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Abstract We consider an additive regression model consisting of two compo-
nents f0 and g0, where the first component f0 is in some sense “smoother” than
the second g0. Smoothness is here described in terms of a semi-norm on the
class of regression functions. We use a penalized least squares estimator (f̂ , ĝ)
of (f0, g0) and show that the rate of convergence for f̂ is faster than the rate of
convergence for ĝ. In fact, both rates are generally as fast as in the case where
one of the two components is known. The theory is illustrated by a simulation
study. Our proofs rely on recent results from empirical process theory.
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1 Introduction

Additive modelling has a long history (Stone [1985], Hastie and Tibshirani
[1990]) and is very useful for dealing with the curse of dimensionality. Important
estimation methods for such models are for example spline smoothing (Wahba
[1990]) or iterative back fitting (Mammen et al. [1999]). Our contribution in this
paper is to show that standard spline smoothing or more generally penalized
least squares can estimate “smoother” components at a faster rate than “rough”
components. In fact, we show an oracle rate for the smoother component, which
is as fast as in the case where the rough component is known. Similarly (but
perhaps less surprisingly) the rougher component can be estimated as fast as in
the case where the smooth component is known. These results are in the same
spirit as results for semi-parametric models (Bickel et al. [1998]) saying that
the parametric part (the parameter of interest) is estimated with parametric
rate despite the presence of an infinite-dimensional nuisance parameter. We
make use of recent empirical process theory to deal with an infinite-dimensional
parameter of interest.

For simplicity we consider the additive model with two components (exten-
sions to more components can be derived essentially along the same lines).
Let (Xi, Zi)

n
i=1 be i.i.d. input variables and {Yi}ni=1 be i.i.d. real-valued output

variables. The model is

Yi = f0(Xi) + g0(Zi) + εi, i = 1, . . . , n,

where f0 ∈ F , g0 ∈ G with F and G linear function spaces. Moreover,
ε := (ε1, . . . , εn)T is a vector of i.i.d. centered noise variables, independent of
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{(Xi, Zi)}ni=1. For a vector v ∈ Rn we write ‖v‖2n := vT v/n. We study the
estimator

(f̂ , ĝ) := arg min
f,g

{
‖Y − f − g‖2n + λ2I2(f) + µ2Jq(g)

}
,

where I is a semi-norm on F , J is a semi-norm on G and λ and µ are tuning
parameters. Moreover, 1 ≤ q ≤ 2 is some fixed constant. We consider the case
where the “smoothness” induced by I is larger than the “smoothness” induced
by J . For example, when both X and Z are bounded real-valued random
variables, one may think of I as being some Sobolev norm, J being the total
variation norm and q = 1. Note that we restrict ourselves to a squared norm in
the penalty for the smoother part. A generalization here is straightforward but
technical. Also a generalization to values of q > 2 is not difficult but is omitted
to avoid complicated expressions.

We show that with an appropriate choice of the regularization parameters λ
and µ the rate of convergence for the smoother function f0 is faster than the
rate for the less smooth function g0. For each component we obtain the rate of
convergence corresponding to the situation were the other component is known.
This result is established assuming an incoherence condition between X1 and
Z1 (see Condition 2.4).

The results in this paper are related to Wahl [2014]. The latter studies an
additive two-component model and applies restricted least squares instead of
the penalized least squares used here. Another important paper on the topic
is Efromovich [2013] where adaptive rates are derived using a method includ-
ing blockwise shrinkage. Related is also the paper Müller and van de Geer
[2013] where a partial linear model is studied with the linear part being high-
dimensional. The method used there is penalized least squares with `1-penalty
on the linear part.

1.1 Organization of the paper

In the next section we outline the conditions used. Main condition is an en-
tropy condition (Condition 2.1) which describes the assumed roughness of the
functions f0 and g0. Section 3 contains the main theoretical result in Theorem
3.1. Section 4 presents a simulation study. All proofs are in Section 5.

2 Conditions

Let P be the distribution of (X,Z) and ‖ · ‖ be the L2(P )-norm. For arbitrary
positive constants R and M we let F(R,M) := {f ∈ F : ‖f‖ ≤ R, I(f) ≤M}
and G(R,M) := {g ∈ G : ‖g‖ ≤ R, J(g) ≤M}.
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Let ‖ · ‖∞ be the supremum norm. The entropy of (F(R,M), ‖ · ‖∞) is denoted
by H∞(·,F(R,M)). The entropy integral J∞(·,F(R,M)) is defined as

J∞(z,F(R,M)) := z

∫ 1

0

√
H∞(uz,F(R,M), ‖ · ‖∞)du, z > 0

which we assume to exist.

For the class G the entropyH∞(·,G(R,M)) and entropy integral J∞(·,G(R,M))
are defined similarly. We shall however use a somewhat relaxed version of
entropy and entropy integral for G. Let An be the set of all subsets of cardinality
n within the support of Z1 (equal points are allowed). For An ∈ An and g a
real-valued function on this support we let

‖g‖An,∞ := max
z∈An

|g(z)|.

The entropy of the class (G(R,M), ‖·‖An) endowed with ‖·‖An-norm is denoted
by HAn(·,G(R,M)). The uniform entropy is

Hn(·,G(R,M)) := sup
An∈An

HAn(·,G(R,M)).

We furthermore define the entropy integral

Jn(z,G(R,M)) := z

∫ 1

0

√
Hn(uz,G(R,M))du, z > 0 (1)

assuming again it exists. Note that Hn(·,G(R,M)) ≤ H∞(·,G(R,M)) and
consequently Jn(·,G(R,M)) ≤ J∞(·,G(R,M)).

We fix the “roughness indices” 0 < α < β < 1 and assume the following bounds
on the entropy integrals for F(R,M) and G(R,M). The reason for the more
stringent version of entropy (or entropy integral) for F(R,M) is apparent from
Lemma 5.3 where we consider for f ∈ F(R,M) conditional versions of f(X1)
given Z1.
Condition 2.1. For R ≤M and some constants AI ≥ 1 and AJ ≥ 1, it holds
that

J∞(z,F(R,M)) ≤ AIMαz1−α, z > 0,

and
Jn(z,G(R,M)) ≤ AJMβz1−β, z > 0.

As an illustration, suppose that X1 ∈ [0, 1] and I2(f) =
∫
|f (k)(x)|2dx, where

f (k) denotes the k-th derivative of f . Then α = 1/(2k) and the constant AI
depends only on the smallest eigenvalue of the matrix IEψT (X1)ψ(X1) where
ψ(X1) = (1, X1, . . . , X

k−1
1 ) (see e.g. Birman and Solomjak [1967]). Similar

bounds hold for a general class of Besov spaces, see Birgé and Massart [2000].

