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PATH RAMSEY NUMBER FOR RANDOM GRAPHS

SHOHAM LETZTER

Abstract. Answering a question raised by Dudek and Pra lat [4], we show that if pn → ∞,

w.h.p., whenever G = G(n, p) is 2-coloured, there exists a monochromatic path of length

n(2/3 + o(1)). This result is optimal in the sense that 2/3 cannot be replaced by a larger

constant.

As part of the proof we obtain the following result which may be of independent interest.

We show that given a graph G on n vertices with at least (1 − ε)
(

n

2

)

edges, whenever G is

2-edge-coloured, there is a monochromatic path of length at least (2/3 − 100
√
ε)n. This is

an extension of the classical result by Gerencsér and Gyárfás [6] which says that whenever

Kn is 2-coloured there is a monochromatic path of length at least 2n/3.

1. Introduction

Considering the richness of Ramsey theory and the great interest in random graphs, it is

natural to consider Ramsey properties of random graphs.

The study of random Ramsey theory has proved particularly useful in the establishment of

upper bounds on the size Ramsey number. For graphs G,F,H, we write G → (F,H) if for

every red-blue colouring of the edges of G, there is either a red F or a blue H. If F,H are

isomorphic, we use instead the notation G → H. The size Ramsey number, denoted by r̂(H)

is defined to be r̂(H) = min{|E(G)| : G → H}.

In [1], disproving a conjecture of Erdős [5], Beck showed that r̂(Pn) ≤ 900n. In [2] Bollobás

noted a slightly better bound, and recently Dudek and Pra lat [4] gave an elementary proof

of the bound r̂(Pn) ≤ 137n. They actually proved that w.h.p., G(n, α/n) → Pβn for some

constants α, β. They raised the question of determining the maximum l such that G(n, p) →
Pl, where pn → ∞. Inspired by the well known result of Gerencsér and Gyárfás [6] which

says that Kn → P2n/3, they ask if G(n, p) → Pl for some l = n(2/3 + o(1)). Our main result

answers this question in the affirmative.

Theorem 1. Let 0 < p = p(n) < 1 and assume that pn → ∞. Then w.h.p., G(n, p) → Pl for

some l = (2/3 + o(1))n.

This result is essentially best possible since there is a 2-colouring of the edges of Kn such that

the longest monochromatic path is of length ⌈2n/3 + 1⌉. To see this, divide the vertex set of
1
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Kn into two sets A,B such that |A| = ⌊n/3⌋, let the edges spanned by B be coloured red and

colour the other edges blue.

In order to prove Theorem 1, we prove the following extension of the result in [6] to graphs

with a large number of edges.

Theorem 2. Let 0 ≤ ε ≤ 1/4, k ≥ l and let G be a graph on n ≥ k + ⌊(l + 1)/2⌋ + 150
√
εk

vertices, with at least (1 − ε)
(n
2

)

edges. Then G → (Pk+1, Pl+1).

In particular, given 0 ≤ ε < 1/90000, for every graph G on n vertices and at least (1 − ε)
(n
2

)

edges, G → Pk where k = (2/3 − 100
√
ε)n.

Theorem 2 is a consequence of the following similar result, in which we consider graphs with

large minimum degree rather than high density.

Theorem 3. Let 0 < ε < 1/4, k ≥ l and let G be a graph on n ≥ k + ⌊(l + 1)/2⌋ + 60εk

vertices with minimum degree at least (1 − ε)n. Then G → (Pk+1, Pl+1).

Note that it is easy to deduce Theorem 2 from Theorem 3. By an averaging argument, it

suffices to prove the assertion for n = k + l/2 + 150
√
ε. By removing at most

√
εn vertices,

we obtain a graph on n′ ≥ (1 − √
ε)n vertices and minimum degree at least (1 − √

ε)n ≥
(1 − √

ε)n′ vertices. One can check that (1 − √
ε)n ≥ k + l/2 + 100

√
εk, so the assertion

of Theorem 2 follows from Theorem 3. For the second part, it is easy to check that when

k = l = (2/3 − 100
√
ε)n and 150

√
ε ≤ 1/2, it follows that n ≥ k + l/2 + 150

√
ε.

