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MULTIPLE ZETA-STAR VALUES AND MULTIPLE INTEGRALS

SHUJI YAMAMOTO

Abstract. We prove a kind of integral expressions for finite multiple harmonic sums

and multiple zeta-star values. Moreover, we introduce a class of multiple integrals,

associated with some combinatorial data (called 2-labeled posets). This class includes

both multiple zeta and zeta-star values of Euler-Zagier type, and also several other

types of multiple zeta values. We show that these integrals can be used to obtain some

relations among such zeta values quite transparently.

1. Integral expression of finite multiple harmonic sums

We begin with the finite multiple harmonic sums

sk(N) =
∑

N=m1≥···≥mn≥1

1

mk1
1 · · ·mkn

n

,

where k = (k1, . . . , kn) is an n-tuple of positive integers and N is a positive integer.

When k1 ≥ 2, by definition, their sum gives the multiple zeta-star values (MZSVs for

short):

(1.1) ζ⋆(k) =
∑

m1≥···≥mn≥1

1

mk1
1 · · ·mkn

n

=

∞∑

N=1

sk(N).

One of the basic properties of these finite multiple sums is the following relation,

called the duality:

Theorem 1.1 ([H, K]). For any index k ∈ (Z≥1)
n and N ≥ 0, we have

(1.2)
N−1∑

i=0

(−1)i
(
N − 1

i

)

sk(i+ 1) = sk∗(N).

Here k∗ denotes the ‘transpose’ of k (see below).

For an index k = (k1, . . . , kn), we set

|k| := k1 + · · ·+ kn, A(k) := {k1, k1 + k2, . . . , k1 + · · · + kn−1}.

Then the transpose k∗ is the index determined by the property

|k| = |k∗|, {1, . . . , |k| − 1} = A(k) ∐ A(k∗).
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For example, the transpose of (2, 3) is (1, 2, 1, 1). It can be illustrated by the following

picture:

◦ ◦

◦ ◦ ◦

2oo

3oo

1

OO

2

OO

1

OO

1

OO

The identity (1.2) is somewhat analogous to the well-known duality

(1.3) ζ(a1 + 1, 1, . . . , 1
︸ ︷︷ ︸

b1−1

, . . . , as + 1, 1, . . . , 1
︸ ︷︷ ︸

bs−1

) = ζ(bs + 1, 1, . . . , 1
︸ ︷︷ ︸

as−1

, . . . , b1 + 1, 1, . . . , 1
︸ ︷︷ ︸

a1−1

)

of the multiple zeta values (MZVs)

ζ(k) =
∑

m1>···>mn>0

1

mk1
1 · · ·mkn

n

.

Since the latter duality follows immediately from the iterated integral expression

ζ(a1 + 1, 1, . . . , 1
︸ ︷︷ ︸

b1−1

, . . . , as + 1, 1, . . . , 1
︸ ︷︷ ︸

bs−1

)

=

∫ 1

0

dt

t
◦ · · · ◦

dt

t
︸ ︷︷ ︸

a1

◦
dt

1− t
◦ · · · ◦

dt

1− t
︸ ︷︷ ︸

b1

◦ · · · ◦
dt

t
◦ · · · ◦

dt

t
︸ ︷︷ ︸

as

◦
dt

1− t
◦ · · · ◦

dt

1− t
︸ ︷︷ ︸

bs

,
(1.4)

it is natural to ask for a similar integral expression of finite multiple sum sk(N) from

which (1.2) follows. Here is an answer:

Theorem 1.2. Let k = (k1, . . . , kn) be an index, and put k = |k| = k1 + · · · + kn.

Moreover, define

J(k) = {0, k1, k1 + k2, . . . , k1 + · · ·+ kn−1} = A(k) ∪ {0},

∆(k) =

{

(t1, . . . , tk) ∈ [0, 1]k

∣
∣
∣
∣
∣

tj < tj+1 if j /∈ J(k),

tj > tj+1 if j ∈ J(k)

}

.

Then, for N ≥ 1, we have

(1.5) sk(N) =

∫

∆(k)
tN−1
1 dt1ωδ(2)(t2) · · ·ωδ(k)(tk),

where ω0(t) =
dt
t
, ω1(t) =

dt
1−t

and

(1.6) δ(j) =

{

0 (j − 1 /∈ J(k)),

1 (j − 1 ∈ J(k)).