We assume sup{‖f‖∞ : f ∈ F(R,M)} is bounded by a constant proportional
to M and similarly for G(R,M). Without loss of generality we assume the
proportionality constant to be equal to 1.
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Condition 2.2. For some constant B ≥ 1 and all M > 0 and any R ≤ M/B
it holds that

sup
f∈F(R,M)

‖f‖∞ ≤M,

and
sup

g∈G(R,M)
‖g‖∞ ≤M.

For a sub-Gaussian random variable Z ∈ R and Ψ(z) := exp[|z|2]− 1, we define
the Orlicz norm

‖Z‖Ψ := inf{L > 0 : IEΨ(Z/L) < 1}.

We will assume that the noise is sub-Gaussian. Extension to sub-exponential
noise is straightforward but omitted to avoid technical digressions.
Condition 2.3. The error ε1 is independent of (X1, Z1) and satisfies for some
constant Kε ≥ 1

‖ε1‖Ψ ≤ Kε.

Recall that P denotes the distribution of (X,Z). Let p := dP/dν be the density
of P with respect to a dominating product measure ν := ν1× ν2 with marginal
densities p1 and p2. We define

r(x, z) :=
p(x, z)

p1(x)p2(z)
.

We let

γ2 :=

∫
(r − 1)2p1p2dν

(assumed to exist). Note that γ is the χ2-“distance” between the densities p
and p1p2.

We impose the following incoherence condition.
Condition 2.4. It holds that γ < 1.

Define
fP := E(f(X1)|Z1 = ·), fA := f − fP.

The subscript “P” stands for “projection”, and “A” stands for “anti-projection”.
Note that fP is a function with the support of Z1 as domain. We assume this
function to be smooth.
Condition 2.5. For some constant Γ it holds that

J(fP) ≤ Γ‖f‖.

To illustrate this condition, suppose that Z1 is real-valued and J(g) =
∫
|g(m)(z)|dz.

Suppose moreover that

sup
x

∫
|p(m)(x|z)|dz ≤ Γ,
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where p(m)(x|z) := dm

dzm (p(x, z)/p2(z)). Then, interchanging differentiation and
integration (and assuming this is allowed)

J(fP) =

∫ ∣∣∣∣∫ f(x)p(m)(x|z)dν1(x)

∣∣∣∣dz ≤ Γ

∫
|f(x)|dν1(x) ≤ ‖f‖.

3 Main result

We define
τR(f, g) := ‖f + g‖+ λI(f) + (µ/R)

2−q
q µJ(g). (2)

We moreover let
τ2
I (f) := ‖f‖2 + λ2I2(f). (3)

Theorem 3.1. Assume Conditions 2.1, 2.2, 2.3, 2.4 and 2.5. Suppose that

for some 0 < δ < 1, max{A2
I , A

2
J}/n ≤ n−δ and (A2

I/n)
1

1+α ≤ (A2
J/n)

1
1+β n−δ.

There exist a universal constant C and constants c, c0, c1, c2 depending on α,
β, γ, δ, B, Γ, q and Kε as well as on I(f0) and J(g0) such that for n ≥ c0 and

√
nλ1+α = c1AI ,

√
nµ1+β = c1AJ ,

R = c2µ, RI = c2λ,

one has

IP

(
τR(f̂ − f0, ĝ − g0) ≤ R, τI(f̂ − f0) ≤ RI

)
≥ 1− C exp[−nλ2/c].

The proof is given in Section 5.

Theorem 3.1 does not provide the explicit dependence on the constants. This
dependence can in principle be deduced from Lemmas 5.6 and 5.7 albeit that
the expressions are somewhat complicated. In an asymptotic formulation, con-
sidering α, β, γ, δ, B, Γ, q, Kε as well as I(f0) and J(g0), as fixed, we get for

λ2 � A
2

1+α

I n−
1

1+α and µ2 � A
2

1+β

J n
− 1

1+β , the rates

‖f̂ − f0‖2 = OIP(A
2

1+α

I n−
1

1+α ), ‖ĝ − g0‖2 = OIP(A
2

1+β

J n
− 1

1+β ),

I(f̂) = OIP(1), J(ĝ) = OIP(1).

Example 3.1. Suppose that X1 and Z1 take values in the interval [0, 1] and
that I2(f) =

∫
|f (k)(x)|2dx and J2(g) =

∫
|g(m)(z)|2dz with m < k. Then with

q = 2 the estimator is a spline and easy to calculate as the loss function as well
as the penalties are quadratic forms. The rates of convergence are ‖f̂ − f0‖ =

OIP(n−
k

2k+1 ) and ‖ĝ − g0‖ = OIP(n−
m

2m+1 ). See Section 4 for some numerical
results.

5



Example 3.2. Suppose that X1 takes its values in [0, 1] and Z1 is real-valued.
Let I2(f) :=

∫
|f (k)(x)|2dx with k > 1 and J(g) := TV(g) be the total variation

of g. Then with q = 1 the estimator is again easy to calculate (the problem
being formally equivalent to a Lasso problem). The rates of convergence are

‖f̂ −f0‖ = OIP(n−
k

2k+1 ) and ‖ĝ− g0‖ = OIP(n−
1
3 log

1
3 n). Indeed, Condition 2.1

for the class G now holds with β = 1/2 and AJ �
√

log n. This follows e.g. from
Lemma 2.2 in van de Geer [2000]. We note that once we have this fast rate for
‖f̂ − f0‖, the (log n)-term in the rate for ‖ĝ − g0‖ can be easily removed using
instead of the uniform entropy Hn the ‖ · ‖n-entropy bound from Birman and
Solomjak [1967] with ‖ · ‖n-being the empirical L2-norm (i.e. for a real-valued
function m on the support of (X1, Z1), ‖m‖n := (

∑n
i=1m

2(Xi, Zi)/n)1/2).

4 Simulation results

In this simulation study, we show that the results of Theorem 3.1 also (approx-
imately) hold empirically. We consider Example 3.1. We estimate each of the
“true” functions f0 and g0 in the cases where neither functions are known and
the cases where one of them is known. We will see that, for each function,
the rate of convergence of the estimator when neither of the “true” functions is
known is of the same order than that when one of the components is known. For
this, we will show the plots of the MSE of the four estimators in four different
scenarios (see Figure 1). However, we will only show the plots of the estimators
when correlation(X,Z) = 0.8, SNR = 7 since analogous results hold for the
other scenarios.

