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ON SOME QUIVER DETERMINANTAL VARIETIES

JIARUI FEI

Dedicated to Professor Jerzy Weyman on the Occasion of his Sixtieth Birthday

Abstract. We introduce certain quiver analogue of the determinantal variety.
We study the Kempf-Lascoux-Weyman complex associated to a line bundle on
the variety. In the case of generalized Kronecker quivers, we give a sufficient
condition on when the complex resolves a maximal Cohen-Macaulay module
supported on the quiver determinantal variety. This allows us to find the
set-theoretical defining equations of these varieties. When the variety has
codimension one, the only irreducible polynomial function is a relative tensor
invariant. As a by-product, we find some vanishing condition for the Kronecker
coefficients. In the end, we make a generalization from the quiver setting to
the tensor setting.

Introduction

We work over a field k of characteristic 0. Let Q be some finite quiver with
vertex set Q0 and arrow set Q1. For some dimension vector α of Q, let Repα(Q) be
the space of all α-dimensional representations of Q. The product of general linear
group GLα =

∏

v∈Q0
GLαv

acts naturally on Repα(Q). For another dimension
vector γ, we consider the variety

Repγ →֒α(Q) := {M ∈ Repα(Q) |M has a γ-dimensional subrepresentation}.

When Q is the Dynkin A2-quiver, this is a usual determinantal variety. So in
this sense, it is a certain quiver generalization of usual determinantal varieties.
Another instance of such varieties is that they appear as exceptional varieties [4] and
irreducible components of the null-cone for the GLσ

α-action on Repα(Q). Here, GLσ
α

is certain codimension one subgroup of GLα. In general, the variety Repγ →֒α(Q) is
highly singular, but it is easy to construct certain Springer-type resolution.

Let Gr ( αγ ) be the product of Grassmannian varieties
∏

v∈Q0
Gr

(

α(v)
γ(v)

)

. Consider

Z = {(L,M) ∈ Gr ( αγ )× Repα(Q) | L is a subrepresentation of M}.

We have the following correspondence, where p is the structure map of a vector
bundle and q is the desingularization.

Z

p

||②②
②②
②②
②②
②

q

%%❏
❏❏

❏❏
❏❏

❏❏
❏

Gr ( αγ ) Repγ →֒α(Q)
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Moreover, Z can be realized as the total space of some subbundle of the trivial vec-
tor bundle Gr ( αγ )×Repα(Q). This allows us to use the Kempf-Lascoux-Weyman’s
complex [12] to study the variety Repγ →֒α(Q). The method in [12] reaches its full
strength if Repγ →֒α(Q) has rational singularities and q is birational. Unfortunately,
this nice situation rarely occurs in general. To be more precise, when Q is non-
Dynkin, for most dimension vectors, the variety Repγ →֒α(Q) is not normal. The

best situation one can hope is that all higher direct images Riq∗OZ vanish and q
is birational, then the KLW-complex is the minimal free resolution of the normal-
ization of Repγ →֒α(Q). However, when Q is wild, for most dimension vectors, some

higher direct images Riq∗OZ do not vanish. We restate the main theorems in [12]
in our setting. They are Theorem 3.1, 3.2, and 3.3.

It seems hopeless to understand the free resolution of Repγ →֒α(Q) in general,
but we still hope to find the defining equations of these varieties, at least set-
theoretically. To be more practical, we focus on the case of m-arrow Kronecker
quiversKm. For one thing, the sheaf cohomology involved in the KLW-complex can
be explicitly computed if we introduce the Kronecker coefficients. The Kronecker
coefficient gλµ,ν is by definition the structure constant in the tensor product

Sµ ⊗ Sν =
⊕

λ

gλµ,νSλ,

where Sλ is the irreducible representation of the symmetric group defined by the
partition λ. By Schur-Weyl duality, it also appears in

(0.1) Sλ(V ⊗W ) =
∑

µ,ν

gλµ,νS
µ(V )⊗ Sν(W ),

where Sλ is the Schur functor corresponding to λ. For another thing, when γ =
(1, α2 − 1) our quiver determinantal variety of Km coincides with the variety con-
structed from certain 3-tensor in [1]. Motivated by some ideas in [1], we consider
the construction in [12] for some line bundle on Gr ( αγ ). In Proposition 4.1 we
compute each term of the KLW-complex for any line bundle. If the complex has
no negative degree term, it minimally resolves a module supported on Repγ →֒α(Q).
This allows us to determine the set-theoretical defining equations of Repγ →֒α(Q).

Recall that line bundles on ordinary Grassmannians are indexed by Z, so for
Km line bundles on Gr ( αγ ) are parameterized by Z× Z. Our main result concerns
how to choose an element ω in Z × Z such that the corresponding KLW-complex
Fω
• has no negative degree term. This is done in Lemma 4.3. We hope to find

weights such that the length of Fω
• is equal to the codimension of Repγ →֒α(Km),

i.e., Fω
• resolves a maximal Cohen-Macaulay module. This can be easily done by

applying the duality theorem to Lemma 4.3. We introduce the notation homQ(γ, β)
(resp. extQ(γ, β)) to denote the dimension of the space of homomorphisms (resp.
extensions) from a general γ-dimensional representation to a general β-dimensional
representation of Q.

Theorem 0.1. Let β = α−γ, and assume that homKm
(γ, β) = 0. If ω and its dual

ω∨ satisfy (β1−w1)
2+(γ2−w2)

2 < 8 or (β1−w1)
2+(γ2−w2)

2 = 8 with any of the
following: (1). β1 6= γ2, (2). w1 6= w2, and (3). w1 +w2 > m− 3, then the complex
Fω
• resolves a maximal Cohen-Macaulay module supported on Repγ →֒α(Km).
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However, the existence of such a weight is not guaranteed by the theorem. The
result is sharp only in some cases. A sharp result would depend on a good un-
derstanding on the Kronecker coefficients. The other way around, we can actually
deduce some interesting vanishing conditions on the Kronecker coefficients. We
denote by P (s, q, t, w) the set of all partitions λ with at most s parts satisfying
λt > q + t+ w and λt+1 6 t+ w.

Theorem 0.2. Let w1, w2 be two non-positive integers.

(1) For µ ∈ P (γ1, β1, t1, w1), ν ∈ P (β2, γ2, t2, w2) with |µ| = |ν| > β1t1+γ2t2+
extKm

(γ, β), we have that gλµ,ν vanishes if λ1 6 m.
(2) For µ ∈ P (γ1, β1, t1,mβ2 − α1 −w1), ν ∈ P (β2, γ2, t2,mγ1 − α2 −w2) with
|µ| = |ν| < β1t1+γ2t2−homKm

(γ, β), we have that gλµ,ν vanishes if λ1 6 m.

