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ON BAHADUR-KIEFER TYPE PROCESSES
FOR SUMS AND RENEWALS IN
DEPENDENT CASES

Endre Csáki and Miklós Csörgő

Abstract We study the asymptotic behaviour of Bahadur-Kiefer processes that are
generated by summing partial sums of (weakly or strongly dependent) random vari-
ables and their renewals. Known results for i.i.d. case willbe extended to dependent
cases.
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1 Introduction

In this work we intend to deal with Bahadur-Kiefer type processes that are based on
partial sums and their renewals of weakly, as well as strongly, dependent sequences
of random variables. In order to initiate our approach, let{Y0,Y1,Y2, . . .} be random
variables which have the same marginal distribution and, tobegin with, satisfy the
following assumptions:

(i) EY0 = µ > 0;
(ii) E(Y2

0 )< ∞.

In terms of the generic sequence{Yj , j = 0,1,2, . . .}, with t ≥ 0, we define
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S(t) :=
[t]

∑
i=1

Yi , (1.1)

N(t) := inf{s≥ 1 : S(s)> t}, (1.2)

Q(t) := S(t)+ µN(µt)−2µt, (1.3)

whose respective appropriately normalized versions will be used in studying partial
sums, their renewals, Bahadur-Kiefer type processes when the random variables in
the sequenceYi , i = 0,1, . . . are weakly or strongly dependent.

The research area of what has become known as Bahadur-Kieferprocesses was
initiated by Bahadur [1] (cf. also Kiefer [22]) who established an almost sure rep-
resentation of i.i.d. random variables based sample quantiles in terms of their em-
piricals. Kiefer [23] substantiated this work via studyingthe deviations between the
sample quantile and its empirical processes. These three seminal papers have since
been followed by many related further investigations (cf.,e.g., Csörg̋o and Révész
[10], [12, Chapter 5], Shorack [26], Csörgő [6], Deheuvels and Mason [17], [18],
Deheuvels [15], [16], Csörg̋o and Horváth [7, Chapters 3-6], Csörgő and Szyszkow-
icz [13], and references in these works).

It follows from the results of Kiefer [23], and also from Vervaat [27], [28] as
spelled out in Csákiet al. [5], that the original i.i.d. based Bahadur-Kiefer process
cannot converge weakly to any non-degenerate random element of theD[0,1] func-
tion space. On the other hand, Csörgő et al. [14] showed the opposite conclusion to
hold true for long-range dependence based Bahadur-Kiefer processes. For an illus-
tration and discussion of this conclusion, we refer to the Introduction and Corollary
1.2 of Csákiet al. [4]. For further results along these lines, we refer to Csörgő and
Kulik [8], [9].

The study of the almost sure asymptotic behaviour of Bahadur-Kiefer type pro-
cesses for sums and their renewals in the i.i.d. case was initiated by Horváth [21],
Deheuvels and Mason [17], and augmented by further references and results as in
Csörg̋o and Horváth [7, Chapter 2].

Vervaat [27], [28] initiated the study of limit theorems in general for processes
with a positive drift and their inverses. For results on the asymptotic behaviour of
integrals of Bahadur-Kiefer type processes for sums and their renewals, the so-called
Vervaat processes, we refer to [5] in the i.i.d. case, [3] in the weakly dependent case,
and [4] in the strongly dependent case.

Back to the topics of this paper on Bahadur-Kiefer type processes for sums and
their renewals, the forthcoming Section 2 is concerned withthe weakly dependent
case, and Section 3 concludes results in terms of long-rangedependent sequences
of random variables. Both of these sections contain the relevant proofs as well.
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2 Weakly dependent case

In this section we deal with weakly dependent random variables based Bahadur-
Kiefer type processes. First we summarize the main results in the case whenYi are
i.i.d. random variables with finite 4-th moment.

