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POISSON BOUNDARIES OF MONOIDAL CATEGORIES

SERGEY NESHVEYEV AND MAKOTO YAMASHITA

Abstract. Given a rigid C∗-tensor category C with simple unit and a probability measure µ on the
set of isomorphism classes of its simple objects, we define the Poisson boundary of (C, µ). This is
a new C∗-tensor category P , generally with nonsimple unit, together with a unitary tensor functor
Π: C → P . Our main result is that if P has simple unit (which is a condition on some classical
random walk), then Π is a universal unitary tensor functor defining the amenable dimension function
on C. Corollaries of this theorem unify various results in the literature on amenability of C∗-tensor
categories, quantum groups, and subfactors.

Résumé. Etant données une C∗-catégorie tensorielle rigide C dont l’objet unité est simple ainsi
qu’une mesure de probabilité µ sur l’ensemble de classes d’isomorphisme des objets simples, nous
définissons la frontière de Poisson de (C, µ). C’est une nouvelle C∗-catégorie tensorielle P dont l’objet
unité n’est pas, en général, simple, couplée avec un foncteur unitaire tensoriel Π: C → P . Notre
résultat principal assure que si l’objet unité de P est simple (ce qui se traduit par une condition
sur une certaine marche aléatoire classique), alors Π est un foncteur unitaire tensoriel universel qui
définit la fonction de dimension moyennable sur C. Les corollaires de ce théorème unifient différents
résultats connus sur la moyennabilité des C∗-catégories tensorielles, des groupes quantiques et des
sous-facteurs.

Introduction

The notion of amenability for monoidal categories first appeared in Popa’s seminal work [Pop94]
on classification of subfactors as a crucial condition defining a class of inclusions admitting good clas-
sification. He then gave various characterizations of this property analogous to the usual amenability
conditions for discrete groups: a Kesten type condition on the norm of the principal graph, a Følner
type condition on the existence of almost invariant sets, and a Shannon–McMillan–Breiman type
condition on relative entropy, to name a few.

This stimulated a number of interesting developments in related fields of operator algebras. First,
Longo and Roberts [LR97] developed a general theory of dimension for C∗-tensor categories, and
indicated that the language of sectors/subfactors is well suited for studying amenability in this
context. Then Hiai and Izumi [HI98] studied amenability for fusion algebras/hypergroups endowed
with a probability measure, and obtained many characterizations of this property in terms of random
walks and almost invariant vectors in the associated ℓp-spaces. These studies were followed by
the work of Hayashi and Yamagami [HY00], who established a way to realize amenable monoidal
categories as bimodule categories over the hyperfinite II1 factor.

In addition to subfactor theory, another source of interesting monoidal categories is the theory
of quantum groups. In this framework, the amenability question concerns the existence of almost
invariant vectors and invariant means for a discrete quantum group, or some property of the dimension
function on the category of unitary representations of a compact quantum group [Ban99, Tom06,
BCT05]. Here, one should be aware that there are two different notions of amenability involved.
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One is coamenability of compact quantum groups (equivalently, amenability of their discrete duals)
considered in the regular representations, the other is amenability of representation categories. These
notions coincide only for quantum groups of Kac type.

In yet another direction, Izumi [Izu02] developed a theory of noncommutative Poisson boundaries
for discrete quantum groups in order to study the minimality (or lack thereof) of infinite tensor prod-
uct type actions of compact quantum groups. From the subsequent work [INT06,Tom07] it became
increasingly clear that for coamenable compact quantum groups the Poisson boundary captures a
very elaborate difference between the two amenability conditions. Later, an important result on
noncommutative Poisson boundaries was obtained by De Rijdt and Vander Vennet [DRVV10], who
found a way to compute the boundaries through monoidal equivalences. In light of the categorical
duality for compact quantum group actions recently developed in [DCY13,Nes14], this result suggests
that the Poisson boundary should really be an intrinsic notion of the representation category RepG
itself, rather than of the choice of a fiber functor giving a concrete realization of RepG as a category
of Hilbert spaces. Starting from this observation, in this paper we define Poisson boundaries for
monoidal categories.

To be more precise, our construction takes a rigid C∗-tensor category C with simple unit and a
probability measure µ on the set Irr(C) of isomorphism classes of simple objects, and gives another
C∗-tensor category P together with a unitary tensor functor Π: C → P. Although the category P is
defined purely categorically, there are several equivalent ways to describe it, or at least its morphism
sets, that are more familiar to the operator algebraists. One is an analogue of the standard description
of classical Poisson boundaries as ergodic components of the time shift. Another is in terms of relative
commutants of von Neumann algebras, in the spirit of [LR97,HY00,Izu02]. For categories arising from
subfactors and quantum groups, this can be made even more concrete. For subfactors, computing the
Poisson boundary essentially corresponds to passing to the standard model of a subfactor [Pop94].
For quantum groups, not surprisingly as this was our initial motivation, the Poisson boundary of the
representation category of G can be described in terms of the Poisson boundary of Ĝ. The last result
will be discussed in detail in a separate publication [NY14], since we also want to describe the action

of Ĝ on the boundary in categorical terms and this would lead us away from the main subject of this
paper.

Our main result is that if P has simple unit, which corresponds to ergodicity of the classical random
walk defined by µ on Irr(C), then Π: C → P is a universal unitary tensor functor which induces the
amenable dimension function on C. From this we conclude that C is amenable if and only if there
exists a measure µ such that Π is a monoidal equivalence. The last result is a direct generalization
of the famous characterization of amenability of discrete groups in terms of their Poisson boundaries
due to Furstenberg [Fur73], Kaimanovich and Vershik [KV83], and Rosenblatt [Ros81]. From this
comparison it should be clear that, contrary to the usual considerations in subfactor theory, it is
not enough to work only with finitely supported measures, since there are amenable groups which
do not admit any finitely supported ergodic measures [KV83]. The characterization of amenability
in terms of Poisson boundaries generalizes several results in [Pop94, LR97,HY00]. Our main result
also allows us to describe functors that factor through Π in terms of categorical invariant means.
For quantum groups this essentially reduces to the equivalence between coamenability of G and
amenability of Ĝ [Tom06,BCT05].

Although our theory gives a satisfactory unification of various amenability results, the main re-
markable property of the functor Π: C → P is, in our opinion, the universality. If the category P
happens to have a simpler structure compared to C, this universality allows one to reduce classifica-
tion of functors from C inducing the amenable dimension function to an easier classification problem
for functors from P. This idea will be used in [NY16] to classify a class of compact quantum groups.

Acknowledgement. M.Y. thanks M. Izumi, S. Yamagami, T. Hayashi, and R. Tomatsu for their
interest and encouragement at various stages of the project.
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1. Preliminaries

1.1. Monoidal categories. In this paper we study rigid C∗-tensor categories. By now there are
many texts covering the basics of this subject, see for example [Yam04,Müg10,NT13] and references
therein. We mainly follow the conventions of [NT13], but for the convenience of the reader we
summarize the basic definitions and facts below.

A C∗-category is a category C whose morphism sets C(U, V ) are complex Banach spaces endowed
with complex conjugate involution C(U, V ) → C(V,U), T 7→ T ∗ satisfying the C∗-identity. Unless
said otherwise, we always assume that C is closed under finite direct sums and subobjects. The
latter means that any idempotent in the endomorphism ring C (X) = C(X,X) comes from a direct
summand of X.

A C∗-category is said to be semisimple if any object is isomorphic to a direct sum of simple (that
is, with the endomorphism ring C) objects. We then denote the isomorphism classes of simple objects
by Irr(C) and assume that this set is at most countable. Many results admit formulations which do
not require this assumption and can be proved by considering subcategories generated by countable
sets of simple objects, but we leave this matter to the interested reader.

A unitary functor, or a C∗-functor, is a linear functor of C∗-categories F : C → C′ satisfying
F (T ∗) = F (T )∗.

In this paper we frequently perform the following operation: starting from a C∗-category C, we
replace the morphisms sets by some larger system D(X,Y ) naturally containing the original C(X,Y ).
Then we perform the idempotent completion to construct a new category D. That is, we regard
the projections p ∈ D (X) as objects in the new category, and take qD(X,Y )p as the morphism
set from the object represented by p ∈ D (X) to the one by q ∈ D (Y ). Then the embeddings
C(X,Y ) → D(X,Y ) can be considered as a C∗-functor C → D.

A C∗-tensor category is a C∗-category endowed with a unitary bifunctor ⊗ : C × C → C, a distin-
guished object 1 ∈ C, and natural unitary isomorphisms

1⊗ U ≃ U ≃ U ⊗ 1, Φ(U, V,W ) : (U ⊗ V )⊗W → U ⊗ (V ⊗W )

satisfying certain compatibility conditions.
A unitary tensor functor, or a C∗-tensor functor, between two C∗-tensor categories C and C′ is given

by a triple (F0, F, F2), where F is a C∗-functor C → C′, F0 is a unitary isomorphism 1C′ → F (1C),
and F2 is a natural unitary isomorphism F (U)⊗F (V ) → F (U ⊗ V ), which are compatible with the
structure morphisms of C and C′. As a rule, we denote tensor functors by just one symbol F .

When C is a strict C∗-tensor category and U ∈ C, an object V is said to be a dual object of U if
there are morphisms R ∈ C(1, V ⊗ U) and R̄ ∈ C(1, U ⊗ V ) satisfying the conjugate equations

(ιV ⊗ R̄∗)(R ⊗ ιV ) = ιV , (ιU ⊗R∗)(R̄⊗ ιU ) = ιU .

If any object in C admits a dual, C is said to be rigid and we denote a choice of a dual of U ∈ C
by Ū . We assume that rigid C∗-tensor categories have simple tensor units.

A rigid C∗-tensor category (with simple unit) has finite dimensional morphism spaces and hence
is automatically semisimple by our assumption of existence of subobjects.

The quantity

dC(U) = min
(R,R̄)

‖R‖
∥

∥R̄
∥

∥

is called the intrinsic dimension of U , where (R, R̄) runs through the set of solutions of conjugate
equations as above. We omit the superscript C when there is no danger of confusion. A solution
(R, R̄) of the conjugate equations for U is called standard if

‖R‖ = ‖R̄‖ = d(U)1/2.

Solutions of the conjugate equations for U are unique up to the transformations

(R, R̄) 7→ ((T ∗ ⊗ ι)R, (ι⊗ T−1)R̄).
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Furthermore, if (R, R̄) is standard, then such a transformation defines a standard solution if and only
if T is unitary.

In a rigid C∗-tensor category C we often fix standard solutions (RU , R̄U ) of the conjugate equations
for every object U . Then C becomes spherical in the sense that one has the equality R∗

U (ι⊗T )RU =
R̄∗
U (T ⊗ ι)R̄U for any T ∈ C (U). The normalized linear functional

trU (T ) = d(U)−1R∗
U (ι⊗ T )RU = d(U)−1R̄∗

U (T ⊗ ι)R̄U

is a tracial state on the finite dimensional C∗-algebra C (U). It is independent of the choice of a
standard solution. More generally, for any objects X, U and V we can consider the normalized
partial categorical traces

trX ⊗ι : C(X ⊗ U,X ⊗ V ) → C(U, V ) and ι⊗ trX : C(U ⊗X,V ⊗X) → C(U, V ).

Namely, with a standard solution (RX , R̄X) as above, we have

(trX ⊗ι)(T ) = d(X)−1(R∗
X ⊗ ι)(ι⊗ T )(RX ⊗ ι), (ι⊗ trX)(T ) = d(X)−1(ι⊗ R̄∗

X)(T ⊗ ι)(ι⊗ R̄X).

Given a rigid C∗-tensor category C, if [U ] and [V ] are elements of Irr(C), we can define their
product in Z+[Irr(C)] by putting

[U ] · [V ] =
∑

[W ]∈Irr(C)

dim C(W,U ⊗ V )[W ],

thus getting a semiring Z+[Irr(C)]. Extending this formula by bilinearity, we obtain a ring structure
on Z[Irr(C)]. The map [U ] 7→ d(U) extends to a ring homomorphism Z[Irr(C)] → R. The pair
(Z[Irr(C)], d) is called the fusion algebra of C. In general, a ring homomorphism d′ : Z[Irr(C)] → R

satisfying d′([U ]) > 0 and d′([U ]) = d′([Ū ]) for every [U ] ∈ Irr(C) is said to be a dimension function

on C.
For a rigid C∗-tensor category C, the right multiplication by [U ] ∈ Irr(C) on Z[Irr(C)] can be

considered as a densely defined operator ΓU on ℓ2(Irr(C)). This definition extends to arbitrary
objects of C by the formula ΓU =

∑

[V ]∈Irr(C) dim(V,U)ΓV . If d′ is a dimension function on C, one

has the estimate

‖ΓU‖B(ℓ2(Irr(C))) ≤ d′(U).

If the equality holds for all objects U , then the dimension function d′ is called amenable. Clearly, there
can be at most one amenable dimension function. If the intrinsic dimension function is amenable,
then C itself is called amenable.

1.2. Categories of functors. Given a rigid C∗-tensor category C we will consider the category of
unitary tensor functors from C into C∗-tensor categories. Its objects are pairs (A, E), where A is a
C∗-tensor category and E : C → A is a unitary tensor functor. The morphisms (A, E) → (B, F ) are
unitary tensor functors G : A → B, considered up to natural unitary monoidal isomorphisms,∗ such
that GE is naturally unitarily isomorphic to F .

A more concrete way of thinking of this category is as follows. First of all we may assume that C
is strict. Consider a unitary tensor functor E : C → A. The functor E is automatically faithful by
semisimplicity and existence of conjugates in C. It follows that by replacing the pair (A, E) by an
isomorphic one, we may assume that A is a strict C∗-tensor category containing C and E is simply
the embedding functor. Namely, define the new sets of morphisms between objects U and V in C as
A(E(U), E(V )), and then complete the category we thus obtain with respect to subobjects.

Assume now that we have two strict C∗-tensor categories A and B containing C, and let E : C → A
and F : C → B be the embedding functors. Assume [G] : (A, E) → (B, F ) is a morphism. This

∗Therefore the category of functors from C we consider here is different from the category Tens(C) defined in [NY14],
where we wanted to distinguish between isomorphic functors and defined a more refined notion of morphisms.
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means that there exist unitary isomorphisms ηU : G(U) → U in B such that G(T ) = η−1
V TηU for any

morphism T ∈ C(U, V ), and the morphisms

G2(U, V ) : G(U) ⊗G(V ) → G(U ⊗ V )

defining the tensor structure of G restricted to C are given by G2(U, V ) = η−1
U⊗V (ηU ⊗ ηV ). For

objects U of A that are not in C put ηU = 1 ∈ B(G(U)). We can then define a new unitary tensor

functor G̃ : A → B by letting G̃(U) = U for objects U in C and G̃(U) = G(U) for the remaining

objects, G̃(T ) = ηVG(T )η
−1
U for morphisms, and G̃2(U, V ) = ηU⊗VG2(U, V )(η−1

U ⊗ η−1
V ). Then

[G] = [G̃] and the restriction of G̃ to C ⊂ A coincides with the embedding (tensor) functor C → B.
Therefore, any unitary tensor functor C → A is naturally unitary isomorphic to an embedding

functor, and the morphisms between two such embeddings E : C → A and F : C → B are the
unitary tensor functors G : A → B extending F , considered up to natural unitary isomorphisms.
If, furthermore, A is generated by the objects of C then [G] is completely determined by the maps
A(U, V ) → B(U, V ) extending the identity maps on C(U, V ) for all objects U and V in C.

1.3. Subfactor theory. Let N ⊂ M be an inclusion of von Neumann algebras represented on a
Hilbert space H. There is a canonical bijective correspondence between the normal semifinite faithful
operator valued weights Φ: M → N and the ones Ψ: N ′ →M ′ in terms of spatial derivatives [Con80].
Namely, for every Φ there is a unique Ψ denoted by Φ−1 and characterized by the equation

dωΦ

dω′
=

dω

dω′Φ−1
,

where ω and ω′ are any choices of normal semifinite faithful weights on N and M ′.
If E is a normal faithful conditional expectation from M to N , its index IndE can be defined

as E−1(1) [Kos86]. Suppose that M and N are factors admitting conditional expectations of finite
index. Then the index is a positive scalar and there is a unique choice of E which minimizes IndE.
This E is called the minimal conditional expectation of the subfactor N ⊂M [Hia88].