When the variety Repγ →֒α(Q) has codimension one in Repα(Q), the single irre-
ducible defining polynomial ∆γ

α,m is a relative tensor invariant. It can be computed
by the determinant of the complex (Proposition 5.2). When the complex has length
two, we get a determinantal formula for ∆γ

α,m. We find all such polynomials for
2 6 m,α1, α2 6 5 (Example 5.3, 5.4). It is quite surprising that we can always find
a weight such that the differential is linear, i.e., of degree one.

Finally, we make one possible generalization from the quiver setting to the tensor
setting in the last section. We consider an analogous quotient bundle E such that
the corresponding subbundle desingularizes some variety Rγ,α. Proposition 6.1,
Corollary 6.2, and Proposition 6.4 are analogues of Proposition 4.1, Theorem 0.2,
and Theorem 0.1. When Rγ,α has codimension one, it also corresponds to a relative
tensor invariant. We also find all such invariants for 2 6 αi 6 5.

1. Review of Vector Bundles on Grassmannians

Let Gr ( rs ) be the Grassmannian variety parameterizing s-dimensional subspace
in R = kr. Let S and Q be the universal sub- and quotient bundles on Gr ( r

s )

0→ S → Gr ( rs )×R→ Q→ 0.

Given a permutation σ, we define the length of σ to be ℓ(σ) = #{i < j | σ(i) >
σ(j)}. Also, define ρ = (r − 1, r − 2, . . . , 1, 0). Given a sequence of integers α, we
define σ ◦ α = σ(α + ρ)− ρ.

Theorem 1.1 (Borel-Weil-Bott). Let µ, ν be two partitions, and set λ = (µ, ν).
Then exactly one of the following two situations occur.

(1) There exists σ 6= id such that σ◦λ = λ. Then all cohomologies of SµQ⊗SνS
vanish.

(2) There is a (unique) σ such that η = σ ◦ λ is a weakly decreasing sequence.
Then

Hℓ(σ)(Gr ( rs ) ;S
µQ⊗ SνS) = SηR

and all other cohomologies vanish.

One important case to us is the vector bundle SµS ⊗detwQ or SνQ∗⊗detw S∗.
To apply Bott’s algorithm, we consider (wq, µ)+ ρ = (r− 1+w, . . . , r− q+w, µ1+
r − q − 1, . . . , µs), where q = rankQ = r − s. To produce nontrivial cohomology,
(wq, µ) + ρ cannot have any repetition. Let t be the biggest number such that



4 JIARUI FEI

µt + r − q − t > r − 1 + w, then µt+1 + r − q − t − 1 < r − q + w. In terms of µ,
this means that

(1.1) µt > q + t+ w, µt+1 6 t+ w.

We introduce the notation P (s, q, t, w) to denote all partitions with at most s parts
satisfying (1.1). Let σ(t) be the permutation that moves µ1+r−q−1, . . . , µt+r−q−t
in front of r − 1 + w, . . . , r − q + w, then clearly ℓ(σ(t)) = qt and

σ(t) ◦ (wq, µ) = (µ1 − q, . . . , µt − q, (t+ w)q , µt+1, . . . , µs).

So we computed the first part of the following corollary (see also [12, p.162]),
and the second half is similar.

Corollary 1.2. H•(Gr ( rs ) ;S
µS ⊗ detwQ) is zero unless µ ∈ P (s, q, t, w). In that

case, all cohomology groups vanish except that

Hqt(Gr ( r
s ) ;S

µS ⊗ detwQ) = Sσ(t)◦(wq,µ)R.

Similarly H•(Gr ( rs ) ;S
νQ∗⊗detwS∗) is zero unless µ ∈ P (q, s, t′, w). In that case,

all cohomology groups vanish except that

Hst′(Gr ( rs ) ;S
νQ∗ ⊗ detwS∗) = Sσ(t′)◦(ws,ν)R∗.

2. Some Quiver Determinantal Varieties

Fix a finite quiver Q = (Q0, Q1) and two dimension vectors α and γ. In what

follows, we always assume β = α − γ. We define Gr ( αγ ) =
∏

v∈Q0
Gr

(

α(v)
γ(v)

)

.

Given any vector bundle V on Gr
(

α(v)
γ(v)

)

, we can pull it back to Gr ( αγ ) via the

projection πv. To simplify our notation, we will write V1⊗V2 instead of V1⊠V2 :=
π∗(V1)⊗ π∗(V2) if no potential confusion can arise.

The space of all α-dimensional representations of Q is

Repα(Q) :=
⊕

a∈Q1

Hom(kα(ta), kα(ha)),

where ta and ha are the tail and head of a. Let Sv and Qv be the universal sub- and

quotient bundles on Gr
(

α(v)
γ(v)

)

. We denote the vector space kα(v) by Rv, and the

corresponding trivial bundle by Rv. Let E be the vector bundle on Gr ( αγ ) defined
by

E :=
⊕

a∈Q1

Hom(Sta,Qha).

Consider the vector bundle epimorphism Gr ( α
γ ) × Repα(Q) → E induced by ten-

soring R∗
ta ։ S∗ta and Rha ։ Qha. Fibrewise it sends a representation M over

S ∈ Gr ( αγ ) to
⊕

a∈Q1
Hom(Sta,Mha/Sha) by restriction and projection. The ker-

nel is a vector bundle denoted by Z:

(2.1) 0→ Z → Gr ( αγ )× Repα(Q)→ E → 0.

It is clear that the total space of Z is the following variety

Z = {(L,M) ∈ Gr ( αγ )× Repα(Q) | L is a subrepresentation of M}.
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Consider the projections to the first and the second factors.

Z
p

||①①
①①
①①
①①
①

q

##❍
❍❍

❍❍
❍❍

❍❍

Gr ( αγ ) Repα(Q)

We proved that (see [10, Section 3])

Lemma 2.1. The map p : Z → Gr ( αγ ) is the vector bundle with fibre
⊕

a∈Q1

Hom(kγ(ta), kγ(ha))⊕Hom(kβ(ta), kα(ha)).

In particular, Z is smooth irreducible of dimension equal to dimRepα(Q) + 〈γ, β〉.

Here, 〈−,−〉 : ZQ0 × ZQ0 → Z is the Euler form of Q. By definition it is
given by 〈−,−〉 := 〈−,−〉0 − 〈−,−〉1, where 〈−,−〉0 is the usual dot product
and 〈γ, β〉1 =

∑

a∈Q1
γ(ta)β(ha). It is well-known that 〈γ, β〉 = homQ(γ, β) −

extQ(γ, β). Schofield discovered a recursive algorithm to compute extQ(γ, β) in
[10].

