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WELL-POSEDNESS AND EXPONENTIAL DECAY OF SOLUTIONS FOR

THE BLACKSTOCK–CRIGHTON–KUZNETSOV EQUATION

RAINER BRUNNHUBER

Abstract. The present work provides well-posedness and exponential decay results for the
Blackstock–Crighton–Kuznetsov equation arising in the modeling of nonlinear acoustic wave
propagation in thermally relaxing viscous fluids.

First, we treat the associated linear equation by means of operator semigroups. Moreover,
we derive energy estimates which we will use in a fixed-point argument in order to obtain
well-posedness of the Blackstock–Crighton–Kuznetsov equation. Using a classical barrier
argument we prove exponential decay of solutions.

1. Introduction

The present work aims to enhance the mathematical understanding of nonlinear acoustic
wave propagation in viscous, thermally conducting, inert fluids. In particular, our motivation
is to deal with higher order models arising in nonlinear acoustics. An acoustic wave prop-
agates through a medium as a local pressure change. Nonlinear phenomena typically occur
at high acoustic pressures which are used for several medical and industrial purposes such as
lithotripsy, thermotherapy, ultrasound cleaning and sonochemistry. Due to this broad range
of applications, nonlinear acoustics is currently an active field of research, see [3], [4], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [19], [20], [21] and the references therein.

The classical models in nonlinear acoustics are partial differential equations of second order
in time which are characterized by the presence of a viscoelastic damping. The most general
of these conventional models is Kuznetsov’s equation

(1.1) utt − c2∆u− b∆ut =
(

1
c2

B
2A(ut)

2 + |∇u|2
)

t
,

where u denotes the acoustic velocity potential, c > 0 is the speed of sound, b ≥ 0 is the
diffusivity of sound and B/A is the parameter of nonlinearity. Neglecting local nonlinear
effects (in the sense that the expression c2|∇u|2− (ut)

2 is sufficiently small) one arrives at the
Westervelt equation

(1.2) utt − b∆ut − c2∆u =
(

1
c2

(

1 + B
2A

)

(ut)
2
)

t
.

Both, the Kuznetsov and the Westervelt equation, can alternatively be formulated in terms
of the acoustic pressure p via the relation ρut = p, where ρ denotes the mass density. The
quantities A and B occurring in the parameter of nonlinearity are the coefficients of the
first and second order terms in the Taylor series expansion of the variation of pressure in
the medium in terms of variation of the density. For a detailed introduction to the field of
nonlinear acoustics we refer to [8].
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The Kuznetsov equation in its turn can be regarded as a simplification (for a small thermal
conductivity a = νPr−1, where ν is the kinematic viscosity and Pr is the Prandtl number) of
the higher order model

(1.3) (a∆− ∂t)(utt − c2∆u− b∆ut) =
(

1
c2

B
2A (ut)

2 + |∇u|2
)

tt

which we call Blackstock–Crighton–Kuznetsov equation. Neglecting local nonlinear effects as
it is done when reducing the Kuznetsov equation to the Westervelt equation we arrive at the
Blackstock–Crighton–Westervelt equation

(1.4) (a∆ − ∂t)(utt − c2∆u− b∆ut) =
(

1
c2

(

1 + B
2A

)

(ut)
2)tt.

For more information on the derivation of (1.3) and (1.4) we refer to Section 2.
TheWestervelt and the Kuznetsov equation as well as the Khoklov-Zabolotskaya-Kuznetsov

equation, which is another standard model in nonlinear acoustics, have recently been quite
extensively investigated (see, e.g., [4], [9], [10], [12], [11], [13], [15] and [19]). Research on
higher order models such as (1.3) and (1.4) is still in an early stage. The starting point was [3]
where well-posedness and exponential decay of solutions for (1.4) together with homogeneous
Dirichlet boundary conditions was shown. The goal of the present paper is to provide results
on well-posedness and exponential decay for the more general Blackstock-Crighton-Kuznetsov
equation (1.3) which is one more step towards closing the gap of missing results on higher
order models in nonlinear acoustics.

More precisely, the present work is devoted to the homogeneous Dirichlet boundary value
problem

(1.5)











(a∆− ∂t)(utt − b∆ut − c2∆u) = (k(ut)
2 + s|∇u|2)tt in (0, T )× Ω,

(u, ut, utt) = (u0, u1, u2) on {t = 0} × Ω,

(u,∆u) = (0, 0) on [0, T )× Γ,

on a bounded domain Ω ⊂ R
n of dimension n ∈ {1, 2, 3} with smooth boundary Γ = ∂Ω,

where T > 0 is either finite or infinite. The initial values u0, u1, u2 : Ω → R are given and
u : [0, T )×Ω → R is the unknown. Moreover, we assume that a, b, c, k > 0 are constants and
s ∈ {0, 1}. The case s = 1 corresponds to (1.3) whereas s = 0 relates to (1.4). The restriction
on the dimension of the spatial domain Ω is imposed in order to be able to use the embedding
H2(Ω) →֒ L∞(Ω) which we will do at several crucial steps. We therefore point out that our
results do not hold for n ≥ 4. However, this is not of relevance in practical applications
anyway.

Here, beside the classical Dirichlet boundary condition u|Γ = 0 we impose ∆u|Γ = 0, since
this ensures that both, a∆u−ut and utt−b∆ut−c2∆u, have homogeneous Dirichlet boundary
conditions such that the homogeneous Dirichlet Laplacian can be applied. In particular,
∆u|Γ = 0 allows us to interchange the differential expressions on the left-hand side which we
will do when deriving energy estimates.

Rewriting the Blackstock–Crighton–Kuznetsov equation as

(−1− 2kut)uttt + (a+ b)∆utt + c2∆ut − ab∆2ut − ac2∆2u = 2k(utt)
2 + 2s(|∇u|2)tt,

we see that (1.5) degenerates whenever ut equals −(2k)−1. Therefore, in the analysis of
(1.5) it is important to avoid degeneracy which will here be achieved by assuming smallness
of the initial data and establishing a sufficiently small L∞(0, T ;H3(Ω))-bound on ut. The
embedding H3(Ω) →֒ L∞(Ω) then allows to ensure ‖ut‖L∞((0,T )×Ω) < (2k)−1 which excludes
degeneracy.
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The paper is organized as follows. In Section 2 we sketch the derivation of the model under
consideration. In Section 3 we study the linearized version of (1.5). We use the theory of
operator semigroups to prove existence and uniqueness of solutions as well as their long-time
behavior. Moreover, we derive energy estimates which are the starting point for the proof
of global well-posedness for the nonlinear model. In Section 4 we show well-posedness of
(1.5) for sufficiently small initial data, i.e. we show existence of a unique solution of (1.5) as
well as its continuous dependence on the (small) initial conditions (Theorem 4.1). The key
ingredient is Banach’s Fixed-Point Theorem. The final part of Section 4 is devoted to the
proof of long-time behavior of solutions (Theorem 4.5). Based on an energy estimate for the
nonlinear equation we use a classical barrier argument in order to show exponential decay of
solutions of (1.5).

The present work extends the results from [3] in several ways. On one hand, it contains well-
posedness for the more general Blackstock–Crighton–Kuznetsov equation (1.3). On the other
hand, not only for (1.3), but also for the Blackstock–Crighton-Westervelt equation (1.4) we
obtain strong solutions such that the respective equation is satisfied in L2(0, T ;L2(Ω)). The
regularity of (weak) solutions in [3] is not sufficient to control the additional term (|∇u|2)tt
in the nonlinearity appearing in (1.3). Here, we extend the semigroup approach used in
[3] in order to achieve higher regularity and modify the energy estimates from [3] in an
appropriate way. Moreover, while in [3] local well-posedness was shown by a combination
of regularity results for the heat equation and the Westervelt equation, we here directly use
energy estimates in a fixed-point argument which provides us at once with (global) well-
posedness for (1.5).

