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Abstract

Many network applications rely on the synchronization of coupled oscillators. For example, such syn-

chronization can provide networked devices with a common temporal reference necessary for coordinating

actions or decoding transmitted messages. In this paper, we study the problem of using distributed control

to achieve both phase and frequency synchronization of a network of coupled heterogeneous nonlinear os-

cillators. Not only do our controllers guarantee zero phase error in steady state under arbitrary frequency

heterogeneity, but they also require little knowledge of the oscillator nonlinearities and network topology.

Furthermore, we provide a global convergence analysis, in the absence of noise and propagation delay, for

the resulting nonlinear system whose phase vector evolves on the n-torus.

Index Terms

Synchronization, coupled oscillators, control of networks, distributed control, nonlinear control.

I. Introduction

Achieving temporal coordination among different networked devices is a fundamental requirement for the

successful operation of many engineering systems. For example, it is necessary in communication systems

for recovering transmitted messages [1], in sensor networks for coordinating wake up cycles [2] or achieving

temporal measurement coherence [3], and in computer networks for preserving the causality of distributed

events [4]. Almost ubiquitously, such coordination is accomplished by providing each node of the network

with its own local oscillator and then compensating its phase and frequency (using information received

from other devices on the network) to achieve a common temporal reference.
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Legacy applications such as public switched telephone networks and cellular networks use a centralized

hierarchical synchronization scheme with high-precision oscillators having relative frequency errors ranging

from 0.01 to 4.6 parts per million (ppm) [5, 6]. For several reasons, however, these traditional synchronization

architectures have become increasingly unsuitable for newer applications such as wireless sensor networks. For

example, traditional methods can break down with the failure of only a few nodes. In addition, many newer

applications use inexpensive oscillators having errors as high as 100 ppm [7]. Thus, a synchronization protocol

designed for these newer applications should satisfy two essential requirements: it should be distributed and

independent of the network topology (each node should use only its neighbors’ oscillator information to

adjust it own oscillator), and it should be robust to wide variations and uncertainty in the specifications of

the oscillators used throughout the network.

A variety of synchronization algorithms have been proposed along these lines, jointly inspired by collective

synchronization in physics and biology [8–11] and cooperative control in engineering networks [12, 13]. One

possible solution is to use monotonically increasing time sources (e.g. clocks) and update their times based

on offset information [14–22] to achieve a common absolute time reference (clock synchronization). This

is suitable for applications in computer networks where a reference to an absolute time is needed (e.g.

distributed databases). Another solution is to use periodic time sources (e.g. oscillators) interconnected

with phase comparators [23–25] or pulse-coupling [26–28], where the objective is to achieve common relative

time reference (phase synchronization) that allows temporal coordination within the network (e.g. waking

up simultaneously).1

While the theoretical study of clock synchronization is fairly mature, with solutions that can provide

zero offset error synchronization on networks with arbitrary heterogeneous frequencies [4] and asynchronous

updates [22], little is known about the phase synchronization counterpart. For example, most phase syn-

chronization solutions present nonzero steady state phase differences in the presence of frequency hetero-

geneity [23, 24, 26–28] with convergence guarantees limited to idealized scenarios such as homogeneous

frequencies [29]. The only exception is [25] which can guarantee phase synchronization for complete graph

topologies. Thus whether or not such systems can synchronize for arbitrary networks and arbitrary frequency

heterogeneity has remained as an open question [24].

In this paper, we provide a positive answer to this question under very general conditions. We propose two

distributed controllers that can achieve phase synchronization for a network of arbitrarily interconnected

oscillators, under mild assumptions on the oscillator and phase comparator characteristics. For example,

we allow the instantaneous frequency of each oscillator to be a highly uncertain nonlinear function of the

local control input, a model consistent with most analog oscillators (such as voltage-controlled oscillators or

1Although one can use clock synchronization to achieve phase synchronization by simply mapping the linear times onto

the circle using a modulo operator, this approach can lead to undesirable transients if the phases keep wrapping around the

circle as the linear times synchronize. For this reason we consider these as separate synchronization problems, each suitable for

different application areas.
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CMOS oscillators). Also, unlike existing work, we allow the set of oscillator frequencies to be bounded, so

that each oscillator may operate within a prescribed frequency range, even during the transient part of the

response. Finally, we allow flexibility in the choice of the phase comparator responses, rather than assuming

as in [25] that they are sinusoidal. We only require that the measured phase difference is noiseless and can

be obtained without propagation delay.

The main contribution of the paper is a novel nonlinear convergence analysis that leverages recent results

on the stability of equilibria of homogeneous-frequency coupled oscillators [29]. In particular, our controllers

are based on a Hamiltonian dynamic system defined on the graph in which each local minimum of the energy

function represents a synchronized trajectory. Each controller employs a different mechanism to dissipate

energy and thereby converge to a synchronized solution. Furthermore, we show that any trajectories that

are synchronized in frequency but not in phase must be unstable.

II. Notation and terminology

We let T = R/2πZ denote the unit circle, regarded as the Lie group of angle addition. We equip T

with the usual Riemannian metric which defines the distance between two points to be the length of the

shorter of the two arcs connecting them (so that diam(T) = π). For p ∈ N, we let Tp denote the Cartesian

product of p circles. For i ∈ {1, . . . , p}, we let ∂i denote the unit vector field pointing in the counterclockwise

direction on the ith factor of Tp (which we write simply as ∂ when p = 1). Because these unit vector fields

form an ordered basis for the tangent space of Tp at each point, we can represent tangent vectors for Tp

as elements of Rp, that is, as coordinate vectors with respect to this basis. Moreover, all Jacobian matrices

of mappings defined on Tp will be representations of the differential with respect to this basis.

All graphs in this paper will be simple, undirected, connected graphs having n vertices (with 2 6 n <∞)

and m edges (with m > n− 1). We represent such a graph G as a pair G = (V,E) for a vertex set V and

edge set E. We label and order the vertices and edges, writing V = {1, . . . , n} and E = {1, . . . ,m}, where

each edge k ∈ E is an unordered pair of distinct vertices k = {i, j} ⊂ V. For each vertex i ∈ V, we let Ni

denote the following indexed set of neighbors of i:

Ni =
{

(j, k) ∈ V×E : k = {i, j}
}
. (1)

Thus (j, k) ∈ Ni if and only if (i, k) ∈ Nj , that is, if and only if edge k connects vertices i and j.

III. Problem statement and results

We consider a network of controlled oscillators in which each oscillator shares the current value of its

phase with its immediate neighbors. The purpose of the controller design is to guarantee both frequency

and phase synchronization of the interconnected system. We adopt the classical phase-locked loop (PLL)

structure for each controlled oscillator [23, 30]. This structure consists of three components connected in

feedback, as illustrated in Fig. 1: a base oscillator, a phase comparator, and a loop filter. The base oscillator

is a physical device (such as a voltage-controlled oscillator) whose frequency is determined dynamically by
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Fig. 1: PLL components of a controlled oscillator.

means of a control signal; the phase of each controlled oscillator system is simply the phase of its base

oscillator. The phase comparator produces a phase error signal by comparing its own phase with the phases

of its neighbors. Finally, the loop filter produces the control signal from the phase error.

