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1. Introduction

The quantum field theory in globally hyperbolic spacetimes possessing a

bifurcate Killing horizon was greatly clarified in [28], where the authors proved

that a state invariant under the action of the group of isometries generated by this

Killing vector is a KMS state, and the “temperature” is given by the surface gravity

of the horizon. Moreover, they presented the first rigorous formulation of the

Hadamard condition. More recently, this condition was translated to the language

of microlocal analysis [34, 35]. This allowed the incorporation of interacting fields

(by means of perturbation theory) into the field theory in a mathematically rigorous

manner [7, 6, 24, 25]. More exactly, the authors of [44, 7, 24, 25, 31, 26] showed that,

in this setting, the normal ordering of important observables, such as the energy-

momentum tensor, with respect to the Hadamard states, have finite fluctuations

in these states.

In the case of the Schwarzschild spacetime [43] the authors of [28] showed

that the Hartle-Hawking-Israel state is invariant under the action of the group of

isometries generated by its Killing vector and it is a KMS state, with “temperature”

given by the surface gravity of the horizon. In spite of that, the existence of the

Hartle-Hawking-Israel state was only proved more recently [38], where it was also

shown that this state is Hadamard. Also, the existence and Hadamard property of

the Unruh state in the Schwarzschild spacetime have only recently been rigorously

established [16].

Another spacetime possessing a bifurcate Killing horizon is the de Sitter

spacetime. The vacuum state invariant under the action of the isometries

generated by the group of symmetries of this maximally symmetric spacetime

was constructed in [1]. The association of a “temperature” to the surface gravity of

this horizon, analogously to the case of the black hole horizon, was established in

[20]. It was shown long ago that there exists only one Hadamard state which can be

extended to the whole Kruskal extension of this spacetime and is invariant under

the action of the isometries generated by the Killing vector which also generates

the bifurcate horizon. This state satisfies the KMS condition with “temperature”

given by the surface gravity of the horizon [33]. Thus the Unruh state can be

defined in the completely extended de Sitter spacetime, and it is KMS everywhere.

The Schwarzschild-de Sitter spacetime, describing a universe with both a static

black hole and a cosmological constant [29, 3], possesses a pair of bifurcate Killing
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horizons, each with a different surface gravity. A state invariant under the action

of the isometries generated by the Killing vector cannot satisfy the KMS condition,

as proved in [28]. Furthermore, since the Kruskal extension of this spacetime

gives rise to an infinite diagram, the mere existence of the Hartle-Hawking-Israel

state would give rise to problems related to causality. Also the Unruh state in this

spacetime would be problematic, for the same reason. This is clearly a restriction

on the existence of an invariant Hadamard state in this spacetime but, as we show

in this paper, this restriction does not represent an impossibility.

We will construct here a Hadamard state in the spherically symmetric

Schwarzschild-de Sitter spacetime. To our knowledge, this is the first explicit

example of such a state in this spacetime. Our state will neither be a KMS state

nor be defined in the whole of its Kruskal extension. Therefore, our state can

neither be interpreted as the Hartle-Hawking-Israel state in this spacetime, nor as

the Unruh state. We will construct the state solely from the geometrical features

of the spacetime, using the bulk-to-boundary technique [13, 14, 15, 16] to show

that it can be isometrically mapped to the tensor product of two states, each one

defined on a subset of an event horizon, as shown in equation (40). Since the event

horizons constitute a Cauchy hypersurface for the regions of the spacetime where

the state will be constructed, this result shows that the state is formally written in

terms of its “initial values”. Each one of these states defined on the horizons is

a KMS state at “temperature” given by the surface gravity of the corresponding

horizon. Since the surface gravities, at the two horizons, are different, the resulting

state is not KMS. Moreover, we will use results of [12] and an adaptation of the

argument presented in [16] to show that our state is Hadamard.

The organization of the paper is the following: In section 2 we will present

the basic formalism of field quantization in globally hyperbolic spacetimes.

Afterwards, in section 3 we will present the geometrical features of the

Schwarzschild-de Sitter spacetime, construct the Weyl algebra from the solutions

of the Klein-Gordon equation and show how we can construct an invariant state on

this algebra. Finally in section 4 we will prove that this state is a Hadamard state.

In section 5 we present our conclusions. In Appendix A we prove the existence of

our state and in Appendix B we present the proofs of a couple of technical results.
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2. Scalar Field quantization in globally hyperbolic spacetimes

We will now introduce the mathematical concepts needed for the assignment

of a C∗-algebra to the space of solutions of the Klein-Gordon equation and to the

definition of Hadamard states on this algebra.