Let us mention here that, as usual, by L∞(Ω) we denote the space of (classes of) Lebesgue-
measurable functions Ω → R which are essentially bounded and L2(Ω) is the Hilbert space
of (classes of) Lebesgue square integrable functions Ω → R equipped with the inner product
〈u, v〉L2

=
∫

Ω uv and the induced norm ‖u‖L2
. More generally, we will always write ‖.‖X for

the X-norm of an element in a Banach space X and CX,Y for the embedding constant of the
continuous embedding X →֒ Y of X into another Banach space Y .

We use the Sobolev space W s
p (Ω) of order s ∈ N and exponent p ∈ [1,∞]. As usual,

Hs(Ω) = W s
2 (Ω). The norm of a function u ∈ Hs(Ω), 1 ≤ s ≤ 4, with zero boundary

conditions in the sense that u|Γ = 0 for s ∈ {1, 2} and u|Γ = ∆u|Γ = 0 for s ∈ {3, 4} is

given by ‖u‖Hs = ‖(−∆)s/2u‖L2
, where −∆ stands for the negative Laplacian on L2(Ω) with

domain of definition D(∆) = {u ∈ H2(Ω): u|Γ = 0}. Here, u|Γ denotes the Dirichlet trace of
u.

The space Ck([0, T ];X) consists of all k-times continuously differentiable functions u :

[0, T ] → X with k ∈ N0. We equip it with the norm ‖u‖Ck([0,T ];X) =
∑k

i=0 supt∈[0,T ] ‖∂itu(t)‖X .

Furthermore, the Sobolev space W s
p (0, T ;X) consists of all functions u ∈ Lp(0, T ;X) such

that ∂kt u exists in the weak sense and belongs to Lp(0, T ;X) for all 1 ≤ k ≤ s. On

W s
p (0, T ;X) we consider the norm ‖u‖W s

p (0,T ;X) = (
∫ T
0

∑s
i=0 ‖∂itu(t)‖

p
X dt)1/p if p ∈ [1,∞)

and ‖u‖W s
p (0,T ;X) = ess supt∈[0,T ]

∑s
i=0 ‖∂itu‖X if p = ∞. For additional information on func-

tion spaces and embedding theorems, we refer to [1] and [7].

2. On the derivation of the Blackstock–Crighton–Kuznetsov equation

Equation (1.3) is an approximate equation which is derived from the equations of motion
for viscous, thermally conducting, inert fluids of arbitrary equation of state. It was derived by
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Blackstock in [2]. We here point out the crucial steps of this derivation. Four equations are
needed to describe the general motion of a viscous, heat-conducting fluid: mass conservation,
momentum conservation, entropy balance and an equation of state. The equation describing
mass conservation is given by

(2.1) Dρ
Dt +∇ · (ρv) = 0,

where ρ is the mass density, v is the fluid velocity vector and D
Dt = ∂t + v · ∇ is the material

derivative. Momentum conservation is governed by

(2.2) ρDv

Dt +∇p = µ∆v +
(

µB + 1
3µ
)

∇(∇ · v).
Here, p denotes the thermodynamic pressure, µ is the shear viscosity and µB is the bulk
viscosity. Moreover, energy conservation can be expressed as

(2.3) ρDE
Dt = a∆T + µB(∇ · v)2 + 1

2µ
(

∂vi
∂xj

∂vj
∂xi

− 2
3δij

∂vk
∂xk

)2
,

where E denotes the internal energy per unit mass and a is the thermal conductivity. The
final term is written in Cartesian tensor notation, that is, vi denotes the component of v in
direction xi and δij is the Kronecker delta. The left-hand side of (2.3) can alternatively be
expressed as

(2.4) ρ DE
Dt = ρcv

(

DT
Dt + γ−1

β ∇ · v
)

,

where cv is the specific heat at constant volume and β is the coefficient of thermal expansion.
Equation (2.3) then becomes

(2.5) ρcv
(

DT
Dt + γ−1

β ∇ · v
)

= a∆T + µB(∇ · v)2 + 1
2µ
(

∂vi
∂xj

∂vj
∂xi

− 2
3δij

∂vk
∂xk

)2
.

Furthermore, a thermodynamic equation of state must be added, for example

(2.6) p = p(ρ, T ).

Blackstock approximated the above equations of motion for viscous, thermally conducting,
inert fluids so as to account as simply as possible for effects of nonlinearity and dissipation,
see [2]. He followed an approximation procedure first outlined by Lighthill. In this procedure
terms in the equations are classified as follows. Linear terms not associated with any dissi-
pative mechanism are regarded as first-order terms. Second-order terms are the quadratic
nonlinear terms that do not involve viscosity or heat conduction as well as the linear viscosity
and heat conduction terms. All the remaining terms are regarded as being of higher order.
The basic rule in the approximation procedure is that only first-order and second-order terms
may be retained. This implies that any factor in a second-order term may be replaced by its
first-order equivalent because any more precise substitution would result in the appearance
of higher-order terms. The expressions ’basic rule’ and ’substitution corollary’ were used by
Blackstock in [2], not originally by Lighthill.

Blackstock carried out the approximation first for perfect gases, in which case (2.6) reads
p = ρRT with R being the specific gas constant. Then he provided a generalization to
arbitrary inert fluids.

It is convenient to work with scalar and vector potentials u and w from the Helmholtz
decomposition v = ∇×w+∇u of the fluid velocity vector v, see [2] and [5]. Only retaining
the first-order terms leads to

st +∆u = 0, ρ0ut + (p − p0) = 0, w = constant, p− p0 = ρ0c
2
0s = γ−1ρ0c

2
0(s+Θ),
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see (4) in [2]. Here, we used the condensation s = ρ−ρ0
ρ , a new temperature variable Θ =

β0(T − T0) and the speed of propagation c0. The subscript zero always refers to the static
value of the respective expression.

Application of the approximation procedure outlined above, equations (2.1), (2.2), (2.5)
and p = ρRT can be reduced respectively to

st +∆u = c−2
0 (g + h),(2.7)

∇(ut +
p−p0
ρ0

− Λν∆u+ 1
2 (∇u · ∇u− c−2

0 (ut)
2)) +∇× (wt + ν∇×∇×w) = 0,(2.8)

Θt + (γ − 1)∆u− γPr−1ν∆Θ = (γ − 1)c−2
0 (g + (γ − 1)h),(2.9)

Θ = γ(p − p0)ρ
−1
0 c−2

0 − s− (γ − 1)s2,(2.10)

where g = ∇u · ∇ut, h = ut∆u, Pr is the Prandtl number, ν is the kinematic viscosity, cp is
the specific heat at constant pressure and Λ = 4

3 +
µB

µ . We separate (2.8) into two equations,

namely into a rotational part

(2.11) wt + ν∇×∇×w = 0

and the time derivative of the irrotational part,

(2.12) utt + ρ−1
0 pt − Λν∆ut = −f + g.

We substitute (2.7) and (2.12) into the time derivative (2.10) which yields

(2.13) c20Θt = c20∆u− γutt + γΛν∆ut − (γ + 1)g − (γ − 1)h.

Let us differentiate (2.9) with respect to time and plug in the latter to obtain

(2.14)
− c20νPr

−1∆2u+ νPr−1∆utt + (Λ + (γ − 1)Pr−1)ν∆utt

− ν2Pr−1γΛ∆2ut + c20∆ut − uttt =
(γ−1

2c2
0

(ut)
2 + |∇u|2

)

tt
,

where we have applied the basic rule to eliminate nonlinear dissipation terms. In contrast to
(7) in [2], we here retained −ν2Pr−1γΛ∆2ut. The term b = (Λ + (γ − 1)Pr−1)ν is referred
to as acoustic diffusivity or diffusivity of sound (Lighthill). In case of an arbitrary inert fluid
we replace γ − 1 on the right-hand side by the parameter of nonlinearity B/A, see Section
4.2 in [2]. Upon the coefficient of the ∆2ut-term, (2.14) equals (1.3). If we neglect boundary
dissipation in the sense that wall effects are not important, we may approximate the flow as
irrotational. In this case (2.11) has the trivial solution w = constant and is therefore of no
further concern, see page 23 in [2]. The flow is then completely defined by (2.14).