We represent the network of oscillators by a graph G = (V,E) in which each vertex is a controlled

oscillator and each edge indicates an exchange of phases between neighboring vertices. We represent the

phase of oscillator i at time t∈R by ϕi(t)∈T, and we write the phase vector signal for the entire network

as the column vector

ϕ =
[
ϕ1 . . . ϕn

]T ∈ Tn . (2)

We define a synchronization measure δϕ to be the diameter of the finite subset of T consisting of the n

phases ϕi:

δϕ = diam
{
ϕ1, . . . , ϕn

}
∈ [0, π] . (3)

Note that if δϕ < 2π
3 , then the n phases ϕi all lie within an arc of length δϕ. Therefore a small value of

δϕ represents a tight clustering of the oscillator phases, and these phases are all identical when δϕ = 0.

This diameter (3) is a worst-case measure of synchronization, rather than an average measure, as a single

outlier can make this diameter large. The following definition describes our design goal:

Definition 1. Let I ⊂ R be an interval. The network of oscillators achieves almost-global synchronization

within I when for almost all initial states (including both the initial oscillator phases and any initial loop

filter states), the trajectories of the system satisfy:

asymptotic frequency synchronization: there exists a constant ω? ∈ I such that ϕ̇i(t) → ω? as t → ∞ for

each i∈V;

asymptotic phase synchronization: δϕ(t)→ 0 as t→∞;

constrained frequencies: ϕ̇i(t)∈ I for all t > 0 and each i∈V;

internal boundedness: all loop filter states (if any) are bounded in forward time.

The constraint interval I used in this definition characterizes the desired range of frequencies for the

oscillators. Choosing an appropriate interval I in the design is thus useful for preventing the oscillators
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from moving too fast, too slow, or reversing direction.

A. Base oscillator and phase comparator

In common models of controlled analog oscillators, the instantaneous frequency is some uncertain mono-

tonic nonlinear function of the control input. For example, the graph of this function is the “tuning curve”

seen on data sheets of many voltage-controlled oscillators, where it is understood that this curve is typical

rather than exact. Motivated by such models, we assign an uncertain frequency function χi to the base

oscillator in each vertex i, where χi : U→ R is a strictly increasing C1 function on a known open interval

domain U ⊂ R. The angular velocity of the phase of the oscillator at time t (that is, its instantaneous

frequency) is then given by χi(ui(t)), where ui(·) is a U-valued control signal. Hence our model for the base

oscillator is the differential equation

ϕ̇i = χi(ui) . (4)

In this oscillator model, the oscillator stops whenever χi(ui) = 0 and reverses direction whenever χi(ui)

changes sign. However, an oscillator need not admit such behavior, as the image χi(U) need not contain

zero.

As we see from the model (4), the base oscillators are nonlinear and heterogeneous. In addition, we do not

need precise knowledge of the frequency functions χi to complete our design and guarantee almost-global

synchronization. In fact, as we will see when we list our assumptions in Section III-E below, all we need to

know about the functions χi in the unconstrained case I = R is that they are C1 with positive derivatives

on U, and that the intersection of their images χi(U) is nonempty.

The phase comparator in vertex i calculates a linear combination of functions of phase differences to

produce a phase error ei:

ei(ϕ) =
∑

(j,k)∈Ni

akf(ϕj − ϕi) , (5)

where the constants ak are positive edge weights and f : T→ R is the phase coupling function. For example,

the coupling function used in many classical PLL designs is the sine function f = sin.

B. Example: the Kuramoto model

Suppose that the frequency function χi for each base oscillator i has the simple affine form χi(ui) = ωi+ui,

where the constant ωi ∈ R represents the nominal oscillator frequency. Suppose further that the phase

coupling function is the sine function f = sin and that all loop filters are constant unity gains so that

ui ≡ ei. Then the controlled phase equation becomes

ϕ̇i = ωi +
∑

(j,k)∈Ni

ak sin(ϕj − ϕi) . (6)

This model of a network of coupled oscillators has been studied extensively, and we refer the reader to the

survey paper [31]. In particular, if the graph G is complete, and if all edge weights ak are the same, then

this is the famous Kuramoto model of coupled oscillators [32].
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The oscillator network characterized by the dynamics in (6) fails to meet the design goal of Definition 1.

Indeed, the existence of a synchronized trajectory for the model (6) in which δϕ ≡ 0 implies that the

nominal frequencies ωi are all identical. If these frequencies were known precisely, then we could simply

cancel them out via control by setting ui = ei +ω?−ωi to obtain a model of the form (6) in which ωi = ω?

for all i ∈ V. However, even in this case of identical frequencies, almost-global synchronization has been

proved only for special classes of connected graphs, such as complete graphs or trees [31]. Instead, we are

interested in oscillators having unknown heterogeneous frequencies on arbitrary connected graphs. In this

case one can choose sufficiently large edge weights ak to guarantee “practical” phase synchronization in

which δϕ becomes small, provided it does not start off too large [31]. However, choosing large edge weights

makes it less likely that the frequencies ϕ̇i will be constrained to a desired interval I during the transient. In

any case, we see that we must depart from this standard model (6) to meet the design goal of Definition 1,

and we do so by choosing a non-sinusoidal coupling function f in (5) and a nonlinear dynamic loop filter.

C. Toward synchronization: a Hamiltonian system

The loop filter in vertex i produces the control signal ui from the phase error ei. It is well known that

introducing integral action into the loop filter can compensate offset mismatches for networks of heteroge-

neous oscillators [19, 21–23, 25, 30]. Thus as a first attempt at achieving almost-global synchronization of

the oscillator network, we simply make the loop filter a scaled integrator:

γ̇i = ciei(ϕ) (7)

ui = ζ(γi) , (8)

where γi(·) is the real-valued internal filter state, ci is a positive parameter, and ζ : R → U is a scaling

function which squeezes the value of γi into the domain U of the frequency function χi. We do not assume

that the oscillators have access to the global time variable t. As a result, the differential dt used in the

construction of dγi/dt in (7) is unknown, and we account for this by assuming that the positive constant ci

is unknown.

The system resulting from (4) and (7)–(8) is

ϕ̇i = χi(ζ(γi)) (9)

γ̇i = ciei(ϕ) , (10)

where ei is the phase error in (5). The first thing we notice about this system (9)–(10) is that it admits a

synchronized solution at any frequency ω?∈R which belongs to the image of each function χi ◦ ζ. Indeed,

choose any initial states such that δϕ(0) = 0 and χi(ζ(γi(0))) = ω? for each i∈V; then ϕ̇i ≡ ω? and γ̇i ≡ 0

for every i ∈ V, which implies δϕ ≡ 0. However, solutions starting from other initial conditions will not

converge to such synchronized trajectories, which means this system still fails to meet the design goal of

Definition 1.
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The second thing we notice about the system (9)–(10) is that it is a Hamiltonian system with position

variables ϕi and momentum variables γi/ci. Indeed, assuming the phase coupling function f is odd, the

n-vector of phase errors ei is the negative gradient of a potential function of the phase vector ϕ (as we will

show in Section IV-A). Furthermore, each function (χi ◦ ζ)/ci, being a scalar function of a scalar variable,

is trivially the gradient of a potential function of its argument γi. The sum of these potential functions

is a Hamiltonian associated with the dynamics (9)–(10). Moreover, as we will see in Section IV-A, if we

let the position variables be the phases ϕi measured relative to an appropriate rotating frame, then the

system is still Hamiltonian, but now the Hamiltonian is proper and nonnegative and is thus a Lyapunov

function candidate. If we can guarantee that synchronized trajectories represent the only local minima of

this Lyapunov function, then we can perturb these Hamiltonian dynamics with dissipation terms in the

controller to achieve almost-global synchronization. This is the control design strategy we will pursue in

this paper.