2.1. Wave equation in globally hyperbolic spacetimes and the Weyl algebra

Globally hyperbolic spacetimesM are smooth, orientable, time orientable and

paracompact manifolds. They also possess smooth Cauchy hypersurfaces, which

are achronal subsets Σ ⊂ M such that ∀p ∈ M, every inextendible causal curve

through p intersects Σ [4, 43]. They have the topological structureM = R × Σ.

The principal symbol of a linear differential operator P with real coefficients is

the map

σP : T ∗M→ Hom(R,R) ,

where Hom(R,R) is the space of homomorphisms from R to R. For a

neighborhood of a point p ∈ M, take a local coordinate chart in which P =∑
|α|≤k Aα∂|α|/∂xα. For every ξ =

∑3
l=0 ξl · dxl ∈ T ∗pM,

σP(ξ) ≔
∑

|α|=k

ξαAα(p) .

The principal symbol of a differential operator is independent of the coordinate

chart chosen.

The zeroes of σP outside of the zero section of the cotangent bundle, i.e., the

points (p, ξ) with ξ ∈ T ∗pM�{0} such that σP(ξ) = 0, are called the characteristics

of P. The curves in T ∗M along which σP vanishes identically are called the

bicharacteristics of P.

A normally hyperbolic operator is a second-order differential operator P whose

principal symbol is given by the metric, i.e.,

σP(ξ) = g−1(ξ, ξ) · idR .

Hence the characteristics are the bundle of null conesNg ⊂ T ∗M�{0} defined by

Ng ≔

{
(x, kx) ∈ T ∗M�{0} | gµν(x)(kx)µ(kx)ν = 0

}
. (1)
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The bicharacteristic strip generated by (x, kx) ∈ Ng is given by

B(x, kx) ≔
{
(x′, kx′) ∈ Ng | (x′, kx′) ∼ (x, kx)

}
, (2)

where (x′, kx′) ∼ (x, kx) means that there exists a null geodesic connecting x′ and x,

kx′ is the cotangent vector to this geodesic at x′ and kx, its parallel transport, along

this geodesic, at x.

A wave equation is an equation of the form Pu = f , where P is a normally

hyperbolic operator, the right hand side f is given and the distribution u is to

be determined. It is well known that the wave equation of a massive scalar

field in a globally hyperbolic spacetime admits unique retarded and advanced

fundamental solutions, which are maps E
± : C∞0 (M,K) → C∞(M,K), such that,

for f ∈ C∞0 (M,K) (K is either R or C),
(
� +m2

)
E
± f = E

±
(
� +m2

)
f = f (3)

and

supp(E± f ) ⊂ J±(supp f ) .

The functions f ∈ C∞0 (M,K) are called test functions and we will denote the

differential operator �+m2 by P. From the fundamental solutions, one defines the

advanced-minus-retarded operator E ≔ E
−−E+ as a map E : C∞0 (M,K)→ C∞(M,K),

and the antisymmetric form

σ( f , f ′) ≔ −
∫

d4x
√
|g| f (x)(E f ′)(x) ≕ −E( f , f ′) , (4)

where f and f ′ are test functions. Dimock [17] showed that this antisymmetric

form can be equivalently constructed using the initial-value fields and that it does

not dependend on the Cauchy hypersurface on which it is calculated.

This antisymmetric form is degenerate because, if f and f ′, both elements of

C∞0 (M,K), are related by f = P f ′, then ∀ f ′′ ∈ C∞0 (M,K) we have

σ( f ′′, f ) = 0 .

Therefore the domain of the antisymmetric form must be replaced by the

quotient space‡ C∞0 (M,K)/RanP. We thus define the real vector space L ≔

‡ RanP is the range of the operator P, that is, the elements f ∈ C∞0 (M,K) such that f = Ph for some

h ∈ C∞0 (M,K). Moreover, KerE = RanP.
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Re
(
C∞0 (M,R)/RanP

)
. Hence (L, σ) is a real symplectic space where σ is the

symplectic form. From the elements of this real symplectic space one can define

the symbols W( f ), f ∈ L, satisfying

(I) W(0) = 1;

(II) W(− f ) =W( f )∗;

(III) For f , g ∈ L, W( f )W(g) = e−i
σ( f ,g)

2 W( f + g).

The relations (II) and (III) are known as Weyl relations. The algebra constructed

from the formal finite sums

W (L, σ) ≔
∑

i

aiW( fi)

admits a unique C∗-norm [5]. The completion of this algebra with respect to this

norm is the so-called Weyl algebra. From the nondegenerateness of the symplectic

form one sees that W( f ) =W(g) iff f = g.