If temperature conditions are not significant, the fourth-order character of (2.14) need not
be preserved. In this case, (2.14) can be reduced to Kuznetsov’s equation which is considerably
simpler, see page 23 in [2]. However, if the temperature constraints need to be retained, one
needs to consider the fourth-order equation (2.14).

3. The linearized initial boundary value problem

Before we turn to the nonlinear analysis, we consider the linearized version of (1.5), i.e.

(3.1)











(a∆− ∂t)(utt − b∆ut − c2∆u) = f in (0, T )× Ω,

(u, ut, utt) = (u0, u1, u2) on {t = 0} ×Ω,

(u,∆u) = (0, 0) on [0, T )× Γ,
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where f : (0, T ) × Ω → R. In the present section shall consider (3.1) in a general abstract
form. More precisely, investigate the abstract linear initial value problem

(3.2)

{

(−aA− ∂t)
(

utt(t) + c2Au(t) + bAut(t)
)

= f(t), t ∈ (0, T )

u(0) = u0, ut(0) = u1, utt(0) = u2

defined on a separable Hilbert space H which is endowed with the inner product 〈., ..〉H and
the induced norm ‖.‖H. Here, A : D(A) → H is assumed to be a self-adjoint and closed linear
operator whose domain of definition D(A) as well as D(A2) is dense in H. Moreover, we
suppose that the spectrum σ(A) of A is contained in (0,∞) and consists only of eigenvalues
of A with finite multiplicity. As a consequence, there exists some λ0 > 0 such that σ(A) ⊂
[λ0,∞). We will always set λ0 = minσ(A). Moreover, since σ(A) is strictly positive, for Θ > 0
fractional powers AΘ of A are well-defined and AΘ is again a self-adjoint linear operator with
domain of definition D(AΘ) such that σ(AΘ) ⊂ (0,∞). Note that D(AΘ1) ⊂ D(AΘ2) for
Θ1 > Θ2. We assume the embeddings

D(Aν) →֒ H, with ‖v‖H ≤ CD(Aν),H‖Aνv‖H, ν = 1
2 , 1,

3
2 ,(3.3)

D(A) →֒ L∞(Ω), with ‖v‖L∞
≤ CD(A),L∞‖Av‖H.(3.4)

to hold. Clearly, in connection with (3.1), we always think of H = L2(Ω) and A = −∆ being
the negative Dirichlet Laplacian with domain of definition D(∆) = {u ∈ H2(Ω): u|Γ = 0}.
In this context, (3.3) corresponds to the Poincaré inequality, i.e. to the (repeatedly used)
embedding H1

0 (Ω) →֒ L2(Ω), and (3.4) corresponds to the embedding H2(Ω) ∩ H1
0 (Ω) →֒

L∞(Ω).

3.1. Semigroup framework. In this section we investigate the linearized problem asso-
ciated with (1.5) by means of the theory of operator semigroups. This has already been
done in [3, Section 3] and resulted in existence of a unique solution u ∈ C1([0, T ];H2(Ω) ∩
H1

0 (Ω)) ∩ C2([0, T ];L2(Ω)) of (3.1) provided u0, u1 ∈ H2(Ω) ∩ H1
0 (Ω) and u2 ∈ L2(Ω) and

f ∈ Cα([0, T ];L2(Ω)) is Hölder continuous with exponent α ∈ (0, 1), see Corollaries 3.14 and
3.16 in [3]. Here our aim is to obtain solutions with higher regularity which can be achieved
by modifying the action space of the semigroup and the domain of definition of its generator.
Like in [3], we represent (3.2) as an abstract parabolic evolution equation

(3.5) Ut(t) = AU(t) + F (t), t ∈ (0, T ), U(0) = U0,

by choosing

(3.6) U(t) =





u(t)
ut(t)

utt(t) + bAut(t) + c2Au(t)



 , U0 =





u0
u1

u2 + bAu1 + c2Au0



 ,

and F (t) = (0, 0, f(t))⊤, but here consider the action space H = D(A2)×D(A)×H endowed
with the inner product

(3.7) 〈v,w〉H =
(

αb
2

)2〈A2v1,A2w1〉H + 〈Av2,Aw2〉H + 〈v3, w3〉H
for v = (v1, v2, v3) and w = (w1, w2, w3) in H and the closed linear operator A : D(A) → H
defined by

(3.8) A =





0 I 0
−c2A −bA I
0 0 −aA



 , D(A) = D(A2)×D(A2)×D(A).
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The constant α > 0 in (3.7) will be chosen appropriately during the proof of the next result.

Proposition 3.1. The operator A : D(A) → H given by (3.8) generates an analytic semigroup

on H.

Proof. The proof follows [3, Section 3.1.2]. Here we just outline the main steps. We decompose
A, A = A1 +A2, where

A1 =





0 0 0
0 −bA 0
0 0 −aA



 and A2 =





0 I 0
−c2A 0 I
0 0 0



 .

For v,w ∈ D(A) we have 〈A1v,w〉H = 〈v,A1w〉H . Moreover, A1 : D(A) → H is densely
defined and closed, hence there exists a self-adjoint extension of A1. Since σ(A1) ⊂ (−∞, 0]
the analyticity of the semigroup generated by A1 follows at once from [6, Corollary II.4.7].
Moreover, A2 : H → H is relatively A1-bounded with A1-bound

α
2 < α. In particular, we

have ‖A2v‖H = α
2 ‖A1v‖H +

√
2max{2c2

αb , 1}‖v‖H for all v ∈ D(A). The latter is derived

analogously to (3.21) in [3] using ‖ · ‖H = (〈·, ·〉H )1/2. The analyticity of the semigroup
generated by A : D(A) → H follows from [6, Theorem III.2.10] provided α > 0 in (3.7) is
chosen sufficiently small. �

Remark 3.2. The presence of the damping parameter b > 0 is essential in order to obtain
analyticity of the semigroup generated by A : D(A) → H. If b = 0, the spectrum of A is given
by σ(A) = {−aλn,±icλn : λn ∈ σ(A)}. Hence, in this case, A is not a sectorial operator and
can thus not be the generator of an analytic semigroup, cf. Remark 3.11 in [3].

Proposition 3.3. Suppose U0 ∈ D(A). Let moreover f ∈ Cα([0, T ];H) be Hölder continuous

with exponent α ∈ (0, 1). Then the abstract initial value problem (3.5) has a unique solution

U ∈ C([0, T ];D(A)) ∩C1([0, T ];H) which is given by

U(t) = etAU0 +

∫ t

0
e(t−s)AF (s) ds, 0 ≤ t ≤ T.

Proof. It suffices to observe that AU0 + F (0) is in the closure of D(A) and use [18, Theorem
4.3.1] on the existence of a unique strong solution of inhomogeneous parabolic problems. �

Corollary 3.4. Suppose u0, u1 ∈ H4(Ω) and u2 ∈ H2(Ω) such that u0|Γ = ∆u0|Γ = u1|Γ =
∆u1|Γ = u2|Γ = 0 in the sense of traces. Let moreover f ∈ Cα([0, T ];H) be Hölder continuous

with exponent α ∈ (0, 1). Then the linear boundary value problem (3.1) has a unique solution

u ∈ C1([0, T ];H4(Ω)) ∩ C2([0, T ];H2(Ω)) ∩ C3([0, T ];L2(Ω))

such that u(t)|Γ = ∆u(t)|Γ = ut(t)|Γ = ∆ut(t)|Γ = utt(t)|Γ = 0 in the sense of traces for all

t ∈ (0, T ].