Definition 2.2. We define certain quiver analogue of determinantal varieties

Repγ →֒α(Q) := {M ∈ Repα(Q) |M has a γ-dimensional subrepresentation}.

Since Z is integral and q is projective, the scheme-theoretical image q(Z) is integral
and closed, and hence equal to Repγ →֒α(Q). We always assume that Repγ →֒α(Q) is
strictly contained in Repα(Q). Note that when Q is the A2-quiver, such a variety
is a usual determinantal variety.

From now on, we will use q to denote the map q : Z → Repγ →֒α(Q).

Lemma 2.3. [10] The dimension of a general fibre of q is equal to homQ(γ, β).
The codimension of Repγ →֒α(Q) in Repα(Q) is equal to extQ(γ, β).

So we always assume that extQ(γ, β) > 0. Moreover, homQ(γ, β) = 0 is a neces-
sary condition for q being birational. Note that the combination of homQ(γ, β) = 0
and extQ(γ, β) > 0 is equivalent to the condition

(2.2) homQ(γ, β) = 0, and 〈γ, β〉 < 0.

It is well-known that in characteristic 0, rational bijective implies birational. We
are going to give a numerical criterion for q to be a birational isomorphism. By
Bertini’s theorem the general fibre of q is reduced, so let us assume the opposite that
the general fibre of q contains more than one representation. Then a general repre-
sentation in Repγ →֒α(Q) have at least two γ-dimensional subrepresentations. There
exists a dimension vector δ such that a general representation M ∈ Repγ →֒α(Q) has
subrepresentations L1, L2 of M such that dim(L1∩L2) = δ. Consider the incidence
varieties

Inc ( α
γ∩γ=δ ) = {(V1, V2) ∈ Gr ( α

γ )×Gr ( αγ ) | dim(V1 ∩ V2) = δ},

Zδ = {(M,L1, L2) ∈ Inc ( α
γ∩γ=δ )× Repα(Q) | L1, L2 are subrepresentations of M}.

The first one is a smooth irreducible (non-closed) subvariety of Gr ( αγ )×Gr ( α
γ ) of

codimension equal to 〈δ, β − γ + δ〉0. The following lemma is straightforward.
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Lemma 2.4. Zδ is a vector bundle over Inc ( α
γ∩γ=δ ) with fibre

Hom(kδ, kδ)⊕ 2Hom(kγ−δ, kγ)⊕Hom(kβ−γ+δ, kα).

In particular, Zδ is smooth and irreducible with dimension equal to

dimRepα(Q) + 2〈γ, β〉 − 〈δ, β − γ + δ〉.

Now we assume that homQ(γ, β) = 0, so dimRepγ →֒α(Q) = dimRepα(Q) +
〈γ, β〉. Let qδ be the projection from Zδ → Repα(Q). By our assumption, we have

that qδ(Zδ) = Repγ →֒α(Q). In particular, dimZδ > dimRepα(Q) + 〈γ, β〉. So by
Lemma 2.4, 〈δ, β − γ + δ〉 6 〈γ, β〉.

Moreover, every representation in Repγ →֒α(Q) has a (2γ−δ)-dimensional subrep-
resentation. So Rep2γ−δ →֒α(Q) ⊇ Repγ →֒α(Q), and thus extQ(2γ − δ, β − γ + δ) 6
−〈γ, β〉. Therefore 〈2γ − δ, β − γ + δ〉 > 〈γ, β〉. So we proved

Proposition 2.5. Assume that homQ(γ, β) = 0. If for any δ � γ with 2γ− δ � α,

either 〈2γ − δ, β − γ + δ〉 < 〈γ, β〉 or 〈γ, β〉 < 〈δ, β − γ + δ〉,

then q is a birational isomorphism. Here, � is the relation defined by δ ≺ γ if and
only if γ − δ ∈ (Z≥0)

Q0 .

3. Main Construction

In this section, we are going to construct finite free resolution of q∗(OZ). We
note that q∗OZ is finite over Repγ →֒α(Q) [7, Corollary III.11.5]. We are in the
situation of the Basic Theorem of [12]

Z

q

��

p

**

w

�

))❚❚
❚❚❚

❚❚
❚❚❚

❚❚
❚❚❚

❚

Gr ( αγ )× Repα(Q)

π

��

// Gr ( α
γ )

Repγ →֒α(Q) �
�

// Repα(Q)

We denote GR := Gr ( αγ )×Repα(Q). Consider the locally free resolution of the
sheaf OZ as an OGR-module given by the Koszul complex [12, Lemma 5.1.1.a]

K : 0→

〈γ,β〉1
∧

p∗E∗ → · · · →
2
∧

p∗E∗ → p∗E∗ → OGR.

It turns out that the derived pushforward of this complex by π is isomorphic to a
complex F• whose ith-component is given by [12]

Fi =
⊕

j>0

Hj(Gr ( αγ ) ;

i+j
∧

E∗)⊗A(−i− j),

where A = k[Repα(Q)] is the coordinate ring of Repα(Q). We will compute each
Fi for Kronecker quivers in Section 4.

We know from [12, Theorem 5.1.2] that there exist minimal differentials di :
Fi → Fi−1 of degree 0 such that F is a complex of free graded A-modules with
H−i(F•) = Riq∗OZ . In particular F• is exact in positive degree. Moreover,
by [12, Theorem 5.4.1] all differentials can be made G-equivariant, where G :=
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GLα×
∏

(u,v)∈Q2

0

GL(Ruv), and Ruv = kQ(u, v) is the vector space spanned by

arrows from u to v. It follows that

Theorem 3.1. Assume that Riq∗OZ = 0 for i > 0. Then the G-equivariant
complex F• is a minimal free resolution of q∗OZ .

If q is a birational isomorphism, q∗OZ is the normalization of Repγ →֒α(Q).
In particular, the normalization has rational singularities, and hence is Cohen-
Macaulay.

In general, Riq∗OZ fails to vanish for i > 0 (see Example 5.4). However, there
are some known special cases. A result of Sutar [11] says that this holds for all
(extended) Dynkin quivers with source-sink orientation. In fact, we conjecture
that the condition on the orientation is unnecessary. We also conjecture that this
result is sharp in the sense that for any wild quiver, there exist some γ, α such that
R1q∗OZ 6= 0. We will see that such examples already appear in the simplest wild
quiver without oriented cycles, namely the 3-arrow Kronecker quiver.