2.2. Quasifree states and the Hadamard condition

States ω are linear, positive-semidefinite and normalized functionals over the

C∗-algebra W . Throughout this work we will focus on states which are completely

described by their two-point functions, the so-called quasifree states. All odd-point

functions of such states vanish identically and the higher even-point functions can

be written as combinations of the two-point function [30, 2].

The two-point function of a state ω can be decomposed in its symmetric and

anti-symmetric parts. For f1, f2 ∈ L,

w(2)
ω ( f1, f2) = µ( f1, f2) +

i

2
σ( f1, f2) , (5)

where µ(·, ·) is a real linear symmetric product which majorizes the symplectic

product, i.e.

|σ( f1, f2)|2 ≤ 4µ( f1, f1)µ( f2, f2) . (6)

The state is pure if and only if the inequality above is saturated, i.e., ∀ f1 ∈ L,

µ( f1, f1) =
1

4
l.u.b.

f2,0

|σ( f1, f2)|2
µ( f2, f2)

, (7)
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where l.u.b. is the least upper bound. Since the symplectic form is uniquely

determined, the characterization of the quasifree state amounts to the choice of

the real linear symmetric product µ. The definition of the one-particle structure,

which we will present now, shows that the choice of µ is equivalent to the choice

of a Hilbert space: Consider a real vector space L on which are defined both a

bilinear symplectic form, σ, and a bilinear positive symmetric form, µ, satisfying

(6). Then, one can always find a complex Hilbert space H , with scalar product

〈·|·〉H , together with a real linear map K : L→H such that [28]

(i) the complexified range of K, KL + iKL, is dense in H ;

(ii) µ( f1, f2) = Re〈K f1|K f2〉H , ∀ f1, f2 ∈ L;

(iii) σ( f1, f2) = 2Im〈K f1|K f2〉H , ∀ f1, f2 ∈ L.

The pair (K,H ) is uniquely determined up to an isomorphism, and it is called the

one-particle structure. Moreover, we have w(2)
ω ( f1, f2) = 〈K f1|K f2〉H and the quasifree

state with this two-point function is pure if and only if KL alone is dense in H .

The concept of Hadamard states is reminiscent of the spectral condition in

Minkowski spacetime. There the spectral condition provides sufficient control on

the singularities of the n-point functions, opening the possibility of extending

the states to correlation functions of nonlinear functions of the field as, e.g.,

the energy momentum tensor. These nonlinear functions are incorporated, in

Minkowski spacetime, by means of normal ordering and the Wick product [41].

The first rigorous form of the two-point function w(2) of a Hadamard state was

given by Kay and Wald [28] as a restriction on the singularity structure of w(2).

Remarkably, the singular part of w(2) is a purely geometrical term, and it amounts

to the antisymmetric part of the two-point function. The dependence on the

state is contained in the smooth symmetric part, whence it is possible to define

the renormalized quantum field theory for the whole class of Hadamard states

at once. The Hadamard condition, as presented by [28], makes explicit use of

a coordinate system. A purely geometrical characterization of Hadamard states

was only achieved in the works of Radzikowski (with the collaboration of Verch)

[34, 35], where the Hadamard condition was written in terms of the wave front set

of the two-point function corresponding to the state. We will now introduce the

concept of wave front sets.

Let v be a distribution of compact support and v̂(k) its Fourier transform. If
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∀N ∈N0 , ∃CN ∈ R+ such that

|v̂(k)| 6 CN (1 + |k|)−N , k ∈ Rn , (8)

then v is in C∞0 (Rn,K). If for a k ∈ Rn�{0} there exists a cone Vk such that for

every p ∈ Vk (8) holds, then k is a direction of rapid decrease for v. Accordingly,

the singular support (singsupp) of v is defined as the set of points having no

neighborhood where v is in C∞. Moreover, we define the cone Σ(v) as the set of

points k ∈ Rn�{0} having no conic neighborhood V such that (8) is valid when

k ∈ V.

For a general distribution u ∈
(
C∞0
)′

(X,K), where X is an open set in Rn and

φ ∈ C∞0 (X,R), φ(x) , 0, we define

Σx(u) ≔
⋂

φ

Σ(φu) .

Definition 2.2.1. If u ∈
(
C∞0
)′

(X,K) then the wave front set of u is the closed subset

of X × (Rn�{0}) defined by

WF(u) = {(x, k) ∈ X × (Rn
�{0})| x ∈ singsupp u , k ∈ Σx(u)} .

In [27] it was proved that the wave front set of a distribution u defined on a

smooth manifold X is a closed subset of T ∗X�{0} which is conic in the sense that

the intersection with the vector spaceT ∗x X is a cone for every x ∈ X. The restriction

to a coordinate patch Xκ is equal to κ∗WF(u ◦ κ−1).