Proof. We now use the choices A = −∆, D(A) = {u ∈ H2(Ω): u|Γ = 0} and H = L2(Ω)).
Therewith u0 ∈ D(A2) results in u0 ∈ H4(Ω) with u0|Γ = ∆u0|Γ = 0. The same holds
for u1. Using the regularity of u0 and u1, we see that u2 + bAu1 + c2Au0 ∈ D(A) gives
us u2 ∈ H2(Ω) such that u2|Γ = 0. Furthermore, it is straightforward to check that
U ∈ C([0, T ];D(A)) ∩ C1([0, T ];H) implies u ∈ C([0, T ];D(A2) ∩ C1([0, T ];D(A2)), ut ∈
C([0, T ];D(A2) ∩ C1([0, T ];D(A)) and utt + bAut + c2Au ∈ C([0, T ];D(A) ∩ C1([0, T ];H).
Therewith, again using the explicit choices for A and H, we obtain the regularity as well as
the traces of u as stated. �
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The spectral bound s(A) = {Re(λ) : λ ∈ σ(A)} of A is given by s(A) = −min{aλ0, b2λ0, c
2

b },
where λ0 = minσ(A), see Lemma 3.12 in [3]. As a consequence, we obtain an exponential
decay result for the homogeneous equation.

Proposition 3.5. Let u0, u1 and u2 be given as in Corollary 3.4 and suppose f ≡ 0. Then

any solution u of (3.1) decays exponentially fast to zero in the sense that there exist M,ω > 0
such that

E[u](t) ≤Me−ωtE[u](0), t > 0

where E[u](t) = ‖u(t)‖2H4 + ‖ut(t)‖2H4 + ‖utt(t)− b∆ut(t)− c2∆u(t)‖2H2 .

Proof. Since s(A) < 0, the semigroup etA generated by A is uniformly exponentially sta-

ble. Hence there are constants M̃ > 1 and ω > 0 such that ‖etAU(0)‖H = ‖U(t)‖H ≤
M̃e−ωt‖U(0)‖H . Rescaling the latter immediately yields the claim. �

3.2. Energy estimates. Our second approach to treat the linear equation is to derive energy
estimates of which we will also further make use of when proving global well-posedness of our
nonlinear Dirichlet boundary value problem (1.5). For now we consider (3.1) or, in a more
abstract form (3.2). We assume for the moment that u is sufficiently smooth and interchange
the order of differentiation on the left-hand side of our PDE, that is, we consider

(3.9)

{

(∂2t + bA∂t + c2A)(aAu+ ut) = −f, t ∈ (0, T ),

u(0) = u0, ut(0) = u1, utt(0) = u2.

We introduce the differential expressions Dh = ∂t+aA and Dw = ∂2t +bA∂t+c2A correspond-
ing to the heat equation and the Westervelt equation, respectively. Therewith, we represent
(3.9) as

Dww = −f and Dhu = w,

where later on we shall insert f = (k(ut)
2 + s|∇u|2)tt. For sufficiently smooth u and w =

ut +Au, we define the energies

E1[w](t) =
1
2

(

‖A1/2wtt(t)‖2H + ‖A1/2wt(t)‖2H + ‖Aw(t)‖2H
)

,(3.10)

E2[u](t) =
1
2

(

‖A1/2uttt(t)‖2H + ‖Autt(t)‖2H + ‖A3/2ut(t)‖2 + ‖A3/2u‖2H
)

(3.11)

as well as the sum of (3.10) and (3.11),

(3.12) E [u](t) = E1[w](t) + E2[u](t).

We mention that (3.10) and (3.11) are motivated by multiplication of Dww = −f and Dhu =
w with a suitable time derivative of w and u, respectively, see [10] or (3.14).

Lemma 3.6 ([3, Lemma 4.3]). Provided f ∈ H1(0, T ;H), any solution w of Dww = −f
fulfills the estimate

(3.13)

E1[w](t) + b̌1

∫ t

0
‖wttt(τ)‖2H + ‖A1/2wtt(τ)‖2H + ‖Awt(τ)‖2H + ‖Aw(τ)‖2H dτ

≤ č1

(

E1[w](0) +

∫ t

0
‖ft(τ)‖2H + ‖f(τ)‖2H dτ

)

for t ∈ (0, T ) with b̌1 > 0 sufficiently small and č1 > 0 sufficiently large.
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Now we use the following energy identity for the heat equation

(3.14)

∫ t

0
‖Dhv(τ)‖2H dτ =

∫ t

0
‖vt(τ) + aAv(τ)‖2H dτ

= a‖A1/2v(t)‖2H − a‖A1/2v(0)‖2H +

∫ t

0
‖vt(τ)‖2H + a2‖Av(τ)‖2H dτ,

where the second equality follows from ‖vt(τ)+aAv(τ)‖2H = 〈vt(τ)+aAv(τ), vt(τ)+aAv(τ)〉H
and integration by parts. We apply (3.14) to v = uttt (i.e. Dhv = wttt), v = A1/2utt (i.e.

Dhv = A1/2wtt) v = Aut (i.e. Dhv = Awt) and v = Au (i.e. Dhv = Aw) and obtain

∫ t

0
‖wttt(τ)‖2H dτ = a‖A1/2uttt(t)‖2H − a‖A1/2uttt(0)‖2H

+

∫ t

0
‖utttt(τ)‖2H + a2‖Auttt(τ)‖2H dτ,

∫ t

0
‖A1/2wtt(τ)‖2H dτ = a‖Autt(t)‖2H − a‖Autt(0)‖2H

+

∫ t

0
‖A1/2uttt(τ)‖2H + a2‖A3/2utt(τ)‖2H dτ,

∫ t

0
‖Awt(τ)‖2H dτ = a‖A3/2ut(t)‖2H − a‖A3/2ut(0)‖2H

+

∫ t

0
‖Autt(τ)‖2H + a2‖A2ut(τ)‖2H dτ,

∫ t

0
‖Aw(τ)‖2H dτ = a‖A3/2u(t)‖2H − a‖A3/2u(0)‖2H

+

∫ t

0
‖Aut(τ)‖2H + a2‖A2u(τ)‖2H dτ.

Therewith, by splitting the terms ‖wttt(τ)‖2H, ‖Awtt(τ)‖2H, ‖A1/2wt(τ)‖2H and ‖Aw(τ)‖2
H

on
the left-hand side of the estimate in Lemma 3.6, we arrive at

E [u](t) + b̂1

∫ t

0

{

‖wttt(τ)‖2H + ‖A1/2wtt(τ)‖2H + ‖A1/2wt(τ)‖2H + ‖Aw(τ)‖2H

+ ‖utttt(τ)‖2H + ‖Auttt(τ)‖2H + ‖A1/2uttt(τ)‖2H + ‖A3/2utt(τ)‖2H
+ ‖Autt(τ)‖2H + ‖A2ut(τ)‖2H + ‖Aut(τ)‖2H + ‖A2u(τ)‖2H

}

dτ

≤ c1

(

E [u](0) +
∫ t

0

{

‖f(τ)‖2H + ‖ft(τ)‖2H
}

dτ

)

where b1 > 0 is sufficiently small and c1 > 0 is sufficiently large. Defining

(3.15) k[u](t) = ‖utttt(t)‖2H + ‖Auttt(t)‖2H + ‖A3/2utt(t)‖2H + ‖A2ut(t)‖2H + ‖A2u(t)‖2H
and observing that, by Poincaré’s inequality, we have E2[u] ≤ (CH1,L2)2k[u] yields our next
intermediate result.
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Lemma 3.7. Provided f ∈ H1(0, T ;H), any solution u of DwDhu = −f satisfies

(3.16) E [u](t) +
∫ t

0
E [u](τ) + k[u](τ) dτ ≤ ĉ2

(

E [u](0) +
∫ t

0
‖f(τ)‖2H + ‖ft(τ)‖2H dτ

)

for t ∈ (0, T ) and some ĉ2 > 0 sufficiently large.