D. The PI loop filter: a perturbed Hamiltonian system

We propose two different perturbed Hamiltonian systems in this paper, the first now and the second

later on in section III-F. For our first perturbation, we add a proportional term to the integral control (8),

resulting in a proportional-integral (PI) loop filter of the form

γ̇i = ciei(ϕ) (11)

ui = ζ(ei(ϕ) + γi) . (12)

Such a loop filter (without our nonlinear scaling function ζ) can be found in classical PLL designs [30]

as well as in various coupled oscillator systems [23, 25]. More generally, the error term ei in (12) can be

replaced with a scaled error term κiei, where the “proportional gain” κi is a positive constant (or even a

positive function of γi), with virtually no change in the convergence proof. We have left this gain κi out of

the analysis to simplify notation, but the flexibility it adds will be important for tuning the performance

of the system. We might also introduce a corresponding “integral gain,” but for the analysis this can be

absorbed into the constant ci.

To summarize, each controlled oscillator in the network has second-order dynamics of the form

ϕ̇i = χi(ζ(ei(ϕ) + γi)) (13)

γ̇i = ciei(ϕ) (14)

with

ei(ϕ) =
∑

(j,k)∈Ni

akf(ϕj − ϕi) . (15)

The state space of each such oscillator is the cylinder T×R. We next present conditions under which this

oscillator system exhibits almost-global synchronization within a given interval I.
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E. Assumptions and main result

We assume that each vertex knows its neighbors in the graph G (as they need to exchange phase

information), but otherwise the graph is unknown. However, we do assume the following:

(A1) the graph G is connected, and there exists a known upper bound on the number n of vertices in G.

The frequency functions χi of the base oscillators are uncertain; we merely assume that they satisfy the

following:

(A2) the frequency functions χi : U→ R are all C1 with positive derivatives χ′i : U→ (0,∞), and are such

that ⋂
i∈V

χi(U) 6= ∅ . (16)

It is clear from the oscillator model (4) that (16) is necessary for the existence of phase trajectories having

synchronized frequencies. This condition (16) implies the existence of some common interval of possible base

oscillator frequencies, and thus places an inherent limit on the extent to which these oscillators can differ

from each other. Indeed, if one oscillator can only produce frequencies in the kilohertz range and another

only in the megahertz range, then there is no possibility of synchronization.

We next assume that our loop filter scaling function ζ satisfies:

(A3) the scaling function ζ : R→ U is C1 with positive derivative ζ ′ : R→ (0,∞), and is such that⋂
i∈V

χi(ζ(R)) 6= ∅ (17)

and

⋃
i∈V

χi(ζ(R)) ⊂ I , (18)

where I is the constraint interval from Definition 1.

It is clear from (4) that (18) constrains the frequencies ϕ̇i to the interval I as required by the design goal

in Definition 1. If I is large enough to contain the union of the images χi(U), then we can always satisfy

assumption (A3) by choosing the scaling function ζ to be a diffeomorphism onto U (so that (16) and (17)

are the same). However, if I is not that large, then assumption (A3) states that we have found a solution

to the problem of designing ζ to satisfy both (17) and (18) based on some a priori knowledge about the set

of possible frequency functions χi. Such a design problem could very well have no solution if I is too small.

We let f ′ : T → R denote the derivative of the phase coupling function f in the direction of the unit

vector field ∂. We make two assumptions on this function f :

(A4) the phase coupling function f : T→ R is C1 and odd, that is, f(−θ) = −f(θ) for all θ ∈T;

(A5) there is a constant b ∈ (0, π
n−1 ] such that f ′(θ) > 0 whenever cos(θ) > cos(b) and f ′(θ) < 0 whenever

cos(θ) < cos(b), for any θ ∈T.
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Fig. 2: Examples of phase-coupling functions f when b = 0.5.

Assumptions (A4)–(A5) also appeared in [33, 34] and play an important role in the convergence analysis:

(A4) allows the interpretation of (4) and (7)-(8) as a Hamiltonian system, while (A5) is needed to guarantee

convergence to the desired solution.

Note that to choose such a parameter b, we must use our assumed knowledge in (A1) of a known upper

bound on n. Examples of functions f which satisfy assumptions (A4)–(A5) are shown in Fig. 2 for b= 0.5.

The first example is given by the Cω formula

f(θ) =
[
1− cos(b)

] sin(θ)

1− cos(b) cos(θ)
. (19)

This function is related to the characteristic of certain “tanlock” phase comparators [30], and it generates

the sinusoidal coupling f = sin when b = π
2 . The other examples are C1 and piecewise polynomial of

various degrees p > 1, each having a derivative given by f ′(θ) = 1− (|θ|/b)p−1 on a certain arc containing

[−b, b] and a constant derivative on its complement. All of these examples are normalized to have unit

derivative at zero, which means they should result in similar performance for small deviations around a

stable synchronized trajectory. When b is small (which we require when n is large), the magnitude of the

derivative of the tanlock function is small on the arc [b, π] when compared to the magnitude of the derivatives

of the piecewise-polynomial functions. As a result, the piecewise-polynomial functions might provide faster

convergence to a synchronized state when some initial phase differences are greater than b (due to their

larger gains for large phase differences).

The final assumption is on the choice of the edge weights ak:

(A6) each edge weight ak is chosen at random from a continuous probability distribution on the inter-

val (0,∞).

This assumption allows us to state that, with probability one, we avoid an unknown zero-measure set of bad

edge weight vectors a = [a1 . . . am]T ∈ Rm for which our stability analysis does not guarantee convergence.

Theorem 2. Assume (A1)–(A6). Then with probability one in the selection of edge weights in (A6), the

network of oscillators with vertex dynamics (13)–(15) achieves almost-global synchronization within I.
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M

leaf

leaf

Fig. 3: The invariant set M (shown in gray) is a collection of isolated cylinders. The intersection of each invariant

leaf of the foliation (shown in blue) with M is a collection of isolated circles (shown in red).

Note that when n > 4, assumption (A5) rules out the sinusoidal phase-coupling function f = sin. In

fact, the requirement b 6 π
n−1 is within a factor of two of being necessary. Indeed, one can show that if

b > 2π
n , then for some connected graphs having n vertices there exists a nonempty open set of bad edge

weight vectors such that trajectories of (13)–(15) starting from a set of initial states having positive measure

achieve asymptotic frequency synchronization but not asymptotic phase synchronization.

We will prove Theorem 2 in Section IV. In this proof, we first construct a Lyapunov function for the

system, and then apply the Krasovskii-LaSalle invariance theorem to show that all trajectories converge to

a certain invariant subset M of the state space Tn×Rn. We then determine the structure of this set M,

showing first that it is the disjoint union of isolated embeddings of the cylinder T×R. We next show that

the state space admits a foliation into invariant (2n−1)-dimensional submanifolds, and that the intersection

of each leaf of this foliation with the set M is the disjoint union of isolated embeddings of the circle T (as

conceptualized in Fig. 3). Each such circle represents a periodic trajectory with a constant synchronized

frequency ω? ∈ I (so that ϕ̇i ≡ ω?i ). One of the cylinders of the set M is good, in that all of the periodic

trajectories on this cylinder are also synchronized in phase (so that δϕ ≡ 0). The remaining cylinders of M

(if any) are bad, in that all of the periodic trajectories on these cylinders are out of phase. Finally, using

a local linearization analysis, we show that the phase-synchronized trajectories are exponentially stable

(relative to each leaf of the foliation), whereas the out-of-phase trajectories are exponentially unstable.
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Because we show that these periodic trajectories are isolated on each leaf (a key step in the proof), we

conclude that almost all trajectories achieve asymptotic synchronization in both frequency and phase.