The authors of [18] proved that the singularities of the solutions of a differential

operator P with real principal symbol propagate along the bicharacteristics of P.

This implies that through every point in singsupp of u (u is a distribution satisfying

Pu = f ∈ C∞(M,K)) there is a bicharacteristic curve which stays in the singsupp.

Moreover, the product of two distributions u, v ∈
(
C∞0
)′

(X,K) can be defined,

unless (x, ξ) ∈W f (u) and (x,−ξ) ∈W f (v) for some (x, ξ) [27]. Then

WF(uv) ⊂ {(x, ξ + η); (x, ξ) ∈WF(u) or ξ = 0,

(x, η) ∈WF(v) or η = 0} .

We finally present the definition of Hadamard states in terms of the wave

front set of its two-point function:
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Definition 2.2.2. A quasifree state ω is said to be a Hadamard state if its two-point

distribution ω2 has the following wave front set:

WF(ω2) =
{
(x1, k1; x2,−k2) | (x1, k1; x2, k2) ∈ T ∗ (M×M)�{0}; (x1, k1) ∼ (x2, k2); k1 ∈ V+

}
,

(9)

where (x1, k1) and (x2, k2) are as in the definition of the bicharacteristic strip 2 and

V+ is the closed forward light cone of T ∗x1
M.

To facilitate the writing, we will call this set C+ and say that a quasifree state

is Hadamard if its two-point function has this wave front set:

WF(ω2) = C+ . (10)

We will finish this preliminary subsection with the KMS condition. The states

which satisfy this condition generalize the concept of thermal states to situations

where the density matrix cannot be defined [22].

In the usual study of nonrelativistic statistical mechanics, the density matrix

ρβ, where β = T−1, is defined as a trace-class operator with trace tr ρβ = 1. The

expectation value of a bounded operator A is given by ωβ(A) = tr ρβA. If one

considers the time evolution of A we get, for B another bounded operator,

ωβ(αt(A)B) = ωβ(Bαt+iβ(A)) . (11)

The KMS condition, named after Kubo, Martin and Schwinger, comes from

the observation made by the authors of [23] (see also [5]) that the above equality

remains valid even when one cannot define a density matrix. Further properties

of KMS states, also in curved spacetimes, can be found in the recent review [39].

3. Hadamard state in Schwarzschild-de Sitter spacetime

3.1. Schwarzschild-de Sitter Spacetime

The Schwarzschild-de Sitter (SdS) spacetime is a spherically symmetric

solution of the Einstein equations in the presence of a positive cosmological

constant. Its metric, in the coordinates (t, r, θ, ϕ), has the form [21]

ds2 =

(
1 − 2M

r
− Λ

3
r2
)

dt2 −
(
1 − 2M

r
− Λ

3
r2
)−1

dr2 − r2(dθ2 + sin2(θ)dϕ2) , (12)
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where M > 0 is the black hole mass and Λ is the cosmological constant (we will

consider only Λ > 0, the other case being the so-called Anti-de Sitter spacetime).

The coordinates (θ, ϕ) have the usual interpretation of polar angles. If 3M
√
Λ < 1,

F(r) ≔
(
1 − 2M

r
− Λ

3
r2
)

has two distinct positive real roots, corresponding to the

horizons. Defining ξ = arccos(−3M
√
Λ) (π < ξ < 3π/2), the positive roots are

located at

rb =
2√
Λ

cos
(
ξ

3

)
;

rc =
2√
Λ

cos
(
ξ

3
+

4π

3

)
, (13)

while the negative real root is located at

r− =
2√
Λ

cos
(
ξ

3
+

2π

3

)
= −(rb + rc) .

One can easily see that 2M < rb < 3M < rc [29]. The horizon located at rb is a

black hole horizon. One can see that limΛ→0 rb = 2M and limM→0 rb = 0. On the

other hand, the horizon located at rc is a cosmological horizon, limΛ→0 rc = ∞ and

limM→0 rc =
√

3/Λ.

One can see from equation (12) that the character of the coordinates t and r

changes as one crosses the horizons. For rb < r < rc, F(r) > 0 and t is a timelike

coordinate, r being spacelike. If either r < rb or r > rc, F(r) < 0, t becomes a

spacelike coordinate and r, a timelike coordinate. Besides, it is immediate to see

that the vector X = ∂
∂t

is a Killing vector. For rb < r < rc, the Killing vector is a

timelike vector, thus this region of spacetime is a static region. If either r < rb or

r > rc, this vector becomes spacelike. Thus these are not static regions. On the

horizons r = rb or r = rc, X is a null vector. There exists a constant κ, the surface

gravity, defined on the horizon and also constant along the orbits of X, such that

[43]

κ2 = −1

2
(∇aXb)(∇aXb) .

