have
Z ql(y)U“gZUGu — Z ql(w)U“gw — Z ql(x)mugm (3.3)
YEDL NG WEGLdS, 2€DuNGa
p(ty)=T v(thz)=S

where S = p(td) and T = v(t*d~!) are row semistandard tableaux. Noting that U,, = U,
and y € &,, we have Uy gyry, = g,Upxy = gymy, and @ZV is well-defined.

The proof of the next proposition is inspired by that of [SS, Proposition 5.2], although
it should be noted that the basic set-up there is different from ours. It allows us to restrict
ourselves to considering the subset Ty (A, p).

Proposition 3.4. Let p,v € C,,,. Then

(i) Assume that a(p) # o(v). Then Homy, , (MY, M#) = 0.

(ii) Assume that a(p) = a(v). Then Homy, (MY, M*) is a free R-module with basis
{¢f | d € Dy NG}



10 WEIDENG CUI

Proof. Suppose that ¢ € Homy, , (MY, M*). Then, for all h € Y,,,, we have ¢(m,h) =
©(my,)h; hence ¢ is completely determined by ¢(m, ). Since ¢(m,,) € M*, by Lemma [31]
there exist some ¢, € R such that o(my) = 3 cp, Camuge- By [ER, Lemma 10(49)], for
each k, we have
o(mutr) = p(C, (kM) Z Cp,, (k) CxMp G- (3.4)
€Dy,

Now assume that ¢, # 0 for some y € D,,, which is equal to some d(s) for some row
standard p-tableau s. Then we have

(eympugy)te = cymplra)-19y = Cp, (kd(s)~1)CyMuYy-
Since s = t*d(s), we have that pu(k:d(s)_l) = p,(k), and hence

(cympugy)ts = Cp, (k) CyMugy- (3.5)
By comparing [B4]) and [35), we have pu (k) = p,(k) for all k = 1,...,n. This implies
that a(p) = a(v). Thus, (i) is proved.

Now assume that a(p) = a(v) = a. Since pp (k) = pw (kd(s)™1) forallk = 1,...,n, we
must have y = d(s) € &,. Let d be the unique minimal length element in &,,y&,,. Then
d € Dy N S,, and a similar argument as in the proof of [Mal, Theorem 4.8] implies
that cq # 0. Set ' = ¢ — cqf,. Then ¢’ € Homy, , (MY, M*), and ¢'(m,) can be
written as ¢'(m,,) = er@u azMyu gy, where a, = ¢, if 6,26, # 6,d6,, and a, = 0 for
x € 6,dS, by the argument as in the proof of [Mal, Theorem 4.8]. Hence, by induction
we can write  as a linear combination of @ZV with d € Dy, NG, as required.

Finally, we have to show that {cpflw |d € Dy, NSy} is linearly independent. This
follows from the fact that (,DZV (my) is a linearly independent subset of M# since the set
{Ungw} is linearly independent by the basis theorem for Y. ,,. O

We write M¥* = (M"¥)* =Y, ,,my. As a corollary to Proposition B4], we have the next
result.

Corollary 3.5. Let p,v € C,j,. Then Homy, , (MY, M*) and M** N M#* are canonically
1somorphic as R-modules.

Proof. Every homomorphism ¢ in Homy, , (MY, M*) is determined by ¢(m,,), and more-
over, p(my) € M¥* N M# by Proposition 3.4l As a result, the map Homy, , (M"Y, M*)
— MY* N M* given by ¢ — ¢(m,,) is an isomorphism of R-modules. O

Remark 3.6. It is shown in [CR, 61.2] that whenever A is a quasi-hereditary algebra, a €
A and J is an ideal of A then Hom 4(aA, J) = AanJ. By [ChPA1, Proposition 10] (see also
[C1, Corollary 4.5]), Y,.,, is quasi-Frobenius, so this gives another proof of Corollary 3.5.

Let p,v € G,y and A € P, We assume that a(p) = a(v) = a(A). For S € Tf (A, p),

T € T4 (A, v), put
T = Z MA@ HA®)
st

where the sum is taken over all s,t € Std(\) such that p(s) = S and v(t) = T.
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Proposition 3.7. Suppose that p,v € C,,, with a(pn) = a(v). Then the set
{mst |S € TS (A p) and T € Tg (A, v) for some XA € P}
is an R-basis of MY* N M.

Proof. Since

msrt = Z m:kl‘sz Z mst,
)

s€Std(A) teStd(A
n(s)=Ss v(t)=T

we see that mgr € MY* N M# by Lemma Moreover, the elements mgr are linearly
independent since the basis elements mg involved in the mgr are distinct. Now suppose
that h €¢ M¥*NMH. Since h € Y, ,,, we may express h with respect to the standard basis,
that is, we may write h = ) reymsg for some 75 € R. Since h € M*, by Proposition B3]
if ro¢ # 0 then p(s) € Tg (A, ) for some X € P, and re = ryy whenever u(s) = p(s').
Similarly, since h € M"*, if ro # 0 then v(t) € T (A, v) for some X € P,.,, and re = roy
whenever v(t) = v(t'). Consequently, if p(s) = p(s') € T4 (A, p) and v(t) = v(t) €
Ta (A, v), then 75 = rg¢ = rgy = 7ep. This proves the proposition. O

Definition 3.8. Suppose that M, = @ pee, ., M . We define the Yokonuma-Schur alge-
bra YS], = YS,(r,n) as the endomorphism algebra

YS; = EndYr,7L(M£)7

which is isomorphic to € Homvy, , (MY, M*).

1,vECrn
Let S € T4 (A, ) and T € T (A, v). In view of Proposition B.7], we can define psr €

Homy, , (MY, M") by

psT(myh) = mgrh (3.6)

for all h € Y, ,,. We extend ¢gt to an element of YS], by defining ¢gt to be zero on M*
for v # k € €. For any X € P, let T (A) = Upece, . T3 (A, ). We denote by YSZ)

the R-submodule of YS! spanned by ¢gr such that S, T e ‘J’Sr (v) with v > A. Then we
have the next theorem.

Theorem 3.9. The Yokonuma-Schur algebra YS] is free as an R-module with a basis
{os1|S,T € T (A) for some XA € Ppp}.

Moreover, this basis satisfies the following properties:

(i) The R-linear map * : YS;, — YS! determined by p&p = @rs, for all S, T € T (A)
and all X € P, is an anti-automorphism of YS;,.

(ii) Let T € T4 (X) and ¢ € YS,,. Then for each V € Tg (X), there exists rv = ry 1., €
R such that for all S € T (X), we have

psTe= > rypsy mod YSI).
veTT ()

In particular, this basis {¢@sT} is a cellular basis of YS,.
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Proof. The proof is similar to that of [Mal, Theorem 4.14] and [DJM, Theorem 6.6]. By
Corollary and Proposition B7] the set {¢gr} is an R-basis of YS . Next we need to
verify (i) and (ii).

(i) Let X € P,.,, and p, v € €y, and take S € T (A, ), T € Ty (A, v). Then p§p(my,) =
mts = (mgr)* = (psT(my))*. By the R-linearity, we have ¢*(m,) = (p(my))* for any
¢ € Homy, , (MY, M*). Given ¢ € Homy, (MY, M*) and ¢ € Homy, , (M", M?>), we
may assume that g = K since otherwise 1 = 0. Write p(m,) = x1m, and ¢ (m,) =
x9my, for some z1,x2 € Y, ,,. We have

() (ma) = (Wip(m)” = (waarm,)” = myaial
= ¢ (mp)ay = ¢ (muxy) = "¢ (ma).
Hence, (¢¢)* = ¢*¢* and * is an anti-automorphism.

(ii) Take S € Tf (A, p), T € Td (A, v). We may assume that ¢ € Homy, , (M*, M)
for some k € C,, with a(k) = a(v). We have p(m,) = m,h for some h € Y,,. Then
wstp(my) = mgrh. By Corollary B35 we see that mgrh € M** N M#. Hence by Propo-
sition B7, we may write mgrh = ZU’V ruvmuy, where ryy € R, and the sum is over
U € T (e, p) and V € T3 (v, k) for some o € P, ,,. By applying Theorem 27ii), we can

write mgrh as
msth= > rymsy+ Y. Y rovmuy,

VeTS () @D 1T (o)
ak V'eTS (au,k)

where v, ry/ye € R. Therefore, we have

PSTY = Z rvesy  mod YSEfL‘.
VeTy (A k)

We are done. O

For each A € P,.,,, let T = A(t}). Then T* € TS (A, A) and T? is the unique semis-
tandard A-tableau of type A. Moreover t = t* is the unique element in Std(\) such that
A(t) = TA. Thus, mpapa = map = my, and px = @papa is the identity map on M*.