F. The dual controller: a different perturbed Hamiltonian system

The approach we take in the controller design in (13)–(15) is to perturb the Hamiltonian system (9)–(10)

by adding a dissipation term to the dynamics of each position variable. An alternative, dual approach is to

add a dissipation term to the dynamics of each momentum variable. We will do this by including a second

comparator in addition to the phase comparator, that is, by introducing a second set of error signals zi in

addition to the phase errors ei in (5). The resulting controller is more complex, but further analysis might

reveal that it has performance advantages over the controller (13)–(15).

For this dual controller, each pair of neighboring vertices agrees on an orientation of the edge connecting

them. Thus each vertex i can partition its neighbor set as Ni = N+
i ∪ N−i , where (j, k) ∈ N+

i when i is

the head of the edge k = {i, j} and (j, k) ∈ N−i when i is the tail of the edge k. Furthermore, we make an

additional assumption on the frequency functions χi of the base oscillators:

(A7) the interval U and the intervals χi(U) for each i∈V contain only positive real numbers.

In other words, we assume that the graph of each χi(·) lies completely in the first quadrant, which is true

for many analog oscillators. This assumption guarantees that the functions ζ and χi take on only positive

values. Consequently, for each ordered pair of vertices ij we can define the ratio

ρij(γi, γj) =
ζ(γj)χi(ζ(γi))

ζ(γi)χj(ζ(γj))
> 0 . (20)

Using (9), that is, using the base oscillator model (4) together with the integrator loop filter (7)–(8), we

can calculate (20) as

ρij(γi, γj) =
ζ(γj)

ζ(γi)

[dϕj
dϕi

]−1

. (21)

We then define a new error signal zi for vertex i as

zi(γ) =
∑

(j,k)∈N+
i

dk
[
ζ(γj)− ρij(γi, γj)ζ(γi)

]
+
∑

(j,k)∈N−
i

dk
[
ρ−1

ij (γi, γj)ζ(γj)− ζ(γi)
]
, (22)

where γ = [γ1 . . . γn]T ∈ Rn is the vector of loop filter states and the constants dk are an additional set

of positive edge weights. For vertex i to compute this error variable zi, it must receive the signal ζ(γj)

from each of its neighbors. Also, we see from (21) that it must calculate the derivative of each neighbor’s

phase ϕj with respect to its own phase ϕi, a calculation which does not require knowledge of the global

time variable t.
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Using these new error signals zi, we define the dual perturbed Hamiltonian system as

ϕ̇i = χi(ζ(γi)) (23)

γ̇i = ciei(ϕ) + cizi(γ) . (24)

Thus we have retained the simple integrator loop filter in (7)–(8), but have changed its input from ei to

the sum ei + zi. This amounts to modifying Fig. 1 by putting a “γ-comparator” in parallel with the phase

comparator.

Although the at first sight the physical interpretation of zi is obscured by the implementation details,

substituting (20) and (23) into (22) gives

zi(γ) =
∑

(j,k)∈Ni

ηk(γ)
[
χj(ζ(γj))− χi(ζ(γi))

]
=
∑

(j,k)∈Ni

ηk(γ)
[
ϕ̇j − ϕ̇i

]
(25)

with

ηk(γ) = dk
ζ(γj)

χj(ζ(γj))
, where j is the tail of edge k, (26)

for each k ∈ E. Therefore (22) can be interpreted as an indirect estimate of the frequency mismatch (25)

between oscillator i and its neighbors. As we will see in the proof of the following theorem in Section V

below, this frequency error terms zi are the right perturbation that need to be added to the dynamics of

the momentum variables to guarantee the dissipation of the Hamiltonian energy.

Theorem 3. Assume (A1)–(A7). Then with probability one in the selection of edge weights in (A6), the

network of oscillators with vertex dynamics (22)–(24) achieves almost-global synchronization within I.

The proof of this theorem is similar to that of Theorem 2, and we will highlight the main differences in

Section V.

IV. Proof of Theorem 2

For any p ∈ N, we let 0p and 1p denote the column vectors of p zeros and p ones, respectively, and we

let Ip denote the p× p identity matrix. Any `× p matrix with integer elements will represent either an

R-linear map from Rp to R` or a Z-linear map from Tp to T`, depending on context. In particular, if M is

an `×p matrix with integer elements and t 7→ x(t) is a curve in Tp, then t 7→ y(t) = Mx(t) is a curve in T`

(with M representing a Z-linear map), and furthermore ẏ(t) = Mẋ(t) for all t (with M now representing

an R-linear map).

We first introduce some notation for writing the overall coupled dynamics (13)–(15) in a compact form.



13

We define state vectors

ϕ =
[
ϕ1 . . . ϕn

]T ∈ Tn (27)

γ =
[
γ1 . . . γn

]T ∈ Rn (28)

along with the following diagonal matrices:

A = diag{a1, . . . , am} ∈ Rm×m (29)

C = diag{c1, . . . , cn} ∈ Rn×n . (30)

For convenience we define σi = χi ◦ ζ for each i, and we note from assumptions (A2)–(A3) that each σi

is C1 with a positive derivative. We next define mappings F : Tm → Rm and Σ : Rn → Rn by

F (θ) =
[
f(θ1) . . . f(θm)

]T
∈ Rm (31)

Σ(y) =
[
σ1(y1) . . . σn(yn)

]T
∈ Rn , (32)

where θ = [θ1 . . . θm]T ∈Tm and y = [y1 . . . yn]T ∈Rn. Note that Σ is a C1 diffeomorphism onto its image

Σ(Rn). Finally, we let B ∈ {−1, 0, 1}n×m be an oriented incidence matrix for the graph G. Using the fact

from (A4) that f is odd, we can write the dynamics (13)–(15) as

ϕ̇ = Σ(−BAF (BTϕ) + γ) (33)

γ̇ = −CBAF (BTϕ) . (34)

For convenience we define e : Tn → Rn by

e(ϕ) =
[
e1(ϕ) . . . en(ϕ)

]T
= −BAF (BTϕ) , (35)

which enables us to write (33)–(34) as

ϕ̇ = Σ(e(ϕ) + γ) (36)

γ̇ = Ce(ϕ) . (37)

Note that 1T
ne ≡ 0 because 1T

nB = 0 (a property of any oriented incidence matrix). This property also

implies e(ϕ) = e(ϕ+ 1nθ) for any ϕ∈Tn and any θ ∈T.

A. Global Lyapunov function

In this section we construct a Lyapunov function for the system (36)–(37), which is the Hamiltonian we

described in Section III-C for the system (9)–(10).