Theorem A Assume that{Yi , i = 0,1, . . .} are i.i.d. random variables withEY0 =
µ > 0, E(Y0− µ)2 = σ2 > 0, andEY4

0 < ∞. Then we have

Q(T) = σ
(

W(T)−W

(
T − σ

µ
W(T)

))
+oa.s.(T

1/4), as T → ∞, (2.1)

limsup
T→∞

sup0≤t≤T |Q(t/µ)|
(T loglogT)1/4(logT)1/2

=
21/4σ3/2

µ3/4
, a.s., (2.2)

lim
T→∞

sup0≤t≤T |Q(t/µ)|
(logT)1/2(sup0≤t≤T |µN(t)− t|)1/2

=
σ

µ1/2
, a.s., (2.3)

lim
T→∞

P(T−1/4|Q(T/µ)| ≤ y) = 2
∫ ∞

−∞
Φ(yµ3/4σ−3/2|x|−1/2)ϕ(x)dx−1, (2.4)

whereΦ is the standard normal distribution function andϕ is its density.

We note that (2.1) and (2.4) are due to Csörgő and Horváth [7], (2.2) is due to
Horváth [21] and (2.3) is due to Deheuvels and Mason [17]. Allthese results can be
found in [7].

For the case of i.i.d. random variables when the 4-th moment does not exist, we
refer to Deheuvels and Steinebach [19].

In this section we assume thatS(t) can be approximated by a standard Wiener
process as follows.
Assumption A On the same probability space there exist a sequence{Yi , i =
0,1,2, . . .} of random variables, with the same marginal distribution, satisfying as-
sumptions(i) and(ii) , and a standard Wiener process W(t), t ≥ 0, such that

sup
0≤t≤T

|S(t)− µt−σW(t)|= Oa.s.(T
β ) (2.5)

almost surely, as T→ ∞, with σ > 0, where S(t) is defined by(1.1)andβ < 1/4.
In the case of 1/4≤ β < 1/2, there is a huge literature on strong approximation

of the form (2.5) for weakly dependent random variables{Yi}. The caseβ < 1/4 is
treated in Berkeset al. [2], where Komlós-Major-Tusnády [24] type strong approx-
imations as in (2.5) are proved under fairly general assumptions of dependence. For
exact statements of, and conditions for, strong approximations that yield (2.5) to
hold true for the partial sums as in Assumption A, we refer to [2].

Theorem 2.1 Under Assumption Aall the results(2.1), (2.2), (2.3) and (2.4)in
Theorem Aremain true.
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Proof. In fact, we only have to prove (2.1), for the other results follow from the
latter. It follows from [7], Theorem 1.3 on p. 37, that under Assumption A we have

limsup
T→∞

sup0≤t≤T

∣∣∣ t
µ −N(t)− σ

µ W(t/µ)
∣∣∣

(T loglogT)1/4(logT)1/2
= 21/4σ3/2µ−7/4 a.s.

and also
sup

0≤t≤T
|µt − µS(N(µt))|= Oa.s.(T

β )

asT → ∞. Hence, asT → ∞, we arrive at

Q(T) =S(T)+µN(µT)−2µT =S(T)−µT−(S(N(µT))− µN(µT))+Oa.s.(T
β )

= σ(W(t)−W(N(µT)))+Oa.s.(T
β ) =

σ
(

W(T)−W

(
T − σ

µ
W(T)

))
+oa.s.(T

1/4),

i.e., having (2.1) as desired.⊓⊔

3 Strongly dependent case

In this section we deal with long range (strongly) dependentsequences, based on
moving averages as defined by

η j =
∞

∑
k=0

ψkξ j−k, j = 0,1,2, . . . , (3.1)

where {ξk,−∞ < k < ∞} is a double sequence of independent standard nor-
mal random variables, and the sequence of weights{ψk, k = 0,1,2, . . .} is square
summable. Then E(η0) = 0, E(η2

0) = ∑∞
k=0 ψ2

k =: σ2 and, on puttingη̃ j = η j/σ ,
{η̃ j , j = 0,1,2, . . .} is a stationary Gaussian sequence with E(η̃0) = 0 and E(η̃2

0) =

1. If ψk ∼ k−(1+α)/2ℓ(k) with a slowly varying function,ℓ(k), at infinity, then
E(η jη j+n)∼ bαn−αℓ2(n), where the constantbα is defined by

bα =

∫ ∞

0
x−(1+α)/2(1+ x)−(1+α)/2dx.