Proposition 3.8. Suppose that T is either finite or infinite. Suppose f ∈ H1(0, T ;L2(Ω))
and u0 ∈ H4(Ω), u1 ∈ H3(Ω), u2 ∈ H3(Ω) and uttt(0) ∈ H1(Ω), where

uttt(0) = f(0) + (a+ b)∆u2 + c2∆u1 − ab∆2u1 − ac2∆2u0

and let u0|Γ = ∆u0|Γ = u1|Γ = ∆u1|Γ = u2|Γ = ∆u2|Γ = uttt(0)|Γ = 0 in the sense of traces.

Then (3.1) has a unique solution

u ∈ V = L∞(0, T ;H4(Ω)) ∩H1(0, T ;H4(Ω)) ∩W 2
∞(0, T ;H3(Ω)) ∩H2(0, T ;H3(Ω))

∩W 3
∞(0, T ;H1(Ω)) ∩H3(0, T ;H2(Ω)) ∩H4(0, T ;L2(Ω)),

with u|Γ = ∆u|Γ = ut|Γ = ∆ut|Γ = utt|Γ = ∆utt|Γ = uttt|Γ = 0 in the trace sense.

Proof. Since the regularity of the initial values implies that E [u](0) is finite and moreover,
f ∈ H1(0, T ;L2(Ω)), we conclude that the right-hand side of (3.16) is bounded. Hence, from
the fact that E [u](t) is bounded for all t ∈ (0, T ), we obtain

w ∈ L∞(0, T ;H2(Ω)) and wt, wtt ∈ L∞(0, T ;H1(Ω))

as well as

u, ut ∈ L∞(0, T ;H3(Ω)), utt ∈ L∞(0, T ;H2(Ω)) and uttt ∈ L∞(0, T ;H1(Ω)).

This, by w = a∆u− ut, implies

u ∈ L∞(0, T ;H4(Ω)) ∩W 2
∞(0, T ;H3(Ω)) ∩W 3

∞(0, T ;H1(Ω)).

The fact that
∫ t
0 E [u](τ)dτ is finite provides us with

u ∈ L2(0, T ;H
4(Ω)) ∩H2(0, T ;H3(Ω)) ∩H3(0, T ;H1(Ω)).

From the boundedness of
∫ t
0 k[u](τ) dτ we get u, ut ∈ L2(0, T ;H

4(Ω)), utt ∈ L2(0, T ;H
3(Ω)),

uttt ∈ L2(0, T ;H
2(Ω)) and utttt ∈ L2(0, T ;L2(Ω)). Hence the boundedness of the integral on

the left hand side gives

u ∈ H1(0, T ;H4(Ω)) ∩H2(0, T ;H3(Ω)) ∩H3(0, T ;H2(Ω)) ∩H4(0, T ;L2(Ω)).

Finally, there exists at most one solution. This can be seen by considering two solutions of
(3.1). Their difference û solves (3.1) with f = 0 and u0 = u1 = u2 = 0. According to (3.16)

we then have E[û](t) +
∫ t
0 E[û](τ) + k[û](τ) dτ ≤ 0, hence û = 0 and we are done. �

4. Well-posedness and exponential decay

In the present section we will show well-posedness of (1.5), that is, existence of a unique
solution u(t, x) of (1.5) depending continuously on the initial data u0, u1 and u2, where
(t, x) ∈ (0, T ) × Ω for some finite T > 0 or for infinite T . Our plan is to employ Proposition
3.8 in a fixed-point argument. To this end, we use the space

V = L∞(0, T ;H4(Ω)) ∩H1(0, T ;H4(Ω)) ∩W 2
∞(0, T ;H3(Ω)) ∩H2(0, T ;H3(Ω))

∩W 3
∞(0, T ;H1(Ω)) ∩H3(0, T ;H2(Ω)) ∩H4(0, T ;L2(Ω))
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endowed with the norm

‖ · ‖2V = ‖ · ‖2L∞(0,T ;H4) + ‖ · ‖2H1(0,T ;H4) + ‖ · ‖2W 2
∞
(0,T ;H3) + ‖ · ‖2H2(0,T ;H3)

+ ‖ · ‖2W 3
∞
(0,T ;H1) + ‖ · ‖2H3(0,T ;H2) + ‖ · ‖2H4(0,T ;L2)

and apply the Banach fixed-point theorem to the map

(4.1)
T : W → V,

ϕ 7→ u

where W ⊂ V endowed with the norm ‖ · ‖V is given by

W = {v ∈ V : ‖v‖2
Ṽ
≤ ā}

with

‖v‖2
Ṽ
= max{‖vtttt‖2L2(0,T ;L2)

, ‖vttt‖2L2(0,T ;H1), ‖vtt‖2L2(0,T ;H1), ‖vtt‖2L∞(0,T ;H2),

‖vt‖2L2(0,T ;H1), ‖vt‖2L∞(0,T ;H3), ‖v‖2L∞(0,T ;H3)}
and ā sufficiently small and where u is a solution of

(4.2)











(a∆ − ∂t)(utt − b∆ut − c2∆u) = (k(ϕt)
2 + s|∇ϕ|2)tt in (0, T ) × Ω,

(u, ut, utt) = (u0, u1, u2) on {t = 0} × Ω,

(u,∆u) = (0, 0) on [0, T ) × Γ.

Theorem 4.1 (Well-posedness). Suppose u0 ∈ H4(Ω), u1 ∈ H3(Ω) with ‖u1‖L∞
< (2k)−1,

u2 ∈ H3(Ω) and uttt(0) ∈ H1(Ω), where

uttt(0) = (1−2ku1)
−1[(a+b)∆u2−ac2∆2u0+c

2∆ψ1−ab∆2u1+2k(u2)
2+2s|∇u1|2+2s∇u2∇u0]

such that u0|Γ = ∆u0|Γ = u1|Γ = ∆u1|Γ = u2|Γ = ∆u2|Γ = uttt(0)|Γ = 0. There exist κ > 0
and ā > 0 sufficiently small such that, if

(4.3) ‖u0‖H4 + ‖u1‖H3 + ‖u2‖H2 + ‖uttt(0)‖H1 ≤ κ,

then for any T > 0 there exists a unique solution

(4.4) u ∈ V with ‖u‖2
Ṽ
≤ ā

satisfying u|Γ = ∆u|Γ = ut|Γ = ∆ut|Γ = utt|Γ = ∆utt|Γ = uttt|Γ = 0. The solution depends

continously on the initial data u0, u1, u2 and uttt(0) with respect to the topology induced by

‖ · ‖V .
Remark 4.2. Note that ‖u1‖L∞

< (2k)−1 can be achieved via the smallness condition (4.3)
together with the embedding H3(Ω) →֒ L∞(Ω). Degeneracy is avoided, since ‖ut‖L∞((0,T )×Ω)

can be bounded away from −(2k)−1 again via the embedding H3(Ω) →֒ L∞(Ω) and choosing
ā sufficiently small.

Moreover, note that ‖ · ‖
Ṽ
is weaker than ‖ · ‖V and the embedding constant for V →֒ Ṽ is

just 1, in particular this constant is independent of T and Ω.

The proof mainly boils down to the verification of the assumptions of Banach’s Fixed-
Point Theorem. We show that (1) T is a self-mapping on W, that (2) W is closed, that (3)
T : W → W is a contraction and that (4) the solution depends continuously on the initial
data. At this stage, let us point out that the smallness condition (4.3) is essential for the
application of Banach’s Fixed-Point Theorem.
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Step 1: T is a self-mapping on W. The self-mapping property is achieved by only allowing
for sufficiently small initial data.