Suppose that N ⊂ M is a subfactor endowed with a normal conditional expectation of finite
index E : M → N . We then obtain a von Neumann algebra M1 called the basic extension of
N ⊂ M with respect to E, as follows. Taking a normal semifinite faithful weight ψ on N , the
algebra M1 ⊂ B(L2(M,ψE)) is generated by M and the orthogonal projection eN , called the Jones
projection, onto L2(N,ψ) ⊂ L2(M,ψE). One has the equality M1 = JN ′J , where J is the modular
conjugation of M with respect to ψE. From the above correspondence of operator valued weights,
there is a canonical conditional expectation E1 : M1 → M which has the same index as E, namely,
E1 = (IndE)−1JE−1(J · J)J . Iterating this procedure, we obtain a tower of von Neumann algebras

N ⊂M ⊂M1 ⊂M2 ⊂ · · · .

The higher relative commutants

N ′ ∩Mk = {x ∈Mk | ∀y ∈ N : xy = yx}

are finite dimensional C∗-algebras, with bound dim(N ′ ∩Mk) ≤ (IndE)k. The algebras M ′ ∩M2k

(k ∈ N) can be considered as the endomorphism rings of M ⊗N M ⊗N · · · ⊗N M in the category
of M -bimodules, and there are similar interpretations for the algebras N ′ ∩M2k+1, etc., in terms of
N -bimodules, M -N -modules, and N -M -modules.

1.4. Relative entropy. An important numerical invariant for inclusions of von Neumann algebras,
closely related to index, is relative entropy. For this part we follow the exposition in [NS06].

When ϕ and ψ are positive linear functionals on a C∗-algebra M , we denote their relative entropy
by S(ϕ,ψ). If M is finite dimensional, it can be defined as

S(ϕ,ψ) =

{

Tr(Qϕ(logQϕ − logQψ)), if ϕ ≤ λψ for some λ > 0,

+∞, otherwise,
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where Tr is the canonical trace on M which takes value 1 on every minimal projection in M , and
Qϕ ∈ M is the density matrix of ϕ, so that we have ϕ(x) = Tr(xQϕ). For a single positive linear
functional ψ on a finite dimensional M , we also have its von Neumann entropy defined as S(ψ) =
−Tr(Qψ logQψ).

Given an inclusion of C∗-algebras N ⊂ M and a state ϕ on M , the relative entropy Hϕ(M |N)
(also called conditional entropy in the classical probability theory) is defined as the supremum of the
quantities

∑

i

(S(ϕi, ϕ)− S(ϕi|N , ϕ|N ))

where (ϕi)i = (ϕ1, . . . , ϕk) runs through the tuples of positive linear functionals on M satisfying

ϕ =
∑k

i=1 ϕi. If M is finite dimensional, this can also be written as

Hϕ(M |N) = S(ϕ) − S(ϕ|N ) + sup
(ϕi)i

∑

i

(

S(ϕi|N )− S(ϕi)
)

,

where supremum is again taken over all finite decompositions of ϕ.
Relative entropy has the following lower semicontinuity property. Suppose that N ⊂ M is an

inclusion of von Neumann algebras and ϕ is a normal state on M . Suppose that Bi ⊂ Ai (i = 1, 2, . . .)
are increasing sequences of subalgebras Bi ⊂ N , Ai ⊂ M such that

⋃

iAi and
⋃

iBi are s∗-dense
in M and N , respectively. Then one has the estimate

Hϕ(M |N) ≤ lim inf
i

Hϕ(Ai|Bi).

If N ⊂ M is an inclusion of von Neumann algebras and E : M → N is a normal conditional
expectation, the relative entropy of M and N with respect to E is defined by

HE(M |N) = sup
ϕ
Hϕ(M |N),

where ϕ runs through the normal states on M satisfying ϕ = ϕE [Hia91]. If M and N are factors,
then we have the estimate HE(M |N) ≤ log IndE.

2. Categorical Poisson boundary

Let C be a strict rigid C∗-tensor category satisfying our standard assumptions: it is closed under
finite direct sums and subobjects, the tensor unit is simple, and Irr(C) is at most countable.

Let µ be a probability measure on Irr(C). The Poisson boundary of (C, µ) will be a new C∗-tensor
category P, possibly with nonsimple unit, together with a unitary tensor functor Π: C → P. In this
section we define (P,Π) in purely categorical terms. In the next section we will give several more
concrete descriptions of this construction.

For an object U consider the functor ι ⊗ U : C → C, X 7→ X ⊗ U . Given two objects U and V ,
consider the space Nat(ι ⊗ U, ι⊗ V ) of natural transformations from ι⊗ U to ι⊗ V , so elements of
Nat(ι⊗ U, ι⊗ V ) are collections η = (ηX)X of morphisms ηX : X ⊗ U → X ⊗ V , natural in X. For
every object X we can define a linear operator PX on Nat(ι⊗ U, ι⊗ V ) by

PX(η)Y = (trX ⊗ι)(ηX⊗Y )

with the partial categorical trace introduced in Section 1.1. Denote by Ĉ(U, V ) ⊂ Nat(ι⊗ U, ι ⊗ V )
the subspace of bounded natural transformations, that is, of elements η such that supY ‖ηY ‖ < ∞.

More concretely, taking a representative Us for each s ∈ Irr(C), we can present Ĉ(U, V ) as

Ĉ(U, V ) ∼= ℓ∞-
⊕

s

C(Us ⊗ U,Us ⊗ V ),

since the natural transformations are determined by their actions on the simple objects. This is a
Banach space, and the operator PX defines a contraction on it. It is also clear that the operator PX
depends only on the isomorphism class of X.
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From now on let us fix a representative Us for every s ∈ Irr(C) as above. We write trs instead of
trUs , Ps instead of PUs , and so on. Similarly, for a natural transformation η : ι⊗U → ι⊗V we write
ηs instead of ηUs . Let also denote by e ∈ Irr(C) the index corresponding to 1. For convenience we
assume that Ue = 1. Define an involution on Irr(C) such that Us̄ is a dual object to Us.

Consider now the operator

Pµ =
∑

s

µ(s)Ps.

This is a well-defined contraction on Ĉ(U, V ). We say that a bounded natural transformation η : ι⊗
U → ι⊗ V is Pµ-harmonic if

Pµ(η) = η.

Any morphism T : U → V defines a bounded natural transformation (ιX ⊗ T )X , which is obviously
Pµ-harmonic for every µ. When there is no ambiguity, we denote this natural transformation simply
by T .

The composition of harmonic transformations is in general not harmonic. But we can define a new
composition as follows.

Proposition 2.1. Given bounded Pµ-harmonic natural transformations η : ι⊗U → ι⊗V and ν : ι⊗
V → ι⊗W , the limit

(ν · η)X = lim
n→∞

Pnµ (νη)X

exists for all objects X and defines a bounded Pµ-harmonic natural transformation ι ⊗ U → ι ⊗W .

Furthermore, the composition · is associative.

Note that since the spaces C(X ⊗ U,X ⊗W ) are finite dimensional by our assumptions on C, the
notion of a limit is unambiguous.

Proof of Proposition 2.1. This is an immediate consequence of results of Izumi [Izu12] (another proof
will be given in Section 3.1). Namely, replacing U , V and W by their direct sum we may assume
that U = V =W . Then

Ĉ(U) = Ĉ(U,U) ∼= ℓ∞-
⊕

s

C (Us ⊗ U)

is a von Neumann algebra and Pµ is a normal unital completely positive map on it. By [Izu12,
Corollary 5.2] the subspace of Pµ-invariant elements is itself a von Neumann algebra with product ·
such that x · y is the s∗-limit of the sequence {Pnµ (xy)}n. �

Using this product on harmonic elements we can define a new C∗-tensor category P = PC,µ and a
unitary tensor functor Π = ΠC,µ : C → P as follows.

First consider the category P̃ with the same objects as in C, but define the new spaces P̃(U, V )
of morphisms as the spaces of bounded Pµ-harmonic natural transformations ι⊗U → ι⊗ V . Define
the composition of morphisms as in Proposition 2.1. We thus get a C∗-category, possibly without
subobjects. Furthermore, the C∗-algebras P̃ (U) are von Neumann algebras.

Next, we define the tensor product of objects in the same way as in C, and define the tensor
product of morphisms by

ν ⊗ η = (ν ⊗ ι) · (ι⊗ η).

Here, given ν : ι⊗U → ι⊗V and η : ι⊗W → ι⊗Z, the natural transformation ν⊗ ιZ : ι⊗U ⊗Z →
ι⊗ V ⊗ Z is defined by

(ν ⊗ ιZ)X = νX ⊗ ιZ ,

while the natural transformation ιU ⊗ η : ι⊗ U ⊗W → ι⊗ U ⊗ Z is defined by

(ιU ⊗ η)X = ηX⊗U .

We remark that ν ⊗ ι and ι⊗ η are still Pµ-harmonic due to the identities

PX(ν ⊗ ι) = PX(ν)⊗ ι, PX(ι⊗ η) = ι⊗ PX(η).
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Note also that by naturality of η we have (νX ⊗ ιZ)ηX⊗U = ηX⊗V (νX ⊗ ιZ), which implies that

ν ⊗ η = (ι⊗ η) · (ν ⊗ ι).

This shows that ⊗ : P̃ × P̃ → P̃ is indeed a bifunctor. Since C is strict, this bifunctor is strictly
associative.

Finally, complete the category P̃ with respect to subobjects. This is our C∗-tensor category P,
possibly with nonsimple unit. Since C is rigid, the category P is rigid as well. The unitary tensor
functor Π: C → P is defined in the obvious way: it is the strict tensor functor which is the identity
map on objects and Π(T ) = (ιX ⊗ T )X on morphisms. We will often omit Π and simply consider C
as a C∗-tensor subcategory of P.

Definition 2.2. The pair (P,Π) is called the Poisson boundary of (C, µ). We say that the Poisson
boundary is trivial if Π: C → P is an equivalence of categories, or in other words, for all objects U
and V in C the only bounded Pµ-harmonic natural transformations ι⊗ U → ι⊗ V are the transfor-
mations of the form η = (ιX ⊗ T )X for T ∈ C(U, V ).

The algebra P(1) is determined by the random walk on Irr(C) with transition probabilities

pµ(s, t) =
∑

r

µ(r)mt
rs

d(t)

d(r)d(s)
,

where d(s) = d(Us) and mt
rs = dim C(Ut, Ur ⊗ Us). Namely, if we identify Ĉ(1) with

ℓ∞-
⊕

s

C(Us) = ℓ∞(Irr(C)),

then the operator Pµ on Ĉ(1) is the Markov operator defined by pµ, so (Pµf)(s) =
∑

t pµ(s, t)f(t).
Therefore P(1) is the algebra of bounded measurable functions on the Poisson boundary, in the usual
probabilistic sense, of the random walk on Irr(C) with transition probabilities pµ(s, t). We say that µ
is ergodic, if this boundary is trivial, that is, the tensor unit of P is simple.

We say that µ is symmetric if µ(s) = µ(s̄) for all s, and that µ is generating if every simple object
appears in the decomposition of Us1⊗· · ·⊗Usn for some s1, . . . , sn ∈ suppµ and n ≥ 1. Equivalently,
µ is generating if

⋃

n≥1 suppµ
∗n = Irr(C), where the convolution of probability measures on Irr(C) is

defined by

(ν ∗ µ)(t) =
∑

s,r

ν(s)µ(r)mt
sr

d(t)

d(s)d(r)
.

We will write µn instead of µ∗n. The definition of the convolution is motivated by the identity
PµPν = Pν∗µ.

We remark that a symmetric ergodic measure µ, or even an ergodic measure with symmetric
support, is automatically generating. Indeed, the symmetry assumption implies that we have a well-
defined equivalence relation on Irr(C) such that s ∼ t if and only if t can be reached from s with
nonzero probability in a finite nonzero number of steps. Then any bounded function on Irr(C) that is
constant on equivalence classes is Pµ-harmonic. Hence µ is generating by the ergodicity assumption.

Let us say that C is weakly amenable if the fusion algebra (Z[Irr(C)], d) is weakly amenable in the
sense of Hiai and Izumi [HI98], that is, there exists a left invariant mean on ℓ∞(Irr(C)). By definition
this is a state m such that m(Ps(f)) = m(f) for all f ∈ ℓ∞(Irr(C)) and s ∈ Irr(C). Of course, it
is also possible to define right invariant means, and by [HI98, Proposition 4.2] if there exists a left
or right invariant mean, then there exists a bi-invariant mean. By the same proposition amenability
implies weak amenability, as the term suggests. But as opposed to the group case, in general, the
converse is not true. Using this terminology let us record the following known result.

Proposition 2.3. An ergodic probability measure on Irr(C) exists if and only if C is weakly amenable.

Furthermore, if an ergodic measure exists, then it can be chosen to be symmetric and with support

equal to the entire space Irr(C).
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Proof. If µ is an ergodic measure, then any weak∗ limit point of the sequence n−1
∑n−1

k=0 µ
k defines

a right invariant mean. For random walks on groups this implication was observed by Furstenberg.
The other direction is proved in [HY00, Theorem 2.5]. It is an analogue of a result of Kaimanovich–
Vershik and Rosenblatt. �

It should be remarked that if the fusion algebra of C is weakly amenable and finitely generated, in
general it is not possible to find a finitely supported ergodic measure [KV83, Proposition 6.1].

To finish the section, let us show that, not surprisingly, categorical Poisson boundaries are of
interest only for infinite categories.

Proposition 2.4. Assume C is finite, meaning that Irr(C) is finite, and µ is generating. Then the

Poisson boundary of (C, µ) is trivial.

Proof. The proof is similar to the proof of triviality of the Poisson boundary of a random walk on
a finite set based on the maximum principle. Fix an object U in C and assume that η ∈ Ĉ(U) is
positive and Pµ-harmonic. We claim that if η 6= 0 then there exists a positive nonzero morphism
T ∈ C (U) such that η ≥ T . Assuming that the claim is true, we can then choose a maximal T with
this property. Applying again the claim to the element η−T , we conclude that η = T by maximality.

In order to prove the claim observe that ηe ∈ C (U) is nonzero. Indeed, by assumption there
exists s such that ηs 6= 0. Since the categorical traces are faithful, and therefore partial categorical
traces are faithful completely positive maps, it follows that Ps(η)e 6= 0. Since s ∈ suppµn for some
n ≥ 1, we conclude that ηe = Pµn(η)e 6= 0.

Denote the positive nonzero element ηe ∈ C (U) by S. Fix s ∈ Irr(C). Let (Rs, R̄s) be a standard
solution of the conjugate equations for Us, and p ∈ C

(

Ūs ⊗ Us
)

be the projection defined by p =

d(s)−1RsR
∗
s. By naturality of η we then have ηŪs⊗Us

≥ p⊗ S, whence

Ps̄(η)s ≥ (trs̄⊗ι)(p)⊗ S = d(s)−2(ι⊗ S).

Using the generating property of µ and finiteness of Irr(C), we conclude that there exists a number
λ > 0 such that ηs ≥ ι⊗ λS for all s. This proves the claim. �

3. Realizations of the Poisson boundary

As in the previous section, we fix a strict rigid C∗-tensor category C and a probability measure µ
on Irr(C). In Sections 3.2 and 3.3 we will in addition assume that µ is generating. Let Π: C → P
be the Poisson boundary of (C, µ). Our goal is to give several descriptions of the algebras P(U) of
harmonic elements.

3.1. Time shift on the categorical path space. Fix an object U . Denote by M
(0)
U the von

Neumann algebra Ĉ(U) ∼= ℓ∞-
⊕

s C (Us ⊗ U). More generally, for every n ≥ 0 consider the von
Neumann algebra

M
(n)
U = Endb(ιCn+1 ⊗ U),

so M
(n)
U consists of bounded collections η = (ηXn,...,X0)Xn,...,X0 of natural in Xn, . . . ,X0 endomor-

phisms of Xn ⊗ · · · ⊗X0 ⊗ U . We consider M
(n)
U as a subalgebra of M

(n+1)
U using the embedding

(ηXn,...,X0)Xn,...,X0 7→ (ιXn+1 ⊗ ηXn,Xn−1,...,X0)Xn+1,...,X0 .

Define a conditional expectation En+1,n : M
(n+1)
U →M

(n)
U by

En+1,n(η)Xn,...,X0 =
∑

s

µ(s)(trs⊗ι)(ηUs,Xn,...,X0).