The rest of the paper is organised as follows. In Section 2 we prove Theorem 3. In order to

prove Theorem 1, we use the so-called sparse regularity lemma, due to Kohayakawa [7] and

Rödl (see [3]). In Section 3 we state this result as well as some necessary notation. We prove

Theorem 1 in Section 4 and finish with some concluding remarks in Section 5. Throughout

the paper we omit floor and ceiling signs whenever they do not affect the arguments.

2. Path Ramsey number for dense graphs

In the proof of Theorems 3 and 1 we use the following observation, from [4] and [8]. For the

sake of completeness, we prove it here.

Lemma 4. For every graph G there exist two disjoint sets of vertices U,W of equal sizes,

such that there are no edges between them and G\(U ∪W ) has a Hamiltonian path.

Proof. In order to find sets with the desired properties, we apply the following algorithm,

maintaining a partition of V (G) into sets U,W and a path P . Start with U = V (G),W = ∅
and P an empty path. At every stage in the algorithm, do the following. If |U | ≤ |W |, stop.

Otherwise, if P is empty, move a vertex from U into W (note that U 6= ∅). If P is non-empty,

let v be its endpoint. If v has a neighbour u in U , put u in P , otherwise move v to W .
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Note that at any given point in the algorithm there are no edges between U and W . Further-

more, the value |U | − |W | is positive at the beginning of the algorithm and decreases by one

at every stage, thus at some point the algorithm will stop and produce sets U,W with the

required properties. �

Occasionally it is easier to use the following immediate consequence of Lemma 4.

Corollary 5. Let G be a balanced bipartite graph on n vertices with bipartition V1, V2, which

has no path of length k. Then there exist Xi ⊆ Vi such that |X1| = |X2| ≥ (n − k)/4 and G

has no edges between X1 and X2.

Proof. Let U,W be as in Lemma 4 and let P be a Hamiltonian path in G\(U ∪ W ). Note

that P must alternate between V1 and V2, thus |V (P )∩V1| = |V (P )∩V2| (it follows from the

assumptions that the number of vertices in P is even). Denote Ui = U ∩ Vi, Wi = W ∩Vi, for

i = 1, 2 and assume that |U1| ≥ |U2|. It follows that |U1| + |W1| = |U2| + |W2|. Thus, using

the fact that |U | = |W |, we have that |U1| = |W2| ≥ |U |/2 ≥ (n − k)/4. Set X1 = U1 and

X2 = W2. �

We now prove Theorem 3.

Proof of Theorem 3. We prove the theorem by induction on k. Clearly, if k = 1 the claim

holds. Given k > 1, let G be a graph on n ≥ k + ⌊(l + 1)/2⌋ + 100εk vertices, with minimum

degree at least (1 − ε)n, and consider a red-blue colouring of the edges of G.

If k > l then by induction there is either a red Pk or a blue Pl+1; in the latter case we are done.

If k = l then by induction there is either a red or blue Pk. Thus, without loss of generality

there is a red path of length k−1, which we denote by P = (v1, . . . , vk). Let U = V (G)\V (P ).

We note first that the assertion of Theorem 3 holds when k ≥ n(1/2 − ε). If there is no red

Pk+1, then by Lemma 4, we can find disjoint sets U,W , of size at least (n − k)/2 such that

there is no red edge between them. Since G has minimum degree at least n(1 − ε), we can

greedily find a blue path of length at least |U |+ |W | − 2εn ≥ n(1− 2ε) − k ≥ k. Thus we can

assume that k ≥ 4n, so every vertex in G has at most 4εk non neighbours. Put δ = 4ε. Note

that we can assume that δk ≥ 1, otherwise G is a complete graph and Theorem 3 follows

directly from [6].

We consider three cases.

