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ON BAHADUR-KIEFER TYPE PROCESSES
FOR SUMS AND RENEWALS IN
DEPENDENT CASES

Endre Cséaki and Miklos Csoig

Abstract We study the asymptotic behaviour of Bahadur-Kiefer preesshat are
generated by summing partial sums of (weakly or strongheddpnt) random vari-
ables and their renewals. Known results for i.i.d. casebwlextended to dependent
cases.
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1 Introduction

In this work we intend to deal with Bahadur-Kiefer type preses that are based on
partial sums and their renewals of weakly, as well as styouaigipendent sequences
of random variables. In order to initiate our approach{¥tY:,Y>,...} be random
variables which have the same marginal distribution antefgin with, satisfy the
following assumptions:

() EYo=p >0;
(i) E(Y§) < .

In terms of the generic sequenfq, j =0,1,2,...}, witht > 0, we define
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t
S(t) = ;Yl (1.1)
N(t) :=inf{s>1: S(s) > t}, (1.2)
Q(t) := S(t) + uN(ut) — 2pt, (1.3)

whose respective appropriately normalized versions willibed in studying partial
sums, their renewals, Bahadur-Kiefer type processes wierahdom variables in
the sequenc¥, i =0,1,... are weakly or strongly dependent.

The research area of what has become known as Bahadur-Krefezsses was
initiated by Bahadur [1] (cf. also Kiefer [22]) who estaliéxl an almost sure rep-
resentation of i.i.d. random variables based sample deariti terms of their em-
piricals. Kiefer [23] substantiated this work via studythg deviations between the
sample quantile and its empirical processes. These thnei@alepapers have since
been followed by many related further investigations €fg,., Csor§ and Révész
[10], [12, Chapter 5], Shorack [26], Csdrg6], Deheuvels and Mason [17], [18],
Deheuvels [15], [16], Csofgand Horvath [7, Chapters 3-6], Csérgnd Szyszkow-
icz [13], and references in these works).

It follows from the results of Kiefer [23], and also from Vet [27], [28] as
spelled out in Csaket al. [5], that the original i.i.d. based Bahadur-Kiefer process
cannot converge weakly to any non-degenerate random etehétre D[0, 1] func-
tion space. On the other hand, Csdaj al.[14] showed the opposite conclusion to
hold true for long-range dependence based Bahadur-Kiedeepses. For an illus-
tration and discussion of this conclusion, we refer to theolkfuction and Corollary
1.2 of Csakiet al. [4]. For further results along these lines, we refer to C8amd
Kulik [8], [9].

The study of the almost sure asymptotic behaviour of Bah&dkfer type pro-
cesses for sums and their renewals in the i.i.d. case wastéuitby Horvath [21],
Deheuvels and Mason [17], and augmented by further refeseaid results as in
Csorg) and Horvath [7, Chapter 2].

Vervaat [27], [28] initiated the study of limit theorems iemeral for processes
with a positive drift and their inverses. For results on tegnaptotic behaviour of
integrals of Bahadur-Kiefer type processes for sums aridréfreewals, the so-called
Vervaat processes, we refer to [5] in the i.i.d. case, [3heweakly dependent case,
and [4] in the strongly dependent case.

Back to the topics of this paper on Bahadur-Kiefer type psees for sums and
their renewals, the forthcoming Section 2 is concerned tighweakly dependent
case, and Section 3 concludes results in terms of long-rdegendent sequences
of random variables. Both of these sections contain theaatgroofs as well.
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2 Weakly dependent case

In this section we deal with weakly dependent random vaemlblased Bahadur-
Kiefer type processes. First we summarize the main resuttsel case whel are
i.i.d. random variables with finite 4-th moment.

Theorem A Assume thafY;,i =0,1,...} are i.i.d. random variables witlEYy =
p>0,E(Yo— )2 = 02> 0, andEYy < . Then we have

QT) =0 (W(T) -W (T - %wm)) +0a5(TY4), asT oo, (2.1)

_ SURi<7 [Qt/p)| 2402
| <t< _ , 2.2
Irpjol:p(T loglogT)¥/4(logT)¥/2 pd4 = 22
im SUFbsth |Q(t/u)| o as., (23)

T (I0gT)2(Supycyr [HN(D) —t)) 2 — pi/2’
fim PTAQT /) <y) =2 [ @0 32X H2p00dx-1, (24)

where® is the standard normal distribution function ardis its density.