Taking compositions of such conditional expectations we get normal conditional expectations

En,0 : M
(n)
U →M

(0)
U .
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These conditional expectations are not faithful for n ≥ 1 unless the support of µ is the entire space

Irr(C). The support of En,0 is a central projection, and we denote by M
(n)
U the reduction of M

(n)
U by

this projection. More concretely, we have a canonical isomorphism

M
(n)
U

∼= ℓ∞-
⊕

sn,...,s1∈suppµ
s0∈Irr(C)

C (Usn ⊗ · · · ⊗ Us0 ⊗ U) . (3.1)

The conditional expectations En,0 define normal faithful conditional expectations En,0 : M
(n)
U →

M
(0)
U = M

(0)
U , and similarly En+1,n define conditional expectations En+1,n. Denote by MU the von

Neumann algebra obtained as the inductive limit of the algebras M
(n)
U with respect to En,0. In other

words, take any faithful normal state φ
(0)
U on M

(0)
U . By composing it with the conditional expectation

En,0 we get a state φ
(n)
U on M

(n)
U . Together these states define a state on

⋃

nM
(n)
U . Finally, complete

⋃

nM
(n)
U to a von Neumann algebra MU in the GNS-representation corresponding to this state.

Denote the corresponding normal state on MU by φU .

Note that if we start with a trace on M
(0)
U which is a convex combination of the traces trUs⊗U , then

the corresponding state φU on MU is tracial. Since it is faithful on M
(n)
U for every n, it is faithful

on MU . This shows that MU is a finite von Neumann algebra. Furthermore, the φU -preserving

normal faithful conditional expectation En : MU → M
(n)
U coincides with En+1,n on M

(n+1)
U . It follows

that on the dense algebra
⋃

mM
(m)
U the conditional expectation En is the limit, in the pointwise s∗-

topology, of En+1,nEn+2,n+1 . . . Em+1,m as m→ ∞. Hence En is independent of the choice of a faithful

normal trace φ
(0)
U as above.

Define a unital endomorphism θU of
⋃

nM
(n)
U such that θU(M

(n)
U ) ⊂M

(n+1)
U by

θU (η)Xn+1,...,X0 = ηXn+1,...,X2,X1⊗X0 .

Considering M
(k)
U as a quotient of M

(k)
U we get a unital endomorphism of

⋃

nM
(n)
U .

Lemma 3.1. The endomorphism θU of
⋃

nM
(n)
U extends to a normal faithful endomorphism of MU ,

which we continue to denote by θU .

Proof. Consider the normal semifinite faithful (n.s.f.) trace ψ
(0)
U =

∑

s d(s)
2 trUs⊗U on

M
(0)
U

∼= ℓ∞-
⊕

s

C (Us ⊗ U)

and put ψU = ψ
(0)
U E0. Then ψU is an n.s.f. trace. In order to prove the lemma it suffices to show that

the restriction of ψU to
⋃

nM
(n)
U is θU -invariant. Indeed, if the invariance holds, then we can define

an isometry U on L2(MU , ψU ) by UΛψU
(x) = ΛψU

(θU (x)) for x ∈
⋃

nM
(n)
U such that ψU (x

∗x) <∞.
Let H ⊂ L2(MU , ψU ) be the image of U and M be the von Neumann algebra generated by the
image of θU . Then H is M-invariant. We can choose 0 ≤ ei ≤ 1 such that θU(ei) → 1 strongly
and ψU (ei) < ∞. Now, if x ∈ M+ is such that x|H = 0, then ψU (θU (ei)xθU (ei)) = 0, and by lower
semicontinuity we get ψU (x) = 0, so x = 0. Therefore we can define θU as the composition of the
map MU → B(H), x 7→ UxU∗, with the inverse of the map M → M|H .

It remains to check the invariance. By definition we have En+2,n+1θU = θUEn+1,n on M
(n+1)
U for

all n ≥ 0. This implies that En+1θU = θUEn on
⋃

kM
(k)
U . It follows that for any x ∈

⋃

nM
(n)
U we

have

ψUθU (x) = ψUE1θU (x) = ψUθUE0(x) = ψUE0θUE0(x).

This implies that it suffices to show that ψUE0θU = ψU on M
(0)
U . Since trUs⊗U = trs(ι ⊗ trU ), it is

enough to consider the case U = 1. Note also that E0θU = Pµ on M
(0)
U . Thus we have to check that
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ψ1Pµ = ψ1 on M
(0)
1

∼= ℓ∞(Irr(C)). This is equivalent to the easily verifiable identity µ ∗ m = m,
where m =

∑

s d(s)
2δs. �

We call the endomorphism θU of MU the time shift. Now, take η ∈ M
(0)
U . Then for every n ≥ 0

we can define an element η(n) ∈M
(n)
U by

η
(n)
Xn,...,X0

= ηXn⊗···⊗X0 .

Consider the image of η(n) in M
(n)
U and denote it again by η(n), since this is the only element we are

interested in. Then η is Pµ-harmonic if and only if E1,0(η
(1)) = η, and in this case En+1,n(η

(n+1)) =

η(n) for all n. Therefore if η is Pµ-harmonic, then the sequence {η(n)}n is a martingale. Denote by

η(∞) ∈ MU its s∗-limit.

Proposition 3.2. The map η 7→ η(∞) is an isomorphism between the von Neumann algebra P(U) of

Pµ-harmonic bounded natural transformations ι⊗ U → ι⊗ U and the fixed point algebra MθU
U . The

inverse map is given by x 7→ E0(x).

Proof. By definition we have η(n) = θnU (η). It follows that if η is Pµ-harmonic, so that η(n) → η(∞),

then the element η(∞) is θU -invariant. We also clearly have E0(η
(∞)) = η.

Conversely, take x ∈ MθU
U . The proof of Lemma 3.1 implies that En+1θU = θUEn. Hence the

martingale {xn = En(x)}n has the property xn+1 = θU (xn). As E0θU = Pµ on M
(0)
U , we conclude

that x0 is Pµ-harmonic and x
(∞)
0 = x.

We have thus proved that the maps in the assertion are inverse to each other. Since they are unital
completely positive, they must be isomorphisms. �

The bijection between P(U) and MθU
U could be used to give an alternative proof of Proposition 2.1.

Namely, we could define a product · on harmonic elements by ν ·η = E0(ν
(∞)η(∞)). Since ν(∞)η(∞) is

the s∗-limit of the elements ν(n)η(n) = (νη)(n), and E0((νη)
(n)) = Pnµ (νη), it follows that Pnµ (νη) →

ν · η in the s∗-topology, which is equivalent to saying that Pnµ (νη)X → (ν · η)X for every X.

3.2. Relative commutants: Izumi–Longo–Roberts approach. We will now modify the con-
struction of the algebras MU to get algebras NU and an identification of P(U) with N ′

1
∩ NU .

Conceptually, instead of considering all paths of the random walk defined by µ, we consider only
paths starting at the unit object. The time shift is no longer defined on this space, but by considering
a larger space we can still get a description of P(U) in simple von Neumann algebraic terms. For
this to work we have to assume that µ is generating, so that we can reach any simple object from
the unit.

This identification of harmonic elements is closely related to Izumi’s description of Poisson bound-
aries of discrete quantum groups [Izu02]. A similar construction was also used by Longo and Roberts
using sector theory [LR97]. More precisely, they worked with a somewhat limited form of µ and
what we obtain is a possibly infinite von Neumann algebra for what corresponds to the finite gauge-
invariant von Neumann subalgebra in their work.

We first put V =
⊕

s∈suppµUs. In the case suppµ is infinite, this should be understood only as

a suggestive notation which does not make sense inside C. Given an object U , by C(V ⊗n ⊗ U) we
understand the space

⊕

s∗,s′∗∈supp µ
n

C(Usn ⊗ · · · ⊗ Us1 ⊗ U,Us′n ⊗ · · · ⊗ Us′1 ⊗ U)

endowed with the obvious ∗-algebra structure. Similarly to Section 3.1 we have completely positive
maps

En+1,n =
∑

s

µ(s)(trs⊗ι) : C(V
⊗(n+1) ⊗ U) → C(V ⊗n ⊗ U),
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and taking the composition of these maps we get maps

En,0 : C(V
⊗n ⊗ U) → C(U).

Then ω
(n)
U = trU En,0 is a state on C(V ⊗n ⊗ U). We denote by N

(n)
U the von Neumann algebra

generated by C(V ⊗n⊗U) in the GNS-representation defined by this state. The elements of N
(n)
U are

represented by certain bounded families in the direct product of the morphism sets

C(Usn ⊗ · · · ⊗ Us1 ⊗ U,Us′n ⊗ · · · ⊗ Us′1 ⊗ U).

Since the positive elements of N
(n)
U have positive diagonal entries, the state ω

(n)
U is faithful on N

(n)
U .

There is a natural diagonal embedding N
(n)
U → N

(n+1)
U defined by T 7→ ιV ⊗ T . The map En+1,n

extends then to a normal conditional expectation N
(n+1)
U → N

(n)
U such that ω

(n)
U En+1,n = ω

(n+1)
U .

This way we obtain an inductive system (N
(n)
U , ω

(n)
U )n of von Neumann algebras, and we let (NU , ωU )

be the von Neumann algebra and the faithful state obtained as the limit. As in Section 3.1, com-
posing the conditional expectations En+1,n and passing to the limit we get ωU -preserving conditional

expectations En : NU → N
(n)
U .

When U = 1, we simply write N (n) and N instead of N
(n)
1

and N1. If U ′ and U are objects in C,
then the map x 7→ x ⊗ ιU defines an embedding NU ′ →֒ NU ′⊗U . In particular, the algebra N is
contained in any of NU .

When η is a natural transformation in Ĉ(U), the morphism

ηV ⊗n =
⊕

s∗

ηUsn⊗···⊗Us1

defines an element in the diagonal part of N
(n)
U , which we denote by η[n]. Note that the direct

summand s0 = e of (3.1) can be identified with the diagonal part of N
(n)
U , and η[n] simply becomes

the component of η(n) in this summand. If η is Pµ-harmonic, the sequence {η[n]}n forms a martingale

and defines an element η[∞] ∈ N
(∞)
U .

Proposition 3.3. For every object U in C, the map η 7→ η[∞] defines an isomorphism of von

Neumann algebras P (U) ∼= N ′ ∩ NU .

Proof. If η is a harmonic element in Ĉ(U), the naturality implies that the elements ηV ⊗m commute

with the image of C (V ⊗n) for m ≥ n. Thus, η[∞] = limm ηV ⊗m is in the relative commutant. Since µ

is generating, it is also clear that the map η 7→ η[∞] is injective.
To construct the inverse map, take an element x ∈ N ′ ∩ NU . Then xn = En(x) is an element of

(N (n))′ ∩N
(n)
U . Hence, for every n ≥ 1 and s ∈ suppµn, there is a morphism xn,s ∈ C (Us ⊗ U) such

that xn is the direct sum of the xn,s (with multiplicities). It follows that we can choose η(n) ∈ Ĉ(U)

such that ‖η(n)‖ ≤ ‖x‖ and xn = η(n)[n]. The elements η(n) are not uniquely determined, only
their components corresponding to s ∈ suppµn are. The identity En+1,n(xn+1) = xn translates into
Pµ(η(n + 1))s = η(n)s for s ∈ suppµn.

We now define an element η ∈ Ĉ(U) by letting

ηs = η(n)s if s ∈ suppµn for some n ≥ 1.

In order to see that this definition in unambiguous, assume s ∈ (suppµn) ∩ (suppµn+k) for some n
and k. Then by the 0-2 law, see [NT04, Proposition 2.12], we have ‖Pmµ − Pm+k

µ ‖ → 0 as m → ∞.

Since the sequence {η(m)}m is bounded and we have η(n)s = Pm+k
µ (η(n+m+ k))s and η(n+ k)s =

Pmµ (η(n +m + k))s, letting m → ∞ we conclude that η(n)s = η(n + k)s. Hence η is well-defined,

Pµ-harmonic, and xn = η[n]. Therefore x = η[∞].
The linear isomorphism P(U) → N ′∩NU and its inverse that we have constructed, are unital and

completely positive, hence they are isomorphisms of von Neumann algebras. �
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As in the case of Proposition 3.2, the linear isomorphism P(U) ∼= N ′ ∩ NU could be used to give
an alternative proof of Proposition 2.1, at least for generating measures.

Applying Proposition 3.3 to U = 1 we get the following.

Corollary 3.4. The von Neumann algebra N is a factor if and only if µ is ergodic.

Under a mildly stronger assumption on the measure we can prove a better result than Proposi-
tion 3.3, which will be important later.

Proposition 3.5. Assume that for any s, t ∈ Irr(C) there exists n ≥ 0 such that

supp(µn ∗ δs) ∩ supp(µn ∗ δt) 6= ∅.

Then for any objects U and U ′ in C, the map η 7→ (ιU ′ ⊗ η)[∞] defines an isomorphism of von

Neumann algebras P (U) ∼= N ′
U ′ ∩NU ′⊗U .

Proof. That we get a map P (U) → N ′
U ′ ∩ NU ′⊗U does not require any assumptions on µ and is

easy to see: if η is a harmonic element in Ĉ(U), the naturality implies that the elements ηV ⊗m⊗U ′

commute with C (V ⊗n ⊗ U ′) for m ≥ n, and hence (ιU ′ ⊗ η)[∞] = limm ηV ⊗m⊗U ′ lies in N ′
U ′ ∩NU ′⊗U .

To construct the inverse map assume first U ′ = Ut for some t. Take x ∈ N ′
U ′ ∩ NU ′⊗U . Similarly

to the proof of Proposition 3.3 we can find elements η(n) ∈ Ĉ(U) such that ‖η(n)‖ ≤ ‖x‖ and

En(x) = (ιU ′ ⊗ η(n))[n]. The identity En+1,n(xn+1) = xn means now that Pµ(η(n + 1))s = η(n)s for

s ∈ supp(µn ∗ δt). We want to define an element η ∈ Ĉ(U) by

ηs = η(n)s if s ∈ supp(µn ∗ δt) for some n ≥ 1.

As in the proof of Proposition 3.3, in order to see that η is well-defined, it suffices to show that if
s ∈ supp(µn ∗ δt) ∩ supp(µn+k ∗ δt) for some n and k, then ‖Pmµ − Pm+k

µ ‖ → 0 as m → ∞. Since µ

is assumed to be generating, there exists l such that t ∈ suppµl. But then

s ∈ (suppµn+l) ∩ (suppµn+l+k),

so the convergence ‖Pmµ − Pm+k
µ ‖ → 0 indeed holds by the 0-2 law. This finishes the proof of the

proposition for U ′ = Ut, and we see that no assumption in addition to the generating property of µ
is needed in this case.

Consider now an arbitrary U ′. Decompose U ′ into a direct sum of simple objects:

U ′ ∼= Us1 ⊕ · · · ⊕ Usn .

Denote by pi ∈ C(U ′) the corresponding projections. Then the inclusion piNU ′pi ⊂ piNU ′⊗Upi can
be identified with NUsi

⊂ NUsi
⊗U .

Take x ∈ N ′
U ′ ∩NU ′⊗U . Then x commutes with pi. Since the element xpi lies in N ′

Usi
∩NUsi

⊗U , it

is defined by a Pµ-harmonic element η(i) ∈ Ĉ(U). In terms of these elements the condition that En(x)
commutes with C(V ⊗n ⊗ U ′) means that η(i)s = η(j)s whenever s ∈ supp(µn ∗ δsi) ∩ supp(µn ∗ δsj),
while to finish the proof we need the equality η(i) = η(j).

Fix s ∈ Irr(C) and indices i and j. By assumption there exists t ∈ supp(µn ∗ δsi) ∩ supp(µn ∗ δsj)
for some n. Since µ is generating, there exists m such that s ∈ supp(µm ∗ δt). Then

s ∈ supp(µm+n ∗ δsi) ∩ supp(µm+n ∗ δsj),

and therefore η(i)s = η(j)s. �

Note that the proof shows that the additional assumption on the measure is not only sufficient
but also necessary for the result to be true. Even for symmetric ergodic measures this condition does
not always hold: take the random walk on Z defined by the measure µ = 2−1(δ−1 + δ1). At the same
time this condition is satisfied, for example, for any generating measure µ with µ(e) > 0. Indeed, for
such a measure we can find n such that s ∈ supp(µn ∗ δt), and then s ∈ supp(µn ∗ δs)∩ supp(µn ∗ δt).

Applying the proposition to U = 1 we get the following result.
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Corollary 3.6. Assume µ is ergodic and satisfies the assumption of Proposition 3.5. Then NU is a

factor for every object U in C.