The Weyl module W? is defined as the right YS! -submodule of YS’ /YS? A spanned
by the image of px. For each S € T (A, p), we denote by g the image of ppag in
YS,,/YS? 2. Then by Theorem B9, we see that W™, as an R-module, is free with basis
{es IS €Ty (N}

The Weyl module W possesses an associative symmetric bilinear form, which is com-
pletely determined by the equation

oraserTr = (P8, pT)A  mod YS?J}{

for all S, T € T4 (X). Note that (ps, 1) = 0 unless S and T are semistandard tableaux of
the same type. Let L» = W /radW?, where radW?> = {x € W | (z,y) =0 for all y €
WAL
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Proposition 3.10. Suppose that R = K is a field. Then for each X € P,,, L> is an
absolutely irreducible YS! -module. Moreover, {L* | X € P,,,} is a complete set of non-
isomorphic irreducible YS; -modules.

Proof. For each X € P,.,,, we have
OraTAPTATA = (PTa, )@ mod YSTD,Q .

But since ppara@rapa = @a is the identity map on M, we see that (o, pa) = 1, and
so L™ is nonzero. Then the assertions follow from [GL, (3.4)]. O

IfX p € Py, let dy, denote the composition multiplicity of L* as a composition factor
of WX, Then (dy,) Auc?,,, is the decomposition matrix of YS;. The theory of cellular
algebras [GL, (3.6)] yields the following result.

Corollary 3.11. Suppose that R = K is a field. (dxu)xpep,., is unitriangular. That is,
for A, € Py, we have dyy = 1 and dyy, # 0 only if A> p.

Combining Proposition BI0] with [GL, (3.10)], we have the next result.

Corollary 3.12. Suppose that R = K is a field. The Yokonuma-Schur algebra YS], is
quasi-hereditary.

Remark 3.13. For each A € P,, and for each t € Std(A), let my € SA be the image
of my¢ under the map Yr,n/Y?, 7}{ Then {m} = {mAgd(t)} gives an R-basis of S*. For
T € T4 (A, ), put mp = 3, ql(d(t))*'l(d(t/\))mt € S*, where the sum is taken over all t
such that p(t) = T. Since mr is the image of myap, one obtains a well-defined map ¢t €
Homy, ,, (M*, 5*) by ¢r(my,) = mr, which is regarded as an element of Homy, , (M, S*)
by extending by 0 outside. In a similar way as in [Mal, Proposition 4.15], we see that W
is isomorphic to the YS]-submodule of Homy, , (M}, S*) with basis {1 | T € T5 (A)}.

4. SCHUR FUNCTORS

In this section, we will follow the approach in [HM2, §4.3] to define an exact functor
from the category of YS;-modules to the category of Y, ,-modules. For an algebra A, let
A—mod be the category of finite dimensional right A-modules.

Let (:37“7” = G, nU{w}, where w is a dummy symbol. Set M*“ =Y, ,, and Mﬁ = M SM®>.
The extended Yokonuma-Schur algebra is the algebra

YS! = Endy,, (M).
Suppose that A € P,.,,, and set T (A, w) := Std(A). Let my, = 1 so that M¥ = my,Y,,.

Let t¥ =1 and myw = 1. We regard YS;, as a subalgebra of YS? in the obvious way.
Extending B0, if A € Py, v € Cpp, and S € Ty (A, ), T € T (A, v), we define

st (myh) = mgrh

for all & € Y,.,.. Then wgr € YSI. For each A € P, set T4 (A) = Ty (A UTF (A, w) =
T (A) UStd(N).
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Proposition 4.1. The algebra YSZ 1s a cellular algebra with a cellular basis
{osT | S, T € TS (N) for some A € P}

Moreover, if R =K is a field, then YSZ 18 a quasi-hereditary algebra with Weyl modules
{WX|X € Prpn} and simple modules {L* | X € P, }.

Proof. By definition, YS, is a subalgebra of YSZL and, as an R-module,
YS! = YS!, @ Homy,,, (M*, M") @ Homy, , (M7, M*) ® Endy, , (M*, M*).

For p € é,«,n, there are isomorphisms of R-modules M* = Homy, ,(M“, M*) given by
mse — s, for S € T (A, p) and t € Std(A) with some A € P,.,,. For v € Cp.p, there
are isomorphisms of R-modules M** = Homy, , (M", M“) given by mgr + @s1, for s €
Std(A) and T € ‘J'ar (A, v) with some X € P, ,,, where mgsr = m7,. Therefore, the elements
in the statement of this proposition give a basis of YS; by Proposition and Theorem
5.9

Now suppose that R = K is a field. Repeating the arguments from Theorem and
Proposition shows that YSZL is a quasi-hereditary cellular algebra. O

By Proposition[4.1] there exist Weyl modules W2 and simple modules L* = WX /rad WA
for YS!, for each A € P,.,.. Let {os |S € ‘.TSF()\)} be the basis of W*. For each p € C,.,,,
let ¢, be the identity map on M*. We extend ¢,, to an element of YS], by defining ¢,, to
be zero on M* for pu # Kk € C, . In particular, ¢, = pTuTe if p € P, . As an R-module,
every YS;-module M has a weight space decomposition

M= @ M, where M, =DMg,. (4.1)
peCrpn
Set ¢ = Zueem ¢u and let ¢, be the identity map on M* =Y, ,. Then ¢}, is the
identity element of Y§S;, and ¢j, + ¢, is the identity element of YS},. By definition, ¢J,
and ¢, are both idempotents in YS] and ¢] YS! ¢F =2 YS] . Therefore, by [HM2, (2.10)],
there are exact functors
F“ :YS' —mod — YS” —mod, G¥ :YS" —mod — YS! —mod
given by F";(M) = My, and G%(N) = N ®vysr ngYSZ. By [HM, §2.4], there are functors
HY := Hyy, O% := Oy, OF := O%» from YS/,—mod to YS]—mod such that H%(M) =
M/Og(M).
Lemma 4.2. Suppose that R = K is a field. Then the functors ¥ and G induce

mutqally inverse equz"vale.nces of categories between Y.S;—mod and YS] —mod. Moreover,
FO(WA) 2 WA and F(LA) = L™ for all X € Py,
Proof. Let M be a YSZ—module. Then, extending (41]), M has a weight space decompo-
sition

M = @ M,,, where M,, = My,,.

BECrn



YOKONUMA-SCHUR ALGEBRAS 15

Then, essentially by definition, F¥ (M) = @ Ae?,., Mx. That is, F¥ removes the w-weight
space of M. In particular, F¥(W*) = W* and F¥(L*) = L for all X € P,,. The
fact that F¥(L*) = L* for all u € P,,, implies that O*(M) = M, O¥(M) = 0 for
all M € YS! —mod. Therefore, H¥ is the identity functor and G¢ = H¥ o G¥. Hence,

this lemma is an application of the theory of quotient functors given in [HM2, Theorem
2.11]. O

The identity map ¢, on Y,.,, = M* is idempotent in YSZL and there is an isomorphism
of R-algebras ¢, YS; vy = Y, . Therefore, by [HM2, (2.10)], there are functors

F7 . YS'—mod — Y, ,—mod, G :Y,,—mod — YS! —mod
given by F7 (M) = Mg, = M, and G,(N) = N ®v,,, ¢, YS!

Proposition 4.3. Suppose that R = K is a field. Then there is an ezact functor F7,
YS;,—mod — Y, ,—mod given by ¥}, (M) = (M ®vysr ©,YS})¢w, for M € YS;—mod,
such that if X, € Py, then Fr (W) = SA and

D if p e %r,m

0 ifpdKen (4.2)

Fy(LF) = {
Proof. By definition, F? = F” oG, so F7 is an exact functor from YS? —mod to Y, ,—mod.
The functor F;’L is nothing more than projection onto the w-weight space. Hence, if
A € P, then FI(W?) is spanned by the maps {¢ | t € Std(\)}, since Tf (A, w) =
Std(A). The map ¢ — my, for t € Std(X\), defines an isomorphism F7 (W*) = S of
Y, ,-modules. Therefore, FT,(W?) 22 SA by Lemma A2
By [HM2, Theorem 2.11], F},(L*) is an irreducible Y, ,-module whenever it is nonzero.
Using the fact that F7(W*) = S* and Corollary B.IT}, a straightforward argument by
induction on the dominance ordering shows that Fj (L#*) = D if p € K, , and that
F7 (L*) = 0 otherwise. O

Since F] is exact, we obtain the promised relationship between the decomposition
numbers of YS], and Y, .