Let X and U be independent uniformly distributed random variables with val-
ues in (0, 1). Define Z = aX + (1− a)U with a an appropriate constant such
that the correlation between X and Z is equal to ρ (which we will define later).

We use B-splines of order 6 (piecewise polynomials of degree 5) to represent
each of the functions f and g (see de Boor [2001]). We write

f(x) =

K∑
i=1

γf,ibf,i(x), g(z) =

K∑
j=1

γg,jbg,j(z),

where bf,i, bg,j , i, j = 1, ...,K are the basis functions of the B-spline parametriza-
tion, γf = (γf,1, ..., γf,K), γg = (γg,1, ..., γg,K) are the parameters vectors of f
and g, respectively, and K + 6 is the number of knots, which we choose to
be d3

√
n/5e + 6 where n represents the number of observations. Denote by

(x1, ..., xn) and (z1, ..., zn) realizations of the dependent random variables X and
Z and let x(r) be the r-th order statistic of the sample fromX (r = 1, . . . , n). For
estimating the function f (and analogously for the function g), we place the first
and last 6 knots (corresponding to the order of the B-spline) in x(1) and x(n),
respectively, and position the remaining knots uniformly in {x(2), ..., x(n−1)}.
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We define the penalizations as

I2(f) :=

∫ 1

0
|f ′′′(x)|2dx +

∫ 1

0
|f(x)|2dx,

J2(g) :=

∫ 1

0
|g′′(z)|2dz +

∫ 1

0
|g(z)|2dz

and the (i, j)− th components of the matrices Ωf ,Ωg ∈ RK×K as

(Ωf )i,j :=

∫ 1

0
b′′′f,i(x)b′′′f,j(x)dx+

∫ 1

0
bf,i(x)bf,j(x)dx

and

(Ωg)i,j :=

∫ 1

0
b′′g,i(z)b

′′
g,j(z)dz +

∫ 1

0
bg,i(z)bg,j(z)dz

Then, we can write I2(f) = γTf Ωfγf and J2(g) = γTg Ωgγg. Moreover, using

Cholesky, we can find matrices Hf , Hg ∈ RK×K such that Ωf = HT
f Hf and

Ωg = HT
g Hg.

The case where both f0 and g0 are unknown:
Consider the two-components model:

Yi = f0(Xi) + g0(Zi) + εi, i = 1, ..., n, (4)

where εi, i = 1, ..., n are i.i.d. centered Gaussian random variables with variance
σ2. The estimator is

(f̂ , ĝ) := arg min
f,g

{
‖Y − f − g‖2n + λ2I2(f) + µ2J2(g)

}
.

We took λ = 14n−3/7 and µ = 0.3n−2/5. The constants of both tuning pa-
rameters are chosen by minimizing the mean square error1 of the estimators
for the case n = 5000. Candidates for the constants were taken from the grid
({1, 2, 3, ..., 20} × {0.1, 0.2, 0.3, ..., 1}), where the first set corresponds to the
constant of λ and the second to the constant of µ.

The case where f0 or g0 is known:
If g0 is known we re-write equation (4) as

Y f
i = f0(Xi) + εi,

with Y f
i = Yi − g0(Zi), i = 1, . . . , n.

1Estimated using 100 simulations.
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We then use the estimator

f̂s := arg min
f

{
‖Y f − f‖2n + λ2I2(f)

}
.

The tuning parameter is taken to be λ = 14n−3/7.

Similarly, if f0 is known we let Y g := Y − f0 and

ĝs := arg min
g

{
‖Y g − g‖2n + µ2J2(g)

}
with µ = 0.3n−2/5.

Simulations:
Define the Signal-to-Noise ratio as SNR := var(f0(X) + g0(Z))/σ2. For our
simulations, we consider the following scenarios:

• f0(x) = −10 sin(1.9x+ 0.2π) + E[10 sin(1.9x+ 0.2π)].

• g0(z) = 3e−500(z−0.1)2 − E[3e−500(z−0.1)2 ].

• SNR ∈ {0.5, 7}.

• ρ ∈ {0.2, 0.8}2.

• n ∈ {100, 150, 200, ..., 5000}.

The error variance σ2 was chosen in each scenario to match the above given
Signal-to -Noise ratios. For each n the average of 100 simulations is used to
estimate the mean square error. In Figure 1, we see that the rate of convergence
of f̂ and of f̂s are of similar order and that the same applies to ĝs and ĝ.
In other words, for each function f0 and g0, the rate of convergence of the
estimators when both functions are unknown (approximately) corresponds to
the case when one of them is known. These results agree with Theorem 3.1 and
hold in the four simulation scenarios. Moreover, we see that the convergence of
f̂s and f̂ to f0 is faster than that of ĝs and ĝ to g0, which is also established
in Theorem 3.1.

2The value ρ = 0.2 corresponds to a = 0.169 and the value ρ = 0.8 to a = 0.571.
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(a) ρ = 0.2, SNR = 0.5
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(b) ρ = 0.2, SNR = 7
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(c) ρ = 0.8, SNR = 0.5
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(d) ρ = 0.8, SNR=7

Figure 1: Estimated MSE for each of the computed estimators: f̂s (blue line),
ĝs (red line), f̂ (orange dotted line), and ĝ (green dotted line) for the four
simulation scenarios.

The log-transformed data from Figure 1 for the scenario ρ = 0.8 and SNR = 7
is plotted in Figure 2. Here, we fit a linear regression on each curve considering
only those observations corresponding to n ≥ 1000 and print the slope of these
and the theoretical slope3 in the legend of the plot. With SNR=7 it is not
clear whether the slopes of the regression line of the estimators agree with their
theoretical counterpart. For lower SNR however the agreement is remarkably
good (not shown here).

3Recall that by Theorem 3.1 we have log ||f̂ − f0||22 = log(c1)− (6/7) log(n) and log ||ĝ −
g0||22 = log(c2)− (4/5) log(n), where c1 and c2 are constants depending on those of the tuning
parameters.
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Figure 2: Log-transformed data for the case ρ = 0.8 and SNR = 7. A black line
using the theoretical slope and an arbitrary intercept was drawn for graphical
comparison.