Remark 3.7. It is sometimes convenient to consider slightly more general constructions allowing
multiplicities. Namely, instead of V =

⊕

s∈suppµ Us we could take V =
⊕

i∈I Usi , where (si)i∈I is

any finite or countable collection of elements running through suppµ. For the state on C(V ) we could
take C(Usi , Usj ) ∋ T 7→ δijλi trsi(T ), where λi > 0 are any numbers such that

∑

i : si=s
λi = µ(s) for

all s ∈ suppµ. All the above results would remain true, with essentially identical proofs.

3.3. Relative commutants: Hayashi–Yamagami approach. We will now explain a modification
of the Izumi–Longo–Roberts construction due to Hayashi and Yamagami [HY00]. Its advantage is
that, at the expense of introducing an extra variable in a II1 factor, we can stay in the framework of
finite von Neumann algebras.

We continue to assume that µ is generating. We will use a slightly different notation com-
pared [HY00] to be more consistent with the previous sections.

Let R be the hyperfinite II1-factor and τ be the unique normal tracial state on R. Choose a
partition of unity by projections (es)s∈suppµ in R which satisfy

τ(es) =
µ(s)

cd(s)
, where c =

∑

s∈suppµ

µ(s)

d(s)
.

When (sn, . . . , s1) ∈ (suppµ)n, we write es∗ = esn ⊗ · · · ⊗ es1 ∈ R⊗n. As in Section 3.2, put
V =

⊕

s∈suppµUs. Now, for a fixed object U in C, instead of the algebra C(V ⊗n ⊗ U) used there,
consider the algebra

C̃(V ⊗n ⊗ U) =
⊕

s∗,s′∗∈(suppµ)
n

C(Usn ⊗ · · · ⊗ Us1 ⊗ U,Us′n ⊗ · · · ⊗ Us′1 ⊗ U)⊗ es′∗R
⊗nes∗ .

It carries a tracial state τ
(n)
U defined by

τ
(n)
U (T ⊗ x) = δs∗,s′∗c

nd(s1) . . . d(sn) trUsn⊗···⊗Us1⊗U
(T )τ⊗n(x)

for T ⊗ x ∈ C(Usn ⊗ · · · ⊗Us1 ⊗U,Us′n ⊗ · · · ⊗Us′1 ⊗U)⊗ es′∗R
⊗nes∗ . Let A

(n)
U be the von Neumann

algebra generated by C̃(V ⊗n ⊗ U) in the GNS-representation defined by τ
(n)
U . These algebras form

an inductive system under the embeddings

A
(n)
U →֒ A

(n+1)
U , T ⊗ x 7→

∑

s∈suppµ

(ιs ⊗ T )⊗ (es ⊗ x).

Passing to the limit we get a von Neumann algebra AU equipped with a faithful tracial state τU . We
write A for A1.

Given η ∈ Ĉ(U), consider the elements

η{n} =
∑

s∗∈(suppµ)n

ηUsn⊗···⊗Us1
⊗ es∗ ∈ A

(n)
U .

If η is Pµ-harmonic, then the sequence {η{n}}n forms a martingale with respect to the τU -preserving

conditional expectations En : AU → A
(n)
U . Denote its limit by η{∞}. Then we get the following

analogues of Propositions 3.3 and 3.5, with almost identical proofs, which we omit.

Proposition 3.8. For every object U in C, the map η 7→ η{∞} defines an isomorphism of von

Neumann algebras P (U) ∼= A′∩AU . If in addition to the generating property the measure µ satisfies

the assumption of Proposition 3.5, then the map η 7→ (ιU ′ ⊗ η){∞} also defines an isomorphism of

von Neumann algebras P (U) ∼= A′
U ′ ∩ AU ′⊗U for any object U ′.
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The work of Hayashi and Yamagami contains much more than the construction of the algebras AU

and, in fact, allows us to describe, under mild additional assumptions on µ, not only the morphisms
but the entire Poisson boundary Π: C → P in terms of Hilbert bimodules over A.

For objects X and Y consider their direct sum X ⊕ Y , and denote by pX , pY ∈ C(X ⊕ Y ) the
corresponding projections. We can consider pX and pY as projections in AX⊕Y , then pX(AX⊕Y )pX ∼=
AX and pY (AX⊕Y )pY ∼= AY . Put

AX,Y = pY (AX⊕Y )pX .

The AY -AX-module AX,Y can be described as an inductive limit of completions of the spaces

C̃(V ⊗n ⊗X,V ⊗n ⊗ Y ) =
⊕

s∗,s′∗∈(supp µ)
n

C(Usn ⊗ · · · ⊗ Us1 ⊗X,Us′n ⊗ · · · ⊗ Us′1 ⊗ Y )⊗ es′∗R
⊗nes∗ .

Denote by HX the Hilbert space completion of A1,X with respect to the scalar product

(x, y) = τ1(y
∗x).

Then HX is a Hilbert AX-A-module (it is denoted by X∞ in [HY00]). Viewing HX as a Hilbert
bimodule over A, we get a unitary functor F from C into the category HilbA of Hilbert bimodules
over A such that F (U) = HU on objects and defined in the obvious way on morphisms in C. We
want to make F into a tensor functor. By the computation on pp. 40–41 of [HY00] the map

C̃(V ⊗n, V ⊗n ⊗X)⊗ C̃(V ⊗n, V ⊗n ⊗ Y ) → C̃(V ⊗n, V ⊗n ⊗X ⊗ Y ),

(S ⊗ a)⊗ (T ⊗ b) 7→ (S ⊗ ιY )T ⊗ ab,

defines an isometry

F2(X,Y ) : HX ⊗A HY → HX⊗Y .

Lemma 3.9. Assume that for every s ∈ Irr(C) we have

(µn ∗ δs)(suppµ
n) → 1 as n→ ∞.

Then the maps F2(X,Y ) are unitary.

Proof. It suffices to prove the lemma for simple objects. Assume X = Us for some s. For every n ≥ 1

and s∗ ∈ (suppµ)n, let p
(n)
s∗ ∈ C(Usn ⊗ · · · ⊗ Us1 ⊗X) be the projection onto the direct sum of the

isotypic components corresponding to Ut for some t ∈ suppµn. Put

p(n) =
∑

s∗∈(supp µ)n

p(n)s∗ ⊗ es∗ ∈ A
(n)
Us
.

Then τX(p
(n)) = (µn ∗ δs)(suppµ

n). Therefore by assumption p(n) → 1 in the s∗-topology. It follows
that, to prove the lemma, it suffices to show that if

T ⊗ x ∈ C(Usn ⊗ · · · ⊗ Us1 , Us′n ⊗ · · · ⊗ Us′1 ⊗X ⊗ Y )⊗ es′∗R
⊗nes∗

is such that p(n)(T ⊗ x) = T ⊗ x, then T ⊗ x is in the image of F2(X,Y ). The assumption on T

means that the simple objects appearing in the decomposition of Us′n ⊗ · · · ⊗Us′1 ⊗X appear also in

the decomposition of Utn ⊗· · ·⊗Ut1 for t∗ ∈ (suppµ)n. This implies that T can be written as a finite
direct sum of morphisms of the form (S⊗ ιY )R, with R ∈ C(Usn ⊗· · ·⊗Us1 , Utn ⊗· · · ⊗Ut1 ⊗Y ) and
S ∈ C(Utn ⊗ · · · ⊗ Ut1 , Us′n ⊗ · · · ⊗ Us′1 ⊗X). Since we also have density of es′∗Ret∗Res∗ in es′∗Res∗ ,
this proves the lemma. �

We remark that the assumption of the lemma is obviously satisfied if suppµ = Irr(C). It is also
satisfied if µ is ergodic and µ(e) > 0, since then ‖µn ∗ δs − µn‖1 → 0 by [HI98, Proposition 3.3].

Once the maps F2(X,Y ) are unitary, it is easy to see that (F,F2) is a unitary tensor functor
C → HilbA.
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Proposition 3.10. Assume the measure µ satisfies the assumption of Lemma 3.9. Let B be the full

C∗-tensor subcategory of HilbA generated by the image of F : C → HilbA. Then the Poisson boundary

Π: C → P of (C, µ) is isomorphic to F : C → B.

Proof. The functor F extends to the full subcategory P̃ of P formed by the objects of C using the
isomorphisms P(U) ∼= A′ ∩ AU . It follows immediately by definition that this way we get a unitary

tensor functor E : P̃ → B if we put E2(X,Y ) = F2(X,Y ). We then extend this functor to a unitary
tensor functor P → B, which we continue to denote by E. To prove the proposition it remains to
show that E is fully faithful. In other words, we have to show that the left action of AU on HU

defines an isomorphism A′ ∩AU
∼= EndA-A(HU ).

Let us check the stronger statement that the left action defines an isomorphism AU
∼= End -A(HU ).

Recalling how HU was constructed using complementary projections in A1⊕U , it becomes clear that
the map AU → End -A(HU ) is always surjective, and it is injective if and only if the projection
p1 ∈ A1⊕U has central support 1. Using the Frobenius reciprocity isomorphism

C(V ⊗n ⊗ U) ∼= C(V ⊗n, V ⊗n ⊗ U ⊗ Ū),

it is easy to check that HU⊗Ū
∼= L2(AU , τU ) as a Hilbert AU -A-module. Hence the representation

of AU on HU⊗Ū is faithful. Since HU⊗Ū
∼= HU ⊗A HŪ , it follows that the representation of AU

on HU is faithful as well. �

A similar result could also be proved using the algebras NU from Section 3.2 instead of AU . The
situation would be marginally more complicated, since in dealing with the Connes fusion tensor
product ⊗N we would have to take into account the modular group of ωU . We are not going to
pursue this topic here, although it could provide a somewhat alternative route to Proposition 5.2
below.

4. A universal property of the Poisson boundary

Let C be a weakly amenable strict C∗-tensor category. Fix an ergodic probability measure µ

on Irr(C). Recall that such a measure exists by Proposition 2.3. Let Π: C → P be the Poisson
boundary of (C, µ).

For an object U in C define

dCmin(U) = inf dA(F (U)),

where the infimum is taken over all unitary tensor functors F : C → A from C into rigid C∗-tensor
categories A. We will show in the next section that dCmin is the amenable dimension function on C.
The goal of the present section is to prove the following.

Theorem 4.1. The Poisson boundary Π: C → P is a universal unitary tensor functor such that

dCmin = dPΠ.

In other words, dCmin = dPΠ and for any unitary tensor functor F : C → A such that dCmin = dAF

there exists a unique, up to a natural unitary monoidal isomorphism, unitary tensor functor Λ: P →
A such that ΛΠ ∼= F .

For a rigid C∗-tensor category A, consider a unitary tensor functor F : C → A, with no restriction
on the dimension function. As we discussed in Section 1.2, we may assume that A is strict, C
is a C∗-tensor subcategory of A and F is the embedding functor. Motivated by Izumi’s Poisson
integral [Izu02] we will define linear maps

ΘU,V : A(U, V ) → P(U, V ).

We will write ΘU for ΘU,U and often omit the subscripts altogether, if there is no danger of confusion.
The proof of the theorem will be based on analysis of the multiplicative domain of Θ.
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For every object U in C fix a standard solution (RU , R̄U ) of the conjugate equations in C. Define
a faithful state ψU on A (U) by

ψU (T ) = dC(X)−1R̄∗
U (T ⊗ ι)R̄U .

Since any other standard solution has the form ((u⊗ ι)RU , (ι⊗u)R̄U ) for a unitary u, this definition
is independent of any choices. More generally, we can define in a similar way “slice maps"

ι⊗ ψV : A (U ⊗ V ) → A (U) .

Then, since ((ι⊗RU ⊗ ι)RV , (ι⊗ R̄V ⊗ ι)R̄U ) is a standard solution for U ⊗ V , we get

ψU⊗V = ψU (ι⊗ ψV ). (4.1)

By definition the state ψU extends the trace trU on C (U).

Lemma 4.2. The subalgebra C (U) ⊂ A (U) is contained in the centralizer of the state ψU .

Proof. If u is a unitary in C(U), then the state ψU (u · u∗) is defined similarly to ψU , but using the
solution ((ι ⊗ u∗)RU , (u

∗ ⊗ ι)R̄U ) of the conjugate equations for U . Since ψU is independent of the
choice of standard solutions, it follows that ψU (u · u∗) = ψU . But this exactly means that C(U) is
contained in the centralizer of ψU . �

It follows that there exists a unique ψU -preserving conditional expectation EU : A (U) → C (U).
For objects U and V we can consider A(U, V ) as a subspace of A (U ⊕ V ). Then EU⊕V defines a
linear map

EU,V : A(U, V ) → C(U, V ).

Again, we omit the subscripts when convenient.

Lemma 4.3. The maps EU,V satisfy the following properties:

(i) EU,V (T )
∗ = EV,U (T

∗);
(ii) if T ∈ A(U, V ) and S ∈ C(V,W ), then EU,W (ST ) = SEU,V (T );
(iii) for any object X in C we have EU⊗X,V⊗X(T ⊗ ιX) = EU,V (T )⊗ ιX .

Proof. Properties (i) and (ii) follows immediately from the corresponding properties of conditional
expectations. To prove (iii), it suffices to consider the case U = V . Take S ∈ C (U ⊗X). Then we
have to check that

ψU⊗X(S(T ⊗ ι)) = ψU⊗X(S(E(T ) ⊗ ι)).

This follows from (4.1) and the fact that by definition we have (ι⊗ ψX)(S) ∈ C (U). �

Now, given a morphism T ∈ A(U, V ), define a bounded natural transformation ΘU,V (T ) : ι⊗U →
ι⊗ V of functors on C by

ΘU,V (T )X = EX⊗U,X⊗V (ιX ⊗ T ).

Lemma 4.4. The natural transformation ΘU,V (T ) is PX-harmonic for any object X in C.

Proof. It suffices to consider the case U = V . We claim that

(trX ⊗ι)E(ιX ⊗ T ) = E(T ).

Indeed, for any S ∈ C (U) we have

trU
(

S(trX ⊗ι)E(ιX ⊗ T )
)

= trX⊗U (E(ιX ⊗ ST )) = ψX⊗U (ι⊗ ST ) = ψU (ST ) = trU (SE(T )),

where in the third equality we used (4.1). This proves the claim.
We now compute:

PX(Θ(T ))Y = (trX ⊗ι)(Θ(T )X⊗Y ) = (trX ⊗ιY ⊗ ιU )(E(ιX ⊗ ιY ⊗ T )) = E(ιY ⊗ T ) = Θ(T )Y ,

so Θ(T ) is PX -harmonic. �

It follows that ΘU,V is a well-defined linear map A(U, V ) → P(U, V ).
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Lemma 4.5. The maps ΘU,V satisfy the following properties:

(i) ΘU,V (T )
∗ = ΘV,U(T

∗);
(ii) if T ∈ A(U, V ) and S ∈ C(V,W ), then ΘU,W (ST ) = SΘU,V (T );
(iii) for any object X in C we have ΘU⊗X,V⊗X(T⊗ιX) = ΘU,V (T )⊗ιX and ΘX⊗U,X⊗V (ιX⊗T ) =

ιX ⊗ΘU,V (T );
(iv) the maps ΘU : A (U) → P (U) are unital, completely positive, and faithful.

Proof. All these properties are immediate consequences of the definitions and the properties of the
maps EU,V given in Lemma 4.3. We would like only to point out that the property Θ(ι⊗T ) = ι⊗Θ(T )
follows from the definition of the tensor product in P, the corresponding property for the maps E is
neither satisfied nor needed. �

Our goal now is to understand the multiplicative domains of the maps ΘU : A (U) → P (U).
We will first show that these domains cannot be very large. More precisely, assume we have an
intermediate C∗-tensor category C ⊂ B ⊂ A such that dA = dB on C. For an object U in C denote
by EB

U : A (U) → B(U) the conditional expectation preserving the categorical trace on A. Then we
have the following result inspired by [Tom07, Lemma 4.5].

Lemma 4.6. We have ΘU = ΘUE
B
U .

Proof. We will first show that a similar property holds for the maps E, so EU = EUE
B
U .

Consider the normalized categorical trace trAU on A (U). We have ψU = trAU (·Q) for some Q ∈
A (U). The identity EU = EUE

B
U holds if and only if the conditional expectation EB

U is ψU -preserving,
or equivalently, Q ∈ B(U).