Because f is odd from (A4), the integral of the 1-form f · 〈∂, ·〉 around any smooth closed curve in T is

zero. Thus this 1-form is the differential of a smooth function Ψ : T→ R, which is unique up to an additive

constant (which we choose so that the minimum value of Ψ on T is zero). Therefore d
dt (Ψ ◦ x) ≡ f(x)ẋ for
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any curve x : R→ T. We then define V : Tm → [0,∞) as the sum

V (θ) =
∑
k∈E

akΨ(θk) , (38)

where θ = [θ1 . . . θm]T ∈Tm. It follows that

d

dt
V (BTϕ) = F T(BTϕ)ABTϕ̇ = −eT(ϕ)ϕ̇ . (39)

From (17) there exists a frequency $ ∈
⋂
i σi(R). Therefore the function W : Rn → [0,∞) defined as

W (γ) =
∑
i∈V

1

ci

∫ γi

σ−1
i ($)

[
σi(s)−$

]
ds (40)

is proper (because σi is increasing) and has a derivative given by

d

dt
W (γ) =

[
ΣT(γ)−$1T

n

]
C−1γ̇ . (41)

We now obtain a Lyapunov function by adding (38) and (40): we define U : Tn× Rn → [0,∞) by

U(ϕ, γ) = V (BTϕ) +W (γ) , (42)

which is a proper function on Tn×Rn. Because 1T
ne ≡ 0, the derivative of (42) along trajectories of (36)–(37)

is

U̇ = −eT(ϕ)Σ(e(ϕ) + γ) + ΣT(γ)e(ϕ)

= −eT(ϕ)

∫ 1

0

Σ′(e(ϕ)s+ γ) ds · e(ϕ) , (43)

where Σ′(·) denotes the diagonal Jacobian matrix

Σ′(γ) = diag
{
σ′1(γ1), . . . , σ′n(γn)

}
. (44)

Because Σ′(·) is positive definite, we have U̇ 6 0 and U̇ = 0 if and only if e(ϕ) = 0. It follows from the

Krasovskii-LaSalle invariance theorem that all trajectories of the system (36)–(37) converge to the largest

invariant set M contained within the set Φ× Rn, where Φ ⊂ Tn denotes the set

Φ = e−1({0}) =
{
ϕ ∈ Tn : BAF (BTϕ) = 0

}
. (45)

Note that because BT1n = 0, this set Φ has the symmetry property Φ = Φ+1nT. Also, it follows from (A4)

that F (0) = 0, which means Φ contains all points of the form 1nθ for θ ∈T. The next step in the proof is

to investigate the structure of this set M.

B. Structure of the set M

In this section we show that the largest invariant set M contained within the set Φ× Rn is M = Φ×Γ,

where Φ in (45) is the zero set of e and Γ ⊂ Rn is the set

Γ =
{
γ ∈ Rn : BTΣ(γ) = 0

}
. (46)

We begin by exploring the structure of these sets Φ and Γ. First, we show that Φ is the disjoint union of

isolated embeddings of the circle T. Next, we show that Γ = α(R), where α : R→ Rn is a C1 curve in Rn.
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Moreover, if we let q ∈ Rn denote the unit vector in the direction of C−11n, then this curve α is such that

qTα(·) is the identity map on R. Finally, we show that M = Φ×Γ, that is, that M is the disjoint union of

isolated embeddings of the cylinder, as illustrated in Fig. 3.

We partition Tn using the following matrices:

R =

0T
n−1

In−1

 ∈ {0, 1}n×(n−1) (47)

S =

−1T
n−1

In−1

 ∈ {−1, 0, 1}n×(n−1) . (48)

Clearly the state ϕ satisfies the identity

ϕ = 1nϕ1 +RSTϕ , (49)

which defines the direct sum Tn = 1nT⊕RTn−1. Here the first summand represents the first component angle

and the second one represents the remaining angles measured relative to the first. Note that STR = In−1,

that ST1n = 0, and that BT =BTRST . Also, because G is connected from (A1), we have rank(B) = n− 1

and thus the columns of BTR are independent.

Because ϕ∈Φ if and only if RSTϕ∈Φ, it follows from (49) that Φ = RSTΦ +1nT. It also follows that for

any µ ∈ Tn−1, we have µ∈ STΦ if and only if Rµ∈Φ, that is, if and only if e(Rµ) = 0. We next show that

the points in the set STΦ are isolated, which implies that Φ is the disjoint union of isolated embeddings of

the circle T.

Using the above partition of Tn, we define two symmetric matrix functions L : Tn−1 → Rn×n and

L[ : Tn−1 → R(n−1)×(n−1) by

L(µ) = BAF ′(BTRµ)BT and L[(µ) = RTL(µ)R (50)

for µ ∈ Tn−1, where F ′(·) denotes the diagonal Jacobian matrix

F ′(θ) = diag
{
f ′(θ1), . . . , f ′(θm)

}
(51)

with θ = [θ1 . . . θm]T ∈ Tm. Here L(µ) represents a weighted Laplacian matrix for the graph G in which

the weights can have positive, negative, or zero values. Also, because B = SRTB we have

L(µ)R = SL[(µ) and L(µ) = SL[(µ)ST (52)

for all µ∈Tn−1. Note that L(µ) is congruent to the block diagonal matrix diag{0, L[(µ)}. The proof of the

following theorem is in Appendix A:

Theorem 4. There is a set Z ⊂ Rm having zero Lebesgue measure such that if a = [a1 . . . am]T 6∈ Z, then

the matrix L[(µ) in (50) is invertible for all µ ∈ STΦ.

Corollary 5. If a 6∈ Z then the points in STΦ are isolated.
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Proof: Define the mapping P : Tn−1→ Rn−1 by setting P (µ) = RTBAF (BTRµ) so that P−1({0}) = STΦ.

The Jacobian matrix for P is just L[(µ), which by Theorem 4 is invertible for all µ ∈ STΦ. The result

follows from the inverse function theorem.

We do not provide a method for computing the set Z of bad edge weight vectors; instead, we rely on the

random edge weight selection in (A6) to avoid this zero-measure set. It is clear from (45) and (50) that

this set Z depends only on the graph G (through B) and the phase coupling function f (through F ). In

principle we could remove the dependence on the unknown graph by taking the countable union of all such

sets Z over all connected graphs to be our zero-measure set of bad edge weights, but this larger set would

still be difficult to compute. Thus from now on we will assume a 6∈ Z, which happens with probability one

according to (A6)

To explore the structure of the set Γ in (46), we partition Rn by defining q ∈ Rn and Q ∈ Rn×(n−1) as

q =
C−11n
‖C−11n‖

and Q = CS
(
STC2S

)− 1
2 . (53)

Using the fact that 1T
nS = 0, it is straightforward to show that the n×n matrix [q Q] is orthogonal; thus

the state γ satisfies the identity

γ = qqTγ +QQTγ , (54)

which defines the direct sum Rn = qR ⊕ QRn−1 via orthogonal projections. We define the open interval

J ⊂ R as

J =
⋂
i∈V

σi(R) , (55)

which is nonempty from (17). Because s1n ∈ Σ(Rn) for all s ∈ J , we can define the function β : J → R as

β(s) =
∑
i∈V

qiσ
−1

i (s) = qT Σ−1(s1n) , (56)

where the constants qi are the components of the vector q. Note that each term in the sum in (56) is strictly

increasing in s. Suppose {s`} is a sequence in J such that s` → sup J as ` → ∞. Then there exists i ∈ V

such that s` → supσi(R) as ` → ∞, which means σ−1

i (s`)→∞ as `→∞. Thus β(s`)→∞ as `→∞,

which means supβ(J) =∞. Similar reasoning yields inf β(J) = −∞, and we conclude that β is invertible.