According to [12, Theorem 5.1.3.c], if q is birational, Riq∗OZ = 0 for i > 0, and
F0 = A, then Repγ →֒α(Q) is normal. There are only few known cases, e.g., when
the quiver is Dynkin with source-sink orientation [11]. We also believe that the
condition on the orientation can be dropped. We have found for each extended-
Dynkin type quiver Q, some non-normal Repγ →֒α(Q). For such an example for the
2-arrow Kronecker quiver, see Example 5.3.

Even if q fails to be birational, the complex F• still contains some information
on Repγ →֒α(Q). We restate [12, Theorem 5.1.6] in our setting

Theorem 3.2.

(1) codimRepγ →֒α(Q) = extQ(γ, β) = max{i | Fi 6= 0}.
(2) Assume that r = −〈γ, β〉 > 0, then

deg(q) deg(Repγ →֒α(Q)) =
∑

i,j

(−1)i+r (i+ j)r

r!
hj
(

Gr ( αγ ) ,

i+j
∧

E∗
)

,

where hj(−) is dimHj(−), and by definition deg(q) is 0 if homQ(γ, β) > 0.

The complex F• can be twisted by any vector bundle on Gr ( αγ ):

(3.1) Fi(V) =
⊕

j>0

Hj(Gr ( αγ ) ;

i+j
∧

E∗ ⊗ V)⊗A(−i− j).

The twisted complex F•(V) can also be equipped with minimal differentials and
G-equivariant structure. We also state [12, Theorem 5.1.4] in our setting. We will
use [−] for shifting homological degree, i.e., F [i]j = Fi+j .

Theorem 3.3. Let V be a vector bundle V on Gr ( αγ ), and define the dual bundle

V∨ = ω ⊗
∧〈γ,β〉1 E ⊗ V∗, where ω is the canonical bundle on Gr ( αγ ). Then

F (V∨)• = F (V)∗•[〈γ, β〉].
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4. The Case of Kronecker Quivers

Let us consider the case when Q is the m-arrow Kronecker quiver Km.

1

a1
//

ai //

am

//
2

If γ1 = α1, then Repγ →֒α(Km) is isomorphic to the usual determinantal variety of
rank γ2 maps from kmα1 to kα2 . We also have the dual situation if γ2 = 0.

We consider certain twisted version of the complex F•. For fixed weight ω =
(ω1;ω2) ∈ Zβ1 × Zγ2 , we put the vector bundle Sω1Q1 ⊗ Sω2S∗2 in place of V in
(3.1). The ith term of the twisted complex Fω

• is

Fω
i =

⊕

j>0

Hj(Gr ( α
γ ) ;

i+j
∧

E∗ ⊗ Sω1Q1 ⊗ Sω2S∗2 )⊗A(−i− j).

By [12, Theorem 5.1.2.b, 5.1.3.a], if Fω
• has no negative degree terms, then it

resolves a module supported on Repγ →֒α(Q). We denote this module by Mω
γ,α. If

ω = (wβ1

1 ;wγ2

2 ) for w1, w2 ∈ Z, then the vector bundle Sω1Q1 ⊗ Sω2S∗2 is a line
bundle. We call such a weight a line weight, and simply write (w1;w2). Note that
we get all line bundles on Gr ( αγ ) this way because the Picard group of any ordinary
Grassmannian is Z. In the proposition below, we use λ′ to denote the conjugate
partition of λ.

Proposition 4.1. The ith term of the complex Fω
• is given by

⊕

|λ|=|µ|=|ν|
=i+ℓ(σ1)+ℓ(σ2)

Sσ1(ω1,µ)R1 ⊗ Sσ2(ω2,ν)R∗
2 ⊗

(

gλµ,νS
λ′

R12

)

⊗A(−|λ|).

In particular, if ω = (w1;w2) is a line weight, then Fω
i is given by

⊕

06t16γ1,
06t26β2

⊕

µ∈P (γ1,β1,t1,w1),ν∈P (β2,γ2,t2,w2)
|λ|=|µ|=|ν|=i+β1t1+γ2t2

Sµ◦

R1 ⊗ Sν◦

R∗
2 ⊗

(

gλµ,νS
λ′

R12

)

⊗ A(−|λ|),

where

µ◦ : = σ(t1) ◦ (w
β1 , µ) = (µ1 − β1, . . . , µt1 − β1, (t1 + w1)

β1 , µt1+1, . . . , µγ1
),(4.1)

ν◦ : = σ(t2) ◦ (w
γ2 , ν) = (ν1 − γ2, . . . , νt2 − γ2, (t2 + w2)

γ2 , νt2+1, . . . , νβ2
).(4.2)

Assume that Fω
• has no negative degree terms. Then the annihilator of Mω

γ,α is the
prime ideal defining Repγ →֒α(Q), and the maximal minors of d1 : Fω

1 → Fω
0 defines

Repγ →֒α(Q) set-theoretically.

Proof.

n
∧

E∗ =
n
∧

(

S1 ⊗Q
∗
2 ⊗R12

)

=
⊕

|λ|=n

Sλ(S1 ⊗Q
∗
2)⊗ Sλ′

R12, (Cauchy formula)

=
⊕

|λ|=|µ|=|ν|=n

(

gλµ,νS
λ′

R12

)

⊗ SµS1 ⊗ SνQ∗
2. (0.1)
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Fω
i =

⊕

j>0

Hj(Gr ( αγ ) ;

i+j
∧

E∗ ⊗ Sω1Q1 ⊗ Sω2S∗2 )⊗A(−i − j),

=
⊕

j>0
|λ|=|µ|=|ν|=i+j

Hj
(

Gr ( αγ ) ; (S
ω1Q1 ⊗ SµS1)⊗ (Sω2S∗2 ⊗ SνQ∗

2)⊗ (gλµ,νS
λ′

R12)
)

⊗ A(−|λ|),

Since gλµ,νS
λ′

R12 is just a vector space, we can pull it out

=
⊕

j>0
|λ|=|µ|=|ν|=i+j

Hj
(

Gr ( αγ ) ; (S
ω1Q1 ⊗ SµS1)⊗ (Sω2S∗2 ⊗ SνQ∗

2)
)

⊗ (gλµ,νS
λ′

R12)⊗ A(−|λ|),

=
⊕

|λ|=|µ|=|ν|
=i+ℓ(σ1)+ℓ(σ2)

Sσ1(ω1,µ)R1 ⊗ Sσ2(ω2,ν)R∗
2 ⊗

(

gλµ,νS
λ′

R12

)

⊗A(−|λ|). (Künneth formula)

The statement for line weights follows from Corollary 1.2. The statement about
maximal minors follows from [3, Proposition 20.7]. �

There is an obvious symmetry from the formula of Fω
i . If we set γ′ = (β2, β1), β

′ =
(γ2, γ1), and ω′ = (ω2, ω1), then we essentially get the same complex.