Corollary 4.4. Suppose that R = K is a field and that X € P, p € K, . Then we
have [S» : DF] = [WA : LH].

Lemma 4.5. (A. double centralizer property) There are canonical isomorphisms of alge-
bras such that YS;, = Endy, , (M};) and Y, , = Endyg, (My). In particular, the functor

F;’L 1s fully faithful on projectives.

Proof. The first isomorphism is the definition of YSZ, whereas the second follows directly
from the definition of YS], because

Yr’,n = HOIIlYTm (Yr’,naYr,n) = (:DUJY.SZ(:DUJ = EndY'ST (@wYSZ)a

and ¢, YS! = M’ as a right YS”-module. O
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Corollary 4.6. YS] is a quasi-hereditary cover of Y,, in the sense of Rouquier [Ro,
Definition 4.34).

Proof. Recall that Mfl = @WYSZ is a projective Y'SZ—module. Using the Morita equiva-
lence between YS! and YS7, we see that M is a projective YS! -module. Because F” is
fully faithful on projective modules by Lemma and F) is the composition of F"Z with
an equivalence of categories, so is F] . This implies that YS] is a quasi-hereditary cover
of Y, ,, in the sense of Rouquier [Ro, Definition 4.34]. O

5. TILTING MODULES

In this section, we introduce the tilting modules for YS], and the closely related Young
modules for Y, ,, following [Ma2]. Throughout this section we assume that K is a field,
which can be regarded as an R-algebra.

5.1. Young modules. Recall from (@) that every YS]-module has a weight space de-
composition. Analogously, as a right YS; -module, the regular representation of YS; has
a decomposition into a direct sum of left weight spaces

YS, = @ Zt,  where ZF = ¢, YS], for p € C,. .
Heer,n

The next lemma gives some properties of the right YS] -module Z*.

Lemma 5.1. Assume that p € C, . Then the following hold:
(i) Z¥ is free as an R-module with a basis

{osT S €TH(A ), T TS (A v) for somev € €y and X € Ppy )

(i) Let M¥* = Homvy, , (M, , M*#). As right YS] -modules, we have Z¥ = MH.
(ili) As Y, ,-modules, we have F (Z*) = M*H.

Proof. (i) It follows from Theorem [3.91
(ii) It follows from (i).
(iii) We have

F(Z%) = F}, 0 G (0uYS}) = Fi (04 YS], @y ¢}, YS])
= I (0, YS)) = Homy, , (Y, n, MH) 22 M*.
We are done. N
The next lemma claims that each Z* has a Weyl filtration.
Lemma 5.2. Assume that p € C,,,. Then Z* has a Weyl filtration
ZM =My DMy D DMy DMp1=0

such that for each 1 < i < k there exists some N; € P, with a(X;) = a(p) satisfying
M;/M; 11 = Wi, Moreover, ${1 < i < k|X; = A} = 1T (A, u) for each A € P,.,, with
a(A) = a(p).
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Proof. Choose a total ordering {Si,...,Sg} on the set UAe?r,n(-TSF(A, p) such that i > j
whenever \; > A;, where S; € T (i, ), Sj € Tg (Aj, ). For each 1 <i < k, let M; be the
R-submodule of Z* with basis {¢g,r|j > i and T € T5(A;)}. Then M; is a YS],-module
by Theorem Further, there is an isomorphism of YS] -modules Whi =~ M;/M; 1
given by o1 — @s,r + M1 for T € T (A;), because M; N YS,‘?ﬂi‘i C M;4q. Since YS] is
quasi-hereditary, [Z* : W?] is independent of the choice of Weyl filtration. O

Applying the Schur functor F], by Proposition and Lemma [B.](iii), we also have
the following result.

Corollary 5.3. Assume that p € C,.,,. Then M* has a Specht filtration
M“:MlDMQD-”DMkDM]H_l:O

such that for each 1 < i < k there exists some N; € P, with a(X;) = a(p) satisfying

M;/M; 1 =2 S, Moreover, #{1 < i < k| X = A} = T (A, p) for each X € P,.,, with

a(A) = a(p).

Since ¢, is an idempotent in YS), Z* is a projective YS;-module. Notice that if
To(A, ) # 0, then XA > p. Thus, W appears in Z* only if XA > p. For each p € Py,
let P* be the projective cover of L*. Then by [Mal, Lemma 2.16], P* has a filtration
by Weyl modules in which W* appears with multiplicity [P* : WA] = [W* : L*]. From
these facts, we can easily get the following lemma.

Lemma 5.4. Assume that p € P,.,,. Then
7* = Pt o @ cex, P
A

for some non-negative integer cx,.

Suppose that XA € P,,, and S € T4 (A, ), T € T5 (A, v). Recall that MH is defined as
Homvy, , (M, M*). Thus, we can define a YSj-module homomorphism ®gp : MY — M#
by ®s1(f) = st f for all f € M¥. In fact, these maps give a basis of Homygr (M", MF).

Lemma 5.5. Suppose that p,v € C,,. Then Homygr (MY, MF) is free as an R-module
with basis {®sr |S € Tg (A, u), T € T4 (A, v) for some X € P}

For each A € P, ,,, let YA = Fr (P*), which we call a Young module of Yrn.

Proposition 5.6. Suppose that R = K is a field and that X € P, . Then the following
hold:
(i) Each Y is an indecomposable Y, ,-module.
(ii) If p is another r-partition of n, then Y* = Y if and only if X = p.
(iii) We have
M =Y o P aay”.
v>A

(iv) The Young module Y> has a Specht filtration in which S* appears with multiplicity
[YA: SH] = [WH: L.
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Proof. (i) By Corollary [0 the functor F) is fully faithful on projective modules, so
Endy, , (Y?) = Endygr (P?) is a local ring since P* is indecomposable.

(i) If YA 2 V¥, then Homy, , (Y*,Y*#) contains an isomorphism and this lifts to give
an isomorphism P* = P so A = p.

(iii) Applying the Schur functor FJ, it follows from Lemma [5.1](iii) and Lemma 5.4

(iv) Recall that P> has a Weyl filtration P =P >DP > ---P, D Pry1 = 0.
Moreover, for each g € Pp.p, #{1 < i < k| Pi/Piy1 = WH} = [P} : WH] = [WF 1 L]
Setting Y; = F7 (P;), and using Proposition B3] gives a filtration of Y with the required
properties. ]

The next proposition identify the projective Young modules, and its proof is similar to
that of [HM2, Proposition 5.9)].

Proposition 5.7. Suppose that p € X, ,,. Then Y# is the projective cover of DF.

Proof. Recall that P* is the projective cover of L* and F},(P*) = Y¥ F] (L¥*) = D if
p € X, Since F], is exact, there is a surjective map Y# — DH. Therefore, it suffices to
show that Y# is projective since it is indecomposable by Proposition [B.6[(i).

Recall that YS!, = EndYT,n(Mﬁ), where M = M} @©Y,.,,. There is also a Schur functor
F7 from YSI —mod to Y, ,—mod given by ¥ (M) = M, In particular, 7 (M) =Y,
as right Y, ,,-modules.

As a YS'-module, M! = ¢,YS!. In particular, M/ is a projective YS'-module. If
A€ P, let P be the projective cover of the irreducible YSZ—module L. The multiplicity
of P* as a summand of M is equal to

dim Homy ¢, (M", L) = dim Homy g, (o YSI, L) = dim L@, = dim D*.

Consequently, M = Direx, , (dim DM P> as a YS?-module. By definition, Y = F7 (P*) =
F7 (P) for all A € P,.,,. Therefore,

Yo 2F5(M)) = P (dim DY
AEKT‘,’!L

as a right Y, ,-module. The result follows. O

5.2. Twisted Young modules. Let Z = Z[%][q, ¢~ 1,¢], where ¢ is an indeterminate,

Z

and let YZjn be the Yokonuma-Hecke algebra over Z. It is easy to see that Y[, has a
Z-algebra involution ’ which is determined by

gyl, = Gi, q/ = _q_lv and t; = t]v Cj/ = (T—j-i—l

forl<i<n—land1<j<n.