Therefore we can define a C1 curve α : R→ Rn as follows:

α(r) = Σ−1(β−1(r)1n) , (57)

which satisfies qTα(r) = β(β−1(r)) = r for all r ∈ R. Because rank(B) = n − 1, it follows from (46) that

γ ∈ Γ if and only if Σ(γ) = x1n for some x ∈ J , that is, if and only if

γ = Σ−1(x1n) = Σ−1(β−1(β(x))1n) = α(β(x)) (58)

for some x ∈ J . Therefore Γ = α(β(J)) = α(R).
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Our remaining task in this section is to show that M = Φ×Γ. First we calculate the derivative of e(ϕ)

in (35) using (36):

ė = −BAF ′(BTϕ)BT Σ(e(ϕ) + γ)

= −L(STϕ) Σ(e(ϕ) + γ) . (59)

We see from (36)–(37) that ϕ̇ = Σ(γ) and γ̇ = 0 on the set Φ× Rn, which means the second derivative ϕ̈

is zero:

0 = ϕ̈ = −Σ′(γ)L(STϕ) Σ(γ)

= −Σ′(γ)SL[(STϕ)STΣ(γ) (60)

on Φ× Rn. Now Σ′(·) in (44) is positive definite, L[(STϕ) is invertible from Theorem 4, and S in (48)

has independent columns; therefore (60) implies STΣ(γ) = 0. Because BT = BTRST , this in turn implies

BTΣ(γ) = 0, and we conclude that M ⊂ Φ×Γ. We observe that Φ×Γ is itself invariant under the dynamics

(36)–(37), and it follows that M = Φ×Γ.

To summarize the results of this section, we have found that (ϕ, γ) ∈ M if and only if e(ϕ) = 0 and

γ = α(r) for some r ∈R, in which case r = qTγ. Furthermore, the zero set of e in (45) is RSTΦ+1nT, where

the points in STΦ are isolated.

C. Global analysis: frequency synchronization

To study the synchronization properties of our system (36)–(37), we first observe that qTγ̇ ≡ 0, which

means the state space admits a foliation whose leaves are the invariant manifolds Tn× Ξr, where

Ξr = qr +QRn−1 =
{
γ ∈ Rn : qTγ = r

}
(61)

for a constant parameter r ∈ R. Note that because Γ = α(R) and qTα(·) is the identity map, the intersection

Γ ∩ Ξr is the singleton {α(r)}. Thus the intersection of each invariant leaf Tn× Ξr with M = Φ×Γ is just

Φ× {α(r)}, which we have shown to be the disjoint union of isolated embeddings of the circle T (depicted

as red circles in Fig. 3).

We now fix r ∈ R and examine the dynamics on Tn× Ξr, noting that γ ≡ qr + QQTγ on this invariant

manifold. Now that r is fixed, we will write αr = α(r). Because αr = qr +QQTαr, we have

γ − αr ≡ QQT(γ − αr) (62)

on Tn× Ξr. We next define the projected state variables

w1 = STϕ ∈ Tn−1 and w2 = QT(γ − αr) ∈ Rn−1 . (63)

Taking time derivatives of these variables, and using (62) and the fact that e(ϕ) = e(Rw1), we obtain

ẇ1 = STΣ(e(Rw1) +Qw2 + αr) (64)

ẇ2 = QTCe(Rw1) . (65)
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This is an autonomous system in the projected states (w1, w2), and its equilibria are precisely all points

of the form (µ?, 0) for vectors µ? ∈ STΦ. Each equilibrium represents a frequency-synchronized solution of

(36)–(37) with ϕ̇ ≡ β−1(r)1n and γ ≡ αr. The equilibrium with µ? = 0 represents a phase-synchronized

trajectory with δϕ ≡ 0, and all other equilibria represent out-of-phase trajectories.

Furthermore, each trajectory of the system (64)–(87) converges to an equilibrium, which means each

trajectory of the system (36)–(37) achieves asymptotic frequency synchronization. Indeed, we have shown

that all trajectories of the system (36)–(37) converge to the set M = Φ×Γ in forward time. Therefore γ

converges to the singleton set Γ ∩ Ξr = {αr}, which means w2 converges to zero. In addition, ϕ converges

to the set Φ, which means w1 converges to the set STΦ. Corollary 5 states that points in STΦ are isolated,

and we conclude that w1 converges to one of these points.

In the next section, we will perform a local linearization analysis at each equilibrium of the system

(64)–(87) to determine its stability.

D. Local analysis: phase synchronization

We compute the linear approximation of the dynamics (64)–(87) at an equilibrium (µ?, 0) as follows:

ẇ1 ≈ −STΣ′(αr)L(µ?)R(w1 − µ?) + STΣ′(αr)Qw2 (66)

ẇ2 ≈ −QTCL(µ?)R(w1 − µ?) , (67)

or using (52),

ẇ1 ≈ −STΣ′(αr)SL
[(µ?)(w1 − µ?) + STΣ′(αr)Qw2 (68)

ẇ2 ≈ −QTCSL[(µ?)(w1 − µ?) . (69)

If we define the (n− 1)× (n− 1) matrices

X = STΣ′(αr)S > 0 (70)

Y = QTCS =
(
STC2S

)1
2 > 0 (71)

Z = STΣ′(αr)Q , (72)

then we can write this approximation more compactly as

ẇ1 ≈ −XL[(µ?)(w1 − µ?) + Zw2 (73)

ẇ2 ≈ −YL[(µ?)(w1 − µ?) . (74)

Note from (53) and (71) that Q = CSY −1 so that S = C−1QY , which means Z in (72) satisfies

Y −1Z = QTC−1Σ′(αr)Q > 0 . (75)

Thus the linearization (73)–(74) satisfies the assumptions in the following theorem, whose proof is in

Appendix B:
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Theorem 6. Let Λ ∈ R2p×2p be the block matrix

Λ =

−XL Z

−YL 0

 , (76)

where L,X, Y, Z ∈ Rp×p satisfy:

1) L is symmetric,

2) X+XT > 0,

3) Y is symmetric and invertible, and

4) Y −1Z is symmetric with Y −1Z > 0.

If L has a negative eigenvalue, then Λ has an eigenvalue with a positive real part. If instead Z is invertible

and L > 0, then Λ is Hurwitz.

We can complete the local linearization analysis by applying Theorem 6 together with the following

theorem:

Theorem 7. The Laplacian L(µ) has n− 1 positive eigenvalues for µ= 0, and it has at least one negative

eigenvalue for any nonzero µ∈ STΦ.

The proof of Theorem 7, which can be found in [29], relies on the properties of the phase coupling

function f defined in Assumption (A5). The basic intuition is that for µ? 6= 0, choosing b small enough

guarantees a negative eigenvalue in L(µ?) independently of the choice of µ? ∈ STΦ.