Now let G(·) be a real valued Borel measurable function, and define the subor-
dinated sequenceYj = G(η̃ j), j = 0,1,2, . . .. We assume throughout thatJ1 :=
E(G(η̃0)η̃0) 6= 0. We say in this case that the Hermite rank of the functionG(·)
is equal to 1 (cf. Introduction of [4]).

For 1/2< H < 1 let{WH(t), t ≥ 0} be a fractional Brownian motion (fbm), i.e.,
a mean-zero Gaussian process with covariance



Bahadur-Kiefer processes 5

EWH(s)WH(t) =
1
2
(s2H + t2H −|s− t|2H). (3.2)

Based on a strong approximation result of Wanget al. [29], what follows next,
was proved in Section 2 of Csákiet al. [4].

Theorem B Let η j be defined by(3.1) with ψk ∼ k−(1+α)/2, 0 < α < 1, and put
η̃ j = η j/σ with σ2 := E(η2

0) = ∑∞
k=0 ψ2

k . Let G(·) be a function whose Hermite
rank is1, and put Yj = G(η̃ j ), j = 0,1,2, . . .. Furthermore, let{S(t), t ≥ 0} be as
in (1.1) and assume condition(ii) . Then, on an appropriate probability space for
the sequence{Yj = G(η̃ j), j = 0,1, . . .}, one can construct a fractional Brownian
motion W1−α/2(·) such that, as T→ ∞, we have

sup
0≤t≤T

∣∣∣∣S(t)− µt− J1κα
σ

W1−α/2(t)

∣∣∣∣= oa.s.(T
γ/2+δ ), (3.3)

whereµ = E(Y0),

κ2
α = 2

∫ ∞
0 x−(α+1)/2(1+ x)−(α+1)/2dx

(1−α)(2−α)
, (3.4)

γ = 2−2α for α < 1/2, γ = 1 for α ≥ 1/2 andδ > 0 is arbitrary.
Moreover, if we also assume condition(i), then, as T→ ∞,

sup
0≤t≤T

∣∣∣∣µN(µt)− µt+
J1κα

σ
W1−α/2(t)

∣∣∣∣= oa.s.(T
γ/2+δ +T(1−α/2)2+δ ), (3.5)

with γ as right above, and arbitraryδ > 0.

Now, for use in the sequel, we state iterated logarithm results for fractional Brow-
nian motion and its increments, which follows from Ortega’sextension in [25] of
Csörg̋o and Révész [11], [12, Section 1.2].

Theorem CFor T > 0 let aT be a nondecreasing function of T such that0< aT ≤ T
and aT/T is nonincreasing. Then

limsup
T→∞

sup0≤t≤T−aT
sup0≤s≤aT

|W1−α/2(t + s)−W1−α/2(t)|
a1−α/2

T (2(logT/aT + loglogT))1/2
= 1 a.s. (3.6)

If limT→∞(log(T/aT))/(loglogT) =∞, then we havelim instead oflimsupin (3.6).

First we give an invariance principle forQ(T) defined by (1.3) ifγ/2 < (1−
α/2)2, which corresponds to the i.i.d. case when the forth moment exists. Equiva-
lently, we assume that

0< α < 2−
√

2. (3.7)

Note that in (3.8) below, the random time argument ofW1−α/2 is strictly positive
for large enoughT with probability 1. So, without loss of generality, we may define
W1−α/2(T −u) = 0 if u> T.
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Theorem 3.1 Under the conditions ofTheorem B, including(i) and(ii) , assuming
(3.7), as T→ ∞, we have

Q(T) =
J1κα

σ
(W1−α/2(T)−W1−α/2(N(µT))+oa.s.(T

γ/2+δ )

=
J1κα

σ

(
W1−α/2(T)−W1−α/2

(
T − J1κα

σ µ
W1−α/2(T)

))
+oa.s.(T

γ/2+δ ). (3.8)

Proof. Putc= J1κα/σ . Then

Q(T) = S(T)− µT + µN(µT)− µT

= cW1−α/2(T)+oa.s.(T
γ/2+δ )+ µ(N(µT)−T).