For each p € Cpp, let y, = (zu) = Zwegu(—q')_l(“’)gw, and set n, = (Uyzy) =
U, yu- Suppose that A € P,.,, and 5,t € Std(X). We define ng := g;(s)nAgd(t). Then by
definition we have ng = (mg)’. Because  is a Z-algebra involution, {ng} is a cellular basis
of YTZ,n by Theorem 2.7 The ring R is naturally a Z-module under specialization; that is,
q acts on R as multiplication by ¢. Because Y,.,, is R-free, this induces an isomorphism of
R-algebras Y., = Y%,n@)sz viagi = gi®lg (1 <i<n—-1)andt; = t;®@1z (1 <j<n).
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Hereafter, we will identify the algebra Y, , and YTZ,’n ®z R via the isomorphism above.
Thus, we have the following result.

The Yokonuma-Hecke algebra Y, ,, is free as an R-module with a cellular basis {nq|s,t €
Std(A) for some A € Py}

Now we can apply the general theory of cellular algebras. For each A € P,.,,, we define
the dual Specht module Sy to be the right Y, ,-module (nx + Y.})Y,,, where Y\ =
(Y? i‘)’ is the two-sided ideal of Y, ,, with basis ny, with u,v € Std(v) for various v € P,.,
such that v > A. Then Sy is R-free with basis {n|t € Std(\)}, where ny = npa+ Y.y Let
Dy = Sy/rad Sy, where rad Sy is the radical of the bilinear form on Sy which is defined

with respect to the cellular basis {ns}.
For each p € €., let N¥ =n,Y, . If S € T (A, ) and t € Std(\), we define

ngi= 3 (—g) A0

seStd(A)
H(s)=S

From the definition, we have ng; = (mg)’. Therefore, Proposition and the usual
specialization argument show that the following holds.

Corollary 5.8. Suppose that p € C,,. Then N* is free as an R-module with basis
{ns¢|S € Tf (A, ) and t € Std(X) for some X € Prp }.

Let p,v € €., and X € P,,,. Suppose that a(u) = a(v) = a(A). For S € Tf (A, p),

T € T4 (A v), let

5, teStd(A)
pn(s)=s, v(t)=T

We can now define the twisted Yokonuma-Schur algebra as
YS;L = EndYr,n (N£)7

= @D, cc,.,, N#. For S € T (A, ) and T € T (A, v), we can also define the
homomorphism g by ¢gp(nah) = davnsrh for all h € Y,, and a € C,,. Then
s € YS]'. The proof of the next proposition is in exactly the same way as that of [Ma2,
Proposition 4.3], and we skip the details.

where N”

n

Proposition 5.9. (i) The twisted Yokonuma-Schur algebra YS)' is free as an R-module
with a cellular basis

{os7 S, T € TH(X) for some p,v € Cppy and X € Prp, }.

(ii) The twisted Yokonuma-Schur algebra YS! is quasi-hereditary.
(iii) The R-algebras YS,, and YS]' are canonically isomorphic.

Let Wy and Ly (X € P,,,) be the Weyl modules and simple modules of YS}!, respec-
tively; they are defined in exactly the same way as the corresponding modules for YS/ .
As in Section 4, we can define an exact Schur functor F}' from YS]'—mod to Y, ,—mod.
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Moreover, we have F}'(Wy) = Sy, F}'(Lx) = Dy and [Wy : L] = [Sx : D,] whenever
D, #0.

For each X € P, ,,, let Py be the projective cover of Ly. Define Yy = F}'(Py), which is
called a twisted Young module. The next proposition can be proved in exactly the same
way as in Proposition

Proposition 5.10. Suppose that R =K is a field and that p € P,.,,. Then we have
(i) Each'Y,, is an indecomposable Y, n-module.
(ii) If A is another r-partition of n, then Yx =Y, if and only if X = p.
(iii)

N2y, & 6P eauYa,
AD> 1

where the integers cy,, are the same as those appearing in Lemma [5]]
(iv) The twisted Young module Y, has a dual Specht filtration in which the number of
subquotients equal to Sx is [Wx : L]

5.3. Non-degenerate bilinear forms. If ¢ is a composition, its conjugate is the parti-
tion o' = (0}, 0%,...), where o/ is the number of nodes in column ¢ of the diagram of o.
IfA =D ... A"y € e, its conjugate X is the r-partition X = ((A)), ... (A1),
Similarly, the conjugate of a standard A-tableau t = (t(l), e ,t(r)) is the standard X'-
tableau ¢ = (¢, ..., (tM)), where (t*¥)) is the tableau obtained by interchanging the
rows and columns of (),

If v is a standard tableau, let v be the subtableau of v which contains 1,2,... k,
and let shape(v;) be the associated r-composition. Let A, € P,,,. Suppose that s is a
standard A-tableau and that t is a standard p-tableau, we say that s dominates t, and
write s > t if shape(s ;) > shape(t);) for all 1 <k < n.If s> t and s # t, then we write
s > t. Note that s > t if and only if ' > §'. We extend the dominance order to pairs of
standard tableaux by defining (s,t) > (u,v) if s > u and t> v. We write (s,t) > (u,v) if
(s,8) = (u,0) and (s,t) # (u,v).

For each A € P, ,, let ty = (t)‘/)’ ; that is, t) is the standard A-tableau with the

numbers 1,2, ..., n entered in order first down the columns of tg\r), and then the columns

of t(;_l) and so on. If t € Std(\), we define two elements d(t) and d'(t) in &,, by
t = t*d(t) and t = tyd'(t). Conjugating either of the two equations shows that d’(t) = d(t).
Let wy = d(tx). In particular, we have wy = w;,l. Moreover, it is easy to see that
wx = d(t)d'(t)~! and [(wy) = I(d(t)) + I(d'(t)) for all t € Std(N).

Recall that there is a unique anti-automorphism * on Y, , such that g7 = g; for 1 <
i < n-—1and tj- = tj for 1 < j < n. Given a right Y, ,-module M, we define its
contragredient dual M® to be the dual module Homg(M,R) equipped with the right
Y, n-action (ph)(m) = @(mh*) for all ¢ € M® h € Y,, and m € M. A module M
is self-dual if M = M®. Equivalently, M is self-dual if and only if M possesses a non-
degenerate associative bilinear form (-,-), where (-,-) is associative if (xh,y) = (x,yh*)
forall z,y € M and h € Y, ,,.
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Recall that the following Jucys-Murphy elements J; (1 < ¢ < n) in Y, , have been
introduced in [ChPA1] by induction

Ji:=1and J;j1q1 :=g;Jigi fori=1,...,n—1. (5.1)
If A € P, and t € Std(A), for 1 < k < n, we define the content of k in t as the element
ci(k) = ¢2U= if k appears in row i and column j of some component ) of t. The

following proposition is proved in [ER].

Proposition 5.11. (See [ER, Proposition 3].) Suppose that A € P, and s,t are two
standard A-tableauz. For each 1 < k < n, there exist ry € R such that

Mty = res(k)mst + D PupMuo, (5.2)
(u,0)
where the sum is over the pair (u,v) € Std?(p) = Std(p) x Std(u) such that (u,v) > (s, t)
and a(p) = a(X) with p € P,.,,. Moreover, we have

Mt = Cp, (k)Mst- (5.3)

Remark 5.12. There are two ways to define the dominance order on Std2('.Pr,n) =
{(s5,t) | 5,t € Std(\) for some A € P,.,}. If (5,t) € Std*(A) and (u,v) € Std*(u), then
we define
(s,) »(u,0) if A p,or A\=p and s >u and t> v.

By definition, (s, t) > (u,v) implies that (s, t) » (u,v), but the inverse is false in general.
In fact, it is proved in [ER] that the equality (5.2)) holds under the dominance order » .
But it is easy to see that the equality (5.2)) still holds under the stronger dominance order
>. Besides, the proof of Proposition E.11] essentially reduces to the case of » = 1, from
which we can easily get the second condition a(p) = «(A) in the summation of (5.2)).
These facts are crucial to the following arguments.

Let K = Q(q, ¢). We shall first consider the split semisimple K-algebra Yﬂfm = Y,%n Xz
K. In particular, we can apply all the results in [Ma3, Section 3].

We shall follow the arguments of [Ma3, Section 3] to construct a “seminormal” basis
of Y]En. For 1 < k < n, we define the following two sets:

C(k) := {c¢(k) | t € Std(A) for some X € P, },

and

C(k) := {Cp k) | t € Std(A) for some A € P, }.
Definition 5.13. Suppose that A € P, ,, and that s, t € Std(X).

