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Abstract

For a given finite directed graph G, there are two types of Markov-Dyck shifts, the
Markov-Dyck shift DV

G
of vertex type and the Markov-Dyck shift DE

G
of edge type.

It is shown that, if G does not have multi-edges, the former is a finite-to-one factor
of the latter, and they have the same topological entropy. An expression for the zeta
function of a Markov-Dyck shift of vertex type is given. It is different from that of
the Markov-Dyck shift of edge type.
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1 Introduction

Let Σ be a finite alphabet, and let σ be the left shift on ΣZ defined by σ((xn)n∈Z) =
(xn+1)n∈Z, (xn)n∈Z ∈ ΣZ. For a closed subset Λ ⊂ ΣZ satisfying σ(Λ) = Λ, the topological
dynamical system (Λ, σ) is called a subshift. Denote by Bn(Λ) the set of all admissible
words appearing in Λ with length n, and by Pn(Λ) the set of all n-periodic points of (Λ, σ),
respectively. Then the topological entropy htop(Λ) and the zeta function ζΛ(z) for (Λ, σ)
is defined by

htop(Λ) = lim
n→∞

1

n
log |Bn(Λ)|, (1.1)

ζΛ(z) = exp(
∞
∑

n=1

|Pn(Λ)|zn
n

). (1.2)

They are crucial topological conjugacy invariants of (Λ, σ). For an introduction to their
theory, which belongs to symbolic dynamics, we refer to [10] and [15].

W. Krieger in [11] has introduced the Dyck shifts from automata theory and language
theory in computer science. They are non-sofic subshifts defined by Dyck languages. In
[7, 11, 12, 14, 17], a class of non-sofic subshifts called Markov-Dyck shifts have been studied
(cf. [8]). The subshifts are generalization of Dyck shifts by using finite directed graphs.
They have recently come to be studied by computer scientists (cf. [1, 2]). For a given finite
directed graph G = (V,E), there are two types of Markov-Dyck shifts, the Markov-Dyck
shift DV

G of vertex type and the Markov-Dyck shift DE
G of edge type. Both of them are
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not sofic subshifts if G is irreducible and not permutive. In the papers [7, 11, 12, 14],
the Markov-Dyck shifts mean the Markov-Dyck shifts of edge type. In [14], formulae of
topological entropy and zeta functions for Markov-Dyck shifts of edge type have been
presented.

In the first part of the paper, we will study relationship between the two types of
Markov-Dyck shifts for finite directed graphs, the Markov-Dyck shift DV

G of vertex type
and the Markov-Dyck shift DE

G of edge type. We will show that, if G does not have multi-
edges, there exists a finite-to-one factor code from DE

G to DV
G (Proposition 2.9). The factor

code can never yield a topological conjugacy unless the transition matrix of the graph is
permutation. They have the same topological entropy (Theorem 2.10).

In the second part of the paper, we will present a formula of the zeta function of a
Markov-Dyck shift of vertex type (Theorem 3.9). The formula is regarded as a general-
ization of the formula for Markov-Dyck shifts of edge type [14, Theorem 2.3]. In the final
section, the zeta function of the Fibonacci-Dyck shift of vertex type will be presented. It
is different from that of the Fibonacci-Dyck shift of edge type. Hence the Fibonacci-Dyck
shift of vertex type is not topologically conjugate to the Fibonacci-Dyck shift of edge type.

2 Markov-Dyck shifts

Throughout this paper N is a fixed positive integer larger than 1. For a finite set S, we
denote by |S| its cardinality. We consider the Dyck shift DN with alphabet Σ = Σ− ∪Σ+

where Σ− = {α1, . . . , αN},Σ+ = {β1, . . . , βN}. The symbols αi, βi correspond to the
brackets (i, )i respectively, and have the product relations of monoid as follows:

αiβj =

{

1 if i = j,

0 otherwise
(2.1)

for i, j = 1, . . . , N (cf. [12, 13]). For a word ω = ω1 · · ·ωn of Σ, we denote by ω̃ its reduced
form. Namely ω̃ is a word of Σ ∪ {0,1} obtained after applying the relations (2.1) in ω.
Then a word ω of Σ is said to be forbidden in DN if and only if ω̃ = 0. Denote by FN the
set of forbidden words. The Dyck shift DN is defined in [11] by a subshift over Σ whose
forbidden words are FN , namely

DN = {(xn)n∈Z ∈ ΣZ | ∀k ∈ Z,m ∈ N, (xk, xk+1, . . . , xk+m) 6∈ FN}. (2.2)

Let A = [A(i, j)]i,j=1,...,N be an N ×N matrix with entries in {0, 1}. Throughout this
paper, A is assumed to be essential which means that it has no zero rows or columns.
Consider the Cuntz-Krieger algebra OA for the matrix A that is the universal C∗-algebra
generated by N partial isometries t1, . . . , tN subject to the following relations:

N
∑

j=1

tjt
∗
j = 1, t∗i ti =

N
∑

j=1

A(i, j)tj t
∗
j for i = 1, . . . , N (2.3)

([4]). Define a correspondence ϕA : Σ −→ {t∗i , ti | i = 1, . . . , N} by setting

ϕA(αi) = t∗i , ϕA(βi) = ti for i = 1, . . . , N.
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We denote by Σ∗ the set of all words γ1 · · · γn of elements of Σ. Define the set

FA = {γ1 · · · γn ∈ Σ∗ | ϕA(γ1) · · ·ϕA(γn) = 0}.

Definition 2.1. The topological Markov Dyck shift for A is defined as a subshift over Σ
whose forbidden words are FA. It is written DA and called the Markov-Dyck shift for A

for brevity.

If A is irreducible and not any permutation matrix, the subshift DA can never be sofic
([17, Proposition 2.1]). If all entries of A are 1’s, the C∗-algebra OA becomes the Cuntz
algebra ON of order N and the subshift DA becomes the Dyck shift DN with 2N brackets
([3]). We note that αiβj ∈ FA if i 6= j, and αin · · ·αi1 ∈ FA if and only if βi1 · · · βin ∈ FA.

Let G = (V,E) be a finite directed graph with vertex set V and edge set E. We
denote by s(e) the initial vertex of e ∈ E and by t(e) the final vertex, respectively. We
assume that the cardinalities of V and of E are both finite and write V = {v1, . . . , vN0

}
and E = {e1, . . . , eN1

}. We also assume that each vertex of G has at least one in-coming
edge and at least one out-going edge. The edge matrix AG = [AG(i, j)]N1

i,j=1 for G is an
N1 ×N1 transition matrix with entries in {0, 1} which is defined by

AG(i, j) =

{

1 if t(ei) = s(ej),

0 otherwise.
(2.4)

In [14], we have defined the Markov-Dyck shift DG for the graph G as the Markov-Dyck
shift DAG for the matrix AG, and presented formulae of the zeta function ζDG

(z) and the
topological entropy h(DG). A finite matrix M with entries in {0, 1} does not necessarily
arise from a finite graph as M = AG. The lemma below is easy to prove. For the sake of
completeness, we provide its proof.