2.1. Case 1. G[U ] contains a blue path Q of length 13δk. Let Q1 be a maximal path

extending Q by alternating between vertices of P and U and which has both ends in U . Let

U ′ = U\V (Q1) and V ′ = V (P )\V (Q1). Let Q2 be a maximal path alternating between U ′

and V ′ which has both ends in U . Denote the ends of Qi by xi, yi, for i = 1, 2. We show that

|Q1| + |Q2| ≥ l + 3δk.
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Suppose this is not the case. In particular, Q1, Q2 do not cover U , so we can pick a vertex

z ∈ U\(V (Q1) ∪ V (Q2)). Note that all but at most 3δk vertices of P are adjacent to all of

x1, x2, z. By our assumption on the lengths of Q1 and Q2, the number of vertices of P which

are included in one of Q1 and Q2 is at most k/2−5δk, hence there exist vertices vi, vi+1 which

are adjacent to all of x1, y1, z. We assume that vi and vi+1 have no common red neighbour in

x1, x2, z because otherwise we obtain a red Pk+1. It follows that without loss of generality, vi

is joined in blue to two of x1, y1, z, contradicting the maximality of Q1 and Q2.

Let Q′

2 be a subpath of Q2 with ends x′2, y
′

2 ∈ U satisfying |Q2| + |Q1| = l + 3δk. A similar

argument to the above shows that without loss of generality there exist vi, vi+1 such that

x1, y1 are blue neighbours of vi and x′2, y
′

2 are blue neighbours of vi+1. Denote by C1 and C2

the blue cycles obtained by adding vi to Q1 and vi+1 to Q2, and let Ui = V (Ci) ∩ U .

Note that if there is any blue edge between C1 and C2 we obtain a blue path of length l, so

we assume that no such edges exist. We can also assume that |U1|, |U2| ≥ 3δk, otherwise one

of Q1, Q2 has length at least l.

The number of vertices in V (P )\(V (C1)∪V (C2)) is at least k/2+5δk, hence there exists j such

that vj , vj+1 /∈ V (C1) ∪ V (C2). If one of vj and vj+1 has blue neighbours in both U1 and U2,

we obtain a blue path of length l, so we can assume this is not the case. Also, we assume that

vj, vj+1 have no red common neighbour in either U1 or U2, because otherwise we obtain a red

path of length k. Thus, recalling that vj, vj+1 have at most δk non neighbours in G, without

loss of generality, vj is joined in red to all but δk vertices of U1, and vj+1 is joined in red to

all but δk vertices in U2. Let w1 ∈ U1 be any red neighbour of vj. Since it is connected to all

but at most δk vertices of U2 and these edges must all be red, U2 contains a vertex w2 which

is a red neighbour of both w1 and vj+1. We obtain a red path v1, . . . , vj , w1, w2, vj+1, . . . , vk

of length k.

This finishes the proof of Theorem 2 in the first case.

2.2. Case 2. l ≤ (1 − 13δ)k. Let Q1 be a maximal blue path alternating between U and P

and having both ends in U and similarly let Q2 be a maximal blue path alternating between

U\V (Q1) and V (P )\V (Q1). As in the previous case, it can be shown that |Q1|+|Q2| ≥ l+3δk.

Let Q′

2 be a subpath of Q2 such that |Q1| + |Q′

2| = l + 3δk. As before, there exists j such

that both vj , vj+1 ∈ V (P )\(V (Q1) ∪ V (Q′

2)) and they are joined in G to all ends of the two

paths. Thus the vertices vj, vj+1 can be used to extend Q1, Q
′

2 into blue vertex disjoint cycles

C1, C2, whose sum of length is l + 3δk and each of which has length at least 3δk. The proof

of Theorem 3 can now be finished as in the first case.

2.3. Case 3. l ≥ (1 − 13δ)k and G[U ] contains no blue path of length at least

13δk. We conclude from Lemma 4 that there exist two disjoint sets W1,W2 ⊆ U of size

|W1| = |W2| ≥ (1/2 + 3δ)k/2 with no blue edges between them. Since every vertex in G is
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adjacent to all but at most δk vertices, we can greedily find a red path Q in U of length at

least |W1| + |W2| − 2δk = (1/2 + δ)k.