(i) Let
- Jp—c tp — C
FFH( I co= 1 ¢ —é)' o4
k=1 > ceC(k) Ee@ p(k)
c#ci(k) e Cpy (k)

(i1) We set fo := Fyms Fy and gt := Fyne Fy

By Proposition 5.1l we can now apply the general theory developed in [Ma3, Section
3] to get the following results.
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Proposition 5.14. (i) Suppose that 5,t € Std(\) for some XA € P, In YK, we have

rn

Mgt = for + Z Tuo fuos (5-5)
(u,0)

where Ty € K and the sum is over the pair (u,v) € Std*(p) (u € Pp.p) such that ry, # 0
only if (u,0) > (s,t) and a(p) = a(N);

Nst = Gst + Z SuoGuv, (5.6)
(u,0)
where sy € K and the sum is over the pair (u,0) € Std*(v) (v € P,.,,) such that sy, # 0
only if (u,0) > (s,t) and a(v) = a(N).
(ii) The set {fo|s,t € Std(A) for some A € Pr.,} is a K-basis of YL,
(iii) For A,p € Prp, and s,t € Std(A), u,0 € Std(p), we have

JstJk = Ct(k)fsh Jstti = Cpt(k)fsta JstFy = 5t,ufsu7 (5-7)

and moreover, there exists a scalar 0 # v € K such that

fot fuo = {%f” YA=pandt=u (5.8)

0 otherwise.

In particular, ~¢ depends only on t and the set {fs | s,t € Std(A) and X € P, .} is a
cellular basis of Ygfn.

(iv) For X € Pp, and t € Std(X), we have Fy = %ftt. Moreover, these elements
{Fy |t e Std(X) for some X € P, }} give a complete set of pairwise orthogonal primitive
idempotents for Y;I,fn.

(v) For A € P,.,, and t € Std(X), we have

FiJy, = Jy Fy = cy(k) F, Fity = tp Fy = G ) Fre (5.9)

(vi) The Jucys-Murphy elements Jy, ..., Jn, t1,...,t, generate a mazximal commutative
subalgebra of Ygﬁl.

From the definitions, we see that for A € P,.,, and t € Std(X), we have (c¢(k)) = cy (k)
and Cr/u(k) = Cpy (k)- This implies the following lemma.

Lemma 5.15. For XA € P,,, and t € Std(X), we have F{ = Fy, and hence g = fl; in
YE

By Proposition 5.14Yiv) and Lemma 515l we can easily get the following result.

Lemma 5.16. Suppose that X\, p € P, and s,t € Std(X), u,0 € Std(p). Then in Y;Ifn,
we have fsgu = 0 unless t = u'.

By Proposition (.I14(i) and Lemma [5.10] we can easily get the following lemma.

Lemma 5.17. Let A\, pu € P,.,,. Suppose that s and t are standard A-tableaux and that u
and v are standard p-tableaux. If mgny, # 0, then u' >t and a(p') = a(N).
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Recall that {tlf1 o thng, |0 < ki, ky <7 —1and w € &,} is an R-basis of Y,.,,.
We can define an R-linear map 7: Y, , — R by

(5.10)

(5 thng ) 1 ifkj=ky=---=0 (mod r) and w = 1;
0 otherwise.

This map 7 was introduced in [ChPA1, Proposition 10] and was shown to be a trace form;
that is, 7(ab) = 7(ba) for all a,b € Y, ,. Moreover, we have

1 ifw ' =w and k; +1; =0 (mod r) for 1 <i < n;

k1 k Iy l
T(tF1 .. hn ey =
(f n Juwwrty ") {0 otherwise.

In particular, we get that 7(h*) = 7(h) for all h € Y, ,,.
We now define a symmetric associative bilinear form (-,-) on Y, ,, by (h1, he) = 7(h1h3).
We then have the following crucial result.

Theorem 5.18. Suppose that X = ()\(1), e ,)\(T)) € Prn and we choose all 1 < iy < iy <

- < iy <1 such that N X\G2) o \Ge) gre the nonempty components of [A]. Define
cp = |/\(ik)| for 1 <k <p. Let p € P,,. Suppose that s,t are two standard A-tableaux
and that u,v are two standard p-tableaux. Then we have

PGy Cip) ™2 .
—=L uw o) = (s,t);
(Migty M) = § vk (%) Fl.)=(s9 (5.11)

0 if (W, 0') B (s,0).

Proof. Suppose first that (mg, nyy) # 0. By definition, (ms, nyy) = 7(Mgtnpy), SO MstNpy 7
0; hence v" > t by Lemma [5.I7l Since 7 is a trace form and 7(h*) = 7(h) for all h € Y, ,,,
we also have 7(mgngy) = T(neumet) = 7(Msnyw); hence mygny, # 0 and v’ > s by Lemma
ETI7 Therefore, if (mgg, nyw) # 0, then (1, 0”) > (s,t).

Now assume that (u',v") = (s,t). Then gy, = ga( i) = 9d(s)9y(s)- Therefore, we have

tnt/ /)
T(9a(s) MAYd(t) Gy PN Ga(s'))
gd gd(g mAg’LU)\nA/)

(Mst, nery) = (M
(94
(
T( Gy MAGwA A
7(
(
(

T

T\MXGw TN G, *1)

T(UAE Ay 2AGuwr Un YN Gy, )

= T(UxE Ay Jur U EA,, Yn Guy, T2)- (5.12)
By definition, we have
1 2 ... ‘)\(il)‘ n—X@)| 41 ... n
wy = . . 5.13
A < JuoJ2oc Iy ki SR N (5:13)

where {j1, ja, ., jpany} = {n = A+ 1, ond and k1, ke b = {10 [AG])
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By (GI3)), we have
. 12 - A6 n_’)\(il)’+1 n
- . L (514
2 < kioke oo ke | J1 NG (5.14)

where {k1,ko, ..., k‘)\(ip)‘} ={n—|\%)|+1,...,n} and {Ji,... ,j|)\(¢1)‘} ={1,..., A}

Define Ay = {I;,Is,...,I,} as in Definition 23] By assumption, we have X' =
(O ADYY € P with (A@)) (WG (A being all the nonempty
components of [X]. Suppose that Ay = {I,,...,I{}, where I}, = {1,2,...,|\@)|}
and I} = {n — [\@)| +1,... n}. By definition 24, we have

uy Ea,, = 11 )z =€) - 11 (tn = Q) - EpEp - Ep. (5.15)
Ifr 41 (r b 1—ip) Ifr 41 (r+1—i1)

By (B.I3)), Lemma 1] together with the fact that gwty = ¢(4y,—19w, we get that

gw/\u’XEA)\, = urE4, Guw, - (5.16)
By (5.12) and (5.I6), we have
(Mst, Ngry) = T(EA\UAUXGwA YN Gy, TX)- (5.17)

By [ER, Lemma 10(49)], we have
tiUx = G, Ux if i € I}, for some 1 < k < p. (5.18)
Recall that S = {(1,(2,...,(-}. We also have, for any fixed r-th root of unity &,

II €—a)=rc (5.19)
EFaEeS
By (18) and (EI9), we get that
uxUx = rP(Gi, -+ Gi,) " U (5.20)
Combining (.17 and (5.20), we get that
(Mt narv) = 17(Giy -+ Giy) T T (B Ay UAGuwA YA Gy TA)- (5.21)

By GI0) and ¢; --- ¢ = (—1)""!, we have

p 1 P
T(Eayux) = H RN H ( H(—l)r_lCl>
PP ) I s f ey
= (Cn T Cip)_l P ! (ck) . (522)
rék=1\2
By (&21) and (522]), we have
P(Co o ()2
(Mgt ngre) = %T(gwkgp\/gw}\,x}\). (5.23)

rik=1\2
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Since G\ N*“*GSy = {1} and wy = w;,l is a distinguished (&y, Sx/)-double coset repre-
sentative, we have

Gur YN Gwy, TX = Z Guwy - (_Q)_l(u)gu : gw;1 : ql(v)gv
u€Sy/
vEG )
_ Z (_1)l(u)ql(v)_l(U)gw)\guwglv'
UEGA/
veEG )
Thus, we get 7(guwxYn'Gu,, o) = 1. Therefore, by ([B.23)), we have
rP(Giy o G )—2
(msg, ngv) = —Z5—5—.
ré=k=1 ( 2 )
We have proved the theorem. O

Remark 5.19. Theorem [5.I8 implies that 7 is non-degenerate. Consequently, Y, ,, is a
symmetric algebra.

The next corollary can be proved in exactly the same way as in [Ma2, Corollary 5.7]
using Theorem B.I8] which justify the term dual Specht module.

Corollary 5.20. Suppose that XA € P, . Then = S&’B.