Lemma 2.2. Let M = [M(i, j)]Ni,j=1 be an essential N ×N matrix with entries in {0, 1}.
Let us denote by Mr[i] = [M(i, j)]Nj=1 and Mc[j] = [M(i, j)]Ni=1 the ith row vector and the

jth column vector for i, j = 1, . . . , N respectively. Then the following three conditions are

equivalent:

(i) There exists a finite directed graph G such that M = AG.

(ii) For any i1, i2 ∈ {1, 2, . . . , N},

Mr[i1] = Mr[i2] or 〈Mr[i1] | Mr[i2]〉 = 0. (2.5)

(iii) For any j1, j2 ∈ {1, 2, . . . , N},

Mc[j1] = Mc[j2] or 〈Mc[j1] | Mc[j2]〉 = 0, (2.6)

where 〈· | ·〉 means the inner product of vectors.

Proof. (i) =⇒ (ii): Suppose that there exists a finite directed graph G such that M = AG.
For two edges ei1 , ei2 ∈ E, if t(ei1) = t(ei2), then Mr[i1] = Mr[i2], otherwise 〈Mr[i1] |
Mr[i2]〉 = 0.

3



(iii) =⇒ (i): Assume that the N × N matrix M satisfies the condition (2.6). We
will construct a finite directed graph G = (V,E) such that M = AG as follows. Define
an equivalence relation j1 ∼ j2 in {1, 2, . . . , N} by Mc[j1] = Mc[j2]. Denote by [j]c the
equivalence class of j ∈ {1, 2, . . . , N}. Then the vertex set V is defined by the set of
equivalence classes {[j]c | j ∈ {1, 2, . . . , N}}. Define an edge labeled ei from [i]c to [j]c if
M(i, j) = 1. If there exist edges from [i]c to [j1]c labeled ei and [i]c to [j2]c labeled ei, then
M(i, j1) = M(i, j2) = 1. By the condition (2.6), one has [j1]c = [j2]c. Hence the labeled
graph is well-defined. Then as s(ej) = [j]c, the condition t(ei) = s(ej) is equivalent to the
condition M(i, j) = 1. Hence we have AG = M .

(ii) =⇒ (iii): Suppose that there exist distinct j1 6= j2 ∈ {1, 2, . . . , N} such that
Mc[j1] 6= Mc[j2] and 〈Mc[j1] | Mc[j2]〉 6= 0. The condition Mc[j1] 6= Mc[j2] implies that
there exists i1 such that M(i1, j1) 6= M(i1, j2). The condition 〈Mc[j1] | Mc[j2]〉 6= 0 implies
that there exists i2 such that M(i2, j1) = M(i2, j2) = 1 so that 〈Mr[i1] | Mr[j2]〉 6= 0, a
contradiction to the condition (ii).

The matrix

[

1 1
1 0

]

is called the Fibonacci matrix. It can not arise from a finite directed

graph as an edge matrix.
For a finite directed G = (V,E), we have another transition matrix AG, which is an

N0 ×N0 matrix AG = [AG(i, j)]
N0

i,j=1 defined by

AG(i, j) =

{

1 if there exists an edge from vi to vj ,

0 otherwise.
(2.7)

The matrix AG is called the vertex matrix for the graph G. It has its entries in {0, 1}.

Definition 2.3. Let G = (V,E) be an essential finite directed graph.

(i) The Markov-Dyck shift DAG for the edge matrix AG is called the Markov-Dyck shift

of edge type for G, and written DE
G.

(ii) The Markov-Dyck shift DAG
for the vertex matrix AG is called the Markov-Dyck

shift of vertex type for G, and written DV
G .

It is obvious that any finite matrix M with entries in {0, 1} can arise from a finite
graph G such that M = AG. By Lemma 2.2, one sees that the class of Markov-Dyck shifts
of edge type is a subclass of Markov-Dyck shifts of vertex type. As is well-known that for
a finite directed graph G the topological Markov shift XAG defined by the edge matrix
AG is topologically conjugate to the topological Markov shift XAG

defined by the vertex
matrix AG. The Markov-Dyck shifts however do not have this property. Let G1 be the
following graph (Figure 1). The vertex matrix AG1

and the edge matrix AG1 are written
as

AG1
=

[

1 1
1 1

]

, AG1 =









1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1









(2.8)

respectively. Then the Markov-Dyck shift DV
G1

of vertex type is nothing but the Dyck

shift D2, whereas the Markov-Dyck shift DE
G1

of edge type is not D2. Both DV
G1

and DE
G1
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Figure 1:

have 4 fixed points as subshifts. The former DV
G1

has 4 periodic points with least period 2.

The latter DE
G1

has 6 periodic points with least period 2. Hence DV
G1

is not topologically

conjugate to DE
G1

.
A Dyck n-path is a continuous broken directed line on the upper half plane consisting

of vectors (1, 1) called rise and (1,−1) called fall. It starts at the origin with rise and ends
at (2n, 0) with fall (see [5, 6], etc.). Let γ = (γ1, . . . , γ2n) be a Dyck n-path. Hence each
γi is a rise or a fall. If γi is a rise, there exists the smallest k = 1, 2, . . . , 2n − i satisfying
the following two conditions:

(i) γi+k is a fall.

(ii) (γi+1, γi+2, . . . , γi+k−1) is a Dyck k−1
2 -path (hence k− 1 is even), which starts at the

terminal vertex of γi and ends at the source vertex of γi+k.