Let X be the set of the first and last (1/4 + δ/2)k vertices of P . We assume that there

is no red edge between X and Q, because otherwise there is a red path of length k. We

can now greedily construct a blue path alternating between X and V (Q) of length at least

|X| + |Q| − 2δk ≥ k ≥ l. �

3. Sparse regularity lemma

We shall make use of a variant of Szemerédi’s regularity lemma [9] for sparse graphs, often

referred to as the sparse regularity lemma, which was proved independently by Kohayakawa

[7] and Rödl (see [3]). Before stating the theorem, we introduce some notation.

Given two disjoint sets of vertices U, V in a graph, we define the density dp(U, V ) of edges

between U and V with respect to p to be

dp(U, V ) =
e(U, V )

p|U ||V | , (1)

where e(U, V ) is the number of edges between U and V . We say that a bipartite graph with

bipartition U, V is (ε, p)-regular if for every U ′ ⊆ U, V ′ ⊆ V with |U ′| ≥ ε|U |, |V ′| ≥ ε|V | the

density dp(U ′, V ′) satisfies |dp(U ′, V ′) − dp(U, V )| ≤ ε.

Given a graph G, a partition V1, . . . , Vt of V (G) is called an (ε, p)-regular partition if it is an

equipartition (i.e. the sizes of the sets differ by at most one), and if all but at most ε of the

pairs Vi, Vj induce an (ε, p)-regular graph.

Given 0 < η, p < 1,D ≥ 1, a graph G is called (η, p,D)-upper-uniform if for all disjoints sets

of vertices U1, U2 of size at least η|V (G)|, the density dp(U1, U2) is at most D. Note that

random graphs are w.h.p. upper uniform (with suitable parameters).

We are now ready to state the sparse regularity lemma of Kohayakawa and Rödl.

Theorem 6. For every ε > 0, t and D > 1 there exist η > 0 and T such that for every

0 ≤ p ≤ 1, every (η, p,D)-upper-uniform graph admits an (ε, p)-regular partition into s parts

where t ≤ s ≤ T .

We shall use a slightly stronger variant of 6, namely the coloured version of the sparse regu-

larity lemma.

Theorem 7. For every ε > 0, t, l and D > 1 there exist η > 0 and T such that for every

0 ≤ p ≤ 1, if G1, . . . , Gl are (η, p,D)-upper-uniform graphs on vertex set V , there is an

equipartition of V into s parts, where t ≤ s ≤ T , for which all but at most ε of the pairs

induce a regular pair in each Gi.
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4. Path Ramsey number for random graphs

Before turning to the proof of Theorem 1, we remark that a weaker result can be proved using

elementary tools.

Lemma 8. Let 0 < p = p(n) < 1 and assume that pn → ∞. Then w.h.p., G(n, p) → Pl for

some l = (1/2 + o(1))n.

Proof. Given α > 0, suppose G can be coloured such that there is no monochromatic path

of length n(1/2 − α). By Lemma 4, there exist disjoint sets U,W , both of size at least

n(1/2 + α)/2 with no red edges between them. Considering the graph G[U,W ], it follows

from the same lemma that there exist disjoint sets X ⊆ U, Y ⊆ W of size at least αn/2, such

that there are no blue edges between them. We conclude that there are no edges of G between

X and Y . But w.h.p., every two disjoint sets of at least αn/2 vertices in G have an edge

between them. This shows that w.h.p., in every 2-colouring of G there is a monochromatic

path of length at least n(1/2 − α). �

Proof of Theorem 1. Let 0 < p < 1 be such that pn → ∞ and let α > 0.

We show that w.h.p., for every 2-edge-colouring of G = G(n, p) there is a monochromatic

path of length at least (2/3 − α)n. We pick ε > 0 small and t large (taking t = 1/ε and ε

small enough such that 60
√
ε ≤ α would do).