Lemma 4.3. Suppose ϕ ∈ W. Then f = (k(ϕt)
2 + s|∇ϕ|2)tt ∈ H1(0, T ;L2(Ω)) and we have

the estimate

(4.5) ‖f‖2L2(0,T ;L2)
+ ‖ft‖2L2(0,T ;L2)

≤ c‖ϕ‖4
Ṽ
≤ cā2

for some constant c > 0.

Proof. Explicitly we have f = 2k(ϕtt)
2+2kϕtϕttt+2s|∇ϕt|2+2s∇ϕ∇ϕtt and ft = 6kϕttϕttt+

2kϕtϕtttt + 6s∇ϕt∇ϕtt + s∇ϕ∇ϕttt. We prove that, provided ϕ ∈ W, f and ft are both in
L2(0, T ;L2(Ω)) and can be estimated in terms of ā2.

First note that, since ϕ ∈ W, we have ϕtt ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H
3(Ω)). Using

the embeddings H2(Ω) →֒ L∞(Ω) and H3(Ω) →֒ L2(Ω) we further conclude that ϕtt ∈
L∞(0, T ;L∞(Ω)) ∩ L2(0, T ;L2(Ω)) and since moreover, L∞(0, T ;L∞(Ω)) is an ideal in the
space L2(0, T ;L2(Ω)) we arrive at (ϕtt)

2 ∈ L2(0, T ;L2(Ω)). We estimate

‖(ϕtt)
2‖2L2(0,T ;L2)

≤ ‖ϕtt‖2L∞(0,T ;L∞)‖ϕtt‖2L2(0,T ;L2)

≤ (CH2,L∞
)2 (CH1,L2

)2 ‖ϕtt‖2L∞(0,T ;H2)‖ϕtt‖2L2(0,T ;H1)

≤ (CH2,L∞
)2 (CH1,L2

)2 ā2.

Furthermore, ϕ ∈ W implies ϕt ∈ L∞(0, T ;H3(Ω)) →֒ L∞(0, T ;L∞(Ω)) and moreover, we
have that ϕttt ∈ L2(0, T ;H

2(Ω)) →֒ L2(0, T ;L2(Ω)). Therefore, ϕtϕttt ∈ L2(0, T ;L2(Ω)) and

‖ϕtϕttt‖2L2(0,T ;L2)
≤ ‖ϕt‖2L∞(0,T ;L∞)‖ϕttt‖2L2(0,T ;L2)

≤ (CH3,L∞
)2 (CH1,L2

)2 ‖ϕt‖2L∞(0,T ;H3)‖ϕttt‖2L2(0,T ;H1)

≤ (CH3,L∞
)2 (CH1,L2

)2 ā2.

For the third term of f note that ∇ϕt ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H
3(Ω)) which via

H2(Ω) →֒ L∞(Ω) and H3(Ω) →֒ L2(Ω) gives us |∇ϕt|2 ∈ L2(0, T ;L2(Ω)) and

‖∇ϕt∇ϕt‖2L2(0,T ;L2)
≤ (CH2,L∞

)2 ‖ϕt‖2L∞(0,T ;H3)‖ϕt‖2L2(0,T ;H1)

≤ (CH2,L∞
)2 ā2.

Using the embeddings H3(Ω) →֒ L∞(Ω) and H2(Ω) →֒ L2(Ω) we see that ∇ϕ∇ϕtt ∈
L2(0, T ;L2(Ω)) and estimate

‖∇ϕ∇ϕtt‖2L2(0,T ;L2)
≤ (CH2,L∞

)2 ‖ϕ‖2L∞(0,T ;H3) ‖ϕtt‖2L2(0,T ;H1)

≤ (CH2,L∞
)2 ā2.

Now we proceed with treating the terms contained in ft. For the first one we have ϕttϕttt ∈
L2(0, T ;L2(Ω)), where we used ϕtt ∈ L∞(0, T ;H2(Ω)) →֒ L∞(0, T ;L∞(Ω)) and ϕttt ∈
L2(0, T ;H

2(Ω)) →֒ L2(0, T ;L2(Ω)). As a consequence,

‖ϕttϕttt‖2L2(0,T ;L2)
≤ (CH2,L∞

)2 (CH1,L2
)2 ‖ϕtt‖2L∞(0,T ;H2)‖ϕttt‖2L2(0,T ;H1)

≤ (CH2,L∞
)2 (CH1,L2

)2 ā2.
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Moreover, from ϕ ∈ W we have ϕt ∈ L∞(0, T ;H3(Ω)) →֒ L∞(0, T ;L∞(Ω)) as well as ϕtttt ∈
L2(0, T ;L2(Ω)), therefore ϕtϕtttt ∈ L2(0, T ;L2(Ω)) and

‖ϕtϕtttt‖2L2(0,T ;L2)
≤ (CH3,L∞

)2 ‖ϕt‖2L∞(0,T ;H3)‖ϕtttt‖2L2(0,T ;L2)

≤ (CH3,L∞
)2 ā2.

Since we have ∇ϕt ∈ L∞(0, T ;H2(Ω)) →֒ L∞(0, T ;L∞(Ω)) and ∇ϕtt ∈ L2(0, T ;H
2(Ω)) →֒

L2(0, T ;L2(Ω)), the term ∇ϕt∇ϕtt is an element of L2(0, T ;L2(Ω)) and can be estimated as

‖∇ϕt∇ϕtt‖2L2(0,T ;L2)
≤ (CH2,L∞

)2 ‖ϕt‖2L∞(0,T ;H3) ‖ϕtt‖2L2(0,T ;H1)

≤ (CH2,L∞
)2 ā2.

It is finally not surprising that also ∇ϕ∇ϕttt ∈ L2(0, T ;L2(Ω)) and

‖∇ϕ∇ϕttt‖2L2(0,T ;L2)
≤ (CH2,L∞

)2 ‖ϕ‖2L∞(0,T ;H3)‖ϕttt‖2L2(0,T ;H1)

≤ (CH2,L∞
)2 ā2,

where we have have used that ∇ϕ ∈ L∞(0, T ;H3(Ω)) →֒ L∞(0, T ;L∞(Ω)) and ∇ϕttt ∈
L2(0, T ;H

1(Ω)) →֒ L2(0, T ;L2(Ω)). Altogether, we have f ∈ H1(0, T ;L2(Ω)) and estimate
(4.5) holds for some c > 0 depending on the embedding constants appearing in the foregoing
estimates. �

We assume now ϕ ∈ W and use our energy estimate (3.16) as well as (4.5) to obtain

E [u](t) +
∫ t

0
E [u](τ) + k[u](τ) dτ ≤ ĉ2

(

E [u](0) + cā2
)

where we choose a ≤ (2ĉ2c)
−1. In the proof of Proposition 3.8 we have already mentioned

that

(4.6) E [u](0) ≤ ce(‖u0‖2H4 + ‖u1‖2H3 + ‖u2‖2H3 + ‖uttt(0)‖2H1)

for some constant ce > 0 depending on the constant of Poincaré’s inequality. Smallness of the
initial data,

‖u0‖H4 + ‖u1‖H3 + ‖u2‖H3 + ‖uttt(0)‖H1 ≤ κ,

ensures E [u](0) ≤ ceκ. Choosing κ = a
2ĉ2ce

, we finally get

E [u](t) +
∫ t

0
E [u](τ) + k[u](τ) dτ ≤ ā

which gives us at first u ∈ V since the left-hand side is finite (see also the proof of Proposition
3.8) and moreover, u ∈ W by the definitions of E [u] and k[u]. Hence T W ⊆ W under the
above assumptions.

Step 2: W is a closed subset of V. Note that W is a closed ball in V with respect to ‖ · ‖
Ṽ
.