Remark. We include 0 in the set J(k) to set δ(1) = 1 in (1.6), though this value is not

used in the above theorem. We need it in Corollary 1.3.
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Proof. We consider the case k = (2, 1, 2) as an example, and then the general pattern

will be understood. In this case, we should prove

s(2,1,2)(N) =

∫

t1<t2>t3>t4<t5

tN−1
1 dt1

dt2
t2

dt3
1− t3

dt4
1− t4

dt5
t5

.

(Here, implicitly, the inequalities 0 ≤ ti ≤ 1 are assumed.) The right-hand side is

computed by repeating single integrals, i.e.,
∫ t2

0
tN−1
1 dt1 =

tN2
N

,

1

N

∫ 1

t3

tN2
dt2
t2

=
1− tN3
N2

,

1

N2

∫ 1

t4

(1− tN3 )
dt3

1− t3
=

∑

N≥m≥1

1− tm4
N2m

,

∑

N≥m≥1

1

N2m

∫ t5

0
(1− tm4 )

dt4
1− t4

=
∑

N≥m≥l≥1

tl5
N2ml

,

∑

N≥m≥l≥1

1

N2ml

∫ 1

0
tl5
dt5
t5

=
∑

N≥m≥l≥1

1

N2ml2
.

The last sum is exactly s(2,1,2)(N). �

To deduce Theorem 1.1 from Theorem 1.2, note that there is a bijection

(1.7) ∆(k) ∋ (t1, . . . , tk) 7−→ (1− t1, . . . , 1− tk) ∈ ∆(k∗)

and that the map δ∗ associated with k∗ as in (1.6) satisfies δ∗(j) = 1 − δ(j) for j =

2, . . . , k. Hence, by changing of the integral variables sj = 1− tj, we obtain

sk∗(N) =

∫

∆(k∗)
sN−1
1 ds1 ωδ∗(2)(s2) · · ·ωδ∗(k)(sk)

=

∫

∆(k)
(1− t1)

N−1dt1ωδ(2)(t2) · · ·ωδ(k)(tk)

=

N−1∑

i=0

(−1)i
(
N − 1

i

)∫

∆(k)
ti1dt1ωδ(2)(t2) · · ·ωδ(k)(tk)

=

N−1∑

i=0

(−1)i
(
N − 1

i

)

sk(i+ 1).

By (1.1) and (1.5), we also obtain an integral expression of MZSVs.

Corollary 1.3. In the same notation as in Theorem 1.2, assume k1 ≥ 2. Then

(1.8) ζ⋆(k) =

∫

∆(k)
ωδ(1)(t1) · · ·ωδ(k)(tk).

Example 1.4. For k = (2, 1), we have

(1.9) ζ⋆(2, 1) =

∫

t1<t2>t3

dt1
1− t1

dt2
t2

dt3
1− t3

.
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This integral can be divided into two parts:
∫

t1<t2>t3

dt1
1− t1

dt2
t2

dt3
1− t3

=

(∫

t1<t3<t2

+

∫

t3<t1<t2

)
dt1

1− t1

dt2
t2

dt3
1− t3

.

By the iterated integral expression (1.4) of MZVs, the right-hand side is equal to ζ(2, 1)+

ζ(2, 1). Therefore, from the integral expression (1.9), one obtains

ζ⋆(2, 1) = 2ζ(2, 1).

Note that this is different from the relation

ζ⋆(2, 1) = ζ(2, 1) + ζ(3)

obtained from the series expressions. By comparing these two relations, one proves

Euler’s famous relation ζ(2, 1) = ζ(3).

More generally, from the integral and series expressions of ζ⋆(k − 1, 1), one can show

the sum formula for double zeta values

ζ(k − 1, 1) + ζ(k − 2, 2) + · · ·+ ζ(2, k − 2) = ζ(k) (k ≥ 3)

in a similar manner.

2. Multiple integrals associated with 2-labeled finite posets

Now we define a class of integrals which includes both MZVs (1.4) and MZSVs (1.8).

Recall that a finite poset is a finite set endowed with a partial order. In the following,

we omit the word ‘finite’ since we only consider finite posets.