The plots of both f0 and g0 and their corresponding estimators for the scenario
ρ = 0.8 and SNR = 7 are displayed in Figure 3. We can see that, as the
number of observations increases, the functions f̂ and ĝ converge to f̂s and
ĝs, respectively. This happens while all of them improve their estimation of
the true functions f0 and g0 appropriately. We note that f̂ and f̂s are almost
identical to f0 when the number of observations is large. However, ĝ and ĝs

can only resemble but not describe perfectly g0. This is probably due to the
highly variable second and third derivatives of g0 in comparison with those of
f0, as can be seen in Figure 4.
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Figure 3: Plots of the true functions f0 and g0 (black lines) with their corre-
sponding estimators f̂s (blue lines), f̂ (orange dotted lines), ĝs (red lines), ĝ
(green dotted lines), for ρ = 0.8 and SNR = 7. The data are represented with
black small vertical lines and knots positions with red small vertical lines. For
each n ∈ {150, 5000}, we use a single simulation (not 100 simulations).
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(a) Derivatives of f0.
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(b) Derivatives of g0.

Figure 4: Second and third derivatives of the true functions f0 and g0 in [0, 1].
The third derivative of g0 was multiplied by 0.02 for an easier comparison.

5 Proofs

We use the notation Pn :=
∑n

i=1 δ(Xi,Zi)/n for the empirical measure based on
{(Xi, Zi)}ni=1.

The proof is organized as follows. We first present some preliminary results
needed for the proof of the faster rate for f̂ . Then we look in Subsection 5.2
at the global rate for both components. We use here the convexity of the
least squares loss function and the penalties to localize the problem to the set
M(R) := {(f, g) : τR(f, g) ≤ R}, and then show that indeed (f̂ − f0, ĝ− g0) ∈
M(R) provided that the random part of the problem is under control. In
Subsection 5.5 we show the random part is indeed under control with large
probability. For this result, we need recent findings from empirical process the-
ory, in particular the convergence of empirical norms and inner products. Here,
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we apply some results from van de Geer [2014]. The application is somewhat
elaborate: for an additive model with p components there are

(
p+1

2

)
− 1 terms

to consider. If there is only one component, say f , one needs to consider the
behaviour of ‖f‖2n − ‖f‖2 and εT f/n uniformly over some collection of func-
tions f . If there are two components f and g the number of terms to consider
is five: namely uniform convergence ‖f‖2n, ‖g‖2n, Pnfg, εT f/n and εT g/n to
their theoretical counterparts. This is done in Subsection 5.4. Subsection 5.2
takes such uniform convergence for granted. The same is true in Subsection 5.3
where we show the faster rate for the estimator f̂ of the smoother component:
the results are on a random event which is shown to have large probability in
Subsection 5.6 using results from empirical process theory given in Subsection
5.4. We finally collect all pieces in Subsection 5.7 to finish the proof of the main
result in Theorem 3.1.

5.1 Preliminaries

Lemma 5.1. Assume Condition 2.4 and suppose
∫
fp1dν1 = 0. Then

‖f + g‖2 ≥ (1− γ)(‖f‖+ ‖g‖)2.

Proof. We have

‖f + g‖2 = ‖f‖2 + ‖g‖2 + 2

∫
(fg)pdν.

Moreover, since
∫
fp1 = 0,

|
∫
fgpdν| = |

∫
fg(r − 1)p1p2dν| ≤ γ(

∫
f2g2p1p2dν)1/2 = γ‖f‖‖g‖.

Hence,
‖f + g‖2 ≥ ‖f‖2 + ‖g‖2 − 2γ‖f‖‖g‖

= (1− γ)(‖f‖2 + ‖g‖2) + γ(‖f‖ − ‖g‖)2 ≥ (1− γ)(‖f‖+ ‖g‖)2.

tu
Lemma 5.2. Assume Condition 2.4 and suppose

∫
fp1dν1 = 0. We have that

‖fP‖2 ≤ γ‖f‖2

and
‖fA‖2 ≥ (1− γ2)‖f‖2.

Proof. We have

fP =

∫
f(r − 1)p1dν1.

Hence
‖fP‖ ≤ ‖r − 1‖‖f‖ = γ‖f‖,

and
‖fA‖2 = ‖f‖2 − ‖fP‖2 ≥ (1− γ2)‖f‖2.

tu.
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Lemma 5.3. Assume Conditions 2.1 and 2.2. Then

J∞(z, {fA : f ∈ F(R,M)}) ≤ 2J∞(z,F(R,M)), z > 0

and for R ≤M/B
sup

f∈F(R,M)
‖fA‖∞ ≤ 2M.

Proof. Let u > 0 and f, f̃ ∈ F(R,M) be arbitrary, satisfying ‖f − f̃‖∞ ≤ u.
Then clearly also

‖fP − f̃P‖∞ = ‖E(f(X1)− f̃(X1)|Z = ·)‖∞ ≤ u.

So then
‖fA − f̃A‖∞ ≤ ‖fP − f̃P‖∞ + ‖f − f̃‖∞ ≤ 2u.

Similarly, for f ∈ F(R,M), we have

‖fA‖∞ ≤ ‖fP‖∞ + ‖f‖∞ ≤ 2M.

tu

5.2 A global bound

We define
M(R) := {(f, g) : τR(f, g) ≤ R} (5)

and for a sufficiently small value δ0 > 0, to be chosen later the sets

T1(R) :=

{
sup

(f,g)∈M(R)

∣∣∣∣‖f + g‖2n − ‖f + g‖2
∣∣∣∣ ≤ δ2

0R
2

}
,

T2(R) :=

{
sup

(f,g)∈M(R)
|εT (f + g)|/n ≤ δ2

0R
2

}
,

and
T (R) := T1(R) ∩ T2(R). (6)

Lemma 5.4. Take δ0 ≤ 1
20 and suppose that

λ2I2(f0) + µ2Jq(g0) ≤ δ2
0R

2. (7)

Then on T (R), we have ‖m̂−m0‖2 + λ2I2(f̂) + µ2Jq(ĝ) ≤ 4δ2
0R

2 and τR(f̂ −
f0, ĝ − g0) ≤ R.

Proof. Define
f̃ := tf̂ + (1− t)f0, g̃ := tĝ + (1− t)g0

with

t :=
R

R+ τR(f̂ − f0, ĝ − g0)
.

14



Then τR(f̃ − f0, g̃− g0) ≤ R. Let m̃ := f̃ + g̃ and m0 := f0 + g0. By convexity

‖m̃−m0‖2n + λ2Iq(f̃) + µ2Jq(g̃) ≤ 2εT (m̃−m0) + λ2Iq(f0) + µ2Jq(g0).