But
µ(T −N(µT)) = S(N(µT))− µN(µT)+ µT −S(N(µT))

= cW1−α/2(N(µT))+oa.s.((N(µT))γ/2+δ )+ µT−S(N(µT)),

and using (3.5) and Theorem C, we have

cW1−α/2(N(µT)) = cW1−α/2

(
T − c

µ
W1−α/2(T)+oa.s.(T

γ/2+δ +T(1−α/2)2+δ )

)

= cW1−α/2

(
T − c

µ
W1−α/2(T)

)
+oa.s.(T

(γ/2+δ )(1−α/2)+T(1−α/2)3).

On the other hand (cf. [4]),N(µT) = Oa.s.(T) and

µT −S(N(µT)) = oa.s.(T
γ/2+δ ).

Since(1−α/2)3 ≤ γ/2< (1−α/2)2, this dominates all the other remainder terms
in the proof. Thus the proof of Theorem 3.1 is now complete.⊓⊔

The proof of Theorem 3.1 also yields the following result.

Proposition 1. As T→ ∞,

µT − µN(µT)) =
J1κα

σ
W1−α/2

(
T − J1κα

σ µ
W1−α/2(T)

)
+oa.s.(T

γ/2+δ ).

Now we are to give a limsup result forQ(·). For this we need a Strassen-type
functional law of the iterated logarithm for fbm, due to Goodman and Kuelbs [20].
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Theorem D Let

K = {THg(t), 0≤ t ≤ 1,
∫ 1

−∞
g2(u)du≤ 1},

where

THg(t) =
1

kH

∫ t

0
(t −u)H−1/2g(u)du+

1
kH

∫ 0

−∞
(t −u)H−1/2− (−u)H−1/2)g(u)du,

and

k2
H =

∫ 0

−∞
((1− s)H−1/2− (−s)H−1/2)2 ds+

∫ 1

0
(1− s)2H−1ds.

Then, almost surely,K is the set of limit points of the net of stochastic processes

WH(nt)

(2n2H loglogn)1/2
, 0≤ t ≤ 1, (3.9)

as n→ ∞.

Theorem 3.2 Under the conditions ofTheorem 3.1, we have

limsup
T→∞

|Q(T)|
T(1−α/2)2(log logT)1/2−α/4(logT)1/2

=
21−α/4(J1κα)

2−α/2

σ2−α/2µ1−α/2
a.s.

(3.10)

Proof. It follows from Theorem C that

|W1−α/2(T)| ≤ (1+ δ )T1−α/2(2loglogT)1/2

with probability 1 for anyδ > 0 if T is large enough. Hence, applying Theorem C
with aT = (1+ δ )c/µT1−α/2(2loglogT)1/2, c= J1κα/σ , we obtain

c sup
|s|≤aT

|W1−α/2(T)−W1−α/2(T − s)| ≤ c(1+ δ )a1−α/2
T (2logT)1/2,

almost surely for large enough T. Sinceδ > 0 is arbitrary, we obtain the upper bound
in (3.10).

To obtain the lower bound, we follow the proof in the i.i.d. case, given in Csörg̋o
and Horváth [7]. On choosing

g(s) =

{
1

kH
((1− s)H−1/2− (−s)H−1/2), s≤ 0,

1
kH
(1− s)H−1/2, 0< s≤ 1,

in Theorem D, we have

f (t) =
1

kH

∫ 0

−∞
((t − s)H−1/2− (−s)H−1/2)g(s)ds+

1
kH

∫ t

0
(t − s)H−1/2g(s)ds.
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It can be seen that
∫ 1
−∞ g2(s)ds= 1, and{ f (t), 0≤ t ≤ 1} is a continuous increasing

function with f (0) = 0, f (1) = 1, and hence by Theorem D it is inK . For 0< δ < 1,
on considering the function

gδ (s) =

{
g(s), 0≤ s≤ 1− δ ,
0, 1− δ ≤ s≤ 1,

we define

fδ (t) =

{
f (t), 0≤ t ≤ 1− δ ,
f (1− δ ), 1− δ ≤ t ≤ 1.