The surface gravities on each of the horizons in the SdS spacetime are given by

κb = (rc − rb)(rc + 2rb)
Λ

6rb
;

κc = (rc − rb)(2rc + rb)
Λ

6rc

. (14)
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It is immediate to see that κb > κc.

The metric (12) is not regular at the horizons. As shown in [3], one cannot

obtain a coordinate system in which the metric is regular at both horizons.

However, we can construct a pair of coordinate systems such that each renders the

metric regular at one of the horizons. First, we define the usual tortoise coordinate

r∗:

r∗ =

∫
dr

F(r)
=

1

2κb
log
(

r

rb
− 1
)
− 1

2κc
log
(
1 − r

rc

)
− 1

2

(
1

κb
− 1

κc

)
log
(

r

rb + rc
+ 1
)
.

(15)

It maps the region r ∈ (rb, rc) into r∗ ∈ (−∞,+∞). We define null coordinates as

u = t − r∗, v = t + r∗. The coordinate system which renders the metric regular at

r = rb is defined as [11]

Ub ≔
−1

κb

e−κbu ; Vb ≔
1

κb

eκbv . (16)

Since u, v ∈ (−∞,+∞), Ub ∈ (−∞, 0) and Vb ∈ (0,+∞). In these coordinates, the

metric becomes (neglecting the angular part)

ds2 =
2M

r

(
1 − r

rc

)1+κb/κc
(

r

rb + rc
+ 1
)2−κb/κc

dUbdVb . (17)

This expression is regular at rb, but not at rc. Therefore, we can extend Ub to positive

values and Vb to negative values across the horizon at rb. In this coordinate system,

the metric covers the whole region (0, rc) regularly. The Kruskal extension of this

region is similar to the corresponding extension of the Schwarzschild spacetime

[43] and is shown in figure 1 below.

The region I in figure 1 is the exterior region. Asymptotically, it tends to r = rc.

We call attention to the fact that Ub increases to the left. Region II is the black hole

region. Any infalling observer initially at I will fall inside this region and reach the

singularity at r = 0. Regions III and IV are copies of II and I, the only difference

being that, in these regions, time runs in the opposite direction.

Similarly, we define the coordinate system which renders the metric regular

at r = rc:

Uc ≔
1

κc

eκcu ; Vc ≔
−1

κc

e−κcv , (18)

where Uc ∈ (0,+∞) and Vc ∈ (−∞, 0). In these coordinates,

ds2 =
2M

r

(
r

rb
− 1
)1+κc/κb

(
r

rb + rc
+ 1
)2−κc/κb

dUcdVc . (19)



Hadamard state in Schwarzschild-de Sitter spacetime 12

r =
r b

r
=

r
b

IIV

II

III

r = 0

r = 0

Ub

Vb

Figure 1: Conformal diagram of the Schwarzschild-de Sitter spacetime, extended

only across the horizon at r = rb.

This expression is regular at rc, but not at rb. Now, extending Uc to negative

values and Vc to positive values across the horizon at rc, the metric covers the

region (rb,∞) regularly. The Kruskal extension of this region is similar to the

corresponding extension of the de Sitter spacetime [20] and is shown in figure 2

below.

The region I′ in figure 2 is identical to region I in figure 1. Asymptotically, it

tends to r = rb. We call the attention to the fact that, now, Vc increases downwards.

Region II′ is the region exterior to the cosmological horizon. Any outwards

directed observer initially at I′ will fall inside this region and reach the singularity

at r = ∞. Regions III′ and IV′ are copies of II′ and I′, the only difference being that,

in these regions, times runs in the opposite direction.

The authors of [3] have also shown that transformations of coordinates of the

form (16) and (18) are the only ones which give rise to expressions for the metric

that are regular at each of the horizons.

To obtain a maximally extended diagram, we first identify the regions I and I′

of figures 1 and 2, respectively. The wedges IV and IV′ are also identical, hence we

can combine new diagrams, identifying these wedges with the newly introduced

wedges IV′ and IV, respectively. Now, the wedges I and I′ can be combined
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r =
r c

r
=

r
c

I′IV′

II′

III′

r = ∞

r = ∞

Uc

Vc

Figure 2: Conformal diagram of the Schwarzschild-de Sitter spacetime, extended

only across the horizon at r = rc.

with new wedges I′ and I, and this process is repeated indefinitely. Thus the

maximally extended diagram is an infinite chain. In figure 3 below we depict part

of the Penrose diagram of this maximally extended manifold (where we will also

rename some of the regions):

H
+b H

0
b

H
0c

H

−
c

H
−b

H

+
c

Bb Bc

H

0−
b

H
0−c

Σ

IV IV′

r = 0

r = 0

r = ∞

r = ∞

· · · · · ·

Figure 3: Maximally extended conformal diagram of the Schwarzschild-de Sitter

spacetime.