Definition 4.2. A weight ω = (ω1;ω2) is called Cohen-Macaulay if Fω
• has no

negative degree term and the length of Fω
• is the codimension of Repγ →֒α(Q), i.e.,

Mω
γ,α(Q) is maximal Cohen-Macaulay.

Lemma 4.3. Fω
• has no term in negative degree if the line weight ω = (w1;w2)

satisfies (β1 − w1)
2 + (γ2 − w2)

2 < 8 or (β1 − w1)
2 + (γ2 − w2)

2 = 8 with any of
the following: (1). β1 6= γ2, (2). w1 6= w2, and (3). w1 + w2 > m− 3.

Proof. We see from Proposition 4.1 that µ ∈ P (γ1, β1, t1, w1), ν ∈ P (β2, γ2, t2, w2),
so |µ| > (β1 + t1 + w1)t1, |ν| > (γ2 + t2 + w2)t2. It is easy to see that a necessary
condition for Fω

−1 nonvanishing is that

(4.3)

{

−1 + γ2t2 > t1(t1 + w1)

−1 + β1t1 > t2(t2 + w2)
for 0 6 t1 6 γ1, 0 6 t2 6 β2.

So if f(t1, t2) = t21+(w1−β1)t1+ t22+(w2−γ2)t2+2 > 0, then Fω
• has no negative

degree term. Calculus tells us that f has a global minimum 2 − 1
4 (β1 − w1)

2 −
1
4 (γ2 − w2)

2. The condition (1) follows.

If (β1 − w1)
2 + (γ2 − w2)

2 = 8, then β1 − w1 = γ2 − w2 = 2. It is clear that
f > 0 unless t1 = t2 = 1. If t1 = t2 = 1, then it follows from (4.3) that F−1

vanishes unless β1 = γ2 and w1 = w2. Since t1 = t2 = 1, we can effectively apply
Littlewood and Murnaghan’s inequality on Kronecker coefficients, which implies
that λ1 > µ1+ν1−|λ| > (β1+1+w1)+(γ2+1+w2)−(−1+β1+γ2) = 3+w1+w2.

So if 3 + w1 + w2 > m, then Sλ′

(km) has to vanish. �

Now for each weight ω = (ω1;ω2), we introduce the dual weight ω∨ = (mβ2 −
α1 − ω1;mγ1 − α2 − ω2). We justify this definition as follows. Consider the dual
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vector bundle V∨ = ω ⊗
∧〈γ,β〉1 E ⊗ V∗. The canonical bundle of Gr ( αγ ) is

ω =
⊗

v=1,2

(

γv
∧

Sv)
⊗βv ⊗ (

βv
∧

Q∗
v)

⊗γv ,

and
〈γ,β〉1
∧

E = (

γ1
∧

S∗1 )
⊗mβ2 ⊗ (

β2
∧

Q2)
⊗mγ1 ⊗ (

m
∧

R12)
⊗γ1β2 .

So

V∨ ∼= (

β1
∧

Q1)
⊗(mβ2−α1) ⊗ (

γ2
∧

S∗2 )
⊗(mγ1−α2) ⊗ V∗,

and hence by Theorem 3.3

Fω∨

• = (Fω
• )∗[〈γ, β〉].

Then it follows from Lemma 4.3 that

Lemma 4.4. If the dual of a line weight ω satisfies the condition in Lemma 4.3,
then max{i | Fω

i 6= 0} = −〈γ, β〉.

Theorem 4.5. Assume that homKm
(γ, β) = 0. If a line weight ω and its dual

satisfy the condition in Lemma 4.3, then the complex Fω
• resolves a maximal Cohen-

Macaulay module supported on Repγ →֒α(Km).

In all examples below, we use a computer program based on [5] to calculate
the Kronecker coefficients. We will use the shorthand gλµ,ν(µ; ν;λ

′) for a typical

summand SµR1 ⊗ SνR∗
2 ⊗

(

gλµ,νS
λ′

R12

)

⊗A(−|λ|). We may wrap several Sλ′

R12’s
with common µ, ν in one pair of parentheses.

Example 4.6. Consider K3 with α = (3, 3). There are only three γ’s up to
symmetry such that Repγ →֒α(K3) is nontrivial. They are (3, 2), (2, 1), and (2, 2).
(3, 2) is uninteresting because it is a usual determinantal variety. We found that
for γ = (2, 2), the terms of F• are

F0 = (0; 0; 0)⊕(13; 13; 2, 1)⊕(2, 1; 13; 13), F1 = (2, 12; 2, 12; 2, 12), F2 = (23; 4, 12; 23).

As an illustration, let us compute F1 from Proposition 4.1. We first find all
(t1, t2, µ, ν) such that

0 6 t1 6 γ1, 0 6 t2 6 β2; µ ∈ P (γ1, β1, t1, 0), ν ∈ P (β2, γ2, t2, 0).

We get t1 = t2 = 1, µ = (3, 1) or (4), ν = (4). Then we compute the Kronecker
coefficients gλµ,ν for each solution (t1, t2, µ, ν). Since the partition (4) corresponds

to the trivial representation of S4, the only nonzero gλµ,ν we can get are g
(4)
(4),(4) =

g
(3,1)
(3,1),(4) = 1. But S(4)′(R12) = S(14)(k3) vanishes. So we only apply the formula

(4.1) and (4.2) to µ = (3, 1), ν = (4), and get µ◦ = (2, 12), ν◦ = (2, 12).
Using the G-equivariant property, it is not hard to make the differentials explicit.

For example, the differential d2 : F2 → F1 are induced by multiplying

(12; 2; 12) ⊂ S2(k3 ⊗ k3 ⊗ k3) ⊂ A.

We denote this by F1

·(12;2;12)
←−−−−−− F2. The complex F• is

F0

·(2,12;2,12;2,12)⊕(1;1;1)⊕(1;1;1)
←−−−−−−−−−−−−−−−−−−−− F1

·(12;2;12)
←−−−−−− F2.
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We can check using Proposition 2.5 that q is birational. So F• is the minimal
free resolution of the normalization of Repγ →֒α(K3). With a little effort, we can
explicitly identify differentials with matrices in A. In general, finding the matrix
representation of differentials is non-trivial. But when the differential is linear, it
is always possible [8]. We can easily obtain the set-theoretical defining equations
of Repγ →֒α(K3) from the twisted complex

F
(2;1)
0 = (2; 12; 0)

·(1;1;1)
←−−−− F

(2;1)
1 = (2, 1; 13; 1)

·(2,1;13;2,1)
←−−−−−−− F

(2;1)
2 = (23; 23; 22).