Let us now consider an equilibrium (µ?, 0) of the nonlinear system (64)–(87). Recall that L(µ?) is

congruent to diag{0, L[(µ?)}; thus Theorem 7 together with Sylvester’s law of inertia imply that L[(µ?)> 0

when µ? = 0 and that L[(µ?) has a negative eigenvalue for all nonzero µ? ∈ STΦ. Therefore if µ? = 0,

which represents an in-phase steady-state solution, then it follows from Theorem 6 that this equilibrium is

exponentially stable. Likewise, if µ? 6= 0, which represents an out-of-phase steady-state solution, then this

equilibrium is exponentially unstable. Because all out-of-phase equilibria are both isolated and exponentially

unstable, we conclude (say from [35, Proposition 1], for example) that the set Sr ⊂ Tn×Ξr of initial states

from which trajectories converge to out-of-phase steady-state solutions has zero measure in Tn×Ξr (regarded

here as a (2n− 1)-dimensional manifold). It then follows from Tonelli’s theorem that the set S =
⋃
r∈R Sr

has zero measure in Tn×Rn. In other words, the system achieves asymptotic phase synchronization from

almost every initial state.

V. Proof of Theorem 3

We define the diagonal matrix function

H(γ) = diag
{
η1(γ), . . . , ηm(γ)

}
∈ Rm×m , (77)
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so that we can write the dynamics (23)–(24) as

ϕ̇ = Σ(γ) (78)

γ̇ = Ce(ϕ)− CBH(γ)BT Σ(γ) . (79)

Because 1T
ne ≡ 0 = 1T

nB, the derivative of (42) along trajectories of (78)–(79) is

U̇ = −ΣT(γ)BH(γ)BT Σ(γ) . (80)

Now H(·) is positive definite; hence U̇ 6 0 and U̇ = 0 if and only if BT Σ(γ) = 0. It follows from the

Krasovskii-LaSalle invariance theorem that all trajectories of the system (78)–(79) converge to the largest

invariant set M contained within the set Tn× Γ, where Γ ⊂ Rn is from (46). We next show that again

M = Φ×Γ, just as in the proof of Theorem 2.

It follows from (79) that this systems also satisfies qTγ̇ ≡ 0 and thus admits a foliation whose leaves are

the invariant manifolds Tn× Ξr. Because BT Σ(γ) is the constant zero on the set Γ, its derivative is zero

on M:

0 ≡ BT Σ′(γ)γ̇ ≡ BT Σ′(γ)QQTγ̇

≡ BTRST Σ′(γ)CS
(
STC2S

)− 1
2QTγ̇ . (81)

Because the columns of BTR and S are independent and because the diagonal matrix Σ′(γ)C is positive

definite, it follows that QTγ̇ ≡ 0 and thus γ̇ ≡ 0 on M. It then follows from (79) that e(ϕ) ≡ 0 on M, and

we conclude that M ⊂ Φ×Γ. We observe that Φ×Γ is itself invariant under the dynamics (78)–(79), and

it follows that M = Φ×Γ.

We now fix r ∈ R and examine the dynamics on the invariant manifold Tn× Ξr. Using (62), we see that

the derivatives of the projected state variables (63) along trajectories of (78)–(79) are

ẇ1 = STΣ(Qw2 + αr) (82)

ẇ2 = QTCe(Rw1)

−QTCBH(Qw2 + αr)B
T Σ(Qw2 + αr) . (83)

As in the proof of Theorem 2, the equilibria of this system are precisely all points of the form (µ?, 0) for

vectors µ? ∈ STΦ. The equilibrium with µ? = 0 represents a fully synchronized trajectory with δϕ ≡ 0, and

all other equilibria represent out-of-phase, frequency-synchronized trajectories. Because M = Φ×Γ, because

Γ∩Ξr is a singleton, and because the points of STΦ are isolated, we see that each trajectory of the system

(82)–(83) converges to an equilibrium.

We now perform the local linearization analysis at each equilibrium (µ?, 0) of the system (82)–(83).

Similarly, to (73)–(74) we can approximate (82)–(83) around (µ?, 0) using

ẇ1 ≈ Zw2 (84)

ẇ2 ≈ −YL[(µ?)(w1 − µ?)− YL[ηZw2 (85)
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where

L[η(αr) = RTLη(αr)R and Lη(αr) = BH(αr)B
T , (86)

with the matrices Lη(αr) and L[η(αr) also satisfying a condition analogous to (52).

We can now use a dual version of Theorem 6 based on [36, Theorem 5, Corollary 2] which we state below.

Lemma 8. Suppose Λ ∈ Cq×q has no eigenvalues on the imaginary axis, suppose H∈ Cq×q is an invertible

Hermitian matrix, and suppose ΛH +HΛ? > 0, where Λ? denotes the conjugate transpose of Λ. Then the

number of eigenvalues of Λ having positive real part is the same as the number of positive eigenvalues of H.

The dual version of Theorem 6 is then:

Theorem 9. Let Λ ∈ R2p×2p be the block matrix

Λ =

 0 Z

−YL1 −YL2Z

 , (87)

where L1, L2, Y, Z ∈ Rp×p satisfy:

1) L1 is symmetric and invertible,

2) L2 is symmetric with L2 > 0,

3) Y is symmetric and invertible, and

4) Y −1Z is symmetric with Y −1Z > 0.

If L1 has a strictly negative eigenvalue, then Λ has an eigenvalue with a strictly positive real part. If instead

L1 > 0, then Λ is Hurwitz.

The proof is in Appendix C.

Thus, we can use Theorem 7 together with Theorem 9 to show that, for the system (84)–(85), the

equilibrium with µ? = 0 is exponentially stable and any other equilibria with µ? 6= 0 is exponentially

unstable. The rest of the proof follows that of Theorem 2.

VI. Concluding remarks

We have presented two distributed controllers for the phase and frequency synchronization of heteroge-

neous nonlinear oscillators, and we have shown that each guarantees almost-global convergence on arbitrary

connected graphs. Our solutions can be readily implemented using analog oscillators and phase comparators,

and our analysis holds under very general assumptions on the system. In particular, unlike most existing

work, we neither require the set of admissible frequencies to be unbounded, nor assume any special network

topology.
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Appendix

A. Proof of Theorem 4

We let T denote the finite collection of all m×m diagonal matrices ∆ = diag{δ1, . . . , δm} such that for

all k ∈ E, either δk = f ′(0) or δk = f ′(π). For each such matrix ∆ ∈ T, we define the closed set

P∆ =
{
a ∈ Rm : det

(
RTB diag(a)∆BTR

)
= 0
}
, (88)

where diag(a) = diag{a1, . . . , am} denotes the diagonal matrix whose diagonal entries are the m elements

of a. Now ∆ is invertible by assumption (A5), and furthermore the columns of BTR are independent; it

follows that P∆ 6= Rm (take diag(a) = ∆−1), which means P∆ is a closed algebraic set having zero measure.