Definition 2.1. (1) A 2-labeled poset is a pair X = (X, δX ) consisting of a poset

X and a map δX : X → {0, 1}, called the labeling map. The weight, denoted by

|X|, is the number of elements of the underlying set X, and the depth, denoted

by dep(X), is the number of x ∈ X such that δ(x) = 1.

(2) A 2-labeled poset X is said admissible if δX(x) = 1 for all minimal x ∈ X and

δX(x) = 0 for all maximal x ∈ X.

(3) For any poset X, we put

∆(X) :=
{
(tx)x∈X ∈ [0, 1]X

∣
∣ tx < ty if x < y

}
.

(4) For an admissible 2-labeled poset X, we define the associated integral by

(2.1) I(X) :=

∫

∆(X)

∏

x∈X

ωδX(x)(tx).

Here ω0(t) =
dt
t
and ω1(t) =

dt
1−t

are the same notation as in Theorem 1.2.

Remark. For the empty 2-labeled poset, denoted ∅, we put I(∅) = 1. This is compatible

with the usual definition ζ(∅) = ζ⋆(∅) = 1, where ∅ denotes the index of length 0.

We use Hasse diagrams to indicate 2-labeled posets, with vertices ◦ and • correspond-

ing to δ(x) = 0 and 1, respectively. For example,

X = {1 < 2 < 3 < 4 < 5} and
(
δ(1), . . . , δ(5)

)
= (1, 0, 1, 0, 0)
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is represented as the diagram
◦

◦

•

◦

•

This 2-labeled poset is admissible, and we have

I(X) =

∫

t1<t2<t3<t4<t5

dt1
1− t1

dt2
t2

dt3
1− t3

dt4
t4

dt5
t5

= ζ(3, 2).

In general, the iterated integral expression of a MZV is equal to the integral I(X)

associated with an admissible 2-labeled totally ordered set X, and the weight and the

depth of the MZV coincide with those of X.

Another example: Corollary 1.3 for k = (2, 3) gives

ζ⋆(2, 3) = I

(

•

◦⑧⑧⑧⑧ •
❄❄

❄❄ ◦⑧⑧⑧⑧

◦⑧⑧⑧⑧

)

.

Here we collect some basic constructions on 2-labeled posets, and relations between

the associated integrals.

Definition 2.2. (1) For 2-labeled posets X and Y , one can naturally define their

direct sum X ∐ Y : Its underlying poset is the direct sum of finite sets X and Y

endowed with the partial order

x ≤ y in X ∐ Y ⇐⇒ x, y ∈ X and x ≤ y in X or

x, y ∈ Y and x ≤ y in Y .

The map δX∐Y : X ∐ Y → {0, 1} is the direct sum of the maps δX : X → {0, 1}

and δY : Y → {0, 1}.

(2) Let X = (X,≤) be a poset, and a, b ∈ X not comparable, i.e., neither a ≤ b nor

b ≤ a hold. Then we denote by Xb
a the poset with the same underlying set X

and endowed with the order ≤b
a defined by

x ≤b
a y ⇐⇒ x ≤ y, or x ≤ a and b ≤ y.

We call Xb
a the refinement of X obtained by imposing a < b. If X is a 2-labeled

poset, then Xb
a also becomes a 2-labeled poset with the same labeling map.

(3) For a 2-labeled poset X, we define its transpose X∗ as the 2-labeled poset con-

sisting of the same underlying set as X endowed with the reversed order (i.e.

x ≤ y in X∗ if and only if y ≤ x in X), and the labeling map δX∗(x) = 1−δX(x).

Proposition 2.3. (1) If X and Y are admissible 2-labeled posets, then X ∐ Y is

admissible and

(2.2) I(X ∐ Y ) = I(X) · I(Y ).

(2) If X is an admissible 2-labeled poset, and a and b ∈ X are not comparable, then

both Xb
a and Xa

b are admissible and

(2.3) I(X) = I(Xb
a) + I(Xa

b ).

(3) If X is an admissible 2-labeled poset, then the transpose X∗ is admissible and

(2.4) I(X∗) = I(X).
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Proof. All assertions are easily verified. Note that (2.4) is shown by making the change

of variables

∆(X) ∋ (tx) 7−→ (1− tx) ∈ ∆(X∗),

which is a generalization of (1.7). �

Remark. The shuffle relation for the MZVs can be derived from the identities (2.2) and

(2.3) (see also the remark after Corollary 2.4). On the other hand, the identity (2.4) is

a natural generalization of the duality (1.3) for the MZVs.