Now let γ = (2, 1), then

F0 = (0; 0; 0)⊕ (12; 12; 12)

F1 = (13; 13; (13 ⊕ 2, 1⊕ 3))⊕ (2, 1; 2, 1; 13)⊕ (2, 1; 13; 2, 1)⊕ (13; 2, 1; 2, 1)

F2 = (2, 12; 2, 12; (3, 1⊕ 2, 12 ⊕ 22))⊕ (2, 12; 3, 1; 2, 12)

⊕ (3, 1; 2, 12; 2, 12)⊕ (23; 23; (4, 12 ⊕ 32))

F3 = (3, 12; 3, 12; (3, 12 ⊕ 22, 1))⊕ (4, 12; 23; 3, 2, 1)⊕ (23; 4, 12; 3, 2, 1)

⊕ (5, 1; 23; 23)⊕ (23; 5, 1; 23)⊕ (3, 22; 3, 22; (4, 2, 1⊕ 4, 3⊕ 3, 22 ⊕ 32, 1))

F4 = (5, 12; 5, 12; 3, 22)⊕ (3, 22; 3, 22; 3, 22)⊕ (4, 22; 4, 22; (4, 22 ⊕ 4, 3, 1⊕ 32, 2))

⊕ (4, 22; 32, 2; (4, 3, 1⊕ 3, 3, 2))⊕ (32, 2; 4, 22; (4, 3, 1⊕ 32, 2))⊕ (32, 2; 32, 2; (4, 22 ⊕ 42))

F5 = (5, 22; 5, 22, 33)⊕ (5, 22; 4, 3, 2; 4, 3, 2)⊕ (4, 3, 2; 5, 22; 4, 3, 2)

⊕ (4, 3, 2; 4, 3, 2; (4, 3, 2⊕ 42, 1⊕ 33))

F6 = (5, 3, 2; 5, 3, 2; 4, 32)⊕ (5, 3, 2; 42, 2; 42, 2)⊕ (42, 2; 5, 3, 2; 42, 2)⊕ (42, 2; 42, 2; 4, 32)

F7 = (5, 4, 2; 5, 4, 2; 4, 4, 3)

F8 = (52, 2; 52, 2; 43)

We can check using Proposition 2.5 that q is birational. So F• is a minimal free
resolution of the normalization. We find that it is impossible to identify d1 using
the G-equivariant property only. For example, the last three summands of F1 can
map into both summands of F0. However, if twisted by (2; 1), we get

F
(2;1)
0 = (2; 1; 0)

·(1;1;1)
←−−−− F

(2;1)
1 = (2, 1; 12; 1)←− · · ·

We note that both presentations d1 : F1 → F0 and d
(2;1)
1 : F

(2;1)
1 → F

(2;1)
0 are

uniform in the sense that the formula does not change if we increase the number
of arrows. By an extensive search, we believe that there exists no line weight such
that the twisted complex is pure.

5. Applications

5.1. Codimension 1 cases. If Repγ →֒α(Km) has codimension one in Repα(Km),
then it corresponds to an irreducible polynomial ∆γ

α,m in k[Repα(Km)]. It is clear
from the representation-theoretic meaning of Repγ →֒α(Km) that all such polyno-
mials are semi-invariants of G, i.e., SL(R1)× SL(R2)× SL(R12)-invariant.

Definition 5.1. The polynomial ∆γ
α,m is called the hyper-polynomial of quiver type

(m,α; γ).
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Proposition 5.2. If q : Z → Repγ →֒α(Km) is birational, then the determinant of

the complex F (V)• is equal to (∆γ
α,m)rankV .

Proof. The proof is similar to [12, Proposition 9.1.3]. �

We refer readers to [6, Appendix A] for the definition of the determinant of a
(based exact) complex. The most interesting case is when the complex has the
Cohen-Macaulay property, i.e., has F0 and F1 only. In this case, the determinant
of the complex becomes the usual determinant.

Example 5.3. A triple (a1, a2, a3) is called quiver-rigid if there is some choice of
i, j, k such that α = (ai, aj) is a rigid dimension vector of the ak-arrow Kronecker,
which means that Repα(Kak

) has a dense orbit for the GLα-action. In this case, a
necessary and sufficient condition for Repα(Kak

) having G-semi-invariants is that
α is a multiple of some real Schur root. Then there is a unique G-semi-invariant,
which can be easily constructed using quiver methods [9]. In this sense, they are
not very interesting.

We found that all such triples for 2 6 a1 6 a2 6 a3 6 5 are (2, 2, 3), (2, 2, 4), (2, 3, 4)
and (2, 4, 5). For K2, α = (2, 3), γ = (1, 1), we have

F0 = (0; 0; 0)⊕ (12; 12; 12), F1 = (2, 1; 13; 2, 1).

For K2, α = (3, 2), γ = (2, 1) and K3, α = (2, 2), γ = (1, 1), their complexes are
permutations of F• on three factors. If we twist F• by some weights, we get many
determinantal representations of the same hyper-polynomial.

F
(1;0)
0 = (1; 0; 0)

·(2,1;13;2,1)
←−−−−−−− F

(1;0)
1 = (22; 13; 2, 1),

F
(0;1)
0 = (0; 1; 0)

·(12;12;2)
←−−−−−− F

(0;1)
1 = (12; 13; 2),

F
(1;1)
0 = (1; 1; 0)

·(1;1;1)
←−−−− F

(1;1)
1 = (12; 12; 1).

More generally, for K2, α = (n, n + 1), γ = (1, 1) we have the degree n(n + 1)
polynomial

F
(1;1)
0 = (1n−1; 1; 0)

·(1;1;1)
←−−−− F

(1;1)
1 = (1n; 12; 1).

Example 5.4. In this example, we find all remaining hyper-polynomials of quiver
type for 2 6 m,α1, α2 6 5 (up to symmetry) using determinantal complexes. We
can easily verify using Proposition 2.5 that the map q is birational for all cases
below. It is quite surprising that we can find a (non-unique) weight such that the
differential is linear. We give both the untwisted complex and twisted one with
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linear differential.

K3, α = (3, 4), γ = (2, 3), deg(∆γ
α,m) = 24.

F0 = (0; 0; 0)⊕ (2, 12; 14; 2, 12), F1 = (23; 3, 13; 23),

F
(2;1)
0 = (2; 13; 0)

·(1;1;1)
←−−−− F

(2;1)
1 = (2, 1; 14; 1).

K3, α = (5, 3), γ = (3, 2), deg(∆γ
α,m) = 30.