By assumption we have dA(U) = dB(U) for every object U in C. It follows that a standard
solution (RB

U , R̄
B
U ) of the conjugate equations for U and Ū in B remains standard in A. We have

R̄U = (T ⊗ ι)R̄B
U for a uniquely defined T ∈ B(U). Then Q = dB(U)

dC(U)
TT ∗ ∈ B(U).

We also need the simple property EB
X⊗U (ιX ⊗ T ) = ιX ⊗ EB

U (T ). This is proved similarly to

Lemma 4.3(iii), using that trAX⊗U = trAU (tr
A
X ⊗ι) and the fact that trA is defined using standard

solutions in B, so that (trAX ⊗ι)(B(X ⊗ U)) ⊂ B(U).

The equality ΘUE
B
U = ΘU is now immediate:

ΘEB(T )X = E(ιX ⊗ EB(T )) = EEB(ιX ⊗ T ) = E(ιX ⊗ T ) = Θ(T )X .

This proves the assertion. �

Since the completely positive map ΘU is faithful, the multiplicative domain of ΘU = ΘUE
B
U is

contained in that of EB
U , which is exactly B(U). Therefore to find this domain we have to consider

the smallest possible subcategory that contains C and still defines the same dimension function as A.

Lemma 4.7. For every object U in C there exists a unique positive invertible element aU ∈ A(U)
such that

(ι⊗ a
1/2
U )RU and (a

−1/2
U ⊗ ι)R̄U

form a standard solution of the conjugate equations for U in A.

Proof. We can find an invertible element T ∈ A (U) such that (ι⊗ T )RU and ((T ∗)−1 ⊗ ι)R̄U form

a standard solution in A. Then we can take aU = T ∗T , since Ta
−1/2
U is unitary and hence the

morphisms (ι⊗ a
1/2
U )RU and (a

−1/2
U ⊗ ι)R̄U still form a standard solution.

Any other standard solution for U and Ū has the form (ι⊗va
1/2
U )RU , (va

−1/2
U ⊗ ι)R̄U for a unitary

v ∈ A (U). By uniqueness of the polar decomposition the element va
1/2
U is positive only if v = 1. �

Note that if we replace (RU , R̄U ) by ((ι⊗ u)RU , (u⊗ ι)R̄U ) for a unitary u ∈ C (U), then aU gets
replaced by uaUu

∗.
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Lemma 4.8. For every object U in C we have dP(U) ≤ dA(U), and if the equality holds, then we

have ΘU (aU )
−1 = ΘU (a

−1
U ).

Proof. As usual, we omit the subscript U in the computations. Consider the solution

r = (ι⊗Θ(a)1/2)R, r̄ = (Θ(a)−1/2 ⊗ ι)R̄

of the conjugate equations for U in P. Then from the equality

r∗r = R∗(ι⊗Θ(a))R = Θ(R∗(ι⊗ a)R),

we have ‖r‖ = dA(U)1/2. On the other hand, we also have

r̄∗r̄ = R̄∗(Θ(a)−1 ⊗ ι)R̄.

By Jensen’s inequality for positive maps and the fact that the function t 7→ t−1 on (0,+∞) is operator
convex (see, e.g., [NS06, B.2]), we have Θ(a)−1 ≤ Θ(a−1). Hence we have the estimate

r̄∗r̄ ≤ R̄∗(Θ(a−1)⊗ ι)R̄ = Θ(R̄∗(a−1 ⊗ ι)R̄),

and we conclude that ‖r̄‖ ≤ dA(U)1/2. Hence dP (U) ≤ dA(U), and if the equality holds, then we

have ‖r̄‖ = dA(U)1/2 and

R̄∗(Θ(a)−1 ⊗ ι)R̄ = R̄∗(Θ(a−1)⊗ ι)R̄.

Since T 7→ R̄∗(T ⊗ ι)R̄ is a faithful positive linear functional on P (U), this is equivalent to Θ(a)−1 =
Θ(a−1). �

If we have dP (U) = dA(U), we can then apply the following general result, which is surely well-
known.

Lemma 4.9. Assume θ : A → B is a unital completely positive map of C∗-algebras and a ∈ A is a

positive invertible element such that θ(a)−1 = θ(a−1). Then a lies in the multiplicative domain of θ.

Proof. It suffices to show that a1/2 lies in the multiplicative domain. This, in turn, is equivalent to
the equality θ(a)1/2 = θ(a1/2).

Using Jensen’s inequality and operator convexity of the functions t 7→ −t1/2 and t 7→ t−1, we have

θ(a)1/2 ≥ θ(a1/2), θ(a−1)1/2 ≥ θ(a−1/2), and θ(a−1/2)−1 ≤ θ(a1/2).

The second and the third inequalities imply

θ(a−1)−1/2 ≤ θ(a1/2).

Since θ(a−1) = θ(a)−1, this gives θ(a)1/2 ≤ θ(a1/2). Hence θ(a)1/2 = θ(a1/2). �

To finish the preparation for the proof of Theorem 4.1 we consider the maps Θ for A = P.

Lemma 4.10. The maps ΘU,V : P(U, V ) 7→ P(U, V ) defined by the functor Π: C → P are the identity

maps.

Proof. It suffices to consider U = V . Take η ∈ P (U). Let us show first that Θ(η)1 = η1, that is,
E(η) = η1. In other words, we have to check that for any S ∈ C (U) we have

ψU (Sη) = trU (Sη1).

This follows immediately by definition, since

(R̄∗
U (Sη ⊗ ι)R̄U )1 = R̄∗

U (Sη1 ⊗ ι)R̄U .

Now, for any object X in C, we have

Θ(η)X = E(ιX ⊗ η) = Θ(ιX ⊗ η)1 = (ιX ⊗ η)1 = ηX .

Therefore we have Θ(η) = η. �
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Proof of Theorem 4.1. The equality dCmin(U) = dP (U) for objects U in C follows from Lemma 4.8.

Let F : C → A be a unitary tensor functor such that dCmin = dAF . As above, we assume that F

is simply an embedding functor. Consider the minimal subcategory B̃ ⊂ A containing C ⊂ A and
the morphisms ιV ⊗ aU ⊗ ιW for all objects V , U and W in C, where aU ∈ A (U) are the morphisms

defined in Lemma 4.7. This is a C∗-tensor subcategory, in general without subobjects. Complete B̃
with respect to subobjects to get a C∗-tensor category B. By adding more objects to A we may
assume without loss of generality that B ⊂ A. Lemmas 4.5, 4.8 and 4.9 imply that the maps ΘU,V

define a strict unitary tensor functor B̃ → P. Thus B̃ is unitary monoidally equivalent to a C∗-tensor
subcategory P̃ ⊂ P, possibly without subobjects. Completing P̃ with respect to subobjects we get
a C∗-tensor subcategory P ′ ⊂ P, which is unitarily monoidally equivalent to B.

We claim that the embedding functor P ′ → P is a unitary monoidal equivalence. Indeed, by
construction we have dP

′

(U) = dCmin(U) for every object U in C. By Lemmas 4.6 and 4.10 it
follows then that the identity maps P (U) → P (U) factor through the conditional expectations

EP ′

U : P (U) → P ′ (U). Hence P (U) = P ′ (U). Since the objects of C generate P, this implies that
the embedding functor P ′ → P is a unitary monoidal equivalence.

We have therefore shown that P and B are unitarily monoidally equivalent, and furthermore, by
properties of the maps Θ such an equivalence Λ: P → B can be chosen to be the identity tensor
functor on C. Considered as a functor P → A, the unitary tensor functor Λ gives the required
factorization of F : C → A.

It remains to prove uniqueness. Denote by ρU ∈ P (U) the elements aU constructed in Lemma 4.7
for the category P. By the uniqueness part of that lemma, it is clear that any unitary tensor functor
Λ: P → A extending the embedding functor C → A must map ρU ∈ P (U) into aU ∈ A (U). But this
completely determines Λ up to a unitary monoidal equivalence, since by the above considerations the
category P is obtained from C by adding the morphisms ρU and then completing the new category
with respect to subobjects. �

We finish the section with a couple of corollaries.

The universality of the Poisson boundary implies that up to an isomorphism the boundary does
not depend on the choice of an ergodic measure. But the proof shows that a stronger result is true.

Corollary 4.11. Let C be a weakly amenable C∗-tensor category and µ be an ergodic probability

measure on Irr(C). Then any bounded Pµ-harmonic natural transformation is Ps-harmonic for every

s ∈ Irr(C), so the Poisson boundary Π: C → P of (C, µ) does not depend on the choice of an ergodic

measure.

Proof. By Lemma 4.10 the maps ΘU,V : P(U, V ) → P(U, V ) are the identity maps, while by Lem-
ma 4.4 their images consist of elements that are Ps-harmonic for all s. �

When C is amenable, then dCmin = dC and we get the following.

Corollary 4.12. If C is an amenable C∗-tensor category, then its Poisson boundary with respect to

any ergodic probability measure on Irr(C) is trivial. In other words, any bounded natural transforma-

tion ι⊗ U → ι⊗ V which is Ps-harmonic for all s ∈ Irr(C), is defined by a morphism in C(U, V ).

Proof. The identity functor C → C is already universal, so it is isomorphic to the Poisson boundary.
�

We remark that if we were interested only in proving this corollary, a majority of the above
arguments, being applied to the functor C → P, would become either trivial or unnecessary. Namely,
in this case a standard solution of the conjugate equations in C remains standard in P, so we
have EU = EC

U , and the key parts of the proof are contained in Lemmas 4.6 and 4.10. The first
lemma shows that given η ∈ P (U) we have E(ιX ⊗ η) = E(ιX ⊗ E(η)), while the second shows
that E(ιX ⊗ η) = ηX . Since E(ιX ⊗ E(η)) = ιX ⊗ E(η), we therefore see that η coincides with
E(η) ∈ C (U).
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Corollary 4.12 is more or less known: in view of Proposition 3.8, for measures considered in [HY00]
it is equivalent to [HY00, Theorem 7.6]. For an even more restrictive class of measures the result
also follows from [LR97, Theorem 5.16].

5. Amenability of the minimal dimension function

As in the previous section, let C be a weakly amenable strict C∗-tensor category. We defined the
dimension function dCmin on C as the infimum of dimension functions under all possible embeddings
of C into rigid C∗-tensor categories, and showed that it is indeed a dimension function realized by
the Poisson boundary of C with respect to any ergodic measure. The goal of this section is to prove
the following.

Theorem 5.1. The dimension function dCmin is amenable, that is, dCmin(U) = ‖ΓU‖ holds for every

object U in C.

We remark that already the fact that the fusion algebra of a weakly amenable C∗-tensor category
admits an amenable dimension function is nontrivial. We do not know whether this is true for
weakly amenable dimension functions on fusion algebras that are not of categorical origin. If the
fusion algebra is commutative, this is true by a result of Yamagami [Yam99].

Let µ be an ergodic probability measure µ on Irr(C) and consider the corresponding Poisson
boundary Π: C → P. By Theorem 4.1 we already know that dCmin = dPΠ. Therefore Theorem 5.1 is
equivalent to saying that dPΠ is the amenable dimension function on C.

We will use the realization of harmonic transformations as elements of N ′∩NU given in Section 3.2.
It will also be important to work with factors. Therefore we assume that in addition to being ergodic
the measure µ is generating and satisfies the assumption of Proposition 3.5 (recall that for the latter
it suffices to require µ(e) > 0). Recall once again that by Proposition 2.3 such a measure exists. We
also remind that by Corollary 4.11 the Poisson boundary does not depend on the ergodic measure,
but its realization in terms of relative commutants does. We then have the following expected (in
view of Proposition 3.10 and the discussion following it), but crucial, result.

Proposition 5.2. For every object U in C, we have dP(U) = [NU : N ]
1/2
0 , where [NU : N ]0 is the

minimal index of the subfactor N ⊂ NU .

Before we turn to the proof, recall the construction of NU . Consider V =
⊕

s∈suppµUs. We will
work with V as with a well-defined object. If suppµ is infinite, to be rigorous, in what follows we
have to replace V by finite sums of objects Us, s ∈ suppµ, and then pass to the limit, but we will
omit this repetitive simple argument. With this understanding, NU is the inductive limit of the

algebras N
(n)
U = C(V ⊗n ⊗ U) equipped with the faithful states ω

(n)
U .

Given another object U ′, the partial trace ι ⊗ trU defines, for each n, a conditional expectation

N
(n)
U ′⊗U → N

(n)
U ′ which preserves the state ω

(n)
U ′⊗U . The conditional expectation NU ′⊗U → NU ′ which

we get in the limit, is denoted by EU ′,U , or simply by EU if there is no danger of confusion. Fix a
standard solution (RU , R̄U ) of the conjugate equations for U in C.

Lemma 5.3. The index of the conditional expectation EU : NU → N equals dC(U)2, the corresponding

basic extension is NU ⊂ NU⊗Ū , with the Jones projection eU = dC(U)−1R̄U R̄
∗
U ∈ N

(0)

U⊗Ū
⊂ NU⊗Ū

and the conditional expectation EŪ : NU⊗Ū → NU .

Proof. By the abstract characterization of the basic extension [HK93, Theorem 8] it suffices to check
the following three properties: EŪ (eU ) = dC(U)−21, EŪ (xeU )eU = dC(U)−2xeU for all x ∈ NU⊗Ū ,
and eUxeU = EU (x)eU for all x ∈ NU . The first and the third properties are immediate by definition.
To prove the second, it is enough to show that for all x ∈ C(X ⊗ U ⊗ Ū) we have

dC(U)
(

(ι⊗ trŪ )(x(ιX ⊗ R̄U R̄
∗
U ))⊗ ιŪ

)

(ιX ⊗ R̄U R̄
∗
U ) = x(ιX ⊗ R̄U R̄

∗
U ).
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The left hand side equals

(ιX ⊗ ιU ⊗R∗
U ⊗ ιŪ )(x⊗ ιU ⊗ ιŪ )(ιX ⊗ R̄U R̄

∗
U ⊗ ιU ⊗ ιŪ )(ιX ⊗ ιU ⊗RU ⊗ ιŪ )(ιX ⊗ R̄U R̄

∗
U )

= (ιX ⊗ ιU ⊗R∗
U ⊗ ιŪ )(x⊗ ιU ⊗ ιŪ )(ιX ⊗ R̄U ⊗ ιU ⊗ ιŪ )(ιX ⊗ R̄U R̄

∗
U )

= (ιX ⊗ ιU ⊗R∗
U ⊗ ιŪ )(x⊗ ιU ⊗ ιŪ )(ιX ⊗ R̄U ⊗ R̄U )(ιX ⊗ R̄∗

U )

= x(ιX ⊗ R̄U R̄
∗
U ),

which proves the lemma. �

This lemma implies in particular that there exists a unique representation

π : NU⊗Ū → B(L2(NU , ωU ))

that extends the representation of NU and is such that π(eU ) is the projection onto the closure of
ΛωU

(N ) ⊂ L2(NU , ωU ).

Lemma 5.4. The representation π : NU⊗Ū → B(L2(NU , ωU )) is given by

π(x)ΛωU
(y) = ΛωU

((ι⊗R∗
U )(x⊗ ιU )(y ⊗ ιŪ ⊗ ιU )(ι⊗ R̄U ⊗ ιU ))

for x ∈
⋃

nN
(n)

U⊗Ū
and y ∈

⋃

nN
(n)
U .

Proof. Let us write π̃(x) for the operators in the formulation of the lemma. The origin of the formula
for π̃ is the Frobenius reciprocity isomorphism

C(V ⊗n ⊗ U) ∼= C(V ⊗n, V ⊗n ⊗ U ⊗ Ū), T 7→ (T ⊗ ιŪ )(ιV ⊗n ⊗ R̄U ),

with inverse S 7→ (ι ⊗ R∗
U )(S ⊗ ιU ). Up to scalar factors these isomorphisms become unitary once

we equip both spaces with scalar products defined by the states ω
(n)
U and ω

(n)
1

, respectively. The
algebra C(V ⊗n ⊗ U ⊗ Ū) is represented on C(V ⊗n, V ⊗n ⊗ U ⊗ Ū) by the operators of multiplication
on the left. Being written on the space C(V ⊗n ⊗ U), this representation is exactly π̃. Therefore π̃

certainly defines a representation of the ∗-algebra
⋃

nN
(n)

U⊗Ū
on the dense subspace

⋃

n L
2(N

(n)
U , ω

(n)
U )

of L2(NU , ωU ). In order to see that this representation extends to a normal representation of NU⊗Ū ,
observe that the vector ΛωU

(1) is cyclic and

(π̃(x)ΛωU
(1),ΛωU

(1)) = dC(U)2ωU⊗Ū (eUxeU ),

since for every z ∈ C(U ⊗ Ū) we have

trU ((ιU ⊗R∗
U )(z ⊗ ιU )(R̄U ⊗ ιU )) = dC(U)−1R̄∗

U (ιU ⊗R∗
U ⊗ ιŪ )(z ⊗ ιU ⊗ ιŪ )(R̄U ⊗ ιU ⊗ ιŪ )R̄U

= dC(U)−1R̄∗
UzR̄U = dC(U) trU⊗Ū (zR̄

∗
U R̄U )

= dC(U)2 trU⊗Ū(zeU ) = dC(U)2 trU⊗Ū(eUzeU ).