We call the edge γi+k the partner of γi.
Let G = (V,E) be a finite directed graph. Denote by G∗ = (V ∗, E∗) the transposed

graph of G. The vertex set V ∗ is V and the edge set E∗ consists of the edges reversing its
direction of the edges of G. For an edge e ∈ E, we denote by e∗ the edge of G∗ obtained
by reversing the direction of e, so that t(e∗) = s(e), s(e∗) = t(e) for e ∈ E. Recall that
the edge set E of G is denoted by {e1, . . . , eN1

} and the edge set E∗ of G∗ is written as
{e∗1, . . . , e∗N1

}. Put Σ−
E = E∗,Σ+

E = E and ΣE
G = Σ−

E ∪ Σ+
E. A G-Dyck n-path of edge

type for n = 1, 2, . . . is a Dyck n-path (x1, . . . , x2n) labeled elements of ΣE
G satisfying the

following rules:
(1E) a rise is labeled e∗i for some i = 1, . . . , N1,
(2E) a fall is labeled ei for some i = 1, . . . , N1,
(3E) the partner of a rise labeled e∗i is labeled ei,
(4E) a rise labeled e∗i follows a rise labeled e∗j if and only if t(e∗j ) = s(e∗i ),
(5E) a rise labeled e∗i follows a fall labeled ej if and only if t(ej) = s(e∗i ),
(6E) a fall labeled ei follows a fall labeled ej if and only if t(ej) = s(ei),
(7E) a fall labeled ei follows a rise labeled e∗j if and only if ej = ei.
Similarly, for a vertex v ∈ V , we denote by v∗ the corresponding vertex of G∗ obtained

by the transposed graph G∗ = (V ∗, E∗). The vertex matrix AG∗ for G∗ satisfy the relations

AG∗(i, j) = AG(j, i) for i, j ∈ {1, 2, . . . , N0}.

Recall that the vertex set V of G is denoted by {v1, . . . , vN0
} and the vertex set V ∗ of

G∗ is written as {v∗1 , . . . , v∗N0
}. Put Σ−

V = V ∗,Σ+
V = V and ΣV

G = Σ−
V ∪ Σ+

V . A G-Dyck

n-path of vertex type for n = 1, 2, . . . is a Dyck n-path (x1, . . . , x2n) labeled elements of
ΣV
G satisfying the following rules:
(1V) a rise is labeled v∗i for some i = 1, . . . , N0,
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(2V) a fall is labeled vi for some i = 1, . . . , N0,
(3V) the partner of a rise labeled v∗i is labeled vi,
(4V) a rise labeled v∗i follows a rise labeled v∗j if and only if AG∗(j, i) = 1,
(5V) a rise labeled v∗i follows a fall labeled vj if and only if AG(j, k) = AG∗(k, i) = 1

for some vk,
(6V) a fall labeled vi follows a fall labeled vj if and only if AG(j, i) = 1,
(7V) a fall labeled vi follows a rise labeled v∗j if and only if vj = vi.

The Dyck shift DE
G of edge type is regarded to have its symbols in E∗ ∪ E under the

identification Σ− = E∗,Σ+ = E, and the Dyck shift DV
G of vertex type is regarded to have

its symbols in V ∗ ∪ V under the identification Σ− = V ∗,Σ+ = V .
We note the following lemma

Lemma 2.4. Keep the above notations.

(i) Any admissible word of the Dyck shift DE
G of edge type is regarded as a part of a

labeled broken directed line of G-Dyck path of edge type. Conversely a labeled broken

directed line of G-Dyck path of edge type is an admissible word of the Dyck shift DE
G

of edge type.

(ii) Any admissible word of the Dyck shift DV
G of vertex type is regarded as a part of

a labeled broken directed line of G-Dyck path of vertex type. Conversely a labeled

broken directed line of G-Dyck path of vertex type is an admissible word of the Dyck

shift DV
G of vertex type.

Proof. (i) is clear from the definition of admissible words of the Dyck shift DE
G of edge

type.
(ii) Let t1, . . . , tN0

be the partial isometries satisfying the relations (2.3) for the vertex
matrix AG of G. For i, j = 1, 2, . . . , N0, we have βjαi is admissible in DV

G if and inly if
tjt

∗
i 6= 0 by definition. Since tjt

∗
i = tjt

∗
j tjt

∗
i tit

∗
i , the condition tjt

∗
i 6= 0 is equivalent to the

condition that t∗j tjt
∗
i ti 6= 0. As

t∗i ti =
N0
∑

k=1

AG(i, k)tkt
∗
k t∗j tj =

N0
∑

k=1

AG(j, k)tkt
∗
k,

the condition that t∗j tjt
∗
i ti 6= 0 is equivalent to the condition AG(i, k) = AG(j, k) = 1 for

some k = 1, . . . , N0. This shows that the condition βjαi is admissibe in DV
G is equivalent

to the condition (5V) of G-Dyck n-path of vertex type. It is direct to see that the other
conditions (1V), (2V), (3V), (4V), (6V), (7V) are compatible to the definitions of giving
admissible words of the Dyck shift DV

G of vertex type.

We remark that a finite path of vertices of a labeled broken directed line of the G-Dyck
path of edge type is not necessarily an admissible word of the Dyck shift DV

G of vertex
type. Consider the following correspondences in G-Dyck paths:

{

a fall e ∈ E −→ the source s(e) ∈ V of e,

a rise e∗ ∈ E∗ −→ the terminal t(e∗) ∈ V ∗ of e∗.
(2.9)

The rules (1E), . . . , (7E) and (1V ), . . . , (7V ) ensure us the following lemma.

6



Lemma 2.5. Keep the above notations.

(i) Any sequence of vertices of a G-Dyck n-path of edge type yields a labeled sequence

by ΣV
G of a G-Dyck n-path of vertex type by the correspondence (2.9).

(ii) Any labeled sequence by ΣV
G of a G-Dyck n-path of vertex type is realized as a sequence

of vertices of a G-Dyck n-path of edge type by the correspondence (2.9).

By the above lemma, it is reasonable to define a 1-block map Φ : E ∪ E∗ −→ V ∪ V ∗

by
{

Φ(e) = s(e) ∈ V for e ∈ E,

Φ(e∗) = t(e∗)(= s(e)) ∈ V ∗ for e∗ ∈ E∗

Hence we have

Proposition 2.6. The 1-block map Φ : E ∪ E∗ −→ V ∪ V ∗ induces a factor code ϕ =
Φ∞ : DE

G −→ DV
G.

For ei,k ∈ E with s(ei,k) = vi ∈ V and t(ei,k) = vk ∈ V , and e∗k,j ∈ E∗ with s(e∗k,j) =

v∗k ∈ V ∗ and t(e∗k,j) = v∗j ∈ V ∗, then the word (ei,k, e
∗
k,j) is admissible in DE

G and the word

(vi, v
∗
j ) is admissible in DV

G such that

Φ

(

vi
ց

vk

v∗j

ր
)

= (i ցր j∗), Φ(ei,k, e
∗
k,j) = (vi, v

∗
j ).

In the above situation, we call the vertex vk(= v∗k) a valley. Hence the factor map ϕ :
DE

G −→ DV
G erases the valleys. We will show that the factor map ϕ is finite-to-one, so

that the equality of the topological entropy htop(D
E
G) = htop(D

V
G) holds.