The region between the horizons (in dark gray color in figure 3) is denoted by

D . The black-hole horizon is located at the surfaces denoted by H
±(0,0−)

b
, and the
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cosmological horizon, at H
±(0,0−)

c . The horizons are defined by:

H
+

b : {(Ub,Vb, θ, ϕ) ∈ R2×S2; Ub > 0,Vb = 0} ; H
−

b : {(Ub,Vb, θ, ϕ) ∈ R2×S2; Ub < 0,Vb = 0} ;

H
0

b : {(Ub,Vb, θ, ϕ) ∈ R2×S2; Ub = 0,Vb > 0} ; H
0−

b : {(Ub,Vb, θ, ϕ) ∈ R2×S2; Ub = 0,Vb < 0} ;

H
+

c : {(Uc,Vc, θ, ϕ) ∈ R2×S2; Uc = 0,Vc > 0} ; H
−

c : {(Uc,Vc, θ, ϕ) ∈ R2×S2; Uc = 0,Vc < 0} ;

H
0

c : {(Uc,Vc, θ, ϕ) ∈ R2×S2; Uc > 0,Vc = 0} ; H 0−
c : {(Uc,Vc, θ, ϕ) ∈ R2×S2; Uc < 0,Vc = 0} .

The bifurcation spheres are defined by:

Bb : {(Ub,Vb, θ, ϕ) ∈ R2×S2; Ub = Vb = 0} ; Bc : {(Uc,Vc, θ, ϕ) ∈ R2×S2; Uc = Vc = 0} .

We note that the Killing vector X vanishes on these spheres.

The completely extended manifold will be denoted by K , and Σ is a smooth

Cauchy surface of K . The Killing vector X is timelike and future pointing in region

D . This Killing vector is also timelike in the regions IV and IV′, but past directed

there. This Killing vector is spacelike in the light gray regions and in the regions

opposed to them, with respect to the bifurcation spheres. An infalling observer

initially in region D will fall inside the light gray region to the left of D . This

region will be denoted by II, and it represents the inside of the black hole. On the

other hand, any outwards directed observer initially in D will fall inside the ligh

gray region to the right of D . This region will be denoted by III, and it represents

the region exterior to the cosmological horizon. The regions opposed with respect

to the bifurcation spheres will be denoted by II′ and III′. These regions are defined

as follows:

D ≔ {(Ub,Vb, θ, ϕ) ∈ R2 × S2; Ub < 0,Vb > 0} ;

II ≔ {(Ub,Vb, θ, ϕ) ∈ R2 × S2; Ub > 0,Vb > 0} ; II′ ≔ {(Uc,Vc, θ, ϕ) ∈ R2 × S2; Uc > 0,Vc > 0} ;

III ≔ {(Ub,Vb, θ, ϕ) ∈ R2 × S2; Ub < 0,Vb < 0} ; III′ ≔ {(Uc,Vc, θ, ϕ) ∈ R2 × S2; Uc < 0,Vc < 0} .

The region D can be equivalently defined by

D = {(Uc,Vc, θ, ϕ) ∈ R2 × S2; Uc > 0,Vc < 0} .

We will construct a Hadamard state in the region

M ≔ II ∪D ∪ II′ .
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Any past inextensible causal curve passing through any point ofMpasses through

B ∪ C , where B : {(Ub,Vb, θ, ϕ) ∈ R2 × S2; Vb = 0} = H +
b
∪ Bb ∪ H −

b
, and

C : {(Uc,Vc, θ, ϕ) ∈ R2 × S2; Uc = 0} = H +
c ∪ Bc ∪ H −

c . Since this surface is

achronal, B∪C is a Cauchy surface forM. We will also show how the state can be

restricted to the past horizons B ∪ C and will investigate the physical properties

of this restriction.