It is clear that π̃(x)ΛωU
(y) = ΛωU

(xy) for x ∈
⋃

nN
(n)
U , so π̃ extends the representation of NU

on L2(NU , ωU ). Therefore to prove that π = π̃ it remains to show that π̃(eU ) is the projection onto

ΛωU
(N ), that is,

π̃(eU )ΛωU
(y) = ΛωU

(EU (y)) for y ∈
⋃

n

N
(n)
U .

But this is obvious, as (ιU ⊗R∗
U )(R̄U R̄

∗
U ⊗ ιU ) = R̄∗

U ⊗ ιU . �

It is easy to describe the modular group σωU of ωU . For s∗ = (s1, . . . , sn) ∈ (suppµ)n, let us put

δs∗ =
µ(s1) · · ·µ(sn)

dC(Us1) · · · d
C(Usn)

.

Then

σ
ωU
t (x) =

(

δs′∗
δs∗

)it

x for x ∈ C(Usn ⊗ · · · ⊗ Usn ⊗ U,Us′n ⊗ · · · ⊗ Us′1 ⊗ U).
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What matters for us is that since the automorphisms σωU
t are approximately implemented by unitaries

in N , the relative commutant N ′ ∩ NU is contained in the centralizer of the state ωU .

Consider the modular conjugation J = JωU
on L2(NU , ωU ). By Lemma 5.3 and definition of the

basic extension we have
JN ′J = π(NU⊗Ū).

Therefore the map x 7→ Jx∗J defines a ∗-anti-isomorphism

N ′ ∩ NU
∼= N ′

U ∩ NU⊗Ū .

Identifying these relative commutants with P(U) and P(Ū ), respectively, we get a ∗-anti-isomorphism
P(U) ∼= P(Ū ), which we denote by η 7→ η∨.

Lemma 5.5. For every η ∈ P(U) we have

η∨ = (R∗
U ⊗ ιŪ )(ιŪ ⊗ η ⊗ ιŪ )(ιŪ ⊗ R̄U ).

Proof. Consider the element η̃ = (R∗
U ⊗ ιŪ)(ιŪ ⊗η⊗ ιŪ)(ιŪ ⊗ R̄U ). In terms of families of morphisms

this means that
η̃X = (ιX ⊗R∗

U ⊗ ιŪ )(ηX⊗Ū ⊗ ιŪ )(ιX ⊗ ιŪ ⊗ R̄U ),

or equivalently,
(ιX ⊗R∗

U )(η̃X ⊗ ιU ) = (ιX ⊗R∗
U )ηX⊗Ū . (5.1)

For every n consider the projection pn : L
2(NU , ωU ) → L2(N

(n)
U , ω

(n)
U ). Let x ∈ N ′ ∩ NU be the

element corresponding to η, and x̃ ∈ N ′
U ∩NU⊗Ū be the element corresponding to η̃. By Lemma 5.4

and the way we represent η̃ by x̃, for every y ∈ N
(n)
U we have

pnπ(x̃)ΛωU
(y) = ΛωU

((ι⊗R∗
U )(η̃V ⊗n⊗U ⊗ ιU )(y ⊗ ιŪ ⊗ ιU )(ι⊗ R̄U ⊗ ιU )). (5.2)

On the other hand, since x is contained in the centralizer of ωU , we have

pnJx
∗JΛωU

(y) = pnΛωU
(yx) = ΛωU

(yηV ⊗n)

= ΛωU
((ι⊗R∗

U )(y ⊗ ιŪ ⊗ ιU )(ι⊗ R̄U ⊗ ιU )ηV ⊗n)

= ΛωU
((ι⊗R∗

U )ηV ⊗n⊗U⊗Ū (y ⊗ ιŪ ⊗ ιU )(ι⊗ R̄U ⊗ ιU )).

By (5.1) the last expression equals (5.2), so

pnπ(x̃)ΛωU
(y) = pnJx

∗JΛωU
(y).

Since this is true for all n and y ∈ N
(n)
U , we conclude that π(x̃) = Jx∗J . �

Proof of Proposition 5.2. The operator valued weights from NU to N are parametrized by the positive
elements a ∈ N ′ ∩ NU by a 7→ Ea, where Ea is defined by Ea(x) = EU (a

1/2xa1/2). The map Ea is
a conditional expectation if and only if the normalization condition EU (a) = 1 holds. Moreover, by

the proof of [Hia88, Theorem 1], (Ea)−1 is given by x 7→ E−1
U (a−1/2xa−1/2). Therefore we have

[NU : N ]0 = min
a∈N ′∩NU ,

a>0

EU (a)E
−1
U (a−1) = min

a∈N ′∩NU ,
a>0

dC(U)2EU (a)ẼU (Ja
−1J),

where ẼU = dC(U)−2JE−1
U (J · J)J : π(NU⊗Ū ) → NU .

If a ∈ N ′ ∩NU corresponds to η ∈ P(U), we have

EU (a) = dC(U)−1R̄U (η ⊗ ι)R̄∗
U

By Lemma 5.3 we have ẼU (π(x)) = π(EŪ (x)) for x ∈ NU⊗Ū . Hence by Lemma 5.5 we get

ẼU (Ja
−1J) = dC(U)−1R∗

U ((η
−1)∨ ⊗ ι)RU

= dC(U)−1R∗
U (R

∗
U ⊗ ιŪ ⊗ ιU )(ιŪ ⊗ η−1 ⊗ ιŪ ⊗ ιU )(ιŪ ⊗ R̄U ⊗ ιU )RU

= dC(U)−1R∗
U (ιŪ ⊗ η−1)RU .
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We thus conclude that [NU : N ]0 is the minimum of the products of the scalars

R̄U (η ⊗ ι)R̄∗
U and R∗

U (ι⊗ η−1)RU

over all positive invertible η ∈ P(U). This is exactly dP(U)2. �

Proof of Theorem 5.1. The estimate ‖ΓU‖ ≤ dP (U) comes for free. We thus need to prove the
opposite inequality.

Let EP
U : NU → N be the minimal conditional expectation. Let us first assume that NU (and

hence N ) is infinite. Then by Proposition 5.2 and [Hia91, Corollary 7.2] we have the equalities

2 log dP(U) = log IndEP
U = HEP

U
(NU |N ).

Let ǫ > 0 and ψ be a normal state on NU such that

Hψ(NU |N ) ≥ 2 log dP (U)− ǫ.

When A is a finite subset of suppµ, consider the projection pA =
⊕

s∈A ιs in N (1). If A1, . . . , An

are finite subsets of suppµ, then pA∗
= pAn ⊗ · · · ⊗ pA1 is a projection in N (n), and we consider the

corresponding corner

NA∗

U = pA∗
N

(n)
U pA∗

=
⊕

si,s′i∈Ai

i=1,...,n

C(Usn ⊗ · · · ⊗ Us1 ⊗ U,Us′n ⊗ · · · ⊗ Us′1 ⊗ U)

in N
(n)
U and the similarly defined corner NA∗ in N (n). When ψ(pA∗

) 6= 0, define also a state ψA∗

on NA∗

U by ψA∗
= ψ(pA∗

)−1ψ(pA∗
· pA∗

). By the lower semicontinuity of relative entropy, we can
find n and finite sets A1, . . . , An such that

HψA∗
(NA∗

U |NA∗) ≥ Hψ(NU |N )− ǫ.

By Proposition A.3, the inclusion matrix ΓA∗,U of NA∗ ⊂ NA∗

U satisfies

2 log ‖ΓA∗,U‖ ≥ HψA∗
(NA∗

U |NA∗).

Therefore we have the estimate

log ‖ΓA∗,U‖ ≥ log dP(U)− ǫ.

But the transpose of the matrix ΓA∗,U is obtained from ΓU by considering only columns that corre-
spond to the simple objects appearing in the decomposition of Usn ⊗ · · · ⊗ Us1 for si ∈ Ai, and then
removing the zero rows. Hence

‖ΓU‖ ≥ ‖ΓA∗,U‖.

Since ǫ was arbitrary, we thus get ‖ΓU‖ ≥ dP(U).

If NU is finite, we consider the inclusion N ⊗̄ M ⊂ NU ⊗̄ M for some infinite hyperfinite von
Neumann algebra M with a prescribed strongly operator dense increasing sequence Mnk

(C) ⊂ M ;
for example, we could take a Powers factor Rλ with the usual copies of M2(C)

⊗k in it. Then the
minimal conditional expectation NU ⊗̄M → N ⊗̄M is given by EP

U ⊗ ι, and its index equals that of

EP
U . Since the inclusion matrix of NA∗⊗Mnk

(C) ⊂ NA∗

U ⊗Mnk
(C) is the same as that of NA∗ ⊂ NA∗

U ,
we can then argue in the same way as above. �

Since amenability of dimension functions is preserved under homomorphisms of fusion algebras by
[HI98, Proposition 7.4], we get the following corollary.

Corollary 5.6. Let Π: C → P be the Poisson boundary of a rigid C∗-tensor category with respect to

an ergodic probability measure on Irr(C). Then P is an amenable C∗-tensor category.

Combining this with Corollary 4.12 we get the following categorical version of the Furstenberg–
Kaimanovich–Vershik–Rosenblatt characterization of amenability.
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Theorem 5.7. A rigid C∗-tensor category C is amenable if and only if there is a probability measure µ

on Irr(C) such that the Poisson boundary of (C, µ) is trivial. Furthermore, the Poisson boundary of

an amenable C∗-tensor category is trivial for any ergodic probability measure.

Therefore we can say that while weak amenability can be detected by studying classical Poisson
boundaries of random walks on the fusion algebra, for amenability we have to consider noncommu-
tative, or categorical, random walks. We can also say that nontriviality of the Poisson boundary
Π: C → P with respect to an ergodic measure shows how far a weakly amenable category C is from
being amenable.

6. Amenable functors

In this section we will give another characterization of amenability in terms of invariant means. We
know that on the level of fusion algebras existence of invariant means is not enough for amenability.
Therefore we need a more refined categorical notion.

Definition 6.1. Let C be a C∗-tensor category and F : C → A be a unitary tensor functor into a
C∗-tensor category A with possibly nonsimple unit. A right invariant mean for F is a collection
m = (mU,V )U,V of linear maps

mU,V : Ĉ(U, V ) → A(F (U), F (V ))

that are natural in U and V and satisfy the following properties:

(i) the maps mU = mU,U : Ĉ(U) → A (F (U)) are unital and positive;

(ii) for any η ∈ Ĉ(U, V ) and any object Y in C we have

mU⊗Y,V⊗Y (η ⊗ ιY ) = F2(mU,V (η) ⊗ ιF (Y ));

(iii) for any η ∈ Ĉ(U, V ) and any object Y in C we have

mY⊗U,Y⊗V (ιY ⊗ η) = F2(ιF (Y ) ⊗mU,V (η)).

If a right invariant mean for F exists, we say that F is amenable.

Note that naturality ofmU,V and property (i) in the above definition easily imply that the maps mU

are completely positive, and mU,V (η)
∗ = mV,U(η

∗). As usual, we omit subscripts and simply write
m instead of mU,V when there is no confusion.

The relevance of this notion for categorical random walks is explained by the following simple
observation, similar to the easy part of Proposition 2.3.

Proposition 6.2. Let C be a rigid C∗-tensor category, µ be a probability measure on Irr(C), and

Π: C → P be the Poisson boundary of (C, µ). Then the functor Π: C → P is amenable.

Proof. Fix a free ultrafilter ω on N, and then define

m(η)X = lim
n→ω

1

n

n−1
∑

k=0

P kµ (η)X .

All the required properties of a right invariant mean follow immediately by definition. For example,
property (iii) in the definition follows from the identity PX(ιY ⊗ η) = ιY ⊗ PX(η). �

For functors into categories with nonsimple units we do not have much insight into the meaning
of amenability. But if we fall back to our standard assumption of simplicity of tensor units, we have
the following result.

Theorem 6.3. Let A and C be rigid C∗-tensor categories with simple units and F : C → A be a

unitary tensor functor. Then F is amenable if and only if C is weakly amenable and dAF is the

amenable dimension function on C.
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Let F : C → A be an amenable unitary tensor functor with a right invariant mean m. For simplicity
we assume as usual that C and A are strict and F is an embedding functor. Let us start by showing
that existence of F implies weak amenability.

Lemma 6.4. The linear functional m1 : Ĉ(1) ∼= ℓ∞(Irr(C)) → A (1) ∼= C is a right invariant mean

on the fusion algebra of C equipped with the dimension function dC.

Proof. In addition to the operators PX on Ĉ(1) we normally use, we also have the operators QX
given by

QX(η)Y = dC(X)−1(ιY ⊗ trX)(ηY ⊗X) = dC(X)−1(ιY ⊗ R̄∗
X)(ηY ⊗X ⊗ ιX̄)(ιY ⊗ R̄X),

where (RX , R̄X) is a standard solution of the conjugate equations for X in C. Since

ηY⊗X ⊗ ιX̄ = (ιX ⊗ η ⊗ ιX̄)Y ,

we can write this as
QX(η) = dC(X)−1R̄∗

X(ιX ⊗ η ⊗ ιX̄)R̄X .

Applying the invariant mean we get

m(QX(η)) = dC(X)−1R̄∗
X(ιX ⊗m(η)⊗ ιX̄)R̄X = m(η).

Thus m1 is a right invariant mean on ℓ∞(Irr(C)). �

Since C is weakly amenable, we can choose an ergodic probability measure and consider the cor-
responding Poisson boundary Π: C → P. We then have the following result, which has its origin in
Tomatsu’s considerations in [Tom07, Section 4].

Lemma 6.5. For every object U in C the map ΛU : P (U) → A (U) obtained by restricting mU

to P (U) is multiplicative.

Proof. Recall that in Section 4 we constructed faithful unital completely positive maps ΘU : A (U) →
P (U), ΘU(T )X = EX⊗U (ι ⊗ T ). By faithfulness of ΘU , the multiplicative domain of ΘUΛU is
contained in that of ΛU . Therefore in order to prove the lemma it suffices to show that ΘUΛU is the
identity map.

Let us show first that for any η ∈ P (U) we have ΘΛ(η)1 = η1, that is,

E(m(η)) = η1.

Take S ∈ C (U). Then we have

trU (SE(m(η))) = ψU (m(Sη)) = dC(U)−1R̄∗
U (m(Sη)⊗ ι)R̄U = dC(U)−1m(R̄∗

U (Sη ⊗ ι)R̄U ).

Since the element R̄∗
U (Sη ⊗ ι)R̄U lies in P (1), it is scalar. This scalar must be equal to

R̄∗
U (Sη1 ⊗ ι)R̄U = trU (Sη1).

Hence we obtain
trU (SE(m(η))) = trU (Sη1),

and since this is true for all S, we get ΘΛ(η)1 = η1.
Now, for any object X in C, we use the above equality for ιX ⊗ η instead of η and get

ΘΛ(η)X = E(ιX ⊗m(η)) = E(m(ιX ⊗ η)) = ΘΛ(ιX ⊗ η)1 = (ιX ⊗ η)1 = ηX ,

which implies the desired equality ΘΛ(η) = η. �

Proof of Theorem 6.3. Consider an amenable unitary tensor functor F : C → A. By Lemma 6.4 we
know that C is weakly amenable. By Lemma 6.5 and the definition of invariant means, any right
invariant mean for F defines a strict unitary tensor functor Λ: P̃ → A, where P̃ ⊂ P is the full
subcategory consisting of objects in C. Extend this functor to a unitary tensor functor Λ: P → A.
Then dA(U) ≤ dP (U) for any object U in C, but since by Theorem 5.1 the dimension function dPΠ
on C is amenable, we conclude that dA(U) = dP(U) = ‖ΓU‖.
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Conversely, assume C is weakly amenable and F : C → A is a unitary tensor functor such that
dAF is the amenable dimension function. Then by Theorem 4.1 there exists a unitary tensor functor
Λ: P → A such that ΛΠ ∼= F . By Proposition 6.2 there exists a right invariant mean for the functor
Π: C → P. Composing it with the functor Λ we get a right invariant mean for ΛΠ, from which we
get a right invariant mean for F . �

Applying Theorem 6.3 to the identity functor we get a characterization of amenability of tensor
categories in terms of invariant means.