Corollary 2.4. For any 2-labeled poset X, the integral I(X) can be expressed as the

sum of a finite number of MZVs of weight |X| and depth dep(X).

Proof. By using (2.3) several times, we express I(X) as a sum of the integrals associated

with 2-labeled totally ordered sets, i.e., the integral expressions of MZVs. Each of these

2-labeled totally ordered sets consists of the same underlying set and labeling map as X

and a total order extending the partial order of X. In particular, these have the same

weight and depth as X. �

Remark. There is an algebraic formalism for the integrals I(X), similar to the well-known

pair of the shuffle algebra H = Q〈x, y〉 and the homomorphism Z : H0 = Q⊕ xHy → R.

We write P for the Q-vector space generated by all isomorphism classes of 2-labeled

posets, and define a product on it by [X] · [Y ] = [X ∐ Y ]. Then, the subspace P0

generated by admissible 2-labeled posets is a subalgebra, and the map I : P0 → R,

defined by linearity, is indeed a Q-algebra homomorphism.

In fact, there exists a surjective Q-algebra homomorphism ρ : P → H satisfying

ρ(P0) = H0 and Z ◦ ρ = I. This is defined as the unique homomorphism whose kernel

is generated by [X]− [Xb
a]− [Xa

b ] and which sends totally ordered [X] to a monomial in

H encoding δX appropriately.

3. Other examples

In this section, we consider some values representable by the integrals I(X), other

than MZVs and MZSVs.

3.1. Arakawa-Kaneko zeta values. The Arakawa-Kaneko multiple zeta function [AK]

is defined as

ξk(s) =
1

Γ(s)

∫ ∞

0

Lik(1− e−t)

1− e−t
e−tts−1dt

for an integer k > 0, where Lik(x) =
∑∞

n=1
xn

nk is the k-th polylogarithm function. By

making the variable change x = 1− e−t, we can write it as

ξk(s) =
1

Γ(s)

∫ 1

0
Lik(x)

(
− log(1− x)

)s−1dx

x
.

Now we use integral expressions

Lik(x) =

∫

x>t1>···>tk>0

dt1
t1

· · ·
dtk−1

tk−1

dtk
1− tk
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and

− log(1− x) =

∫ x

0

du

1− u
,

to deduce for any integer n > 0

(3.1) ξk(n) =
1

(n− 1)!
I









•

◦

◦

◦♦♦♦♦♦♦♦

•✖
✖✖
✖✖
✖✖
✖✖

•
✲✲
✲✲
✲✲
✲✲
✲

k

n−1









.

Moreover, there are exactly (n − 1)! ways to impose a total order on the n − 1 black

vertices. Thus we have the identity

ξk(n) = I







•

◦

◦

◦⑧⑧⑧⑧⑧

•

•

•

❄❄❄❄❄

k n−1







.

Therefore, by (1.8), we obtain Ohno’s relation [O, Theorem 2]

ξk(n) = ζ⋆(k + 1, 1, . . . , 1
︸ ︷︷ ︸

n−1

).

3.2. Mordell-Tornheim zeta values. Next, we consider the values of the Mordell-

Tornheim multiple zeta functions [M]

ζMT,r(s1, . . . , sr; s) =
∑

m1,...,mr>0

1

ms1
1 · · ·msr

r (m1 + · · · +mr)s
.

For positive integers k1, . . . , kr, k, it is easy to show that

(3.2) ζMT,r(k1, . . . , kr; k) = I












•

◦

◦

◦♦♦♦♦♦♦

•

◦

◦

◦❖❖❖❖❖❖

◦

◦

k1 kr

k












.
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For example,

I

(

•

⑧⑧⑧⑧ •

❄❄❄❄
◦

◦ )

=

∫

1>t1>t2>0

dt1
t1

dt2
t2

(∫ t2

0

du

1− u

)(∫ t2

0

dv

1− v

)

=

∫ 1

0

dt1
t1

∫ t1

0

dt2
t2

(
∑

m>0

tm2
m

)(
∑

n>0

tn2
n

)

=
∑

m,n>0

1

mn

∫ 1

0

dt1
t1

∫ t1

0
tm+n
2

dt2
t2

=
∑

m,n>0

1

mn(m+ n)

∫ 1

0
tm+n
1

dt1
t1

=
∑

m,n>0

1

mn(m+ n)2
= ζMT,2(1, 1; 2).