IfS = (S(l), e ,S(T)) is a A-tableau of type p, we define the conjugate of S by S’ =
((SMY, ..., (SMY) which is a N-tableau of type u, where (S))’ is the tableau obtained
by interchanging the rows and columns of S0 for each j. A A-tableau S is called column
semistandard if S is semistandard. For A € P,.,, and p € C,,, let TS(A, pu) = {S| S €
TEV, ).

The proof of the next lemma is in exactly the same way as that of [Ma2, Lemma 5.8]
by making use of Lemma [5.171 We skip the details.

Lemma 5.21. Suppose that p € Cp,,, A € Pp;, and that myny # 0 or nymy, # 0 for
some standard X-tableauz w and v. Then p(u) is column semistandard and a(N') = a(p);
that is, p(u) € TS(A, ).

Remark 5.22. As mentioned in [HM1, p. 15], it is unfortunate that Mathas confused
the two partial orders > and » on Std?*(P,.,,) in [Ma2] and [Ma3]. Anyhow, we can adapt
the approach in [Ma3, Section 3| to get Proposition (.14 and then Lemmas [B.17 and B2T1
We leave the details to the reader; see also [HM1, Section 2| for details.

If S € T(X, w), let S be the unique standard A-tableau such that w(S) =S and d(S) is

a distinguished (&, &,,)-double coset representative; that is, d(S) is the unique element
of minimal length in its double coset.

Proposition 5.23. Suppose that p € C,,,. Then MH* is free as an R-module with basis
{mung |S € T®(A, ) and t € Std(X) for some X € P} and N* is free as an R-module
with basis {nymg |S € T®(A, ) and t € Std(X) for some X € P}
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Proof. We only prove the claim for M#. Recall that {ne} is an R-basis of Y., so M*
is spanned by the elements mne, where (s,t) € Stdz(i]’rvn). Furthermore, if my,ng # 0
then p(s) is column semistandard and a(X') = a(p) if (s,t) € Std*(A) by Lemma 211
Hence, M* is spanned by the elements mns, where p(s) is column semistandard and
(s,1) € Std*(\) for various A € P,.,, with a(X) = a(p).

For each such element m,,ns, where (s,t) € Std*(v) with a(v') = a(p). Since p(s) =
S is column semistandard, we choose S € Std(v) as above and get that p(t¥d(s)) =
p(td(S)). Thus, d(s) and d(S) lie in the same (&,, &, )-double coset. By definition d(S)
is the unique element of minimal length in its double coset, therefore we get mugz( o =
iq“mug[’;(s)n,, for some integer a. Because M* is R-free and the number of elements in
our spanning set is exactly the rank of M#*, thus we have proved the first claim. The
second statement can be proved in a similar way. O

Combining Lemma [5.21] and Proposition [5.23] we get the next result.

Corollary 5.24. Suppose that p € Cyp, A € Pr, and that u and v are two standard -
tableauz. Then myny, # 0 if and only if p(u) is column semistandard and a(X') = a(p).
Similarly, nymyy # 0 if and only if p(u) is column semistandard and c(N') = a(p).

Using Proposition [(.23] we can get the following result by repeating the argument of
Lemma (5.2

Corollary 5.25. Suppose that p € C,.,. Then there exist filtrations
MPr=H'SH?>...oHFO>HMY=0and NP =H, D Hy D> --- D H, D Hypg =0

of M* and N®, respectively, and r-partitions \i,...,Ax such that p' > X;, H'/H*! =
Sy, and H;/H;y1 = S for 1 < i < k. Moreover, for any A € P,.,, we have {1 < i <
kA=A =4TS(A, ).

Now we can define a bilinear form (-, -), on M* by
<mSt7 munUu>IL = <mSt7 nfjn>7
where mg¢ and myn;, rum over the bases of Propositions B.3] and [£.23], respectively.

The next proposition can be proved in exactly the same way as in [Ma2, Proposition
5.13]. We omit the details and leave them to the reader.

Proposition 5.26. Suppose that p € C, . Then (-,-), is a non-degenerate associative
bilinear form on M*. In particular, M* is self-dual. Sitmilarly, N* is self-dual.

By induction and using Propositions and (.10l we can get the next result.

Corollary 5.27. Let A € P.,,. Then the Young module Y and twisted Young module
Y are both self-dual.

5.4. Tilting modules. Recall that a YS],-module 7" is a tilting module if it has both a
filtration by Weyl modules W> (A € P,.,,) and a filtration by dual Weyl modules. Since
YS], is quasi-hereditary, by [Ri], for each XA € P, ,, there exists a unique indecomposable
tilting module T such that [T* : WA] = 1 and [T : WH] # 0 only if A > p. Moreover,
any tilting module T can be written as a direct sum of these T*’s. The T are the partial
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tilting modules of YS; . A full tilting module for YS] is any tilting module which contain
every TA (A € P,.,,) as a direct summand.

For each v € C,,,, let 6, € Homy, , (Y, ,, N¥) be the map, which is defined by 6, (h) =
nyh for all h € Y, ,,. We define

EY :=F%(0,YS]).

Since EY, by definition, is the set of maps from M) to N¥ which factor through 6,, we
get that EY is a right YS]-module.

Definition 5.28. Suppose that A € P, ,, and p,v € C,,. For S € T®(A,v) and T €
T4 (A, ) let Os be the homomorphism in E¥ determined by fst(mah) = Sapnumgrh
for all h € Y,, and all a € C,.,.

Proposition 5.29. Let v € C,,,. Then EY is free as an R-module with basis
{6s7|S € T\, v) and T € Tg (X) for some X € Py, }.

Proof. Let E¥ = 6, YS!, Then E¥ is a right YST-module and E¥ = F¥(E¥). By Propo-
sition BI, E¥ is spanned by the maps 0,57, where S € Ta(A,o) and T € Td (A, )
for various A € P, ,, and o, € Grn By definition, 6,og7 = 0 unless o0 = w, that is, S
is a standard A-tableau; so E¥ is spanned by the elements O, ps7 with s € Std(A) and
T ¢ ‘J’Sr()\, p) for A € P, and p € Grn Furthermore, 0, ps1(myuh) = nymgrh for all
h € Y, . Thus, 0,051 # 0 if and only if v(s) is column semistandard and a(X') = a(v)
by Corollary £.24], and in this case 0, psr = +¢%fg7 for some a € Z and S = v(s). Hence
these elements {fs7 | S € T®(A,v) and T € TS () for some A € P,.,,} span EY.

On the other hand, the elements {fg7} are linearly independent by Proposition [£.23] so
they are a basis of E¥. Since the functor F% removes the w-weight space of E¥, therefore

F “ maps the basis {fg1} of EY to the elements stated in the proposition, or to zero if
p = w. Hence, {fst|S € T*(A,v) and T € TS (A) for some A € P,.,,} is an R-basis of
Ev. O

The next proposition can be proved in exactly the same way as in [Ma2, Theorem 6.5]

by using Proposition [5.291 We skip the details.

Proposition 5.30. Let v € C,,,. Then EY admits a YS,-module filtration E¥ = Ey D
Ey D+ D Ex D Exy1 = 0 such that E;/E;4q = Wi for some Ai,..., A\ € Prn and
v >N for all 1 <i <k. Moreover, if X\ € Ppp,, then H{1 <i < k|X; = A} = TS (A, v).

From Proposition £.30] we can easily get the next corollary.

Corollary 5.31. Suppose that X\, pt € Prpp. Then [E* : W] =1 and [EX : WH] # 0 only
if N> .

Definition 5.32. Suppose that A € P,,, and p,v € C,,,. For A € ‘J'a'()\, v) and B €
TS(A, p) let 6y be the homomorphism determined by 0y g(mah) = daunypmuh for all
heY,,andal a € C,,,.

Proposition 5.33. Let v € C,.,,. Then EY is free as an R-module with basis

{0 | A€ TSN\ v) and B € TS\, ) for some XA € P,y and p € €0}
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Proof. We first show that 0, € E¥. By Corollary B.8, n,p = nya for some z € Y, .
Therefore, we have

Ohp(muh) = nypmuh = nyzmyh = 0, (xmyh).

That is, 0y factors through 6, so that ¢,z € E¥ as claimed. Moreover, the elements
stated in the proposition are linearly independent by applying * to Proposition (.23
Therefore, the elements {0/, 3} give a basis of E¥ by counting dimensions using Proposition
0,29 ]

The contragredient dual E® of a YS]-module E can be defined in exactly the same
way as that of Y, ,-modules. Again, we say that E is self-dual if £ = E¥,

Using the two bases {fsr} and {5} in Propositions and .33, we now define a
bilinear form {-,-},, on E¥ by

. 5)  if Type(T) = Type(B);
Ost,0hp )y = (mgpnpp) 7
{bst,0x8} {0 otherwise.