Thus

P =
⋃

∆∈T

P∆ (89)

is also a closed algebraic set having zero measure. Therefore the set O = Rm \ P is a nonempty open

semialgebraic set. Next we define the mapping H : Tn−1 × O→ Rn−1 by

H(µ, a) = RTB diag(a)F (BTRµ) . (90)

The Jacobian matrix of H is

DH(µ, a) =

[
∂H

∂µ
(µ, a)

∂H

∂a
(µ, a)

]
, (91)

where

∂H

∂µ
(µ, a) = RTB diag(a)F ′(BTRµ)BTR (92)

∂H

∂a
(µ, a) = RTB diag

(
F (BTRµ)

)
. (93)

If we define the matrix

J(µ, a) =


I

diag(a) diag
(
F (BTRµ)

)+
·
[
F ′(0)− F ′(BTRµ)

]
BTR

 , (94)

where (·)+ denotes the Moore–Penrose pseudoinverse, then

DH(µ, a) · J(µ, a) = RTB diag(a)∆(µ)BTR , (95)

where ∆(µ) is the diagonal matrix

∆(µ) = F ′(BTRµ) + diag
(
F (BTRµ)

)
diag

(
F (BTRµ)

)+
·
[
F ′(0)− F ′(BTRµ)

]
. (96)

It follows from assumptions (A4)–(A5) that f(θ) = 0 if and only if θ ∈ {0, π}, so for any µ ∈ Tn−1, the

matrix ∆(µ) in (96) belongs to T. It follows from the definition of O that the matrix in (95) is invertible, and
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we conclude that DH(µ, a) has rank n−1 for all (µ, a) ∈ Tn−1×O. Thus H t {0},2 and it follows from the

parametric transversality theorem3 [37, Theorem 6.35] that there exists a set Y ⊂ O having zero measure

such that if a ∈ O \ Y then Ha t {0}, where Ha denotes the mapping µ 7→ H(µ, a). Choose Z = P ∪ Y; we

have thus shown that for all a ∈ Rm \Z, if µ is such that H(µ, a) = 0, then the matrix in (92) is invertible.

Suppose a ∈ Rm is the edge weight vector so that A = diag(a), suppose a∈Rm\Z, and suppose µ∈ STΦ.

Then Rµ∈Φ which means H(µ, a) = 0, and it follows that L[(µ) in (50), which is the same as the matrix

in (92), is invertible.

B. Proof of Theorem 6

Because both Y and Y −1Z are symmetric matrices, we see that the following holds:

Y −1ZY =
(
Y −1Z

)T
Y = ZTY −1Y = ZT . (97)

We will investigate the stability of the zero solution of the system ẋ = Λx. Partition the state as x = [xT
1 xT

2 ]T

with x1, x2 ∈ Rp, and consider the quadratic function

Υ(x) = Υ(x1, x2) = xT

1Lx1 + xT

2Y
−1Zx2 (98)

whose derivative along trajectories of ẋ = Λx is

Υ̇(x) = −2xT

1LXLx1 + 2xT

1LZx2 − 2xT

2Y
−1ZYLx1

= −xT

1L(X+XT )Lx1 6 0 . (99)

First suppose L has an eigenvalue λ < 0 with unit eigenvector v. The standard Chetaev instability conditions

[38, Theorem 4.3] do not guarantee exponential instability, so we will instead exploit the linear-quadratic

structure to strengthen the Chetaev result. The cone

C =
{
x ∈ R2p : Υ(x) < 0

}
, (100)

is nonempty because

Υ(v, 0) = vTLv = λvTv = λ < 0 . (101)

For any x ∈ C we have

0 6 xT

2Y
−1Zx2 < −xT

1Lx1 =
∣∣xT

1Lx1

∣∣ , (102)

which means

|Υ(x)| 6
∣∣xT

1Lx1

∣∣+ xT

2Y
−1Zx2 < 2

∣∣xT

1Lx1

∣∣ . (103)

2If M and N are smooth manifolds, if f : N →M is smooth, and if S is an embedded submanifold of M , then f is transverse

to S, written f t S, when for every p ∈ f−1(S) we have Tf(p)M = Tf(p)S + dfp(TpN), where dfp denotes the differential of f

at p.

3This transversality theorem is based on Sard’s theorem, which holds only for sufficiently smooth functions. One can verify

that in our case, this application of Sard’s theorem is valid when the phase coupling function f is merely C1.
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Let L+ denote the Moore–Penrose pseudoinverse of L, which is nonzero because L has a nonzero eigenvalue λ.

Then we have ∣∣xT

1Lx1

∣∣ =
∣∣xT

1LL
+Lx1

∣∣ 6 ‖L+‖ · ‖Lx1‖2 . (104)

Let σ > 0 denote the minimum eigenvalue of X+XT , so that

Υ̇(x) = −xT

1L(X+XT )Lx1 6 −σ‖Lx1‖2 . (105)

It follows that for any x ∈ C we have

Υ̇(x) <
σ

2‖L+‖
Υ(x) < 0 . (106)

Therefore C is positively invariant and Υ(x(t)) exhibits exponential growth towards −∞ as t→∞ from any

initial state x(0) ∈ C. Hence ‖x(t)‖ =
∥∥exp(Λt)x(0)

∥∥ exhibits exponential growth as t→∞ when x(0) ∈ C,

and we conclude that Λ must have an eigenvalue with a positive real part.

Next suppose that Z is invertible and L > 0; then the largest invariant set contained in the set {Υ̇(x) = 0}

is the origin x = 0. In this case Υ is positive definite, hence asymptotic stability follows from the Krasovskii-

LaSalle invariance theorem.

C. Proof of Theorem 9

For the instability part of Theorem 6, we do not require the matrices L1 or Z to be invertible, even

though they happen to be so in our application. However, the above Chetaev-style proof of Theorem 6 does

not carry over to a proof of the instability part of Theorem 9; instead, we will apply Lemma 8. To apply

this lemma to matrix Λ in (87), we must show that Λ has no eigenvalues on the imaginary axis. Suppose

Λv = jλv for some λ ∈ R and v ∈ C2p, and partition v as v = [vT
1 vT

2 ]T with v1, v2 ∈ Cp. Then

Zv2 = jλv1 (107)

−YL1v1 − YL2Zv2 = jλv2 . (108)

If λ = 0, then v1 = v2 = 0 because L1, Y , and Z are all invertible. Otherwise we solve for v2 in (107) and

substitute into (108) to obtain

Y
[
λ2Y −1Z−1− L1 − jλL2

]
v1 = 0 . (109)

If we write v1 = x+ jy for x, y ∈ Rp, then because Y is invertible we obtain

0 =
[
λ2Y −1Z−1− L1 − jλL2

]
(x+ jy)

=
[
Xx+ λL2y

]
+ j
[
−λL2x+Xy

]
, (110)

where we have defined X = λ2Y −1Z−1− L1. Setting the imaginary part to zero in (110) and solving for x

yields

x = 1
λL

−1

2 Xy . (111)
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Setting the real part to zero in (110) and substituting (111) for x yields

0 =
[

1
λXL

−1

2 X + λL2

]
y . (112)

Now (??) implies ZY = YZT , which means

(Y −1Z−1)T =
[
(ZY )−1

]T
=
[
(ZY )T

]−1

=
[
YZT

]−1
=
[
ZY
]−1

= Y −1Z−1 , (113)

and we conclude that X is symmetric. Thus the matrix XL−1

2 X + λ2L2 is symmetric and positive definite,

and therefore (112) implies y = 0. Hence x = 0 from (111), which means v1 = 0 and thus also v2 = 0

from (107). Therefore, if Λv = jλv for some λ ∈ R and v ∈ C2p then v = 0, and we conclude that Λ has no

eigenvalues on the imaginary axis.

Let H ∈ R2p×2p be the block diagonal matrix

H =

−L−1

1 0

0 −Z−1Y

 , (114)

which is symmetric and invertible by assumption. Then a straightforward calculation yields

ΛH +HΛT =

0 0

0 2YL2Y

 > 0 , (115)

and the result follows from Lemma 8.
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