We provide the height functions on DE
G . These functions on the Dyck shift DN have

been first introduced by W. Krieger in [11]. For x = (xn)n∈Z ∈ DE
G , we set the height

function

H0(x) = 0,

Hm(x) =

m−1
∑

k=0

(χ−(xk)− χ+(xk)), m ∈ N,

H−m(x) =
−m
∑

k=−1

(−χ−(xk) + χ+(xk)), m ∈ N

where

χ−(xk) =

{

1 if xk ∈ Σ−,

0 if xk ∈ Σ+,
χ+(xk) =

{

0 if xk ∈ Σ−,

1 if xk ∈ Σ+.

Definition 2.7. For x = (xn)n∈Z ∈ DE
G,

(i) a vertex t(xm−1)(= s(xm)) is called a relative minimum in x if xm−1 ∈ E and
xm ∈ E∗.

(ii) a vertex t(xm−1)(= s(xm)) is called a minimum in x if Hm(x) ≤ Hn(x) for all n ∈ Z.

7



Lemma 2.8. For x = (xn)n∈Z ∈ DE
G,

(i) if a vertex t(xm−1)(= s(xm)) is not a relative minimum in x, the word (Φ(xm−1), Φ(xm))
in DV

G uniquely determines the vertex t(xm−1),

(ii) if a vertex t(xm−1)(= s(xm)) is not minimum in x, the sequence ϕ(x) ∈ DV
G uniquely

determines the vertex t(xm−1),

(iii) if two vertices t(xn−1) and t(xm−1) are both minimum in x, then t(xn−1) = t(xm−1).

Proof. (i) Since the vertex t(xm−1)(= s(xm)) is not a relative minimum in x, we have two
cases.

Case 1: xm−1 ∈ E∗.
Since Φ(xm−1) is in V ∗, we take a vertex vi ∈ V such that Φ(xm−1) = v∗i . We then

have t(xm−1) = v∗i .
Case 2: xm−1 ∈ E.
The condition that the vertex t(xm−1)(= s(xm)) is not a relative minimum in x implies

that xm belongs to E, so that Φ(xm) = vj ∈ V for some j. We then have t(xm−1) =
s(xm) = vj .

(ii) Suppose that the vertex t(xm−1)(= s(xm)) is not minimum in x. If t(xm−1) is not
a relative minimum in x, the above discussion implies that the word (Φ(xm−1), Φ(xm))
in DV

G uniquely determines the vertex t(xm−1). Hence we may assume that t(xm−1) is a
relative minimum in x. Since t(xm−1)(= s(xm)) is not minimum in x, there exists i ∈ Z

such that Hi(x) < Hm(x). We have two cases.
Case 1: i > m.
There exists k ∈ Z with m < k < i such that xk−1, xk ∈ E, and Hm(x) = Hk(x). We

take a vertex vj ∈ V such that Φ(xk) = vj. We then have t(xm−1) = t(xk−1) = vj .
Case 2: i < m.
There exists l ∈ Z with i < l < m such that xl−1, xl ∈ E∗, and Hm(x) = Hl(x). We

take a vertex vj ∈ V such that Φ(xl−1) = vj . We then have t(xm−1) = t(xl−1) = vj .
(iii) Suppose that two vertices t(xn−1) and t(xm−1) are both minimum in x, so that

Hn(x) = Hm(x). Assume that n < m. The word (xn, xn+1, . . . , xm−1) is a G-Dyck path
of edge type so that the vertices s(xn) and t(xm−1) are the same. This implies that
t(xn−1) = t(xm−1).

Proposition 2.9. Suppose that G does not have multi-edges. Let ϕ : DE
G −→ DV

G be the

factor code defined in Proposition 2.6. For x = (xn)n∈Z ∈ DE
G, we have

(i) if x does not have a minimum vertex, then ϕ is injective at x, that is,

ϕ−1(ϕ(x)) = x,

(ii) if x has a minimum vertex, then

|ϕ−1(ϕ(x))| ≤ N0 = |V |.

Therefore ϕ : DE
G −→ DV

G is a finite-to-one factor code.
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Proof. (i) Suppose that x = (xn)n∈Z does not have a miniumum vertex. By (ii) of the above
lemma, the sequence ϕ(x) determines the sequence t(xn), n ∈ Z of vertices. Each symbol
xn is an edge of E or of E∗, and an edge is determined by the vertices t(xn), t(xn−1)(=
s(xn)), so that the code ϕ is injective at x.

(ii) Suppose that x has a minimum vertex at t(xm−1) for some m ∈ Z. Then the vertex
t(xm−1) is a valley and xm−1 ∈ E, xm ∈ E∗. By (iii) of the above lemma, other minimum
vertices are the same as the vertex t(xm−1). Hence we have

|ϕ−1(ϕ(x))| = |{k ∈ {1, 2, . . . , N0} | AG(s(xm−1), k) = AG∗(k, t(xm)) = 1}|
≤ N0 = |V |.

Theorem 2.10. Suppose that G does not have multi-edges. We then have htop(D
V
G) =

htop(D
E
G).

Proof. Since there exists a factor code ϕ : DE
G −→ DV

G , the inequality htop(D
V
G) ≤

htop(D
E
G) is clear. The 1-block map Φ naturally induces a map Φ∗ : B∗(DE

G) −→ B∗(DV
G)

between admissible words. It is not necessarily one-to-one at minimal points of words. We
then have

|Bn(D
E
G)| ≤ N0 · |Bn(D

V
G)|, n ∈ N

Therefore we have htop(D
E
G) ≤ htop(D

V
G).

Concerning embedding of the Markov-Dyck shifts, we have the following proposition.

Proposition 2.11. Suppose that G does not have multi-edges. There exists an embedding

of DE
G into the 3rd power shift of DV

G.

Proof. Let ti, i = 1, . . . , N0 be partial isometries satisfying the relations (2.3) for the vertex
matrix AG. For an edge en ∈ E with s(en) = vi, t(en) = vj, define a partial isometry
Sn = titjt

∗
j . It is easy to see that the family S1, . . . , SN1

satisfies the relations (2.3) for the

edge matrix AG, This implies that the correspondence Ψ : E ∪E∗ −→ (V ∪ V ∗)[3] defined
by

Ψ(en) = (vi, vj , v
∗
j ), Ψ(e∗n) = (vj, v

∗
j , v

∗
i )

induces an embedding of DE
G into the 3rd power shift (DV

G)
[3] of DV

G .