3.2. Algebras and State

3.2.1. Algebras

We will construct the Weyl algebra on the symplectic space given by the

pair (S(M), σM), where S(M) is the vector space of solutions of the Klein-Gordon

equation having particular decaying properties (see complete definition below)

and σM is the symplectic form constructed from the advanced-minus-retarded

operator (see section 2.1). Dafermos and Rodnianski [12] showed that, if the

solutions of the Klein-Gordon equation have smooth initial data on Σ, then there

exist, due to spherical symmetry, a constant c which depends on M and Λ, and

another constant C depending on M, Λ, the geometry of Σ ∩ J−(D) and on the

initial values of the field, such that

|φl(u, v)| ≤ C(e−cv+/l2 + e−cu+/l2)

and

|φ0(u, v) − φ| ≤ C(e−cv+/l2 + e−cu+/l2) (20)

are valid in J+(Σ) ∩D . Here,

|φ| ≤ inf
x∈Σ
|φ0(x)| + C ,

u+ = max{u, 1}, v+ = max{v, 1} and l is the spherical harmonic. These bounds are

also valid on the horizons. This feature will play a crucial role in the restriction

of the algebra to the horizons and in the subsequent construction of the state.

The regions IV and IV′ are also static regions, with time running in the opposite

direction. Therefore, this fast decay is also verified on H +
b

and on H +
c . Moreover,

we make the further requirement that the solutions vanish at the bifurcation
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spheres Bb and Bc (as remarked in [12], this requirement creates no additional

complications).

The vector spaces of solutions inM and on the horizons are defined by

S(M) :
{
(φ − φ0) | φ ∈ C∞(M;R),�gφ = 0; φ0 = constant

}
, (21)

S(B) :
{
(φ − φ0) | φ ∈ C∞(B;R),�gφ = 0, φ = 0 at Bb; φ0 = constant; ∃∃Cφ > 0,C′ > 1

with |φ − φ0| <
Cφ

Ub
, |∂Ub

φ| <
Cφ

U2
b

for |Ub| > C′
}
, (22)

S(H −
b ) :
{
(φ − φ0) | φ ∈ C∞(H −

b ;R),�gφ = 0; φ0 = constant; ∃∃Cφ > 0,C′ > 1

with |φ − φ0| < Cφe−u, |∂uφ| < Cφe−u for |u| > C′
}
, (23)

S(C ) :
{
(φ − φ0) | φ ∈ C∞(C ;R),�gφ = 0, φ = 0 at Bc; φ0 = constant; ∃∃Cφ > 0,C′ > 1

with |φ − φ0| <
Cφ

Vc

, |∂Vcφ| <
Cφ

V2
c

for |Vc| > C′
}
, (24)

S(H −
c ) :
{
(φ − φ0) | φ ∈ C∞(H −

c ;R),�gφ = 0; φ0 = constant; ∃∃Cφ > 0,C′ > 1

with |φ − φ0| < Cφe−v, |∂vφ| < Cφe−v for |v| > C′
}
. (25)

The Weyl algebras W (S(M)), W (S(B)), W (S(C )), W (S(H −
b

)), W (S(H −
c )) (we

will omit the σ’s to simplify the notation) are constructed from each of the

symplectic spaces as explained in section 2.1.

The authors of [16] constructed the Unruh state in the Schwarzschild

spacetime using the bulk-to-boundary technique. That state was defined in the

union of the static region, the interior of the black hole and on the event horizon

separating these regions. They defined the Weyl algebra from the symplectic

space of solutions in these regions. Besides, they proved that this Weyl algebra

is related by an injective isometric ∗-homomorphism to the tensor product of the

Weyl algebras defined from the symplectic spaces of solutions on the past null

horizons, the one corresponding to the past black hole and the other one, at null

infinity. The proof presented there for the mapping from the algebra in the bulk to

the algebra on the past black hole horizon can be repeated here verbatim not only

to map W (S(M)) to W (S(B)), but also to map W (S(M)) to W (S(C )). Moreover, the

verification that the decay estimates are correctly satisfied, which there required

an additional Proposition to be proven, here is verified directly from the results of
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[12]. We note that the authors of [16] needed additional results to verify the decay

estimate on null infinity. These are not necessary here. Therefore we will only

state the theorem, knowing that the proof can be read from the proof of Theorem

2.1 in [16].

Theorem 3.2.1. For every φ ∈ S(M), let us define

φB ≔ φ↾B ; φC ≔ φ↾C .