On T (R) we find

‖m̃−m0‖2 + λ2Iq(f̃) + µ2Jq(g̃) ≤ 4δ2
0R

2.

Hence
I(f̃) ≤ (2δ0)R/λ,

and
J(g̃) ≤ (2δ0)2/q(R/µ)2/q ≤ 2δ0(R/µ)2/q

where in the last step we used 2δ0 < 1 and 2/q ≥ 1. Since by (7) it holds that
I(f0) ≤ 2δ0R/λ we get

I(f̃ − f0) ≤ 4δ0R/λ.

Also, by (7) we have J(g0) ≤ (2δ0)2/q(R/µ)2/q ≤ 2δ0(R/µ)2/q so that

J(g̃ − g0) ≤ 4δ0(R/µ)2/q.

We find
λI(f̃ − f0) ≤ 4δ0R

as well as
(µ/R)

2−q
q µJ(g̃ − g0) ≤ 4δ0R.

But then

τR(f̃ − f0, g̃ − g0) = ‖m̃−m0‖+ λI(f̃ − f0) + (µ/R)
2−q
q µJ(g̃ − g0)

≤ 10δ0R ≤ R/2

where we used δ0 ≤ 1
20 . This implies τR(f̂ − f0, ĝ − g0) ≤ R. Repeating the

argument completes the proof. tu

5.3 A tighter bound for the smoother part

Let F(RI) :=

{
f : τI(f) ≤ RI

}
.

For δ1 sufficiently small we define

T1,I(RI) :=

{
sup

f∈F(RI)

∣∣∣∣‖fA‖2n − ‖fA‖2∣∣∣∣ ≤ δ2
1R

2
I

}
,

TI,2(RI) :=

{
sup

f∈F(RI)
|εT fA|/n ≤ δ2

1R
2
I

}
,

TI,3(RI , R) :=

{
sup

(f,g)∈M(R): f∈F(RI)
|PnfA(g + fP )| ≤ δ2

1R
2
I

}
and we let

TI(RI , R) := TI,1(RI) ∩ TI,2(RI) ∩ TI,3(RI , R). (8)
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Lemma 5.5. Assume Condition 2.4 and 2.5. Suppose the condition (7)

λ2I2(f0) + µ2J2(g0) ≤ δ2
0R

2

of Lemma 5.4 holds, with δ0 ≤ 1
20 given as there. Suppose moreover that

λ2I2(f0) ≤ δ2
1R

2
I , (9)

2µ2Γ(2δ0R/µ)
2(q−1)
q ≤ δ2

1R
2
I , 2µ2Γq/R2−q

I ≤ δ2
1 (10)

and δ2
1 ≤

(1−γ2)
36 . Then on T (R) ∩ TI(RI) it holds that τI(f̂ − f0) ≤ RI .

Proof. We use the Basic Inequality

‖Y − f̂ − ĝ‖2n + λ2I2(f̂) + µ2Jq(ĝ) ≤ ‖Y − f0 − (ĝ + f̂P − f0
P)‖2n

+λ2I2(f0) + µ2Jq(ĝ + f̂P − f0
P).

This gives that
‖f̂A − f0

A‖2 + λ2I2(f̂) + µ2Jq(ĝ)

≤ 2εT (f̂A − f0
A)/n− 2(f̂A − f0

A)T (ĝ − g0 + f̂P − f0
P)/n

+‖f̂A − f0
A‖2 − ‖f̂A − f0

A‖2n + λ2I2(f0) + µ2Jq(ĝ + f̂P − f0
P).

By convexity the inequality also holds if we replace f̂ by f̃ := tf̂ + (1 − t)f̂0

with

t :=
RI

RI + τI(f̂ − f0)
.

Before exploiting this, we derive a bound for Jq(ĝ + f̃P − f0
P). We use that for

positive a and b,

(a+ b)q − aq ≤ 2(a+ b)q−1b ≤ 2(aq−1 + bq−1)b = 2aq−1b+ 2bq

Hence

Jq(ĝ + f̃P − f0
P)− Jq(ĝ) ≤ 2Jq−1(ĝ)J(f̃P − f0

P) + 2Jq(f̃P − f0
P)

≤ 2ΓJq−1(ĝ)‖f̃ − f0‖+ 2Γq‖f̃ − f0‖q

where in the last step we used Condition 2.5. On T (R) we have J(ĝ) ≤
(2δ0R/µ)2/q by Lemma 5.4. We also have ‖f̃ − f0‖ ≤ RI . Hence

Jq(ĝ + f̃P − f0
P)− Jq(ĝ) ≤ 2Γ(2δ0R/µ)

2(q−1)
q RI + 2ΓqRqI .

But then by condition (10)

µ2Jq(ĝ + f̃P − f0
P) ≤ 2δ2

1R
2
I .

We insert this result in the Basic Inequality with f̂ replaced by f̃ :

‖f̃A − f0
A‖2 + λ2I2(f̃) ≤ 6δ2

1R
2
I + λ2I2(f0).
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Invoking (9) we get

‖f̃A − f0
A‖2 + λ2I2(f̃ − f0) ≤ 6δ2

1R
2
I + 3λ2I2(f0) ≤ 9δ2

1R
2
I .

Since by Lemma 5.2 ‖f̃ − f0‖2 ≥ ‖f̃A − f0
A‖2/(1− γ2), this implies

τ2
I (f̃ − f0) ≤ 9δ2

1R
2
I/(1− γ2) ≤ R2

I/4

using δ2
1 ≤

(1−γ2)
36 . This implies τI(f̂ − f0) ≤ RI .

tu

5.4 Results from empirical process theory

We use Theorem 2.1 in van de Geer [2014] which is a consequence of results in
Guédon et al. [2007] and combine this with Theorem 3.1. in van de Geer [2014].
We recall definition (1) of the entropy integral Jn. Throughout, C0 and C1 are
universal constants.
Theorem 5.1. Fix some R1, M1, R2 and M2 and let

K1 := sup
f∈F(R1,M1)

‖f‖∞, K2 := sup
g∈G(R2,M2)

‖g‖∞.

Define for all t and n

B1,1(t, n) :=
R1Jn(K1,F(R1,M1)) +R1K1

√
t√

n
+
J 2
n (K1,F(R1,M1)) +K2

1 t

n
,

B2,2(t, n) :=
R2Jn(K2,G(R2,M2)) +R2K2

√
t√

n
+
J 2
n (K2,G(R2,M2)) +K2

2 t

n

and

B1,2(t, n) :=
R1Jn(K2,G(R2,M2)) +R2Jn(R1K2/R2,F(R1,M1))√

n

+
R1K2

√
t√

n
+
K1K2t

n
.