We note that (2.1) and (2.4) are due to C€bagnd Horvath [7], (2.2) is due to
Horvath [21] and (2.3) is due to Deheuvels and Mason [17]ti#dke results can be
foundin [7].

For the case of i.i.d. random variables when the 4-th momees dot exist, we
refer to Deheuvels and Steinebach [19].

In this section we assume th&ft) can be approximated by a standard Wiener
process as follows.

Assumption A On the same probability space there exist a sequeitei =
0,1,2,...} of random variables, with the same marginal distributicatjsfying as-
sumptiongi) and(ii), and a standard Wiener process(¥), t > 0, such that

sup [S(t) — ut — oW(t)| = Oas (TF) (2.5)
o<t<T

almost surely, as T o, with o > 0, where $) is defined by1.1)and < 1/4.

In the case of 14 < 8 < 1/2, there is a huge literature on strong approximation
of the form (2.5) for weakly dependent random varialié$. The casg8 < 1/4is
treated in Berkest al.[2], where Komlds-Major-Tusnady [24] type strong approx-
imations as in (2.5) are proved under fairly general assiompbf dependence. For
exact statements of, and conditions for, strong approximatthat yield (2.5) to
hold true for the partial sums as in Assumption A, we refe2fo [

Theorem 2.1 Under Assumption Aall the results(2.1), (2.2), (2.3) and (2.4ip
Theorem Aremain true.
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Proof. In fact, we only have to prove (2.1), for the other resultéofe from the
latter. It follows from [7], Theorem 1.3 on p. 37, that undesséimption A we have

_ SUR<t<T ﬁ_N(t)_% (t/u)
limsup

_o1/453/2,-7/4 4
T oo (T loglogT)Y/4(logT)2/2 o H as

and also
sup [ut — uS(N(pt))| = Oas (TF)

0<t<T

asT — o. Hence, a§ — o, we arrive at
Q(T) = S(T) +UN(UT) —2uT =S(T) = uT — (S(N(KT)) — UN(UT)) +Oas (TP)

— G(W(t) —W(N(UT))) + Oas (TF) =

o <W(T) —w <T - %W(T))) +0as (T4,

i.e., having (2.1) as desired O

3 Strongly dependent case

In this section we deal with long range (strongly) dependeuences, based on
moving averages as defined by

nJ = Z L)kajfk’ j :071727"" (3'1)
k=0

where {&, —» < k < o} is a double sequence of independent standard nor-
mal random variables, and the sequence of weifliisk = 0,1,2,...} is square
summable. Then @o) = 0, E(nd) = Si_o Y2 =: 02 and, on putting); = n;/o,

{RAj, ] =0,1,2,...} is a stationary Gaussian sequence witfjg = 0 and E7j3) =

1. If g ~ k-F0/20(k) with a slowly varying function((k), at infinity, then
E(NjNj+n) ~ ban~9¢2(n), where the consta, is defined by

by = /ooX7(1+a)/2(1+x)7(1+a)/2dx
0

Now let G(-) be a real valued Borel measurable function, and define thersub
dinated sequenc¥; = G(fjj), j = 0,1,2,.... We assume throughout that :=
E(G(fjo)flo) # 0. We say in this case that the Hermite rank of the functgn
is equal to 1 (cf. Introduction of [4]).

For1/2<H < 1let{W4(t),t > O} be a fractional Brownian motion (fom), i.e.,
a mean-zero Gaussian process with covariance
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1
BV (W (1) = 5 (8 + 12 — [s—t). (3.2)

Based on a strong approximation result of Waatal. [29], what follows next,
was proved in Section 2 of Csaéd al. [4].