Let η, T be the constants arising from the application of Theorem 7 with ε, t, l = 2,D = 2.

Note that G is w.h.p. (η, p, 2)-upper-uniform. Thus, by Theorem 7, given a 2-edge-colouring

of G, there exists an (ε, p)-regular partition V1, . . . , Vs with t ≤ s ≤ T . Again, w.h.p., the

density of edges dp(Vi, Vj) is at least 1/2.

Let H be the auxiliary graph with vertex set [s] where ij is an edge iff Vi, Vj induce a regular

bipartite graph in both red and blue. We colour an edge ij in H red if the red density

dp(Vi, Vj) is at least 1/4 and blue otherwise, so if ij is blue then the blue density is at least

1/4.

Since the partition V1, . . . , Vs is (ε, p)-regular, the number of edges in H is at least (1− ε)
(s
2

)

.

It follows from Theorem 2 that H contains a monochromatic path P on at least l = (2/3−δ)s

vertices, where δ = 50
√
ε (assuming ε > 0 is small enough). Denote by i1, . . . , il the vertices

of P .

Assuming without loss of generality that P is red, we show that G contains a red path of

length at least (2/3 − α)n. We divide each set Vij into two sets Uj,Wj of equal sizes, so

|Uj | = n/2s. Let Pj be a longest red path in the bipartite graph G[Uj ,Wj+1]. In the following

claim we show that Pj covers most vertices in Uj∪Wj+1. We shall then show that consecutive

paths Pj , Pj+1 can be connected without losing too many vertices, thus obtaining a red path

in G of the required length.
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Claim 9. For every 1 ≤ j ≤ l, Pj covers at least 1 − 4ε of the vertices of Uj ∪Wj+1.

Proof. Suppose that for some j, Pj covers at most 1−4ε of the vertices of Uj ∪Wj+1. Set U =

Uj and W = Wj+1. By Corollary 5, there exist sets X ⊆ U, Y ⊆ W with |X| = |Y | ≥ ε|U |,
such that there are no red edges between X and Y . But by the regularity of the partition

V1, . . . , Vs, the density dp(U, V ) is within ε of the density of red edges between U and W ,

which is at least 1/4. In particular, G has a red edge between X and Y , contradicting our

assumption, so Claim 9 holds. �

We now show that the paths P1, . . . , Pl−1 can be joined to a path Q without losing many of

the vertices. Let Xj be the set of first 2ε|V1| vertices of Pj and similarly let Yj be the set of

last 2ε|V1| vertices of Pj . Since the paths Pj alternate between the sets Uj ,Wj+1, we have

that |Yj ∩ Vij |, |Xj+1 ∩ Vij+1
| ≥ ε|V1|. It follows from the fact that ijij+1 is a blue edge in H

that there is a blue edge between Yj and Xj+1. Hence G has a blue path Q which contains

all vertices of V (P1) ∪ . . . ∪ V (Pl−1) but at most 4ε|V1|(l − 1).

Using Claim 9, we have that |Pj | ≥ (1 − 4ε)|V1|, so

|Q| ≥(1 − 8ε)(l − 1)|V1| = (1 − 8ε)(s(2/3 − δ) − 1)n/s ≥
n(2/3 − (δ + 1/t + 6ε)) ≥ n(2/3 − α).

This completes the proof of Theorem 1.

�

5. Concluding Remarks

It is easy to construct examples of graphs G on n vertices with n ≥ k + ⌊(l + 1)/2⌋ + cεk and

at least (1−ε)
(n
2

)

edges which admits a red-blue colouring with no red Pk+1 or blue Pl+1 (e.g.

by letting as many vertices as possible be isolated). It may be interesting to determine the

correct dependence of n on ε in Theorem 2. In particular, can
√
ε be replaced by a factor of

ε? Similarly, it would be interesting to determine if the error term cεk in Theorem 3 can be

replaced by o(εk).
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