3 The zeta functions of Mrkov-Dyck shifts of vertex type

In what follows, we fix an arbitrary N ×N matrix A = [A(i, j)]Ni,j=1 with entries in {0, 1}.
We will study the Markov-Dyck shiftDA and present a formula of the zeta function ζDA

(z).
In [14], a formula of the zeta function of the Markov-Dyck shifts of edge type has been
presented. The Markov-Dyck shifts of edge type form a subclass of the class of Markov-
Dyck shifts. In this section, we will study general Markov-Dyck shift DA and present a
formula of its zeta function ζDA

(z). For the N ×N matrix A, let v1, . . . , vN be N -vertices.
Define a directed edge from vi to vj if A(i, j) = 1. We then have a finite directed graph
written G = (V,E) such that its vertex matrix AG coincides with the original matrix A.
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Throughout this section, we identify αi with v∗i and βi with vi for i = 1, . . . , N ,
respectively. Let w = (w1, . . . , w2n) be a G-Dyck n-path of vertex type. As in [16], w is
called a G-Catalan word and satisfies the following conditions:

m
∑

k=1

(χ−(wk)− χ+(wk)) ≥ 0 for all m = 1, 2, . . . , 2n

and

2n
∑

k=1

(χ−(wk)− χ+(wk)) = 0.

Denote by CA
n the set of G-Dyck n-pathes of vertex type. For i = 1, . . . , N , put

CA
n (i) = {(w1, . . . , w2n) ∈ CA

n | (αi, w1, . . . , w2n, βi) ∈ CA
n+1}.

Denote by cAn (i) the cardinarity |CA
n (i)| of the set CA

n (i). We set cA0 (i) = 1. Combinatorial
properties of the sequence cAn (i), n = 0, 1, . . . have been studied in [16, Section 4]. For
i = 1, . . . , N , let fA

i (z) be the generating function of the sequence cAn (i), n = 0, 1, 2, · · · :

fA
i (z) =

∞
∑

n=0

cAn (i)z
n.

Since one knows ([16, Section 4])

CA
n+1(i) =

n
⋃

k=0

⋃

j
A(j,i)=1

CA
k (j)× CA

n−k(i),

we have

cAn+1(i) =
n
∑

k=0

N
∑

j=1

A(j, i)cAk (j)c
A
n−k(i),

so that the identity

fA
i (z) = 1 + zfA

i (z)

N
∑

j=1

A(j, i)fA
j (z) (3.1)

holds ([16, Proposition 4.2]). Let XA be the shift space over Σ+ = V of the topological
Markov shift defined by the matrix A:

XA = {(xn)n∈Z ∈ (Σ+)Z | A(xn, xn+1) = 1 for all n ∈ Z}.

For n, k ∈ N, we set

C
A,+
n,k = {(w1, . . . , w2n, βi1 , . . . , βik) ∈ B2n+k(DA) |

(w1, . . . , w2n) ∈ CA
n , (βi1 , . . . , βik) ∈ Bk(XA)}.
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For (w1, . . . , w2n, βi1 , . . . , βik) ∈ C
A,+
n,k , we set

s((w1, . . . , w2n, βi1 , . . . , βik)) = βi1 ,

t((w1, . . . , w2n, βi1 , . . . , βik)) = βik .

We put

C+
A =

∞
⋃

n=1

∞
⋃

k=1

C
A,+
n,k .

We then see the following lemma.

Lemma 3.1. For µ, ν ∈ C+
A , the word µν is admissible in DA if and only if A(t(µ), s(ν)) =

1.

Put I = {1, . . . , N}×{1, . . . , N}. Define an I×I matrix Ã = [Ã((i, j), (k, l))](i,j),(k,l)∈I
by

Ã((i, j), (k, l)) = A(j, k)

and a map r : C+
A −→ I by

r((w1, . . . , w2n, βi1 , . . . , βik)) = (βi1 , βik) ∈ I.

Then the quadruplet C+
A = (C+

A , I, Ã, r) is a circular Markov code in the sense of Keller
[9]. We then associate the following shift-invariant subset ΩC+

A
by

ΩC+

A
= {x = (xn)n∈Z | there are . . . k−1 < k0 ≤ 0 < k1 < . . . in Z

such that x[ki,ki+1) ∈ C+
A and Ã(r(x[ki−1,ki)), r(x[ki,ki+1))) = 1} ([9]).

The zeta function ζ(ΩC+

A
, z) for a shift-invariant set ΩC+

A
is similarly defined to (1.2) by

using a sequence of cardinalities of periodic points of ΩC+

A
. Following Keller [9], define a

sequence D(C+
A ,m) = diag[d(i,j),(i,j)(C+

A ,m)], 3 ≤ m ∈ N of I × I-diagonal matrices with

diagonal entries d(i,j),(i,j)(C+
A ,m), (i, j) ∈ I by

d(i,j),(i,j)(C+
A ,m) = |{(w1, . . . , w2n, βi1 , . . . , βik) ∈ C+

A | ii = i, ik = j}|
( = cAn (i)A

k−1(i, j))

for m = 2n + k, and a matrix-valued generating function F (C+
A , z) by

F (C+
A , z) =

∞
∑

m=1

D(C+
A ,m)Ãzm.

Denote by IN2 the identity matrix of size N2. By using [9, Theorem 1], we have

Proposition 3.2. ζ(ΩC+

A
, z) = det(IN2 − F (C+

A , z))
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We then have for (i, j), (p, q) ∈ I

F (C+
A , z)((i, j), (p, q)) =

∞
∑

m=1

D(C+
A ,m)Ãzm((i, j), (p, q))

=

∞
∑

m=1

∑

n,k
2n+k=m

D(C+
A , 2n+ k)Ãz2n+k((i, j), (p, q))

=
∞
∑

n=1

∞
∑

k=1

cAn (i)A
k−1(i, j)Ã((i, j), (p, q))z2n+k

=
∞
∑

n=1

cAn (i)z
2n

∞
∑

k=1

Ak−1(i, j)zkÃ((i, j), (p, q))

= (fA
i (z2)− 1)z

∞
∑

l=0

(zA)l(i, j)A(j, p)

= (fA
i (z2)− 1)z(1N − zA)−1(i, j) · A(j, p).

We define N ×N matrices FA = [FA(i, j)]Ni,j=1 and H(C+
A , z) by

FA(i, j) = (fA
i (z2)− 1)z(1N − zA)−1(i, j) and H(C+

A , z) = FA ·A

so that

F (C+
A , z)((i, j), (p, q)) = FA(i, j)A(j, p) and H(C+

A , z)(i, p) =

N
∑

j=1

F (C+
A , z)((i, j), (p, q)).

Lemma 3.3. det(IN2 − F (C+
A , z)) = det(IN −H(C+

A , z)).