The identity (3.2) implies, in particular, the result by Bradley-Zhou [BZ] that the

Mordell-Tornheim zeta value ζMT,r(k1, . . . , kr; k) is expressed as a finite sum of MZVs

of weight k1 + · · ·+ kr + k and depth r.

3.3. Certain zeta values of root systems of type A. The third class of examples is

a certain type of special values of zeta functions of root systems of type AN , considered

by Komori, Matsumoto and Tsumura [KMT] in a study of shuffle relations of MZVs.

Explicitly, these values are written as

ζ

(

p1, . . . , pa;
q1, . . . , qb
r1, . . . , rc

)

=
∑

l1>···>la>m1+n1

m1>···>mb>0
n1>···>nc>0

1

lp11 · · · lpaa mq1
1 · · ·mqb

b nr1
1 · · ·nrc

c
,

for three sequences (p1, . . . , pa), (q1, . . . , qb) and (r1, . . . , rc) of positive integers. To

describe the corresponding diagram, we introduce an abbreviation: For a sequence k =

(k1, . . . , kn) of positive integers, we write

•

◦

k

for the vertical diagram

•

◦

◦

•

◦

◦

•

◦

◦

kn

k2

k1

so that

ζ(k) = I
(

•

◦

k

)

.



MULTIPLE ZETA-STAR VALUES AND MULTIPLE INTEGRALS 9

Using this notation, one can verify that

(3.3) ζ(p;q; r) = I






•

◦

⑧⑧⑧⑧

•

◦

❄❄❄❄
•

◦

q r

p






for p = (p1, . . . , pa), q = (q1, . . . , qb) and r = (r1, . . . , rc).

In [KMT], the following relation plays an important role:

ζ

(

p1, . . . , pa;
q1, . . . , qb
r1, . . . , rc

)

=

q1−1
∑

j=0

(
r1 − 1 + j

j

)

ζ

(

p1, . . . , pa, r1 + j;
q1 − j, q2, . . . , qb

r2, . . . , rc

)

+

r1−1∑

j=0

(
q1 − 1 + j

j

)

ζ

(

p1, . . . , pa, q1 + j;
q2, . . . , qb

r1 − j, r2, . . . , rc

)

.

(3.4)

We point out that our expression (3.3) implies this relation quite naturally. To do

this, we denote by X the 2-labeled poset indicated in (3.3), and name some vertices as

follows:

•

◦

•

◦

yq1

y1
ttttt

•

◦

•

◦

zr1

z1

❏❏❏❏❏x
•

◦

q′ r′

p

where q′ = (q2, . . . , qb) and r′ = (r2, . . . , rc). By (2.3), one has

(3.5) I(X) = I(X
zr1
yq1

) + I(X
yq1
zr1

).

In X
zr1
yq1

, the inequalities x > zr1 > yq1 and x > y1 > · · · > yq1 hold, hence one can

consider q1 further refinements by imposing yj > zr1 > yj+1 for j = 0, . . . , q1 − 1 (here

we write y0 = x). Thus the identity

(3.6) I(X
zr1
yq1

) =

q1−1
∑

j=0

I(Xj)
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holds, where Xj is represented by the diagram

•

◦

•

◦

yq1

yj+1

ttttt zr1
•

◦❏❏❏❏❏

◦

yj

y1
ttttt

•

◦

❏❏❏❏❏

◦ttttt

◦

zr1−1

z1

❏❏❏❏❏x
•

◦

q′

r′

p

Moreover, since there are
(
r1−1+j

j

)
ways to impose a total order on the white vertices

y1, . . . , yj , z1, . . . , zr1−1, one has

(3.7) I(Xj) =

(
r1 − 1 + j

j

)

ζ

(

p1, . . . , pa, r1 + j;
q1 − j, q2, . . . , qb

r2, . . . , rc

)

.

The identities (3.6) and (3.7) expresses the first term of (3.5) as desired in (3.4). The

second is obtained in the same way.

Remark. In [KMT], using partial fraction decompositions, the identity (3.4) is proved

with some variables (irrelevant to the decomposition) complex valued, not necessarily

positive integral. It seems difficult to apply our method in this paper to such functional

relations.
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