Step 3: T : W → W is a contraction. In order to show contractivity of T : W → W, suppose
u(1) and u(2) are two solutions of (4.2) and u(1) = T ϕ(1), u(2) = T ϕ(2). Then û = u(1) − u(2)

and ϕ̂ = ϕ(1) − ϕ(2) solve the equation










(a∆ − ∂t)(ûtt − b∆ût − c2∆û) = f̂ in (0, T ) × Ω,

(û, ût, ûtt) = (0, 0, 0) on {t = 0} × Ω,

(û,∆û) = (0, 0) on [0, T ) × Γ,
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where

(4.7)
f̂ = (k(ϕ

(1)
t )2 − k(ϕ

(2)
t )2 + s|∇ϕ(1)|2 − s|∇ϕ(2)|2)tt

= (k2(ϕ
(1)
t + ϕ

(2)
t )ϕ̂t + s2(∇ϕ(1) +∇ϕ(2))∇ϕ̂)tt.

Lemma 4.4. Suppose ϕ(1), ϕ(2) ∈ W. Then f̂ given by (4.7) is H1(0, T ;L2(Ω)) and we have

(4.8) ‖f̂‖2L2(0,T ;L2(Ω)) + ‖f̂t‖2L2(0,T ;L2(Ω)) ≤ 2cā‖ϕ̂‖2V
for some constant c > 0.

Proof. Explicitly, we have

f̂ = 2kϕ̂tt(ϕ
(1)
tt + ϕ

(2)
tt ) + 2kϕ

(1)
ttt ϕ̂t + 2kϕ

(2)
t ϕ̂ttt

+ 2s∇ϕ̂t(∇ϕ(1)
t +∇ϕ(2)

t ) + 2s∇ϕ̂tt∇ϕ(1) + 2s∇ϕ̂∇ϕ(2)
tt

and

f̂t = 2k(ϕ̂ttt(ϕ
(1)
tt + ϕ

(2)
tt ) + ϕ̂tt(ϕ

(1)
ttt + ϕ

(2)
ttt ) + ϕ

(1)
ttttϕ̂t + ϕ

(1)
ttt ϕ̂tt + ϕ

(2)
tt ϕ̂ttt + ϕ

(2)
t ϕ̂tttt)

+ 2s(∇ϕ̂tt∇(ϕ
(1)
t + ϕ

(2)
t ) +∇ϕ̂t∇(ϕ

(1)
tt + ϕ

(2)
tt ) +∇ϕ̂ttt∇ϕ(1))

+ 2s(∇ϕ̂tt∇ϕ(1)
t +∇ϕ̂t∇ϕ(2)

tt +∇ϕ̂∇ϕ(2)
ttt ).

If ϕ(1), ϕ(2) ∈ W, then we have ϕ̂ ∈ V. Moreover, ϕ̂tt ∈ L2(0, T ;H
3(Ω)) →֒ L2(0, T ;L2(Ω))

and ϕ
(i)
tt ∈ L∞(0, T ;H2(Ω)) →֒ L∞(0, T ;L∞(Ω)) for i ∈ {1, 2}. Hence ϕ̂tt(ϕ

(1)
tt + ϕ

(2)
tt ) ∈

L2(0, T ;L2(Ω)) and

‖ϕ̂tt(ϕ
(1)
tt + ϕ

(2)
tt )‖2L2(0,T ;L2)

≤ ‖ϕ̂tt‖2L2(0,T ;L2)
(‖ϕ(1)

tt ‖L∞(0,T ;L∞) + ‖ϕ(2)
tt ‖L∞(0,T ;L∞))

2

≤ 2 (CH1,L2
)2 (CH2,L∞

)2‖ϕ̂tt‖2L2(0,T ;H1)(‖ϕ
(1)
tt ‖2L∞(0,T ;H2) + ‖ϕ(2)

tt ‖2L∞(0,T ;H2))

≤ 4 (CH1,L2
)2 (CH2,L∞

)2ā‖ϕ̂‖2V .

On the example of the latter we shown how to treat the terms contained in f̂ and f̂t. It can
be shown analogously to the proof of Lemma 4.3 that, provided ϕ(1), ϕ(2) ∈ W, each of the
summands in f̂ and f̂t is contained in L2(0, T ;L2(Ω)) and can (up to a constant) be estimated
in terms of the right-hand side of (4.8). �

Now we observe that

(4.9) ‖u‖2V ≤ ck ess sup
t∈[0,T ]

(

E [u](t) +
∫ t

0
k[u](τ) dτ

)

for some ck > 0 depending on the constant CH1,L2 from the Poincaré inequality. Since
û(0) = 0, ût(0) = 0 and ûtt(0) = 0 we therefore have by (3.16) and Lemma 4.4 that

‖û‖2V ≤ ck ess sup
t∈[0,T ]

(

E [û](t) +
∫ t

0
E [û](τ) + k[û](τ) dτ

)

≤ c2ck ess sup
t∈[0,T ]

(

E [û](t) +
∫ t

0
‖f(τ)‖L2

+ ‖ft(τ)‖L2
dτ

)

≤ 2ĉ2ckcā‖ϕ̂‖2Ṽ ≤ 2ĉ2ckcā‖ϕ̂‖2V .
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Choosing ā < (2ĉ2ckc)
−1 finally yields contractivity with respect to ‖ · ‖V .

Step 4: Continuous dependence of the solution on the initial data. Let now u be a solution
of (1.5) with initial data u0, u1, u2 and let ū be a solution of (1.5) with initial data ū0, ū1,
ū2. Then û = u− ū is a solution of the initial boundary value problem











(a∆ − ∂t)(ûtt − b∆ût − c2∆û) = f û in (0, T ) ×Ω,

(û, ût, ûtt) = (u0 − ū0, u1 − ū1, u2 − ū2) on {t = 0} × Ω,

(û,∆û) = (0, 0) on [0, T ) × Γ,

where f û = (k(ut)
2 − k(ūt)

2 + s|∇u|2 − s|∇ū|2)tt. With ϕ(1), ϕ(2) replaced by u, ū, Lemma
4.4 implies that, provided u, u ∈ W, we have f û ∈ H1(0, T ;L2(Ω)) and the estimate

‖f û‖L2(0,T ;L2) + ‖f ût ‖L2(0,T ;L2) ≤ 2c̄ā‖û‖2
Ṽ
≤ 2c̄ā‖û‖2V

holds for some c̄ > 0. This by (3.16) gives us

‖û‖2V ≤ ck ess sup
t∈[0,T ]

(

E [û](t) +
∫ t

0
E [û](τ) + k[û](τ) dτ

)

≤ ck ĉ2

(

E [û](0) + ess sup
t∈[0,T ]

∫ t

0
‖f û(τ)‖L2

+ ‖f ût (τ)‖L2
dτ

)

≤ ck ĉ2E [û](0) + 2ck ĉ2cā‖û‖2Ṽ ≤ ck ĉ2E [û](0) + 2ck ĉ2cā‖û‖2V .

Choosing ā < (4ck ĉ2c)
−1 and recalling (4.6) we arrive at

‖û‖2V ≤ 2ck ĉ2ce(‖u0 − ū0‖2H4 + ‖u1 − ū1‖2H4 + ‖u2 − ū2‖2H3 + ‖uttt(0)− ūttt(0)‖2H1).

Let now u0 → ū0 in H4(Ω), u1 → ū1, u2 → ū2 in H3(Ω) and uttt(0) → ūttt(0) in H1(Ω).
Then ‖u − ū‖2

V
→ 0. Hence the solution depends continuously on the data with respect to

the V-topology.

Therewith the proof of Theorem 4.1 is complete. Finally, we show exponential decay of
solutions. During the proof we will employ a classical barrier argument which has already
been used in other studies of models in nonlinear acoustics, see [3], [4], [10], [11], [12], [13] or
[14].