Theorem 6.6. A rigid C∗-tensor category C is amenable if and only if the identity functor C → C is

amenable.

Note that by the proof of Theorem 6.3, given an amenable C∗-tensor category C, we can construct
a right invariant mean for the identity functor as follows. Choose an ergodic probability measure µ
on Irr(C) and a free ultrafilter ω on N. Then we can define

m(η) = lim
n→ω

1

n

n−1
∑

k=0

P kµ (η)1.

On the other hand, the construction of a right invariant mean for a functor F : C → A such that C is
weakly amenable, but not amenable, and dAF is the amenable dimension function, is more elusive,
as it relies on the existence of a factorization of F through the Poisson boundary C → P.

7. Amenability of quantum groups and subfactors

In this section we apply some of our results to categories considered in the theory of compact
quantum groups and in subfactor theory.

7.1. Quantum groups. Let G be a compact quantum group. We follow the conventions of [NT13].
In particular, the algebra C[G] of regular functions on G is a Hopf ∗-algebra, and by a finite di-
mensional unitary representation of G we mean a unitary element U ∈ B(HU ) ⊗ C[G], where HU

is a finite dimensional Hilbert space, such that (ι ⊗ ∆)(U) = U12U13. Finite dimensional unitary
representations form a rigid C∗-tensor category RepG, with the tensor product of U and V defined
by U13V23 ∈ B(HU) ⊗ B(HV ) ⊗ C[G]. The categorical dimension of U is equal to the quantum
dimension, given by the trace Tr(ρU ) of the Woronowicz character.

Recall that G is called coamenable if ‖ΓU‖ = dimHU for every finite dimensional unitary repre-
sentation U . There are a number of equivalent conditions, but using this definition as our starting
point we immediately get that

RepG is amenable ⇔ G is coamenable, and of Kac type.

Coamenability of G is known to be equivalent to amenability of the dual discrete quantum group Ĝ.
Recall that the algebra of bounded functions on Ĝ is defined by ℓ∞(Ĝ) = ℓ∞-

⊕

s∈Irr(G)B(Hs), and

the coproduct ∆̂ : ℓ∞(Ĝ) → ℓ∞(Ĝ)⊗̄ℓ∞(Ĝ) is defined by duality from the product on C[G], if we view

ℓ∞(Ĝ) as a subspace of C[G]∗ by associating to a functional ω ∈ C[G]∗ the collection of operators

πs(ω) = (ι ⊗ ω)(Us) ∈ B(Hs), s ∈ Irr(G). The quantum group Ĝ is called amenable, if there exists

a right invariant mean on Ĝ, that is, a state m on ℓ∞(Ĝ) such that

m(ι⊗ φ)∆̂ = φ(·)1 for any normal linear functional φ on ℓ∞(Ĝ).

The restriction of such an invariant mean to Z(ℓ∞(Ĝ)) ∼= ℓ∞(Irr(G)) defines a right invariant mean
on the fusion algebra of RepG equipped with the quantum dimension function. Therefore

G is coamenable ⇔ Ĝ is amenable ⇒ RepG is weakly amenable.
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Among various known characterizations of coamenability the implication (Ĝ is amenable ⇒ G

is coamenable) is probably the most nontrivial. This was proved independently in [Tom06, Theo-
rem 3.8] and in [BCT05, Corollary 9.6]. We will show now that our results on amenable functors are
generalizations of this.

Theorem 7.1. If Ĝ is amenable, then the forgetful functor F : RepG → Hilbf is amenable, and

therefore G is coamenable.

Proof. We will only consider the case when Irr(G) is at most countable, so that RepG satisfies our
standing assumptions, the general case can be easily deduced from this.

As discussed in [NY14, Section 4.1], the space Ĉ(U, V ) can be identified with the space of elements

η ∈ ℓ∞(Ĝ)⊗B(HU ,HV ) such that V ∗
31(α⊗ ι)(η)U31 = 1⊗ η,

where α : ℓ∞(Ĝ) → L∞(G) ⊗̄ ℓ∞(Ĝ) is the left adjoint action of G. Under this identification we have

ιY ⊗ η = (ι⊗ πY ⊗ ι)(∆̂ ⊗ ι)(η),

where πY : ℓ∞(Ĝ) → B(HY ) is the representation defined by Y , while the element η ⊗ ιY has the

obvious meaning. From this we immediately see that if m is a right invariant mean on Ĝ, then the
maps m ⊗ ι : ℓ∞(Ĝ) ⊗ B(HU ,HV ) → B(HU ,HV ) define a right invariant mean for F . Thus F is
amenable. By Theorem 6.3 we conclude that ‖ΓU‖ = dimF (U) = dimHU for every U , so G is
coamenable. �

As for the Poisson boundary of RepG, from the universal property of the Poisson boundary it
is easy to deduce that if G is coamenable (and so RepG is weakly amenable), then the Poisson
boundary of RepG with respect to any ergodic measure is the forgetful functor RepG → RepK,
where K ⊂ G is the maximal quantum subgroup of G of Kac type. This will be discussed in detail
in [NY16].

7.2. Subfactor theory. Let N ⊂ M be a finite index inclusion of II1-factors. Denote by τ the
tracial state on M , and by E the trace-preserving conditional expectation M → N . We denote
[M : N ] = IndE, and the minimal index of N ⊂ M by [M : N ]0. Put M−1 = N , M0 = M , and
choose a tunnel

· · · ⊂M−3 ⊂M−2 ⊂M−1 ⊂M0,

so that M−n+1 is the basic extension of M−n−1 ⊂ M−n for all n ≥ 1. For every j ≤ 1 denote by
M st
j ⊂ Mj the s∗-closure of

⋃

n≥1(M
′
j−n ∩Mj) with respect to the restriction of τ . The inclusion

N st ⊂M st of finite von Neumann algebras is called a standard model of N ⊂M [Pop94].
Let BN(M) be the full C∗-tensor subcategory of the category HilbN of Hilbert bimodules over N

generated by L2(M). Let M1 be the basic extension of N ⊂M , so that EndN-N(L
2(M)) ∼= N ′∩M1.

The embedding N →M1 induces a morphism L2(N) → L2(M)⊗N L
2(M) in BN (M), which defines

a solution of the conjugate equations for L2(M) up to a scalar normalization. Moreover, it can
be shown (compare with Proposition 5.2) that the categorical trace corresponds to the minimal

conditional expectation M1 → N , and consequently d(L2(M)) = [M1 : N ]
1/2
0 = [M : N ]0. It is also

known, see Proposition B.1, that the inductive system of the algebras EndN-N (L
2(M)⊗Nn), with

respect to the embeddings T 7→ ιL2(M) ⊗ T , can be identified with (M ′
−2n+1 ∩ M1)n≥1 in such a

way that the shift endomorphism T 7→ T ⊗ ιL2(M) of
⋃

n≥1 EndN-N(L
2(M)⊗Nn) corresponds to the

endomorphism γ−1 of
⋃

n≥1(M
′
−2n+1 ∩M1), where γ is the canonical shift.

The normalized categorical trace on EndN-N (L
2(M)) defines a probability measure µst on the set

of isomorphism classes of simple submodules of L2(M). More explicitly, it can be shown that the
value of the normalized categorical trace on any minimal projection p ∈ N ′ ∩M1 equals

(τ(p)τ ′(p))1/2
[M : N ]

[M : N ]0
,
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where τ ′ is the unique tracial state on N ′ ⊂ B(L2(M)). See [Hia88, Section 2] and [Pop94, Sec-
tion 1.3.6] for related results. Then the measure µst is defined by

µst([pL
2(M)]) = mp(τ(p)τ

′(p))1/2
[M : N ]

[M : N ]0
,

where mp is the multiplicity of pL2(M) in L2(M).
Recall that an inclusion for which [M : N ] = [M : N ]0, is called extremal. From the above

considerations, unless N ⊂M is extremal, we see that the categorical trace defines a tracial state of
⋃

n≥1(M
′
−2n+1 ∩M1) that is different from τ .

Let us first review what our results say about (BN (M), µst) for extremal inclusions. From the iden-
tification of

⋃

n≥1 EndN-N (L
2(M)⊗Nn) with

⋃

n≥1(M
′
−2n+1∩M1) we conclude that the von Neumann

algebra NL2(M) constructed in Section 3.2 is isomorphic to M st
1 . More precisely, we take V = L2(M)

for the construction of NL2(M), so unless N ′ ∩M1 is abelian, we apply the modification of our con-
struction of the algebras NU discussed in Remark 3.7. The subalgebra N ⊂ NL2(M) corresponds then

to N st = γ−1(M st
1 ) ⊂M st

1 . In particular, N st is a factor if and only if µst is ergodic. Proposition 3.3
translates now into the following statement, which is closely related to a result of Izumi [Izu04].

Proposition 7.2. Let Π: BN (M) → P be the Poisson boundary of (BN (M), µst). Then, assuming

that N ⊂M is extremal, we have

P(L2(M)) ∼= (N st)′ ∩M st
1 .

More generally, by the same argument we have P(L2(M)⊗Nn) ∼= (M st
−2n+1)

′ ∩M st
1 . Since L2(M)

contains a copy of the unit object induced by the inclusion N →M , we have µst(e) > 0. Hence the
supports of µnst are increasing, and therefore the isomorphisms P(L2(M)⊗Nn) ∼= (M st

−2n+1)
′ ∩M st

1

completely describe the morphisms in the category P. In fact, recalling thatM st
1 is the basic extension

of N st ⊂M st, see [Pop94, Section 1.4.3], we may conclude that P can be identified with BNst(M st).
We leave it to the interested reader to find a good description of the functor Π: BN (M) → BNst(M st).

Consider the principal graph ΓN,M of N ⊂ M . Then ΓL2(M) can be identified with ΓM,M1Γ
t
M,M1

.

Recall also that we have the equality ‖ΓN,M‖ = ‖ΓM,M1‖ by [Pop94, Section 1.3.5].
Turning now to Theorem 5.1 and Proposition 5.2, we get the following result (again, to be more

precise we use the modification of the construction of NU described in Remark 3.7).

Theorem 7.3. Assume N ⊂M is extremal and N st is a factor. Then we have

‖ΓN,M‖4 = [M st
1 : N st]0.

If M st is also a factor, this can of course be formulated as ‖ΓN,M‖2 = [M st : N st]0.

Applying Theorem 5.7 we get the following result, which recovers part of Popa’s characterization
of extremal subfactors with strongly amenable standard invariant [Pop94, Theorem 5.3.1].

Theorem 7.4. Assume N ⊂M is extremal. The following conditions are equivalent:

(i) N st is a factor and ‖ΓN,M‖2 = [M : N ]0;
(ii) (M st

−2n+1)
′ ∩M st

1 =M ′
−2n+1 ∩M1 for all n ≥ 1.

Proof. As we already observed, the condition that N st is a factor in (i) means exactly that the
measure µst is ergodic. The condition ‖ΓN,M‖2 = [M : N ]0 means that ‖ΓL2(M)‖ = d(L2(M)). Since

the module L2(M) is self-dual and generates BN (M), this condition is equivalent to amenability of
BN (M).

On the other hand, by Proposition 7.2 and its extension to the modules L2(M)⊗Nn discussed
above, condition (ii) is equivalent to triviality of the Poisson boundary of (BN (M), µst).

This shows that the equivalence of (i) and (ii) is indeed a consequence of Theorem 5.7. �
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If we write the proof of the implication (ii)⇒(i) in terms of the algebras M ′
−2n+1 ∩M1 instead of

EndN-N (L
2(M)⊗Nn), we get an argument similar to Popa’s proof based on [PP91], which was our

inspiration. On the other hand, our proof of (i)⇒(ii) seems to be very different from his arguments.

Next, let us comment on the nonextremal case. One possibility is to consider the completion of
⋃

n≥1(M
′
j−n∩Mj) with respect to the trace induced by the minimal conditional expectation (that is,

the categorical trace) instead of τ . Then all the above statements continue to hold if we replace N st

andM st by the corresponding new von Neumann algebras. Note that the inclusion N st ⊂M st defined
this way is the standard model in the conventions of [Pop95]. Then, for example, the implication
(i)⇒(ii) in Theorem 7.4 corresponds to [Pop95, Lemma 5.2].

But some results, notably Theorem 7.3, continue to hold for the inclusion N st ⊂ M st defined
with respect to τ in the nonextremal case also. The proof goes in basically the same way as in the
extremal case, by noting that the proof of the inequality ‖ΓU‖

2 ≥ [NU : N ]0 in Theorem 5.1 did
not depend on how exactly the inductive limit of the algebras C(V ⊗n ⊗U) was completed to get the
factors N ⊂ NU . Therefore we have

‖ΓN,M‖4 ≥ [M st
1 : N st]0.

The opposite inequality can be proved either by realizing that the dimension function on BNst(M st
1 )

defines a dimension function on BN (M1), or by the following string of (in)equalities:

‖ΓN,M‖4 = ‖ΓN,M1‖
2 ≤ ‖ΓNst,Mst

1
‖2 ≤ [M st

1 : N st]0,

compare with [Pop94, p. 235]. We remark that from this one can easily obtain the implication
(ii)⇒(vii) in [Pop94, Theorem 5.3.2] promised in [Pop94].

Appendix A. Estimating relative entropy

In this appendix we estimate the relative entropy for embeddings of finite dimensional C∗-algebras.

Let N ⊂M be a unital inclusion of finite dimensional C∗-algebras, {zk}k∈K be the minimal central
projections of N , and {wl}l∈L be the minimal central projections of M . Let A = (akl)k,l be the
multiplicity matrix of the inclusion N ⊂M , so that akl = 0 if zkwl = 0 and (Nzkwl)

′∩ (zkMwlzk) ∼=
Matakl(C) otherwise, and {nk}k be the dimension function of N , so Nzk ∼= Matnk

(C). The following
proposition generalizes results of Pimsner and Popa for tracial states in [PP86, Section 6].

Proposition A.1. For any state ϕ on M we have

Hϕ(M |N) ≤
∑

k,l

ϕ(zkwl) log
ϕ(zk)ϕ(wl)aklmin{akl, nk}

ϕ(zkwl)2
,

and the equality holds if ϕ is tracial.

The proof follows closely the proof for tracial states given in [NS06, Theorem 10.1.4]. The key
part is the following estimate.

Lemma A.2. For any positive linear functional ψ on M we have

−
∑

k,l

ψ(zkwl) log
ψ(wl)min{akl, nk}

ψ(zkwl)
≤ S(ψ) − S(ψ|N ) ≤

∑

k,l

ψ(zkwl) log
ψ(zk)akl
ψ(zkwl)

.

Proof. Put Mkl = zkMwlzk and Nkl = Nzkwl. For ψ(zkwl) 6= 0 consider the state

ψkl = ψ(zkwl)
−1ψ|Mkl

on Mkl. As usual in entropy theory, it is convenient to define a function η by η(t) = −t log t for
t ≥ 0. We will constantly use the obvious equality

S(ω) = ω(1)S(ω(1)−1ω) + η(ω(1))
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for positive linear functionals ω. Recall that the von Neumann entropy is defined by S(ω) =
Tr(η(Qω)).

Let us start by estimating S(ψ). We have

S(ψ) =
∑

l

S(ψ|Mwl
) =

∑

l

ψ(wl)S(ψ(wl)
−1ψ|Mwl

) +
∑

l

η(ψ(wl)).

By [NS06, Lemma 2.2.4] applied to the projections zkwl in Mwl we have

S(ψ(wl)
−1ψ|Mwl

) ≥
∑

k

S(ψ(wl)
−1ψ|Mkl

)−
∑

k

η

(

ψ(zkwl)

ψ(wl)

)

=
∑

k

ψ(zkwl)

ψ(wl)
S(ψkl).

It follows that
S(ψ) ≥

∑

k,l

ψ(zkwl)S(ψkl) +
∑

l

η(ψ(wl)). (A.1)

On the other hand, since
⊕

kMkl is a subalgebra of Mwl of full rank, by [NS06, Theorem 2.2.2(vii)]
we have

S(ψ|Mwl
) ≤

∑

k

S(ψ|Mkl
) =

∑

k

ψ(zkwl)S(ψkl) +
∑

k

η(ψ(zkwl)).