Proof. Let U = [U((i, j), (p, q))](i,j),(p,q)∈I and V = [V ((i, j), (p, q))](i,j),(p,q)∈I be I × I

matrices defined by

U((i, j), (p, q)) =











1 if (i, j) = (p, q),

1 if i = p, j = N,

0 otherwise,

V ((i, j), (p, q)) =











1 if (i, j) = (p, q),

−1 if i = p, j = N, q < N,

0 otherwise.

The matrix (IN2 − F (C+
A , z))V is obtained from (IN2 − F (C+

A , z)) by adding the minus of
the (i,N)th column to the (i, j)th column for all j = 1, 2, . . . , N − 1 and i = 1, 2, . . . , N ,
and the matrix U(IN2 − F (C+

A , z))V is obtained from (IN2 − F (C+
A , z))V by adding the

(i, j)th rows to the (i,N)th row for all j = 1, 2, . . . , N − 1 and i = 1, 2, . . . , N . Hence we
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see

U(IN2 −F (C+
A , z))V ((i, j), (p, q)) =































1 if (i, j) = (p, q), q < N,

0 if (i, j) 6= (p, q), q < N,

1−∑N
k=1 F

A(i, k)A(k, p) if (i, j) = (p, q), q = N,

−FA(i, j)A(j, p) if j < N, q = N,

0 otherwise.

Each (p, q)th column for q < N of the matrix U(IN2 − F (C+
A , z))V has 1 on diagonal and

zero elsewhere. Since

1−
N
∑

k=1

FA(i, k)A(k, p) = 1−H(C+
A , z)(i, p),

by expanding the matrix U(IN2−F (C+
A , z))V along the (p, q)th columns for p = 1, 2, . . . , N

with q < N , we have

det(U(IN2 − F (C+
A , z))V ) = det(IN −H(C+

A , z)).

As det(U) = det(V ) = 1, we get the desired equality.

Therefore we have

Proposition 3.4.

ζ(ΩC+

A
, z) =

det(IN − zA)

det(IN − diag[fA
1 (z2), . . . , fA

N (z2)]zA)
. (3.2)

Proof. Since

H(C+
A , z) = diag[fA

1 (z2)− 1, . . . , fA
N (z2)− 1]zA(IN − zA)−1,

we have

IN −H(C+
A , z) = IN − diag[fA

1 (z2), . . . , fA
N (z2)]zA(IN − zA)−1 + zA(IN − zA)−1

= (IN − zA)−1 − diag[fA
1 (z2), . . . , fA

N (z2)]zA(IN − zA)−1

= (IN − diag[fA
1 (z2), . . . , fA

N (z2)]zA)(IN − zA)−1

so that the desired equality holds.

For j ∈ {1, 2, . . . , N} with A(i, j) = 1, we put

CA
n [i; {j}] = {(αi, w1, . . . , w2n−2, βi) ∈ CA

n (j) | (w1, . . . , w2n−2) ∈ CA
n−1(i)}

and

CA
n [j] =

N
⋃

i=1
A(i,j)=1

CA
n [i; {j}], CA[j] =

∞
⋃

n=1

CA
n [j].
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We set cAn [j] = |CA
n [j]|. As |CA

n [i; {j}]| = cAn−1(i) if A(i, j) = 1, we have

cAn [j] =

N
∑

i=1

A(i, j)cAn−1(i). (3.3)

Similarly for a subset {j1, . . . , jk} ⊂ {1, 2, . . . , N} with A(i, j1) = · · · = A(i, jk) = 1, we
put

CA
n [i; {j1, . . . , jk}] =

k
⋂

m=1

CA
n [i; {jm}]

and

CA
n [{j1, . . . , jk}] =

N
⋃

i=1
A(i,j1)=···=A(i,jk)=1

CA
n [i; {j1, . . . , jk}],

CA[{j1, . . . , jk}] =
∞
⋃

n=1

CA
n [{j1, . . . , jk}].

We set cAn [{j1, . . . , jk}] = |CA
n [{j1, . . . , jk}]| so that

cAn [{j1, . . . , jk}] =
N
∑

i=1

A(i, j1) · · ·A(i, jk)cAn−1(i). (3.4)

For a subset {j1, . . . , jk} ⊂ {1, 2, . . . , N} if there exists i ∈ {1, 2, . . . , N} such that
A(i, j1) = · · · = A(i, jk) = 1, we call the set CA[{j1, . . . , jk}] the Markov-Dyck code

with support {j1, . . . , jk}. It is easy to see that the set CA[{j1, . . . , jk}] is a circular code.
Denote by CA[{j1, . . . , jk}]∞ the set of all two-sided sequences of alphabet Σ = Σ− ∪ Σ+

consisting of free concatenations of words of CA[{j1, . . . , jk}]. Let gCA[{j1,...,jk}](z) be the

generating function for the sequence cAn [{j1, . . . , jk}], n = 1, 2, . . . defined by

gCA[{j1,...,jk}](z) =
∞
∑

n=1

cAn [{j1, . . . , jk}]z2n.

Lemma 3.5. (i) The generating function gCA[{j1,...,jk}](z) satisfies

gCA[{j1,...,jk}](z) = z2
N
∑

i=1

A(i, j1)A(i.j2) · · ·A(i, jk)fA
i (z2). (3.5)

(ii) The zeta function ζ(CA[{j1, . . . , jk}]∞, z) of the shift-invariant set

CA[{j1, . . . , jk}]∞ ⊂ ΣZ is

ζ(CA[{j1, . . . , jk}]∞, z) =
1

1− gCA[{j1,...,jk}](z)
. (3.6)

In particular for j ∈ {1, 2, . . . , N}, we have

ζ(CA[{j}]∞, z) =
1

1− gCA[{j}](z)
= fA

j (z2). (3.7)
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Proof. (i) By (3.4), we have

gCA[{j1,...,jk}](z) =
∞
∑

n=1

N
∑

i=1

A(i, j1) · · ·A(i, jk)cAn−1(i)z
2n

= z2
N
∑

i=1

A(i, j1) · · ·A(i, jk)
∞
∑

n=1

cAn−1(i)z
2(n−1)

= z2
N
∑

i=1

A(i, j1) · · ·A(i, jk)fA
i (z2).

(ii) The set CA[{j1, . . . , jk}] is a circular code, and the set CA[{j1, . . . , jk}]∞ consisting
of the two-sided sequences of free concatenations of words of CA[{j1, . . . , jk}]. Hence a
well-known theorem of combinatorics (cf. [18, Proposition 4.7.11]) ensures us the equality

ζ(CA[{j1, . . . , jk}]∞, z) =
1

1− gCA[{j1,...,jk}](z)
.