(K5, α = (3, 3), γ = (1, 2) is the same up to symmetry),

F−1 = (13; 13; 13), F0 = (0; 0; 0)⊕ (14; 2, 12; 2, 12), F1 = (15; 3, 12; 3, 12),

F
(1;1)
0 = (12; 12; 0)

·(1;1;1)
←−−−− F

(1;1)
1 = (13; 13; 1).

We observe that this case can be obtained by applying the reflection functor to the
first case. In particular, the property that Ri(q∗OZ) = 0, i > 0 is not preserved
under reflection.

K4, α = (4, 4), γ = (1, 2), deg(∆γ
α,m) = 80.

F−1 = (14; 14; 2, 12)⊕ (2, 12; 14; 14),

F0 = (0; 0; 0)⊕ (2, 13; 2, 13; 2, 13), F1 = (24; 5, 13; 24).

F
(1;2)
0 = (13; 22; 0)

·(1;1;1)
←−−−− F

(1;2)
1 = (14; 22, 1; 1).

K5, α = (4, 5), γ = (1, 3), deg(∆γ
α,m) = 200.

F−2 = (14; 14; 14), F−1 = (2, 13; 15; 2, 13)⊕ (2, 13; 2, 13; 15),

F0 = (0; 0; 0)⊕ (3, 13; 2, 14; 2, 14), F1 = (7, 13; 25; 25),

F
(1;2)
0 = (13; 23; 0)

·(1;1;1)
←−−−− F

(1;2)
1 = (14; 23, 1; 1).

We note that all four hyper-polynomials except for the second one are not hyper-
determinants defined in [6]. We can see this simply by degree consideration. The
hyperdeterminants for 3× 3× 4, 4× 4× 4, and 4× 5× 5 hypermatrices have degree
48, 272 and 880 respectively.

5.2. Kronecker Coefficients. From Theorem 3.2.(1) and Proposition 4.1, we get
an interesting result on vanishing of the Kronecker coefficients.

Proposition 5.5. For µ ∈ P (γ1, β1, t1, 0), ν ∈ P (β2, γ2, t2, 0) with |µ| = |ν| >
β1t1 + γ2t2 + extKm

(γ, β), we have that gλµ,ν vanishes if λ1 6 m.

This result is sharp in the sense that there are µ ∈ P (γ1, β1, t1, 0), ν ∈ P (β2, γ2, t2, 0)
with |µ| = |ν| = β1t1+γ2t2+extKm

(γ, β) such that gλµ,ν 6= 0 for some λ with λ1 6 m.
From Theorem 3.3, we obtain a dual version

Proposition 5.6. For µ ∈ P (γ1, β1, t1,mβ2−α1), ν ∈ P (β2, γ2, t2,mγ1−α2) with
|µ| = |ν| < β1t1 + γ2t2 − homKm

(γ, β), we have that gλµ,ν vanishes if λ1 6 m.
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Proof of Theorem 0.2. We observe from the proof of Theorem 3.2.(1) that the state-
ment actually holds for the twisted complex F•(V), where V is any ample line bundle
on Gr ( αγ ). This is because the Grauert-Riemenschneider vanishing theorem [12,
Theorem 1.2.28] holds for the canonical sheaf tensoring with any ample line bun-
dle. An ample line bundle corresponds to negative w1 and w2. So the above two
propositions generalize to Theorem 0.2. �

If α = (n, nm), γ = (n, γ2) or α = (nm, n), γ = (γ1, 0), then Repγ →֒α(Km) is the
usual determinantal variety of rank γ2 maps from kmn to itself. In particular, it is
Gorenstein [12, Corollary 6.1.5]. We conjecture that this is actually an “if and only
if” statement for Repγ →֒α(Km) being Gorenstein.

Proposition 5.7. gm
nl

lmn,mnl = 1 for any l,m, n ∈ N.

Proof. Let α = (n, nm), γ = (n, γ2) with l := nm − γ2 > 0, then 〈γ, β〉 =
extKm

(γ, β) = l2 > 0. According to the above remark, the last term Fl2 has
rank 1, so by Proposition 4.1 that there is only one solution for t1, t2, λ, µ, ν with

(5.1) 0 6 t1 6 n, 0 6 t2 6 l, µ ∈ P (0, t1), ν ∈ P (γ2, t2)

such that l2 + 0t1 + γ2t2 = |λ| = |µ| = |ν| with λ′, µ◦, ν◦ having exactly m,n, nm
equal parts, and gλµ,ν = 1.

We claim that t2 = l, λ = mnl, µ = lmn, ν = mnl is the only solution. It is clear
from (5.1) that t2 = l, and thus |λ| = lmn, λ′ = nlm, µ◦ = lmn, ν◦ = lmn. Applying
the inverse of Bott’s algorithm, we get µ = lmn, ν = mnl. �

6. Generalization to the tensor setting

We have a straight-forward generalization from the quiver setting to the tensor
setting. We viewed the representation space of the Kronecker quiver as the triple
tensor R∗

1 ⊗ R2 ⊗ R∗
12. We may just consider the tensor Rα := R∗

1 ⊗ R∗
2 ⊗ R∗

3.
We call α = (dimR1, dimR2, dimR3) the dimension vector of the tensor. Now we

consider the product of Grassmannians Gr ( α
γ ) :=

∏3
i=1 Gr ( αi

γi
). We replace the

vector bundle E in Section 4 by S∗1 ⊗S
∗
2 ⊗S

∗
3 , where each Si is the (pullback) of the

universal subbundle of Gr ( αi
γi
). We have an induced vector bundle epimorphism

Gr ( αγ ) × Rα ։ E . Let Z be the kernel of the vector bundle epimorphism, and Z
be its total space. We denote by q the projection Z → Rα, and set Rγ,α := q(Z)
be the scheme-theoretical image. Since Z is integral and q is projective, Rγ,α is
integral and closed. From now on, we use q to denote the projection Z → Rγ,α.
Let β = α− γ, and h(γ, β) be the dimension of generic fibre of q and e(γ, β) be the
codimension of Rγ,α in Rα, then

〈〈γ, β〉〉 := h(γ, β)− e(γ, β) = 〈γ, β〉0 − γ1γ2γ3.

Unfortunately, we do not have an algorithm to compute e(γ, β). We also do not
have a criterion for the birationality of q.

We consider the complex F• as we did in the quiver setting. We have analogues
of Theorem 3.1, 3.2, and 3.3. More generally, we can twist F• by a vector bundle

V . For fixed weight ω = (ω1;ω2;ω3) ∈
∏3

i=1 Z
βi , we put the vector bundle V :=

⊗3
i=1 S

ωiQi. The ith term of the twisted complex Fω
• is

Fω
i =

⊕

j>0

Hj(Gr ( αγ ) ;

i+j
∧

E∗ ⊗

3
⊗

i=1

SωiQi)⊗A(−i− j).
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If ω = (wβ1

1 ;wβ2

2 ;wβ3

3 ) for wi ∈ Z, then V is a line bundle . We simply write
(w1;w2;w3) for ω. The proof of the following proposition is almost the same as
Proposition 4.1.