Theorem B Let nj be defined by3.1) with g ~ k~17%)/2, 0 < a < 1, and put
fij = nj/o with 02 := E(n3) = Sk _o Y. Let G-) be a function whose Hermite
rank is1, and put Y = G(}j), j =0,1,2,.... Furthermore, let{S(t),t > 0} be as
in (1.1) and assume conditioi). Then, on an appropriate probability space for
the sequenc¢Y; = G(f}j), j = 0,1,...}, one can construct a fractional Brownian
motion W_4 »(+) such that, as T o, we have

JiKg

sup [S(t) — ut— Z=EWy_ g a(t)| = 0as (TY/249), (3.3)

0<t<T o
whereu = E(Yp),

K2 _ 2](‘;0Xf(cr+1)/2(1+x)7(a+l)/2dx
a (1-a)(2—-a) ’

(3.4)

y=2-2afora<1/2,y=1fora >1/2andd > Ois arbitrary.
Moreover, if we also assume conditifjy then, as T— oo,

J
sup [UN(Ht) — pt+ Z5OW_g p(t)| = 0as (TY2F0 4 TA-0/2718) (3.5
0<t<T o

with y as right above, and arbitrarg > 0.

Now, for use in the sequel, we state iterated logarithm te$ol fractional Brow-
nian motion and its increments, which follows from Ortegagension in [25] of
Csorg and Réveész [11], [12, Section 1.2].

Theorem CFor T > Olet ar be a nondecreasing functionof T suchtBatar <T
and ar /T is nonincreasing. Then
Suﬂ)gth—aT SuRJgsgaT |W1—a/2(t + S) _Wl—a/z(t)|

limsup ——
T ar /2(2(logT /ar +loglogT))1/2

=1 as (3.6)

If limt_(log(T /ar))/(loglogT) = «, then we havém instead ofim supin (3.6).

First we give an invariance principle f@(T) defined by (1.3) ify/2 < (1—
a/2)?, which corresponds to the i.i.d. case when the forth momestse Equiva-
lently, we assume that

O<a<2—V2 (3.7)

Note that in (3.8) below, the random time argumenWf , /> is strictly positive
for large enougf with probability 1. So, without loss of generality, we mayfide
Wlfa/Z(T — U) =0ifu>T.
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Theorem 3.1 Under the conditions ofheorem B including(i) and (ii), assuming
(3.7),as T— o, we have

Q) = Jlff’ (Wia/2(T) = Wi_q/2(N(HT)) + 0as (TY/2+9)

JiKa
ou

_ JdiKa
o

(Wla/z(T) W42 <T - Wla/Z(T))> +0as (TY?10). (3.8)

Proof. Putc = J1kq /0. Then
Q(T) =S(T) = T + UN(uT) — pT

= CW_g/2(T) + 0as (TY270) 4+ u(N(uT) = T).

But
(T =N(UT)) =S(N(uT)) — UN(UT) + uT — S(N(uT))

= OWL_q/2(N(KT)) + 0as (N(HT))Y/270) 4 uT — SN(KT)),
and using (3.5) and Theorem C, we have

C
CWi_q/2(N(UT)) =CW_q/2 <T — 7 Waa/2(T) + as (TV/2H0 4 T“"/Z)z*“))

=W a2 <T - Ewla/z(TO +0as (TW/240)(1-0/2) 4 T(-0/27)
On the other hand (cf. [4]N(uT) = Oas (T) and

UT —S(N(UT)) = 0as (TY/?1).

Since(1—-a/2)3 < y/2 < (1- a/2)?, this dominates all the other remainder terms
in the proof. Thus the proof of Theorem 3.1 is nhow completa.
The proof of Theorem 3.1 also yields the following result.

Proposition 1. As T — oo,

\]lKa
(0}

JiKqg

HT — UN(UT)) = ol

Wi _q/2 <T - Wla/Z(T)) + Oas. (TV/ZHS)-

Now we are to give a limsup result f@(-). For this we need a Strassen-type
functional law of the iterated logarithm for fom, due to Gamah and Kuelbs [20].
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Theorem D Let

1
K = {Tug(t), 0<t <1, / F(uydu< 1},

where

Tug(t) = % / t(t—u)“*l/Zg(u)dw% /O (t—uHY2_ (—uH-Y2)gwdu

—00

and o .
G = [ (@-9" Y2 (-9 Vh2dss [(1-9 tds
—oo 0

Then, almost surelK is the set of limit points of the net of stochastic processes

W (nt)