In particular we have

gCA[{j}](z) = z2
N
∑

i=1

A(i, j)fA
i (z2) =

fA
j (z2)− 1

fA
j (z2)

= 1− 1

fA
j (z2)

so that

ζ(CA[{j}]∞, z) =
1

1− gCA[{j}](z)
= fA

j (z2). (3.8)

We call a subset {j1, . . . , jk} ⊂ {1, 2, . . . , N} a support subset if for any i ∈ {1, 2, . . . , N}
there exists l = 1, . . . , k such that A(i, jl) = 1. The set {1, 2, . . . , N} itself is a support
subset. For a shift-invariant subset C of DA, denote by Pn(C) the set of n-periodic points
of C. We set

CA∞
=

⋃

{j1,...,jk}⊂{1,...,N}
CA[{j1, . . . , jk}]∞ ⊂ ΣZ. (3.9)

By the principle of inclusion of exclusion in combinatorics (cf. [18, 2.1]), we have

Lemma 3.6. Let J = {j1, . . . , jk} be a support subset of {1, 2, . . . , N}. Then we have

Pn(C
A∞

)

=
k
⋃

l=1

Pn(C
A[{jl}]∞)−

⋃

{j1,j2}⊂J

Pn(C
A[{j1, j2}]∞)

· · ·(−1)m+1
⋃

{j1,...,jm}⊂J

Pn(C
A[{j1, . . . , jm}]∞) · · · (−1)k+1

⋃

Pn(C
A[{j1, . . . , jk}]∞),

where (−1)m+1⋃

{j1,...,jm}⊂J means
⋃

{j1,...,jm}⊂J if m is odd.

Hence we have
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Proposition 3.7. Let J = {j1, . . . , jk} be a support subset of {1, 2, . . . , N}. Then we have

ζ(CA∞
, z)

=

k
∏

l=1

ζ(CA[{jl}]∞, z) ·
∏

{j1,j2}⊂J

ζ(CA[{j1, j2}]∞, z)−1

· · ·
∏

{j1,...,jm}⊂J

ζ(CA[{j1, . . . , jm}]∞, z)(−1)m+1 · · · ζ(CA[{j1, . . . , jk}]∞, z)(−1)k+1

.

Corollary 3.8. Suppose that there exists j0 ∈ {1, 2, . . . , N} such that A(i, j0) = 1 for all

i = 1, 2, . . . , N . Then ζ(CA∞
, z) = fA

j0
(z2).

We reach the following formula of the zeta function of a Markov-Dyck shift of vertex
type.

Theorem 3.9. Let A be an N ×N essential matrix with entries in {0, 1}. Then the zeta

function ζDA
(z) of the Markov-Dyck shift DA is given by the following formula:

ζDA
(z) =

ζ(CA∞
, z)

det(IN − diag[fA
1 (z2), . . . , fA

N (z2)]zA)2
(3.10)

where

ζ(CA∞
, z) =

∏

{j1,...,jk}⊂{1,2,...,N}
ζ(CA[{j1, . . . , jk}]∞, z)(−1)k+1

,

the products
∏

{j1,...,jk}⊂{1,2,...,N} run over all subsets of {1, 2, . . . , N}, and the zeta function

ζ(CA[{j1, . . . , jk}]∞, z) is given by

ζ(CA[{j1, . . . , jk}]∞, z) =
1

1− gCA[{j1,...,jk}](z)
,

where

gCA[{j1,...,jk}](z) = z2
N
∑

i=1

A(i, j1) · · ·A(i, jk)fA
i (z2),

and the functions fA
i (z2), i = 1, 2, . . . , N satisfiy the relations (3.1).

Proof. For n, k ∈ N, we define the following set CA,−
n,k similarly to C

A,+
n,k by

C
A,−
n,k = {(αi1 , . . . , αik , w1, . . . , w2n) ∈ B2n+k(DA) |

(w1, . . . , w2n) ∈ CA
n , (αi1 , . . . , αik) ∈ Bk(XAt)}.

Similarly to the previous discussion, we have a circular Markov code C−
A = (C−

A , I, Ã
t, r)

and the formula (3.2) for ζ(ΩC−

A
, z). We then have a disjoint union of periodic points

Pn(DA) = Pn(ΩC+

A
) ∪ Pn(ΩC−

A
) ∪ Pn(C

A∞
) ∪ Pn(XA) ∪ Pn(XAt).

16



Since ζ(ΩC+

A
, z) = ζ(ΩC−

A
, z), Proposition 3.4 ensures us

ζDA
(z) = ζ(ΩC+

A
, z) · ζ(ΩC−

A
, z) · ζ(CA∞

, z) · 1

det(IN − zA)
· 1

det(IN − zAt)

=
ζ(CA∞

, z)

det(IN − diag[fA
1 (z2), . . . , fA

N (z2)]zA)2
.

For a finite directed graph G = (V,E) the above formula gives us the formula for the
zeta function of the Markov-Dyck shift of vertex type.

Corollary 3.10. Suppose that there exists j0 ∈ {1, 2, . . . , N} such that A(i, j0) = for all

i = 1, 2, . . . , N . Then

ζDA
(z) =

fA
j0
(z2)

det(IN − diag[fA
1 (z2), . . . , fA

N (z2)]zA)2
.

4 The zeta functions of Markov-Dyck shifts of edge type

The Markov-Dyck shifts in the paper [14] are the Markov-Dyck shifts of edge type. In [14],
a formula of the zeta functions of Markov-Dyck shifts of edge type has been presented. In
this section, we present the formula [14, Theorem 2.3] from Theorem 3.9. We need the
following lemma.

Lemma 4.1. For a finite directed graph G = (V,E) with |V | = N0 and |E| = N1. Let

fV
1 (x), · · · , fV

N0
(x) and fE

1 (x), · · · , fE
N1

(x) be the functions satisfying the relations respec-

tively

fV
i (z) = 1 + zfV

i (z)

N0
∑

j=1

AG(j, i)f
V
j (z). (4.1)

fE
i (z) = 1 + zfE

i (z)

N1
∑

j=1

AG(j, i)fE
j (z). (4.2)

Then we have

det(IN0
− diag[fV

1 (z2), . . . , fV
N0

(z2)]zAG)

=det(IN1
− diag[fE

1 (z2), . . . , fE
N1

(z2)]zAG).