We have for all t > 0 with probability at least 1− C0 exp[−t]

sup
f∈F(R1,M1)

∣∣∣∣‖f‖2n−‖f‖2∣∣∣∣ ≤ C1B1,1(t, n), sup
g∈G(R2,M2)

∣∣∣∣‖g‖2n−‖g‖2∣∣∣∣ ≤ C1B2,2(t, n).

Moreover, for R1K2 ≤ R2K1 and all values of t and n satisfying

C1B1,1(t, n) ≤ R2
1, C1B2,2(t, n) ≤ R2

2

we have with probability at least 1− C0 exp[−t]

sup
f∈F(R1,M1), g∈G(R2,M2)

∣∣∣∣(Pn − P )fg

∣∣∣∣ ≤ C1B1,2(t, n).
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The next result follows from standard arguments using Dudley’s results (Dudley
[1967]), see e.g. van der Vaart and Wellner [1996].
Theorem 5.2. Assume Condition 2.3 on the noise. Fix some R1, M1, R2 and
M2 and let

K1 := sup
f∈F(R1,M1)

‖f‖∞, K2 := sup
g∈G(R2,M2)

‖g‖∞.

Consider values of t and n such that

C1B1,1(t, n) ≤ R2
1, C1B2,2(t, n) ≤ R2

2

with B1,1(t, n) and B2,2(t, n) given in Theorem 5.1. For these values, with
probability at least 1− C0 exp[−t], one has

sup
f∈F(R1,M1)

|εT f |/n ≤ C1B1,ε(t, n), sup
g∈G(R2,M2)

|εT g|/n ≤ C1B2,ε(t, n),

where

B1,ε(t, n) :=
KεJ (R1,F(R1,M1)) +KεR1

√
t√

n

and

B2,ε(t, n) :=
KεJ (R2,G(R2,M2)) +KεR2

√
t√

n
.

Corollary 5.1. Suppose Conditions 2.1, 2.2 and 2.3. Assume R1 ≤ M1/B
and R2 ≤ M2/B where the constant B is from Condition 2.2. Let B1,1, B2,2,
B1,2 be defined as in Theorem 5.1 and B1,ε and B2,ε be defined as in Theorem
5.2. Then

B1,1(t, n) ≤ R1M1(AI +
√
t)√

n
+
M2

1 (A2
I + t)

n
,

B2,2(t, n) ≤ R2M2(AJ +
√
t)√

n
+
M2

2 (A2
J + t)

n
.

B1,2(t, n) ≤ AJR1M2 +AIR
α
2R

1−α
1 Mα

1 M
1−α
2√

n
+
R1M2

√
t√

n
+
M1M2t

n

and

B1,ε(t, n) ≤ AIKεM
α
1 R

1−α
1 +KεR1

√
t√

n
, B2,ε(t, n) ≤ AJKεM

β
2 R

1−β
2 +KεR2

√
t√

n
.

The constants AI and AJ are from Condition 2.1 and the constant Kε from
Condition 2.3.
Theorem 5.3. Assume Conditions 2.1, 2.2 and 2.3. Let λ ≤ RI ≤ µ ≤ R ≤ 1
be constants and LI := RI/λ and LJ := (R/µ)2/q.
Case 1. Assume λ2 ≤ 1/B2 and µ2 ≤ R2−q/Bq. Suppose that for some
L ≥ 4C1, √

nλ1+α ≥ LAI ,
√
nµ1+β ≥ LAJ , (11)

R ≥ LLJAJ/
√
n, R ≥ Kελ, R ≥ LJλ, R ≥ K

q
q−(2−q)β
ε µ (12)
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and
λα ≤ 1/L. (13)

Then with probability at least 1− 3C0 exp[−nλ2/L2] it holds that

sup
f∈F(R,R/λ)

∣∣∣∣‖f‖2n − ‖f‖2∣∣∣∣ ≤ 4R2

L
, sup
g∈G(R,LJ )

∣∣∣∣‖g‖2n − ‖g‖2∣∣∣∣ ≤ 4R2

L
,

sup
f∈F(R,R/λ), g∈G(R,LJ )

∣∣∣∣(Pn − P )fg

∣∣∣∣ ≤ 4R2

L

and

sup
f∈F(R,R/λ)

|εT f |/n ≤ 2R2

L
, sup
g∈G(R,LJ )

|εT g|/n ≤ 2R2

L
.

Case 2. Assume moreover that

RI ≥ LLJAJ/
√
n, RI ≥ Kελ (14)

Then with probability at least 1− 3C0 exp[−nλ2/L2],

sup
f∈F(RI ,LI)

∣∣∣∣‖f‖2n − ‖f‖2∣∣∣∣ ≤ 4R2
I

L
, sup
f∈F(RI ,LI), g∈G(R,LJ )

∣∣∣∣(Pn − P )fg

∣∣∣∣ ≤ 4R2
I

L

and

sup
f∈F(RI ,LI)

|εT f |/n ≤
2R2

I

L
.

Proof of Theorem 5.3.

Case 1. We first apply Corollary 5.1 with R1 = R2 = R and M1 = R/λ,
M2 = LJ := (R/µ)2/q. The condition λ ≤ 1/B ensures R1 ≤ M1/B and the

condition µ ≤ R
2−q
q /B ensures that R2 ≤ M2/B. We let B1,1, B2,2, B1,2 be

defined as in Theorem 5.1 and B1,ε and B2,ε be defined as in Theorem 5.2 and
insert the value t = nλ2/L2.

Case 1a for ‖f‖2n.

B1,1(t, n) ≤ R2(AI +
√
t)√

nλ
+
R2(A2

I + t)

nλ2
=

(
AI +

√
t√

nλ
+
A2
I + t

nλ2

)
R2.

Now use that by (11)
√
nλ ≥ LAI and t = nλ2/L2 to get

B1,1(t, n) ≤
(

2

L
+

2

L2

)
≤ 4R2

L

Case 1b For ‖g‖2n.

B2,2(t, n) ≤ RLJ(AJ +
√
t)√

n
+
L2
J(A2

J + t)

n
=

(
LJ(AJ +

√
t)√

nR
+
L2
J(A2

J + t)

nR2

)
R2
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≤
(

1

L
+

√
t√
nR

+
1

L2
+

t

nR2

)
R2,

where we used that R ≥ LLJAJ/
√
n by (12). Insert R ≥ λ and t = nλ2/L2 to

get

B2,2(t, n) ≤
(

2

L
+

2

L2

)
R2 ≤ 4R2

L
.