<t<1 3.9
(2n?Hloglogn)t/2’ = — ’ (3.9)

as n— oo,

Theorem 3.2 Under the conditions of heorem 3.1we have

1-a/4 2-a/2
limsup IAT)] 2 2 (leKi) 2 as.
T T(1-0/27(loglogT)Y/2-a/4(logT)1/2 02 a/2put-a/ (3.10)

Proof. It follows from Theorem C that
Wi_q/2(T)| < (14 8)T* “/*(2loglogT )"/

with probability 1 for anyd > O if T is large enough. Hence, applying Theorem C
with ar = (14 8)c/uT19/2(2loglogT)¥?, ¢ = Jikq /0, we obtain

C SUP Wo_q/a(T) =Wy 2(T —9)| < c(1+ 8)ar “/*(21ogT)¥/?,

|s|<ar

almost surely for large enough T. Singe- 0 is arbitrary, we obtain the upper bound
in (3.10).

To obtain the lower bound, we follow the proof in the i.i.dseagiven in Csorg
and Horvath [7]. On choosing

(@92 (—gf 17, s<q,
9(s) = m(l-gh2 0<s<1,

in Theorem D, we have

kH/ H-1/2_(_ S)Hfl/z)g(s)dsjt%'/:(t—S)H’l/Zg(S)dS
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It can be seen that', g?(s)ds= 1, and{ f(t), 0<t < 1} is a continuous increasing
function with f(0) =0, f(1) =1, and hence by Theorem D itiskh For 0< d < 1,
on considering the function

_Jg(s), 0<s<1-9,
95(5)_{0, 1-6<s<1,
we define
f5(t) = f(t), 0<t<1-9,
ST f(1-9), 1-6<t<1l

Then it can be seen that the latter function i«inand hence it is a limit function
of the net of stochastic processes as in (3.9). It followsttiere is a sequendg of
random variables such that, in our context,

Wigp(Td) 50| =0
T %/%(2loglogT) /2

lim sup
k—e0p<t<1

Using Theorem C wittar = f(1— &)c/uT19/2(2loglogT)%?, we get

. SUPr(1_g)<t<T Wi 2(t +ar) —W(t)|
lim =1 as.

Tow Ca#fa/Z(z logT)1/2

Since d is arbitrary, and ling_,q f5(t) = f(t), the lower bound follows as in
Csordg) and Horvath [7], p. 28. This completes the proof of Theore2n 30

Next we give the limiting distribution o®(T).
Theorem 3.3 Under the conditions of heorem 3.1we have

yOZ—a/Zulfo{/Z

a2k 2

Jim P(QUTyT (@2 <) /:;¢(x)¢ < ) dx (3.11)

Proof. According to Theorem 3.1 we have to determine the limitirgjribution of

c
c (Wla/z(T) Wi 42 (T - lea/Z(T))) :
wherec = J1kq /0. Via the scaling property of fom, i.e.,
W(v) i=T 42N o 5(Tv), v>0,

is also an fom with parameter-la /2. So we have to determine the limiting distri-
bution of B N N
c(W(l) —W(l—clT*“/ZW(l))) :

asT — o, wherec; = JiKg /(OM). B
Foru > 0, the joint distribution oW(1), W(u) is bivariate normal with density
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! 1 (¥ o xy ¥
=P s 2 ¥t ) )
210102/ 1 — 2 21-r9) \o 010, O3
whereo? = E(WZ ; 5(1)) = 1,08 = EW2 , ,(u)) = >~ and

14wl 1y
B 20107 '

Now consider the conditional density

whereu=1—cxT- %2, B
So the density function o/ (1) —W(u) is equal to

- ~ T2 /0y —Y—
POW(L) — W(u) € dY) = /700 w%mx)«p <%) dxdY

and hence its distribution function is

a2/, B
Pn) W <2)= [ " pix o (L2

—00

)d)g —00 < Z < 0o,

It can be seen that, 85— o,

|cax|t-9/2

_r2 ==
o2V 1-r Ta/2—a?/4’

X—Xro —a/2+a?/4
———==0(T .
oov1— r2 ( )

Hence, a§ — o,

5 N T9/2)¢, ZTG/27(12/4
PW(1) -W(u) < Z) ~ /700 p(x)® Tex a2 dx

PuttingZ = yT%°/4-9/2 /¢, and taking the limill — oo, we finally obtain (3.11). O
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