Proof. Put the sets I0 = {1, 2, . . . , N0}, I1 = {1, 2, . . . , N1} and the diagonal matrices
DV (z2) = diag[fV

1 (z2), . . . , fV
N0

(z2)] and DE(z2) = diag[fE
1 (z2), . . . , fE

N1
(z2)]. Define the

N0 ×N1 matrix S = [S(i, j)]i∈I0 ,j∈I1 and the N1 ×N0 matrix R = [R(j, i)]j∈I1,i∈I0 by

S(i, j) =

{

1 if vi = s(ej),

0 otherwise,
R(j, i) =

{

1 if t(ej) = vi,

0 otherwise,
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so that AG = SR and AG = RS. For a vertex vi ∈ V and en edge ej ∈ E, we set

CAG
n (vi) = {(w1, . . . , w2n) ∈ CAG

n | (v∗i , w1, . . . , w2n, vi) ∈ CAG
n+1},

CAG

n (ej) = {(g1, . . . , g2n) ∈ CAG

n | (e∗j , g1, . . . , g2n, ej) ∈ CAG

n+1}.

Let us denote by cGn (vi) and cGn (ej) their cardinalities |CAG
n (vi)| and |CAG

n (ej)| respectively
([16, pages 8,9]). Then we have

fV
i (z) =

∞
∑

n=0

cGn (vi)z
n, fE

j (z) =

∞
∑

n=0

cGn (ej)z
n

so that fE
j (z) = fV

i (z) when s(ej) = vi. Hence we have

fV
i (z2)S(i, j) = S(i, j)fE

j (z2)

which implies that DV (z2)S = SDE(z2). It then follows that

zDV (z2)AG = zDV (z2)SR = zS ·DE(z2)R,

zDE(z2)AG = zDE(z2)RS = DE(z2)R · zS.

Hence the matrices zDV (z2)AG and zDE(z2)AG are elementary equivalent (see [15, Defi-
nition 7.2.1]), so that det(IN0

− zDV (z2)AG) = det(IN1
− zDE(z2)AG).

Therefore we have

Proposition 4.2 ([14, Theorem 2.3]). If a matrix A is an edge matrix AG = [AG(e, f)]e,f∈E
defined by a finite directed graph G = (V,E) with |V | = N0, then the zeta function of the

Markov-Dyck shift DG(= DAG) of edge type is given by the following formula:

ζDG
(z) =

ΠN0

i=1f
G
i (z2)

det(IN − diag[fG
1 (z2), . . . , fG

N0
(z2)]zAG)2

(4.3)

where fG
1 (z2), . . . , fG

N0
(z2) are the functions satisfying

fG
i (z) = 1 + zfG

i (z)

N0
∑

j=1

AG(j, i)f
G
j (z). (4.4)

Proof. Since fG
i (x) = fV

i (x), i = 1, . . . , N0 and

ζ(CA∞
, z) =

N0
∏

i=1

1

1− gCA[{j}](z)
=

N0
∏

i=1

fG
i (z2)

(cf. (cf. [18, Proposition 4.7.11]), the preceding lemma implies the equality (4.3) from
Theorem 3.9.
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Figure 2:

5 The Fibonacci-Dyck shift of vertex type

Let G2 be the finite directed graph defined in the Figure 2. The edge matrix AG2 and the
vertex matrix AG2

are written as

AG2 =





1 1 0
0 0 1
1 1 0



 , AG2
=

[

1 1
1 0

]

(5.1)

respectively. We then have

Proposition 5.1. DV
G2

is not topologically conjugate to DE
G2

.

Proof. It is easy to see that the number of the 2-periodic points of DV
G2

is 6, whereas that

of DE
G2

is 7.

The Fibonacci-Dyck shift DE
G2

of edge type is a subshift DAG2 over six symbols which
correspond to the edges of the directed graphs G2 and G∗

2 of Figure 2. The Fibonacci-Dyck
shift DAG2

of vertex type is a subshift DAG2
over four symbols which correspond to the

vertices of the directed graphs of G2 and G∗
2 of Figure 2. Let us denote by α1, α2 and

β1, β2 the symbols of DAG2
. They have the following algebraic relations from the relations

(2.3) of operators for A = AG2
=

[

1 1
1 0

]

:

α1β1 = β1α1 + β2α2 = 1, α2β2 = β1α1, β2α2β2 = β2,

A word γ = (γ1, . . . , γm) of Σ = {α1, α2, β1, β2} is forbidden if γ1 · · · γm = 0. The
Fibonacci-Dyck shift DAG2

of vertex type is defined as a subshift over Σ whose forbidden
words are defined in this sense.

We will compute the zeta function ζDV
G2

(z) by using Corollary 3.10. Let f1(z), f2(z)

be the functions fV
1 (z), fV

2 (z) which satisfy the following relations:

f1(z)− 1 = z(f1(z) + f2(z))f1(z),

f2(z)− 1 = zf1(z)f2(z)

so that the equalities

f2(z)
2 = f1(z), zf2(z)

3 − f2(z) + 1 = 0
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hold (see [16, Section 7]). We then have

det(I2 − diag[f1(z
2), f2(z

2)]zAG2
) = det

([

1− zf1(z
2) −zf1(z

2)
−zf1(z

2) 1

])

= 1− zf1(z
2)− z2f1(z

2)f2(z
2)

= 2− zf1(z
2)− f2(z

2).

Proposition 5.2. The zeta function ζDV
G2

(z) of the Fibonacci-Dyck shift of vertex type is

ζDV
G2

(z) =
1

(2ξ(z)2 + ξ(z)− 1)2
(5.2)

where ξ(z) = 2√
3
sin(13 arcsin

3
√
3

2 z) for 0 ≤ z ≤ 2
3
√
3
.

Proof. By Corollary 3.10 with the above discussions, we have

ζDV
G2

(z) =
f1(z

2)

(2− zf1(z2)− f2(z2))2

=

(

f2(z
2)

(2f2(z2)− 2z2(f2(z2)3)− zf2(z2)2 − f2(z2))

)2

=
1

(1− 2(zf2(z2)2 − zf2(z2))2
.

By putting ξ(z) = zf2(z
2), we have

ζDV
G2

(z) =
1

(2ξ(z)2 + ξ(z)− 1)2
(5.3)

and ξ(z)3 − ξ(z) + z = 0. As in [14, (4.10), (4.13)], we have

ξ(z) =
2√
3
sin(

1

3
arcsin

3
√
3

2
z) for 0 ≤ z ≤ 2

3
√
3
.

We remark that the zeta function ζDE
G2

(z) of the Fibonacci-Dyck shift of edge type is

ζDE
G2

(z) =
ξ(z)

z(2ξ(z)2 + ξ(z) − 1)2
([14, Section7])

which is different from (5.3).
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