Case 1c for fT g/n. We already know by Cases 1a and 1b that C1B1,1(t, n) ≤
R2 and C1B2,2(t, n) ≤ R2 with probability at least 1−C0 exp[−nλ2/L2]. More-
over

B1,2(t, n) ≤
RLJAJ +R1+αL1−α

J AI/λ
α +RLJ

√
t√

n
+
RLJ t

nλ

=

(
LJAJ√
nR

+
L1−α
J AIλ√

nR1−αλ1+α
+
LJ
√
t√

nR
+
LJ t

nRλ

)
R2.

Use R ≥ λLJ , R ≥ LLJAJ/
√
n from (12) and

√
nλ1+α ≥ LAI from (11) to

find that

B1,2(t, n) ≤
(

1

L
+ λα +

√
t√
nλ

+
t

nλ2

)
R2.

Apply now that by (13) λα ≤ 1/L and t = nλ2/L2 to get

B1,2(t, n) ≤
(

3

L
+

1

L2

)
≤ 4R2

L
.

Case 1d for εT f/n. We already know by Cases 1a and 1b that C1B1,1(t, n) ≤
R2 and C1B2,2(t, n) ≤ R2 with probability at least 1−C0 exp[−nλ2/L2]. More-
over

B1,ε(t, n) ≤ KεAIλR√
nλ1+α

+
KεR
√
t√

n
=

(
KεAIλ√
nλ1+αR

+
Kε

√
t√

nR

)
R2.

Invoke
√
nλ1+α ≥ LAI from (11) and R ≥ Kελ from (12) to obtain

B1,ε(t, n) ≤
(

1

L
+

√
t√
nλ

)
R2.

With t = nλ2/L2 this gives

B1,ε(t, n) ≤ 2R2

L
.

Case 1e for εT g/n. We gave

B2,ε(t, n) ≤
(
KεAJL

β
J√

nR1+β
+
Kε

√
t√

nR

)
R2.

Use
√
nµ1+β ≥ LAJ from (11) to find

B2,ε(t, n) ≤
(
LβJ(µ/R)1+βKε

L
+
Kε

√
t√

nR

)
R2.
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Next, we see that LβJ(µ/R)1+β ≤ 1/Kε since R ≥ K
q

q−(2−q)β
ε µ by (12). Moreover,

also by (12) R ≥ Kελ. So with t = nλ2/L2

B2,ε(t, n) ≤
(

1

L
+

√
t√
nλ

)
R2 =

2R2

L
.

Case 2. Take R1 = RI , R2 = R and M1 = LI , M2 = LJ . Then again
R1 ≤ M1/B and R2 ≤ M2/B. Also With these new values, we let B1,1, B2,2,
B1,2 be defined as in Theorem 5.1 and B1,ε and B2,ε be defined as in Theorem
5.2 and insert the value t = nλ2/L2.

Case 2a for ‖f‖2n.

B1,1(t, n) ≤
R2
I(AI +

√
t)√

nλ
+R2

I

A2
I + t

nλ2
=

(
AI +

√
t√

nRI
+
AI + t

nR2
I

)
R2
I ≤ 4R2

I/L

since
√
nRI ≥

√
nλ ≥

√
nλ1+α ≥ LAI by (11) and t = nλ2/L2.

Case 2b for fT g/n. By similar arguments as in Case 1a (see also Case 2a)
and 1b that C1B1,1(t, n) ≤ R2

I and C2B2,2(t, n) ≤ R2 with probability at least
1− C0 exp[−nλ2/L2]. Moreover

B1,2(t, n) ≤ RILJAJ√
n

+
RαRIλL

1−α
J AI√

nλ1+α
+
RILJ

√
t√

n
+
tRILJ
nλ

=

(
LJAJ√
nRI

+
RαλL1−α

J AI√
nλ1+αRI

+
LJ
√
t√

nRI
+

tLJ
nλRI

)
R2
I .

Use that RI ≥ LLJAJ/
√
n (see (14)),

√
nλ1+α ≥ LAI (see (11)) and R ≥ λLJ

(see (12)). We then get

B1,2(t, n) ≤
(

1

L
+ λα +

√
t√
nλ

+
t

nλ2

)
R2
I .

With t = nλ2/L2 and λα ≤ 1/L (see (13)) this gives again

B1,2(t, n) ≤
4R2

I

L
.

Case 2c for εT f/n. By Case 2a, it holds that C1B1,1(t, n) ≤ R2
I with proba-

bility at least 1− C0 exp[−nλ2/L2]. Moreover

B1,ε(t, n) ≤
(

KεAIλ√
nλ1+αRI

+
Kε

√
t√

nRI

)
R2
I .

From (11) we know
√
nλ1+α ≥ LAI and from (14) RI ≥ Kελ. With t = nλ2/L2

we find

B1,ε(t, n) ≤
2R2

I

L
.

The result now follows from the same arguments as in Case 2 of Theorem 5.3.

tu
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Remark 5.1. If we assume condition (11), then condition (12) is met for

Kε
λ

µ
≤ K

q
q−(2−q)β
ε ≤ R

µ
≤ min

{( √
n

LAJ

) qβ
(1+β)(2−q)

,

(
µ

λ

) q
2−q
}
.

Under general conditions, the left hand side tends to zero and the right hand
side tends to infinity as n→∞.

5.5 Application to T (R)

Recall the definition (6) of the set T (R).
Lemma 5.6. Let λ ≤ µ ≤ R ≤ 1. Assume Conditions 2.1, 2.2, 2.3 and 2.4.
Assume that λ2 ≤ (1− γ)/B2 and µ2 ≤ (1− γ)qR2−q/Bq. Let

L ≥ max

{
4C1(1− γ)1/2, 16/((1− γ)1/2δ2

0)

}
and √

nλ1+α ≥ LAI ,
√
nµ1+β ≥ LAJ ,

λα ≤ (1− γ)
1+α
2 /L

and

Kε
λ

µ
≤ K

q
q−(2−q)β
ε ≤ R

µ
≤ min

{(√
n(1− γ)1/2

LAJ

) qβ
(1+β)(2−q)

,

(
µ

λ

) q
2−q
}
.

Then
IP(T (R)) ≥ 1− exp[−nλ2/L2].