Theorem 4.5 (Exponential decay). Suppose u0 ∈ H4(Ω), u1, u2 ∈ H3(Ω) with ‖u1‖L∞
<

(2k)−1, and uttt(0) ∈ H1(Ω), where

uttt(0) = (1−2ku1)
−1[(a+b)∆u2−ac2∆2u0+c

2∆u1−ab∆2u1+2k(u2)
2+2s|∇u1|2+2s∇u2∇u0]

such that u0|Γ = ∆u0|Γ = u1|Γ = ∆u1|Γ = u2|Γ = ∆u2|Γ = uttt(0)|Γ = 0.
If the initial data satisfy the smallness condition

(4.10) ‖u0‖2H4 + ‖u1‖2H4 + ‖u2‖2H3 + ‖uttt(0)‖2H1 ≤ ρ

for some sufficiently small ρ > 0, then the global solution decays exponentially fast to zero as

time tends to infinity in the sense that there exists some ω > 0 such that

(4.11) ‖u(t)‖2H4 + ‖ut(t)‖2H3 + ‖utt(t)‖2H3 + ‖uttt‖2H1 ≤ Ce−ωt, t > 0.
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Lemma 4.6. The estimate

(4.12) E [u](T ) +
∫ T

0
E [u](t) + k[u](t) dt ≤ ĉ

(

E [u](0) + ess sup
s∈[0,T ]

E [u](s)
∫ T

0
k[u](t) dt

)

holds with ĉ > 0 sufficiently large.

Proof. Based on the energy estimate for the linearized equation (3.16), the result follows from
inspection of the proof of Lemma 4.3 (choose ϕ = u and use (4.9)). �

Proof of Theorem 4.5. First we show that for all initial values satisfying

(4.13) E [u](0) ≤ η

with η sufficiently small,

(4.14) η ≤ (4ĉmax{1, ĉ})−1,

we get that for all T > 0

(4.15) E [u](T ) ≤ 2max{1, ĉ}η.

We prove the claim by contradiction. To this end, we assume that there exists a finite time
such that (4.15) is violated. We suppose that T0 the minimal such time (observe that T0 > 0
since E [u](0) < 2max{1, ĉ}η) and have

(4.16) E [u](T0) ≥ 2max{1, ĉ}η.

Moreover, (4.15) holds for all T ∈ (0, T0). From Lemma 4.6 we get

(4.17) E [u](T ) +
∫ T

0
E [u](t) + k[u](t) dt ≤ ĉ

(

E [u](0) + 2max{1, ĉ}η
∫ T

0
k[u](t)dt

)

for all T ∈ (0, T0) which, by E [u](0) ≤ η and 4ĉmax{1, ĉ}η ≤ 1, gives

(4.18) E [u](T ) + 1
2

∫ T

0
E [u](t) + k[u](t) dt ≤ ĉ E [u](0).

Thus we have E [u](T ) ≤ ĉη for all T ∈ (0, T0) and hence by continuity E [u](T0) ≤ ĉη which
is a contradiction to (4.16). This proves that the bound (4.15) holds for all T > 0 provided
(4.13) holds with (4.14).
For the condition of the initial values (4.10) note that we recall (4.6). Hence, (4.10) with
ρ = η

ce
ensures (4.13). By application of Poincaré’s inequality to k[u] and use of (4.6) we get

∫ t

0
‖u(τ)‖2H4 + ‖ut(τ)‖2H3 + ‖utt(τ)‖2H3 + ‖uttt(τ)‖2H1 dτ

≤ cd(‖u(0)‖2H4 + ‖ut(0)‖2H3 + ‖utt(0)‖2H3 + ‖uttt(0)‖2H1)

for some constant cd. This by a standard argument leads to (4.11) with ω = cd
−1. �

Remark 4.7. Again, we mention that ‖u1‖L∞
< (2k)−1 can be achieved by ‖u1‖2H3 ≤ ρ for

ρ sufficiently small and the embedding H3(Ω) →֒ L∞(Ω).
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5. Conclusions and outlook

Based on suitable energy estimates for the linearized equation we proved existence of a
unique solution of (1.5) depending continously on the sufficiently small initial data by means
of a fixed-point argument. Moreover, this solution decays exponentially fast to zero (with
respect to the corresponding norms) as time tends to infinity.

Considering equation (1.5) together with application relevant boundary conditions (e.g.,
inhomogeneous Neumann boundary conditions for modeling excitation or absorbing boundary
conditions for modeling boundary dissipation) will be subject of further research. Moreover,
there will be a follow-up paper (based on the concept of maximal Lp-regularity) which ad-
dresses the issue of optimal regularity for the Blackstock–Crighton equation in Lp-spaces.

Acknowledgments. The author wishes to thank Barbara Kaltenbacher for many helpful
discussions and fruitful comments on a first version of this manuscript and the referees for
lots of suggestions which have been very helpful for the improvement this work. Further-
more, the support by the Austrian Science Fund (FWF): P24970 and the Karl Popper Kolleg
“Modeling-Simulation-Optimization” funded by the Alpen-Adria-Universität Klagenfurt and
by the Carinthian Economic Promotion Fund (KWF) is acknowledged.

References

[1] Robert A. Adams and John J. F. Fournier. Sobolev spaces. Elsevier, Amsterdam, second edition, 2003.
[2] David T. Blackstock. Approximate equations governing finite amplitude sound in thermoviscous fluids.

GD/E Report GD-1463-52, General Dynamics Corporation, May 1963.
[3] Rainer Brunnhuber and Barbara Kaltenbacher. Well-posedness and asymptotic behavior of solutions for

the Blackstock-Crighton-Westervelt equation. Discrete Contin. Dyn. Syst., 34(11):4515–4535, 2014.
[4] Rainer Brunnhuber, Barbara Kaltenbacher, and Petronela Radu. Relaxation of regularity for the West-

ervelt equation by nonlinear damping with application in acoustic-acoustic and elastic-acoustic coupling.
Evol. Equ. Control Theory, 3(4):595–626, 2014.

[5] David G. Crighton. Model equations of nonlinear acoustics. Ann. Rev. Fluid Mech., 11(1):11–33, 1979.
[6] Klaus-Jochen Engel and Rainer Nagel. One-parameter semigroups for linear evolution equations. Springer,

New York, 2000.
[7] Lawrence C. Evans. Partial Differential Equations. American Mathematical Society, Providence, second

edition, 2010.
[8] Mark F. Hamilton and David T. Blackstock. Nonlinear acoustics. Academic Press, 1998.
[9] Pedro M. Jordan. An analytical study of Kuznetsov’s equation: diffusive solutions, shock formation and

solution bifurcation. Phys. Lett. A, 326(1):77–85, 2004.
[10] Barbara Kaltenbacher and Irena Lasiecka. Global existence and exponential decay rates for the Westervelt

equation. Discrete Contin. Dyn. Syst. Ser. S, 2(3):503–523, 2009.
[11] Barbara Kaltenbacher and Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation

with nonhomogeneous Neumann boundary conditions. In Proceedings of the 8th AIMS Conference, DCDS

Supplement, pages 763–773, 2011.
[12] Barbara Kaltenbacher and Irena Lasiecka. An analysis of nonhomogeneous Kuznetsov’s equation: local

and global well-posedness; exponential decay. Math. Nachr., 285(2-3):295–321, 2012.
[13] Barbara Kaltenbacher, Irena Lasiecka, and Richard Marchand. Wellposedness and exponential decay

rates for the Moore-Gibson-Thompson equations arising in high intensity ultrasound. Control Cybern.,
40(4):971–989, 2012.

[14] Barbara Kaltenbacher, Irena Lasiecka, and Maria K. Pospieszalska. Well-posedness and exponential de-
cay of the energy in the nonlinear Jordan–Moore–Gibson–Thompson equation arising in high intensity
ultrasound. Math. Models Methods Appl. Sci., 22(11):1250035 (34 pages), 2012.



18 R. BRUNNHUBER
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