Proposition 6.1. The ith term of the complex Fω
• is given by

⊕

|λk|=i+
∑

k ℓ(σk)

g
λ′

1

λ2,λ3

(

⊗

k=1,2,3

Sσk(ωk,λk)Rk

)

⊗A(−|λ|).

In particular, if ω = (w1;w2;w3) is a line weight, then Fω
i is given by

⊕

06ti6γi

⊕

λk∈P (γi,βi,ti,wi)
|λk|=i+

∑
βiti

g
λ′

1

λ2,λ3

(

⊗

k=1,2,3

Sλ◦

kRk

)

⊗A(−|λ1|),

where

λ◦
i := σ(ti) ◦ (w

βi , λ) =
(

(λi)1 − βi, . . . , (λi)ti − βi, (ti +wi)
βi , (λi)ti+1, . . . , (λi)γi

)

.

Assume that Fω
• has no negative degree terms. Then the maximal minors of d1 :

Fω
1 → Fω

0 defines Rγ,α set-theoretically, and the annihilator of the module Cokerd1
defines Rγ,α scheme-theoretically.

Now for each weight ω = (ω1;ω2;ω3), we consider the dual weight

ω∨ = (γ2γ3 − α1 − ω1; γ1γ3 − α2 − ω2, γ1γ2 − α3 − ω3).

It is easy to verify that it corresponds to the dual bundle of Theorem 3.3, so

Fω∨

• = (Fω
• )∗[〈〈γ, β〉〉].

Analogous to theorem 0.2, we get a vanishing condition for the Kronecker co-
efficients from the above proposition and Theorem 3.2.(1). Since gλµ,ν is in fact

invariant under any permutation of λ, µ, ν, we will write gλ,µ,ν instead of gλµ,ν .

Corollary 6.2. Let wi be non-positive numbers.

(1) For λi ∈ P (γi, βi, ti, wi) with |λi| >
∑

i βiti+e(γ, β), we have that gλ1,λ2,λ3

vanishes if (λi)1 6 γi for some i.

(2) For λi ∈ P (γi, βi, ti, γjγk − αi − wi) with |λi| <
∑

i βiti − h(γ, β), we have
that gλ1,λ2,λ3

vanishes if (λi)1 6 γi for some i.

The proof of the following lemma is similar to that of Lemma 4.3, so we leave it
for readers.

Lemma 6.3.

(1) Fω
• has no term in negative degree if the line weight ω = (w1;w2;w3) satis-

fies
∑3

i=1(2βi−wi)
2 < 12, or

∑3
i=1(2βi−wi)

2 = 12 with any of the following
(1). βi’s are not all equal; (2). wi’s are not all equal; (3).

∑

j 6=i wj > αi−3
for some i.

(2) If ω∨ satisfies the above condition, then max{i | Fω
i 6= 0} = −〈〈γ, β〉〉.

Proposition 6.4. Assume that h(γ, β) = 0. If a line weight ω and its dual satisfy
the conditions in Lemma 6.3, then the complex Fω

• resolves a maximal Cohen-
Macaulay module supported on Rγ,α.
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If Rγ,α has codimension one in Rα, then it corresponds to an irreducible polyno-
mial ∆γ

α in k[Rα]. Since q(Z) is G-stable, all such polynomials are semi-invariants
of G.

Definition 6.5. The polynomial ∆γ
α is called the hyper-polynomial of type (α; γ).

Proposition 6.6. If q is birational, then the determinant of the complex F (V)• is
equal to (∆γ

α)
rankV .

Example 6.7. In this example, we find all hyper-polynomials of type (α, γ) up
to some powers for 2 6 αi 6 5 using determinantal complexes. In contrast to the
quiver type, we cannot find a weight such that the differential is linear for the two
non-trivial cases below. In these cases the hyper-polynomials are not completely
explicit.

α = (3, 4, 5), γ = (2, 3, 2), deg(∆γ
α) = 240.

F−1 = (2, 12; 14; 14),

F0 = (0; 0; 0)⊕ (3, 12; 2, 13; 15)⊕ (5, 3, 2; 32, 22; 25), F1 = (52, 2; 34; 32, 23),

F
(2;3;−1)
0 = (22, 1; 3, 2, 1; 0)

·(1;1;1)⊕(3,12;3,12;15)
←−−−−−−−−−−−−−− F

(2;3;−1)
1 = (23; 3, 22, 1)⊕ (4, 32; 33, 2; 15).

α = (4, 4, 4), γ = (2, 2, 3), deg(∆γ
α) = 560.

F−2 = (24; 24; 32, 2),

F−1 = (14; 14; (14 ⊕ 2, 12))⊕ (14; 2, 12; 14)⊕ (2, 12; 14; 14)⊕ (3, 23; 3, 23; (3, 23 ⊕ 32, 2, 1)),

F0 = (0; 0; 0)⊕ (2, 13; 2, 13; 2, 13)⊕ (32, 22; 4, 23; 32, 22)⊕ (4, 23; 32, 22; 32, 22),

F1 = (42, 22; 42, 22; 34),

F
(2;0;1)
0 = (22; 0; 1)

·(22;14;22)⊕(32,12;24;24)
←−−−−−−−−−−−−−−−− F

(2;0;1)
1 = (24; 14; 22, 1)⊕ (4, 32, 2; 24; 3, 23).

It turns out the rest of the hyper-polynomials are in fact of quiver types. For the
first three, this follows from the remark of Example 5.3. The conclusion on the rest
is based on explicit computation. However, none of q : Z → Rγ,α below is finite.

α = (2, 3, 4), γ = (1, 2, 3) (same as K2, α = (3, 4), γ = (1, 1)),

α = (2, 4, 5), γ = (1, 2, 4) (same as K2, α = (4, 5), γ = (1, 1)),

α = (2, 4, 5), γ = (1, 3, 3) (same as K2, α = (4, 5), γ = (1, 1)),

α = (3, 3, 5), γ = (1, 2, 4) (same as K3, α = (5, 3), γ = (3, 2)),

α = (4, 4, 4), γ = (1, 3, 3) (same as K4, α = (4, 4), γ = (2, 3)),

α = (4, 5, 5), γ = (1, 3, 4) (same as K5, α = (4, 5), γ = (1, 3)).
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