Proof. Recall the definition of M(R) given in (5) with τR(·, ·) given in (2).
Define λ̃2 := λ2/(1 − γ), µ̃2 := µ2/(1 − γ) and R̃2 := R2/(1 − γ). By Lemma
5.1

M(R) ⊂
{

(f, g) : ‖f‖ ≤ R̃, ‖g‖ ≤ R̃, I(f) ≤ R/λ, J(g) ≤ (R/µ)
2
q

}

=

{
(f, g) : f ∈ F(R̃, R̃/λ̃), g ∈ G(R̃, (R̃/µ̃)

2
q

}
.

We apply Case 1 of Theorem 5.3 with (λ, µ,R) replaced by (λ̃, µ̃, R̃). We also
replace L by L̃2 := L2/(1− γ). Then

√
nλ̃1+α =

√
nλ1+α/(1− γ)

1+α
2

≥ LAI/(1− γ)
1+α
2 = L̃AI/(1− γ)

α
2 ≥ L̃AI .

Similarly √
nµ̃1+β ≥ L̃AJ .
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The condition λα ≤ (1− γ)
1+α
2 /L gives

λ̃α =
λα

(1− γ)α/2
≤ (1− γ)

1+α
2

L(1− γ)
α
2

=
1

L̃
.

Furthermore

Kε
λ̃

µ̃
≤ K

q
q−(2−q)β
ε ≤ R̃

µ̃
≤ min

{( √
n

L̃AJ

) qβ
(1+β)(2−q)

,

(
µ̃

λ̃

) q
2−q
}
.

By Remark 5.1 we conclude that the conditions for Case 1 of Theorem 5.3 are
met. Clearly, for any f and g∣∣∣∣‖f + g‖2n − ‖f + g‖2

∣∣∣∣ ≤ ∣∣∣∣‖f‖2n − ‖f‖2n∣∣∣∣+

∣∣∣∣‖g‖2n − ‖g‖2∣∣∣∣+

∣∣∣∣2(Pn − P )fg

∣∣∣∣.
By Case 1 of Theorem 5.3, for L̃ = L/(1− γ)1/2 ≥ 4C1 and for 16R̃2/L̃ ≤ δ2

0R
2

IP(T (R)) ≥ 1− exp[−nλ̃2/L̃2].

The proof if finished by noting that R̃2/L̃ = R2/(L(1 − γ)1/2) and λ̃2/L̃2 =
λ2/L2.

tu

5.6 Application to TI(RI)

Recall the definition (8) of the set TI(RI , R).
Lemma 5.7. Assume Conditions 2.1, 2.2, 2.3, 2.4 and 2.5. Let λ ≤ RI ≤ µ ≤
R ≤ 1. Assume that λ2 ≤ (1− γ)/(2B)2 and µ2 ≤ (1− γ)qR2−q/(2B)q. Let

L ≥ max

{
2C1(1− γ)1/2, 32/((1− γ)1/2δ2

0), 32/(δ2
1)

}
.

Take √
nλ1+α ≥ LAI ,

√
nµ1+β ≥ LAJ ,

λα ≤ (2(1− γ))
1+α
2 /L

and

Kε
λ

µ
≤ K

q
q−(2−q)β
ε ≤ R

µ
≤ min

{(√
n(1− γ)1/2

2LAJ

) qβ
(1+β)(2−q)

,

(
µ

λ

) q
2−q
}
.

Also take
RI ≥ L(R/µ)

2
qAJ/

√
n, RI ≥ Kελ

ΓRI ≤ (2R/µ)
2
q

Then
IP(TI(RI , R)) ≥ 1− 3C0 exp[−nλ2/L2].
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Proof. By Lemma 5.3

J∞(z, {fA : f ∈ F(R,M)}) ≤ 2J∞(z,F(R,M)), z > 0

and for R ≤M/B
sup

f∈F(R,M)
‖fA‖∞ ≤ 2M.

We can therefore apply similar arguments as for Case 2 of Theorem 5.3. We
know that for f ∈ F(RI), ‖fA‖ ≤ ‖f‖ ≤ RI . So

J∞(z, {fA : f ∈ F(RI)}) ≤ 2J∞(z,F(RI , RI/λ)), z > 0

and
sup

f∈F(RI)
‖fA‖∞ ≤ 2RI/λ.

Moreover, for f ∈ F(RI) and g ∈ G(R) we have

J(g + fP) ≤ J(g) + J(fP) ≤ (R/µ)2/q + Γ‖f‖ ≤ (R/µ)2/q + ΓRI ≤ (2R/µ)2/q,

and
‖g + fP‖ ≤ ‖g‖+ ‖fP‖ ≤ R/(1− γ)1/2 +RI ≤ 2R/(1− γ)1/2.

It follows that

{g + fP : f ∈ F(RI), g ∈ G(R)} ⊂ G(2R/(1− γ)1/2, (2R/µ)2/q).

It is also clear that for any f and g

PfAg = Ef(X1)g(Z1)− E
[
E(f(X1)|Z)g(Z1)

]
= 0

and similarly PfAfP = 0. By an appropriate replacements of the constants in
Case 2 of Theorem 5.3 (as in the proof of Lemma (5.6) now using (1− γ)1/2/2
instead of (1− γ)1/2) the results follows.

tu

5.7 Finishing the proof of Theorem 3.1

We first note that since max{AI , AJ} ≤ n
1−δ
2 we λ1+α = c1AI/

√
n ≤ n−δ/2. So

for n large λ will be small. The same is true for µ and for the ratio λ/µ.

In view of Lemma 5.4 we need λ2I2(f0) + µ2Jq(g0) ≤ δ2
0R

2. We take

R2 = max

{
µ2Jq(g0)/(4δ2

0),K
2q

2−(2−q)β
ε

}
and n sufficiently large such that

λ2I2(f0) ≤ µ2Jq(g0).
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Take

L = max

{
2C1(1− γ)1/2, 32/((1− γ)1/2δ2

0), 32/(δ2
1)

}
.

Since

max

{
Jq/2(g0)

2δ0
,K

q
2−(2−q)β
ε

}
≤ min

{(√
n(1− γ)1/2

2LAJ

) qβ
(1+β)(2−q)

,

(
µ

λ

) q
2−q
}

for n sufficiently large as AJ ≤ n
1−δ
2 we know from Remark 5.1 that the con-

ditions for Lemma 5.6 are met for n sufficiently large. By Lemma 5.5 we also
need λ2I2(f0) ≤ R2

I/δ
2
1 . For RI/λ = max{I(f0)/δ1,Kε}.

RI ≥ L(R/µ)
2
qAJ/

√
n

for n sufficiently large so we can also apply Lemma 5.7.
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