The next theorem can be proved in exactly the same way as in [Ma2, Theorem 6.17].
We skip the details.

Theorem 5.34. Suppose that v € C, ,,. Then {-,-},, defines a non-degenerate associative
bilinear form on EY; that is, E¥ is self-dual.

Using Corollary [5.31] and Theorem [5.34] we can easily get the next result.
Corollary 5.35. Let A € P,.,,. Then we have

(i) EX is a tilting module. Moreover, E = ™ @@)\’Du expIT* for some non-negative
integers exy,.
(ii) T is self-dual. Moreover, the tilting modules of YS!, are the indecomposable direct
summands of the modules {E* | X € Py, }.
Recall that the Schur functor F}, : YS], —mod — Y, ,—mod defined in Proposition
Lemma 5.36. Suppose that p € C,.,,. Then F (E¥*) = N* as Y, ,-modules.
Proof. By Lemma and Proposition we have
F},(E) = F},(F3(0,YS)) = F1,(6,Y5))
=0, YSL o, = Homy, ,, (Y, N*)
o~ VK

as required. ]

Let p,v € €. Recall that for each S € Tf (A, p) and T € T (A, v) there is a Y, -
module homomorphism ¢gp : N¥ — NH; this induces a YS]-module homomorphism
Py : BV — EM defined by ®gp(6) = ¢ for § € E¥. The next proposition, which can
be proved in exactly the same way as in [Ma2, Proposition 7.1], shows that these maps
{®gy} give a basis of all the YS],-module homomorphisms from E¥ to E*.
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Proposition 5.37. Suppose that p,v € C.,. Then Homygr (EY, E*) is free as an R-
module with basis
{®gr | S € Tf (A, 1) and T € Tf (A, v) for some X € P, }.

By definition E}, = @ e, ,, £* is a full tilting module for YS],. Define the Ringel dual

of Y], to be the algebra Endygr (E},). If A is an algebra, let A°P be the opposite algebra in
which the order of multiplication is reserved. The following corollary gives a description
of the Ringel dual of Y§S,.

Corollary 5.38. There exist canonical isomorphisms of R-algebras
Endygr (E;,) = (YS;)°P.
Corollary 5.39. Suppose that XA € P, ,,. Then FQ(TX) =Yy as Y, ,-modules.

Proof. By Lemma the natural map Homy, , (N¥, N#) — Homygr (¥, E*) is injec-
tive; by Proposition [5.9(i) and Proposition 537 this is an isomorphism. Consequently,
if an indecomposable tilting module 7% is a direct summand of E* then FT(T%) is an
indecomposable direct summand of N*. Now, E* =~ T ¢ D " expIT" by Corollary
B.35(1) and FI(E*) & N* 2 Yy & @, 5 cwaYs by Proposition EI0(iii). Hence, the result
follows by induction on the dominance order. O
Corollary 5.40. Let A\, € P,,,. Then [T : (WH)®] = [WH . LN].

Proof. Recall that F], (W#) = S# by Proposition I3l By definition, it is easy to see that
the functor F], commutes with duality. Then we have FJ,(WH)®) = (Fj,(WH))® = S,
by Corollary Thus we have
[T - (WH)*] = [FL(T?) : FL(WH)*)] = [Yar = Sy
= (W : Ly] = [WH . L],
where the last equality follows from Proposition B.9l(iii). O

6. APPENDIX. CYCLOTOMIC YOKONUMA-SCHUR ALGEBRAS

In this appendix, we will generalize the results above to define and study the cyclotomic
Yokonuma-Schur algebra by using the cellular basis of the cyclotomic Yokonuma-Hecke
algebra Yin constructed in [C1]. Since this approach is very similar, we only mention the
main results and skip all the details of the proofs.

We first recall the definition of Yin and the construction of a cellular basis of it.

By definition, The affine Yokonuma-Hecke algebra ?r,n = ?nn(q) is an R-associative

algebra generated by the elements t1,...,%,,91,..., gn_l,Xlﬂ, in which the generators
t1,...,tn, g1, ..., gn_1 satisfy the following relations:
9i9; = 99 forall i,7 =1,...,n— 1 such that |i — j| > 2;
9i9i+19i = i+19i9i+1 foralli=1,...,n—2;
titj = t;t; foralli,j =1,...,n; 6.1)
gitj = tjs,9i foralli=1,....n—1land j=1,...,n; ’
tr =1 foralli=1,...,n;

@ =1+ (q—q Ve foralli=1,...,n—1,
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where s; is the transposition (7,7 + 1), and for each 1 <i <n — 1,

1 r—1
€ 1= - thti_fp
s=0
together with the following relations concerning the generators X iﬂ:

X X=X X =1
a1 X191 X1 = X191 X191

g X1 = X19; foralli=2,...,n—1; (6.2)
t; X1 = Xit; forall j=1,...,n.
We define inductively the following elements in ?nn:
Xiy1:=9iX;9; fori=1,...,n—1. (6.3)
Let d > 1 and vy, ..., vq be some invertible indeterminates. Set fi := (X1 —wvy) -+ (X1—

vg). Let Jq denote the two-sided ideal of ?hn generated by f1, and define the cyclotomic
Yokonuma-Hecke algebra Yﬁ{n = Yﬁ{n(q) to be the quotient

Y:«{n = ?r,n/gd-

It has been proved in [C1] (see also [ChPA2, Theorem 4.15]) that the set of the following
elements

{tfl”’tanfll "'X;imgw‘oSala"'uan Sd_ 17 0 5/817"'7/877/ ST— 17 w e 671}
forms an R-basis of Yfin.

Let d € Z>;. Following [ChPA2, Section 3.1], the combinatorial objects appearing in
the representation theory of the cyclotomic Yokonuma-Hecke algebra Yin will be m-
compositions (resp. m-partitions) with m = rd, which can also be identified with r-tuples
of d-compositions (resp. d-partitions). We will call such an object an (r, d)-composition
(resp. (r,d)-partition). By definition, an (r,d)-composition (resp. (r,d)-partition) of
n is an ordered r-tuple A = (AW, ... A0) = ((/\gl), . ,/\L(il)), ce ()\Y), . ,/\L(;))) of d-
compositions (resp. d-partitions) ()\gk), ce )\Elk)) (1 <k <r)suchthatd ;_; Z;l:l |)\§-k)| =
n. We denote by Gfm (resp. i]’fm) the set of (r, d)-compositions (resp. (r,d)-partitions) of
n. We will say that the [-th composition (resp. partition) of the k-th r-tuple has position
(k,1).

A triplet @ = (0, k,1) consisting of a node 6, an integer k € {1,...,r}, and an integer
I € {1,...,d} is called an (r,d)-node. We shall say that the (r,d)-node 6 has position
(k,1). We shall denote by [A] the set of (r,d)-nodes such that the subset consisting of the
(r,d)-nodes having position (k,[) forms a usual composition (resp. partition) )\l(k), for any
Ee{l,...,r}and l € {1,...,d}.

Let A = ((/\gl), e )\g)), e ()\Y), e )\g))) be an (r,d)-composition of n. An (r,d)-
tableau t = ((tgl),...,t&l)),...,(tgr),...,t((;))) of shape A is obtained by placing each
(r,d)-node of [A] by one of the integers 1,2,...,n, allowing no repeats. We will call the
number n the size of t and the tl(k)’s the components of t. Each (r, d)-node 6 of t is labelled

by ((a,b), k,1) if it lies in row a and column b of the component tl(k) of t.
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For each p € ed

increase along any row (from left to right) of each diagram in [p]. For each A € P¢ = an
(r,d)-tableau of shape A is called standard if the numbers increase along any row (from
left to right) and down any column (from top to bottom) of each diagram in [A]. From
now on, we denote by Std(A) the set of all standard (r, d)-tableaux of size n and of shape
A, which is endowed with an action of &,, from the right by permuting the entries in each
(r, d)-tableau.

For each A € an, we denote by & the standard (r,d)-tableau of shape X in which
1,2,...,n appear in increasing order from left to right along the rows of the first diagram,

and then along the rows of the second diagram, and so on.
For each A = (A, ..., A0, 07, by e ed

rn’

vn» an (1, d)-tableau of shape p is called row standard if the numbers

we have a Young subgroup

Gy = 6>\§1) X e X GAS) X -0 X 6)\57-) X -0 X 6)\;7-),

which is exactly the row stabilizer of .