Therefore
S(ψ) ≤

∑

k,l

ψ(zkwl)S(ψkl) +
∑

k,l

η(ψ(zkwl)). (A.2)

Turning to S(ψ|N ), by [NS06, Theorem 2.2.2(ii)] we have

S(ψ|N ) =
∑

k

S(ψ|Nzk) ≤
∑

k,l

S(ψ(·wl)|Nzk) =
∑

k,l

ψ(zkwl)S(ψkl|Nkl
) +

∑

k,l

η(ψ(zkwl)). (A.3)

On the other hand, since the von Neumann entropy is concave by [NS06, Theorem 2.2.2(ii)], we
have

S(ψ|Nzk) = ψ(zk)S

(

∑

l

ψ(zkwl)

ψ(zk)
ψ(zkwl)

−1ψ(·wl)|Nzk

)

+ η(ψ(zk))

≥
∑

l

ψ(zkwl)S(ψkl|Nkl
) + η(ψ(zk)).

Therefore
S(ψ|N ) ≥

∑

k,l

ψ(zkwl)S(ψkl|Nkl
) +

∑

k

η(ψ(zk)). (A.4)

Now, by [NS06, Theorem 2.2.2(vi)] we have

|S(ψkl)− S(ψkl|Nkl
)| ≤ log akl.

This, together with (A.2) and (A.4), gives

S(ψ)− S(ψ|N ) ≤
∑

k,l

ψ(zkwl) log akl +
∑

k,l

η(ψ(zkwl))−
∑

k

η(ψ(zk)),

which is what we need as
η(ψ(zk)) = −

∑

l

ψ(zkwl) logψ(zk).

The lower bound for S(ψ) − S(ψ|N ) follows similarly from (A.1) and (A.3), if we in addition use
that

S(ψkl)− S(ψkl|Nkl
) ≥ −S(ψkl|Nkl

) ≥ − log nk,

so that
S(ψkl)− S(ψkl|Nkl

) ≥ − logmin{akl, nk}.

�
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Proof of Proposition A.1. Given a finite decomposition ϕ =
∑

i ϕi we want to obtain an upper
bound on

S(ϕ)− S(ϕ|N ) +
∑

i

(S(ϕi|N )− S(ϕi)).

By Lemma A.2 we have

S(ϕ)− S(ϕ|N ) ≤
∑

k,l

ϕ(zkwl) log
ϕ(zk)akl
ϕ(zkwl)

and
∑

i

(S(ϕi|N )− S(ϕi)) ≤
∑

i,k,l

ϕi(zkwl) log
ϕi(wl)min{akl, nk}

ϕi(zkwl)
.

Since
∑

i ϕi(zkwl) = ϕ(zkwl), using the concavity of log we get

∑

i

ϕi(zkwl) log
ϕi(wl)min{akl, nk}

ϕi(zkwl)
≤ ϕ(zkwl) log

(

∑

i

ϕi(zkwl)

ϕ(zkwl)

ϕi(wl)min{akl, nk}

ϕi(zkwl)

)

= ϕ(zkwl) log
ϕ(wl)min{akl, nk}

ϕ(zkwl)
.

Putting all this together we get the required upper bound on Hϕ(M |N). That this bound is exactly
the value ofHϕ(M |N) for tracial ϕ is proved in [PP86, Section 6], see also [NS06, Theorem 10.1.4]. �

The following result generalizes another estimate of Pimsner and Popa for tracial states, given
in [PP91, Theorem 2.6].

Proposition A.3. For any state ϕ on M we have

Hϕ(M |N) ≤ 2 log ‖A‖.

Proof. Consider the sets Ω = {(k, l) ∈ K × L | akl 6= 0} and

∆ = {ξ = (ξkl)(k,l)∈Ω | ξkl ≥ 0,
∑

k,l

ξkl = 1} ⊂ R
Ω
+.

Define a function f on R
Ω
+ by

f(ξ) =
∑

k,l

ξkl log
ξ
(1)
k ξ

(2)
l a2kl
ξ2kl

,

where ξ
(1)
k =

∑

l ξkl and ξ
(2)
l =

∑

k ξkl. By Proposition A.1 we have Hϕ(M |N) ≤ f(ξ) for ξ ∈ ∆
defined by ξkl = ϕ(zkwl). Therefore it suffices to show that f(ξ) ≤ 2 log ‖A‖ for all ξ ∈ ∆. We will
prove that this is the case for any nonzero matrix A with nonnegative real coefficients.

Let ζ ∈ ∆ be a maximum point of the function f |∆. We may assume that ζkl > 0 for all (k, l) ∈ Ω,
since otherwise we can simply modify the matrix A by letting akl = 0 for (k, l) ∈ Ω such that ζkl = 0,
which can only decrease the norm of A, since by the Perron–Frobenius theory the norm of A∗A is
the maximum of the numbers µ ≥ 0 such that A∗Aw ≥ µw for some nonzero vector w ∈ R

L
+. By

removing zero rows and columns of A we may also assume that the projection maps Ω → K and

Ω → L are surjective, so the numbers ζ
(1)
k and ζ

(2)
l are well-defined and strictly positive for all k ∈ K

and l ∈ L.
Using that

∂

∂ξkl
log ξ

(1)
i =

δik

ξ
(1)
k

and
∂

∂ξkl
log ξ

(2)
j =

δjl

ξ
(2)
l

,

we get

∂f

∂ξkl
(ζ) = log

ζ
(1)
k ζ

(2)
l a2kl
ζ2kl

.
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Since ζ is a maximum point of f |∆, the gradient of f at this point is orthogonal to ∆, so

log
ζ
(1)
k ζ

(2)
l a2kl
ζ2kl

= λ for all (k, l) ∈ Ω

for some λ ∈ R. Then f(ζ) = λ, and it remains to show that λ ≤ 2 log ‖A‖.
Put

vk = (ζ
(1)
k )1/2 and wl = (ζ

(2)
l )1/2.

Then, using that ζkl = e−λ/2aklvkwl, we get

∑

l

aklwl = eλ/2
∑

l

ζkl

vk
= eλ/2

ζ
(1)
k

vk
= eλ/2vk,

so that Aw = eλ/2v. Similarly we get A∗v = eλ/2w. We thus see that w is an eigenvector of A∗A

with eigenvalue eλ. Hence eλ ≤ ‖A‖2. �

Note that the maximum of the function f |∆ from the above proof is exactly 2 log ‖A‖. Indeed, let
w ∈ R

L
+ be an eigenvector of A∗A with eigenvalue ‖A‖2 normalized so that ‖w‖2 = 1, which exists

by the Perron–Frobenius theorem. Then letting ξkl = ‖A‖−2akl(Aw)kwl we get f(ξ) = 2 log ‖A‖.
This of course does not imply that the supremum of Hϕ(M |N) over all states ϕ equals 2 log ‖A‖,
even if nk ≥ akl, since we only know that our upper bound on Hϕ(M |N) is sharp for tracial states,
and for tracial states the numbers ϕ(zkwl) cannot be arbitrary.

Appendix B. Canonical shift on the tower of relative commutants

Let N ⊂ M be a finite index inclusion of II1 factors. Put M−1 = N and M0 = M . Iterating the
basic extension with respect to the trace-preserving conditional expectations we get the Jones tower

M−1 ⊂M0 ⊂M1 ⊂M2 ⊂ · · · .

We also choose a tunnel

· · · ⊂M−3 ⊂M−2 ⊂M−1 ⊂M0.

Let ej ∈Mj+1, j ∈ Z, be the corresponding Jones projections. Denote by τ the unique tracial state on
⋃

nMn and by Ej the τ -preserving conditional expectation
⋃

nMn → Mj. Thus, Mj+1 = MjejMj ,
meaning that Mj+1 is spanned by the elements xejy for x, y ∈ Mj, ejxej = Ej−1(x)ej for x ∈ Mj ,
and Ej(ej) = λ1, where λ = [M : N ]−1.

Consider the canonical shift γ on
⋃

j<k(M
′
j∩Mk). This is an automorphism such that γ(ej) = ej+2

and γ(M ′
j ∩Mk) = M ′

j+2 ∩Mk+2. It can be defined as follows, see, e.g., [NS06, Section 10.4]. The

representation of Mj+1 on L2(Mj) given by the definition of the basic extension extends uniquely to
a representation of

⋃

nMn such that

ej+nΛj(x) = Jjej−nJjΛj(x) = Λj(xej−n) for all n ≥ 1,

where Λj : Mj → L2(Mj) is the GNS-map and Jj is the modular conjugation. In this representation
we have Mj+n = JjM

′
j−nJj . Define a ∗-anti-automorphism γj of

⋃

i<k(M
′
i ∩Mk) by

γj(x) = Jjx
∗Jj on L2(Mj).

The canonical shift is defined by γ = γj+1γj . This definition is independent of j ∈ Z. The automor-
phism γ is completely characterized by the properties that it maps M ′

j ∩Mk into M ′
j+2 ∩Mk+2 and

satisfies

γ(x)ej+1 = λj−kej+1 . . . ekxek+1ek . . . ej+1 for x ∈M ′
j ∩Mk, j < k. (B.1)

The following proposition, which is at the origin of the classification theory of subfactors, is a
well-known result of Ocneanu.
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Proposition B.1. There is an isomorphism of the inductive system

EndN-N (L
2(M))

ι
L2(M)⊗ ·

−−−−−−→ EndN-N (L
2(M)⊗N2)

ι
L2(M)⊗·

−−−−−−→ EndN-N (L
2(M)⊗N3) → . . .

onto the system

M ′
−1 ∩M1 →M ′

−3 ∩M1 →M ′
−5 ∩M1 → . . . ,

where all the arrows are the inclusion maps, such that the shift endomorphism T 7→ T ⊗ ιL2(M) of
⋃

n≥1 EndN-N (L
2(M)⊗Nn) corresponds to the endomorphism γ−1 of

⋃

n≥1(M
′
−2n+1 ∩M1).

Despite being well-known, this is usually formulated in a weaker form, see, e.g., [Bis97, Section 4],
and it seems to be difficult to find a clear complete proof of the proposition as it is stated above in
the literature. We will therefore sketch a possible proof for the reader’s convenience.

We start by considering the N -bimodule maps

um,n : L
2(Mm)⊗N L2(Mn) → L2(Mm+n+1) (m,n ≥ 0),

um,n(Λm(x)⊗ Λn(y)) = λ−(m+1)(n+1)/2Λm+n+1(xem . . . e0em+1 . . . e1 . . . em+n . . . eny)

= λ−(m+1)(n+1)/2Λm+n+1(xem . . . em+nem−1 . . . em+n−1 . . . e0 . . . eny).

Lemma B.2. The maps um,n are unitary, and the following identities hold:

uk+m+1,n(uk,m ⊗ ιL2(Mn)) = uk,m+n+1(ιL2(Mk) ⊗ um,n). (B.2)

Proof. Using the identities

Em+n−k(em+n−k . . . em−kEm−k(x
∗x)em−k . . . em+n−k) = λn+1Em−k−1(x

∗x)

for k = 0, . . . ,m, it is easy to check that the maps um,n are isometric. Identity (B.2) is also straight-
forward. To prove surjectivity of um,n, observe first that

Mmem . . . em+nMm+n =Mm+n+1.

This can be seen by induction on n, using that

Mmem . . . em+nMm+n =Mmem . . . em+n−1Mm+n−1em+nMm+n

and Mm+nem+nMm+n =Mm+n+1. From this, in turn, by induction on m we get

Mmem . . . em+nem−1 . . . em+n−1 . . . e0 . . . enMn =Mm+n+1,

since the left hand side can be written as

Mmem . . . em+nMm−1em−1 . . . em+n−1 . . . e0 . . . enMn.

This proves surjectivity of um,n. �

By distributing parentheses in L2(M)⊗Nn, e.g., as

L2(M)⊗N (L2(M)⊗N (. . . (L2(M)⊗N L2(M)) . . . )),

and using the isomorphisms uk,m, we get an isomorphism vn : L
2(M)⊗Nn → L2(Mn−1), and hence

an isomorphism

ψn : EndN-N (L
2(M)⊗Nn) → N ′ ∩M2n−1.

By (B.2) the isomorphism vn, and hence ψn, is independent of the way we distribute parentheses
in L2(M)⊗Nn.

Lemma B.3. For any T ∈ EndN-N (L
2(M)⊗Nn) we have

ψn+1(T ⊗ ιL2(M)) = ψn(T ) and ψn+1(ιL2(M) ⊗ T ) = γ(ψn(T )).
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Proof. As vn+1 = un−1,0(vn ⊗ ι), for the first equality it suffices to show that

un−1,0 : L
2(Mn−1)⊗N L2(M) → L2(Mn)

is a left M2n−1-module map. It is clear that un−1,0 is an Mn−1-module map. Therefore it is enough
to show that un−1,0ek = ekun−1,0 for k = n− 1, . . . , 2n − 2. Consider three cases.

(i) k = n− 1. We have, for x ∈Mn−1 and y ∈M , that

un−1,0(en−1Λn−1(x)⊗ Λ(y)) = λ−n/2Λn(En−2(x)en−1 . . . e0y) = λ−n/2Λn(en−1xen−1 . . . e0y),

which is what we need.

(ii) k = n. In this case, using that enΛn−1(x) = Λn−1(xen−2), we get

un−1,0(enΛn−1(x)⊗ Λ(y)) = λ−n/2Λn(xen−2en−1 . . . e0y) = λ−n/2+1Λn(xen−2 . . . e0y).

On the other hand,

enun−1,0(Λn−1(x)⊗ Λ(y)) = λ−n/2Λn(En−1(xen−1 . . . e0y)) = λ−n/2+1Λn(xen−2 . . . e0y),

so again un−1,0en = enun−1,0.

(iii) n < k ≤ 2n − 2. Using again that ek = Jn−1e2n−k−2Jn−1 on L2(Mn−1) and ek = Jne2n−kJn
on L2(Mn), we get

un−1,0(ekΛn−1(x)⊗ Λ(y)) = λ−n/2Λn(xe2n−k−2en−1 . . . e0y)

and
ekun−1,0(Λn−1(x)⊗ Λ(y)) = λ−n/2Λn(xen−1 . . . e0ye2n−k).

As e2n−k commutes with y ∈M and

e2n−k−2en−1 . . . e0 = λen−1 . . . e2n−ke2n−k−2 . . . e0 = en−1 . . . e0e2n−k,

this gives un−1,0ek = ekun−1,0.

Turning to the second identity, as vn+1 = u0,n−1(ι⊗ vn), it suffices to show that

u0,n−1(ι⊗ x) = γ(x)u0,n−1 for x ∈ N ′ ∩M2n−1.

Since γ(x) ∈M ′
1 ∩M2n+1 commutes with M , recalling the definition of u0,n−1 we see that this boils

down to showing that wn−1x = γ(x)wn−1, where wn−1 : L
2(Mn−1) → L2(Mn) is defined by

wn−1Λn−1(y) = Λn(e0 . . . en−1y).

It is convenient to prove a stronger statement. Define a map π : M2n−1 →M2n+1 by

π(x) = λ−2ne0 . . . e2n−1xe2ne2n−1 . . . e0.

It is easy to see that π is a ∗-homomorphism. By (B.1) we also have π(x) = γ(x)e0 for x ∈ N ′∩M2n−1.
It follows that in order to prove the second part of the lemma it suffices to show that

wn−1x = π(x)wn−1 for all x ∈M2n−1.

Since π(x) = xe0 for x ∈ N , this identity holds for x ∈ N . Hence to finish the proof it is enough
to check this identity for x = ek, k = −1, . . . , 2n − 2. That is, we have to show that wn−1e−1 =
λ−1e0e−1e1e0wn−1 and wn−1ek = ek+2e0wn−1 for k = 0, . . . , 2n − 2. This is done similarly to
the first part of the proof of the lemma by considering different cases: two cases for wn−1e−1 =
λ−1e0e−1e1e0wn−1 corresponding to n = 1 and n > 1, and four cases for wn−1ek = ek+2e0wn−1

corresponding to 0 ≤ k < n− 2, k = n− 2 (n ≥ 2), k = n− 1 (n ≥ 1) and n ≤ k ≤ 2n− 2. �

Proof of Proposition B.1. It follows from Lemma B.3 that the isomorphisms

γ−(n−1)ψn : EndN-N (L
2(M)⊗Nn) →M ′

−2n+1 ∩M1

define the required isomorphism of the inductive systems. �
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