Then it can be seen that the latter function is inK , and hence it is a limit function
of the net of stochastic processes as in (3.9). It follows that there is a sequenceTk of
random variables such that, in our context,

lim
k→∞

sup
0≤t≤1

∣∣∣∣∣
W1−α/2(Tkt)

T1−α/2
k (2loglogTk)1/2

− fδ (t)

∣∣∣∣∣= 0.

Using Theorem C withaT = f (1− δ )c/µT1−α/2(2log logT)1/2, we get

lim
T→∞

supT(1−δ )≤t≤T c|W1−α/2(t +aT)−W(t)|
ca1−α/2

T (2logT)1/2
= 1 a.s.

Sinceδ is arbitrary, and limδ→0 fδ (t) = f (t), the lower bound follows as in
Csörg̋o and Horváth [7], p. 28. This completes the proof of Theorem 3.2. ⊓⊔

Next we give the limiting distribution ofQ(T).

Theorem 3.3 Under the conditions ofTheorem 3.1, we have

lim
T→∞

P
(

Q(T)T−(1−α/2)2 ≤ y
)
=

∫ ∞

−∞
ϕ(x)Φ

(
yσ2−α/2µ1−α/2

|x|1−α/2(J1κα)2−α/2

)
dx. (3.11)

Proof. According to Theorem 3.1 we have to determine the limiting distribution of

c

(
W1−α/2(T)−W1−α/2

(
T − c

µ
W1−α/2(T)

))
,

wherec= J1κα/σ . Via the scaling property of fbm, i.e.,

W̃(v) := T−1+α/2W1−α/2(Tv), v≥ 0,

is also an fbm with parameter 1−α/2. So we have to determine the limiting distri-
bution of

c
(
W̃(1)−W̃(1− c1T

−α/2W̃(1))
)
,

asT → ∞, wherec1 = J1κα/(σ µ).
Foru> 0, the joint distribution of̃W(1), W̃(u) is bivariate normal with density
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1

2πσ1σ2
√

1− r2
exp

(
− 1

2(1− r2)

(
x2

σ2
1

−2r
xy

σ1σ2
+

y2

σ2
2

))
,

whereσ2
1 = E(W2

1−α/2(1)) = 1, σ2
2 = E(W2

1−α/2(u)) = u2−α and

r =
1+u2−α −|1−u|2−α

2σ1σ2
.

Now consider the conditional density

P(W̃(u) ∈ dz|W̃(1) = x) =
1

σ2
√

1− r2
ϕ
(

z− rσ2x

σ2
√

1− r2

)
dz,

whereu= 1− c1xT−α/2.
So the density function of̃W(1)−W̃(u) is equal to

P(W̃(1)−W̃(u) ∈ dY) =
∫ Tα/2/c1

−∞

1

σ2
√

1− r2
ϕ(x)ϕ

(
x−Y− rσ2x

σ2
√

1− r2

)
dxdY

and hence its distribution function is

P(W̃(1)−W̃(u)≤ Z) =
∫ Tα/2/c1

−∞
ϕ(x)Φ

(
Z− x+ rσ2x

σ2
√

1− r2

)
dx, −∞ < Z < ∞.

It can be seen that, asT → ∞,

σ2

√
1− r2 ∼ |c1x|1−α/2

Tα/2−α2/4
,

x− xrσ2

σ2
√

1− r2
= O(T−α/2+α2/4).

Hence, asT → ∞,

P(W̃(1)−W̃(u)≤ Z)∼
∫ Tα/2/c1

−∞
ϕ(x)Φ

(
ZTα/2−α2/4

|c1x|1−α/2

)
dx.

PuttingZ= yTα2/4−α/2/c, and taking the limitT → ∞, we finally obtain (3.11). ⊓⊔
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