For each X\ € Gﬁ,n and a row standard (r, d)-tableau s of shape A, let d(s) be the element
of &, such that s = t*d(s). Then d(s) is a distinguished right coset representative of Gy
in &, that is, l(wd(s)) = I(w) + I(d(s)) for any w € &y. In this way, we obtain a
correspondence between the set of row standard (r, d)-tableaux of shape A and the set of
distinguished right coset representatives of Gy in &,,.

We now define a partial order on the set of (r, d)-compositions.

Definition 6.1. Let A = (A", ... A 07 oAy and p = (87, 6,

. (uY), . ,,ug))) be two (r, d)-compositions of n. We say that A dominates p, and we

write A > p if and only if

d -1 P k-1 d -1 p
STATES TS ESTAE >SS T @ ST 1 S
i=1 i=1 j=1 j=1 i=1

1j=1 j=1

forall ki, l and p with 1 <k <7, 1 <l <dand p > 0. If A>p and A # p, we write
AD> .

B

-1

7

Definition 6.2. Let A = ((Agl),...,)\g)),...,()\Y),...,)\g))) € €¢,. Suppose that we
choose all 1 <i; < iy < --- < i, < rsuch that ()\gil), .. .,)\gl)), ()\gh), . ,)\EF)), . ,(Agi”),

. )\gp)) are nonempty. Define a := Z?:l IAG)| for 1 < k < p, where |A®)| =
Zle \)\l(ij )]. Then the set partition Ay associated with X is defined as

AA = {{1, ,al},{al + 1,...,&2},...,{&17_1 +1,... ,n}},

which may be written as Ay = {I1,I2,..., Iy}, and is referred to the blocks of Ay in the
order given above.
Definition 6.3. Let A = ((A\",.... A", ...\ a0 e ed

vy and let ap =
Z?:l IA()| (1 <k < p) be defined as above. Then we define

UNX = Uay iy Uag iz " " Uay,ip -
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Definition 6.4. Let A = (..., A0, ... (A7 a0 € @2, Associated with A
we can define the following elements af and by:

-1 k—1 d
af = Z |/\S,I§)|, by, = ZZ|)\§])| forl1<k<randl1<i<d.
m=1 j=1 i=1

Associated with these elements we can define an element u} := Ua,1Ua,2 - * - Ua,r, Where

d af
Ua k= H H(ka'i'j — ?)l).

1=1j=1
We can now define the key ingredient of the cellular basis for Yr‘fn.

Definition 6.5. Let A € €%, and define u} as above. Let ) = ZwEGA ¢"*)g,,. Then

r,n
we define the element my of Yr‘fn as follows:

my = Upuizy = uAEAAu;xA. (6.4)
d

r,mn’

9; = Gi, t;:tj, X;:Xj forl1<i<n—1land1<j<n.

Let % denote the R-linear anti-automorphism of Y% . which is determined by

Definition 6.6. Let A € ¢, and let 5 and t be two row standard (r,d)-tableaux of

r,mn’

shape A. We then define mg = g;(s)mégd(t)'

For each A € P? | let Yfff A be the R-submodule of anlm spanned by my, with u,v €

r,mn’

Std(p) for various p € inm such that p > A.

Theorem 6.7. (See [C1, Theorem 6.18].) The algebra Yfin is a free R-module with a
cellular basis
Bin = {ms | 5,t € Std(A) for some (r,d)—partition A of n},
that is, the following properties hold:
(i) The R-linear map determined by mg — mys (Mgt € ’Bfm) s an anti-automorphism
on Yffm.
(ii) For a given h € YI,, p € Pe  and t € Std(p), there exist rot(h) € R such that for

,n) rn

all s € Std(p), we have

mgth = Z Tnt(h)msn mod Yf«l,f%
veStd(u)

where Ty (h) may depend on v,t and h, but not on s.

For A € @, | a A-tableau S = ((S%l), . ,Sc(ll)), ce (S(T), . ,Sc(lr))) isamap S:[A] —
{1,...,n} x {1,...,d} x {1,...,r}, which can be regarded as the diagram [A], together
with an ordered triple (i,,k) (1 <i<n,1<j<d, 1<k <r) attached to each node.
Given A € P4 and p € G | a A-tableau S is said to be of type g if the number of

rn r,mn’

(1,7, k) in the entry of S is equal to uﬁ). Given s € Std(A), p(s), a A-tableau of type p,
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is defined by replacing each entry m in s by (i, 7, k) if m is in the i-th row of the (k, j)-th
component of t&£.

We define a total order on the set of triples (i, j, k) by (i1, 71, k1) < (i2, jo, k2) if k1 < ko,
or k1 = kg and j1 < jo, or k1 = ko, j1 = jo, and i1 < io, Let A € iPd and p € fom

Suppose that S = ((Sgl), . ,Sc(ll)), . (SY), . ,SC([))) is a A-tableau of type p. S is said
k)

to be semistandard if each component S](-

in columns, and all entries of Sj(-k) are of the form (i, h,l) with h > j and [ > k. We denote
by To(A, 1) the set of semistandard A-tableaux of type p.

is non-decreasing in rows, strictly increasing

For any k € G, . we define its type (k) by a(k) = (ny,...,n,) with n; = k@]
Assume that A € infm and p € Grm. We define a subset Tg (A, p) of To(A, p) by
To ) = {S € To(d p) [ a(d) = a(p)}-

For each p € @Tn, let MK = mﬁYin. We now construct a basis of M¥ related to the
cellular basis {mg} in Theorem For S € T (A, p) and t € Std(A), we define

ma = 3 QUEHEO)
s€Std(A)
p(s)=S

The following theorem can be proved in exactly the same way as in [DJM, Theorem 4.14]
by combining [DJM] with [C1].

Theorem 6.8. Let S € T (A, p) and t € Std(A) for some A € PL, and p € CL, . Then
mse € ME. Moreover, ME is free with an R-basis

{mse| S € Tf (A, p) and t € Std(X) for some A € ZPML}.
Let p,v € €4 and A € P4, . We assume that a(p) = a(r) = a(A). For S € T§ (A, p),
T e T (A, v), put
msT = Z G AEFUAW) 1

5t

where the sum is taken over all s,t € Std(A) such that p(s) =S and v(t) = T. We then
have the next proposition by making use of Theorem

Proposition 6.9. Suppose that p,v € ed

rn

with a(p) = a(v). Then the set
{msr|S €T (A p) and T € T (A, v) for some X € inin}
is an R-basis of M¥* N ME.

Definition 6.10. Suppose that My = &b peed M £ We define the cyclotomic Yokonuma-
Schur algebra YS"? as the endomorphism algebra

YS! = Endya (M5?),

which is isomorphic to € a HOHle (M=, ME).

pvelt
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Let S € T4 (A, 1) and T € T3 (A, v). In view of Proposition 6.9} we can define pgr €
Homya (MY, M") by

wsT(myh) = mgrh

for all h € Yin. We extend gt to an element of YSnd by defining gt to be zero on M*%
for any v # Kk € Gﬁ,n. For each A € P4 let Tf(A) = Uue(i’;ln Ty (A, ). We denote by

YS%’,? A the R-submodule of YSZ’d spanned by ¢gt such that S, T € ‘J'ar () with a> A.
Then we can prove the following theorem by a similar argument as in [DJM, Theorem
6.6].

Theorem 6.11. The Yokonuma-Schur algebra YST¢ is free as an R-module with a basis
{903T |S, T € ‘J'S'(A) for some X € '.Pf,n}.

Moreover, this basis satisfies the following properties.
(i) The R-linear map * : YS:’L’d — YS:’L’d determined by &1 = @Ts, for all S, T € ‘J’Sr(A)
and all A € ‘.Pﬁ’n, is an anti-automorphism of YST:%.
(ii) Let T € T4 (A) and ¢ € YSI%. Then for each V € T (), there exists ry = 1y 1,4 €
R such that for all S € T4 (A), we have
psTe= Y rypsy mod YSFEA,
VeTT ()

In particular, this basis {pst} is a cellular basis of YSIY.

Now we can apply the general theory of cellular algebras in view of Theorem [6.11l For
example, we can easily give a complete set of non-isomorphic irreducible YS;’d—moduleS
over an arbitrary field, and further prove that YSQd is a quasi-hereditary algebra. For the
cyclotomic Yokonuma-Schur algebra YSZL’d, we can also define the Schur functor from the
category of YS;’d—moduleS to the category of Yin—modules and the tilting modules for it
in exactly the same way as in Sections 4 and 5, we skip all the details and leave them to
the reader.
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