Then, the following holds:

(a) The linear map

Γ : S(M) ∋ φ 7→
(
φB, φC

)

is an injective symplectomorphism of S(M) into S(B)⊕S(C ) equipped with the symplectic

form, s.t., for φ, φ′ ∈ S(M):

σM(φ, φ′) ≔ σB(φB, φ
′
B

) + σC (φC , φ
′
C

) . (26)

(b) There exists a corresponding injective isometric ∗-homomorphism

ι : W (S(M))→ W (S(B)) ⊗W (S(C )) ,

which is uniquely individuated by

ι(WM(φ)) =WB(φB)WC (φC ) . (27)

This result established the following

Theorem 3.2.2. With the same definitions as in the theorem 3.2.1 and defining, for

φ ∈ S(D), φ↾H −
b
= lim→H −

b
φ and φ↾H 0

b
= lim→H 0

b
φ (similarly for H −

c and H 0
c ), the

linear maps

Γ− : S(D) ∋ φ 7→
(
φH −

b
, φH −

c

)
∈ S(H −

b ) ⊕ S(H −
c )

Γ0 : S(D) ∋ φ 7→
(
φH 0

b
, φH 0

c

)
∈ S(H 0

b ) ⊕ S(H 0
c ) ,

are well-defined injective symplectomorphisms. As a consequence, there exists two

corresponding injective isometric ∗-homomorphisms:

ι− : W (S(D))→ W (S(H −
b )) ⊗W (S(H −

c ))

ι0 : W (S(D))→ W (S(H 0
b )) ⊗W (S(H 0

c )) .
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As a prelude to the next subsection, we note that if the linear functional ω :

W (S(B))⊗W (S(C ))→ C is an algebraic state, then the isometric ∗-homomorphism ι

constructed in theorem 3.2.1 above gives rise to a stateωM : W (S(M))→ C defined

by

ωM ≔ ι∗(ω), where ι∗(ω)(W) = ω(ι(W)), ∀W ∈ S(M) .

Specializing to quasifree states, we know that the “quasifree property” is preserved

under pull-back and such a state is unambiguously defined on W (S(B))⊗W (S(C ))

by

ωM(WB∪C (ψ)) = e−µ(ψ,ψ)/2, ∀ψ ∈ S(B) ⊕ S(C ) ,

whereµ : (S(B)⊕S(C ))×(S(B)⊕S(C ))→ R is a real scalar product which majorizes

the symplectic product.

3.2.2. State

Before we start the construction of the state, we should comment on the

theorems in [28] which proved that there does not exist any Hadamard state on

the whole Kruskal extension of the SdS spacetime. The first nonexistence Theorem

proved in section 6.3 of that reference is based on causality arguments. They

proved that the union of the algebras defined on the horizons H +
c and H 0−

c (we

will call this algebra W (SR
c ); see figure 3) is dense in W (Sc), the union of the algebras

defined on all the horizons corresponding to the cosmological horizon. Similarly,

the union of the algebras defined on H +
b

and H 0−
b

(W (SL
b
)) is dense in W (Sb).

However, by the Domain of Dependence property, W (SR
c ) should be orthogonal

to W (SL
b
). But W (Sc) and W (Sb), again from the Domain of Dependence property,

cannot be orthogonal, thus there is a contradiction.

We avoid this problem by not defining the state in the causal past of B

and in the causal past of C (see figure 3). The algebras W (S(B)) and W (S(C ))

are not orthogonal, the same being valid for W (S(H −
b

)) and W (S(H −
c )). The

algebras W (S(H +
b

)) and W (S(H +
c )) are indeed orthogonal, but they are not dense

in W (S(B)) and W (S(C )). Thus there is no contradiction in our case.

The second nonexistence Theorem proved there arrives again at a

contradiction by using properties of a KMS state. As it will be clear below, the

state we will construct here is not a KMS state, thus we are not troubled by the

contradiction at which they arrive.
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Now, we will go on with the construction of our state.

On the set of complex, compactly supported smooth functions C∞0 (B;C), we

define its completion
(
C∞0 (B;C), λ

)
in the norm defined by the scalar product [32]

λ(ψ1, ψ2) ≔ lim
ǫ→0+
−

r2
b

π

∫

R×R×S2

ψ1(Ub1, θ, ϕ)ψ2(Ub2, θ, ϕ)

(Ub1 −Ub2 − iǫ)2
dUb1 ∧ dUb2 ∧ dS2 . (28)

Thus,
(
C∞

0
(B;C), λ

)
is a Hilbert space.

The Ub-Fourier-Plancherel transformof ψ is given by (we denote (θ, ϕ) by ω)

F (ψ)(K, ω) ≔
1√
2π

∫

R

eiKUbψ(Ub, ω)dUb ≕ ψ̂(K, ω) . (29)

We can, more conveniently, write the scalar product (28) in the Fourier space:

λ(ψ1, ψ2) =

∫

R×S2

ψ̂1(K, ω)ψ̂2(K, ω)2KdK ∧ r2
bdS2 . (30)

Let ψ̂+(K, ω) ≔ F (ψ)(K, ω)↾{K≥0}. Then, the linear map

C∞0 (B;C) ∋ ψ 7→ ψ̂+(K, ω) ∈ L2
(
R+ × S2, 2KdK ∧ r2

bdS2
)
≕ HB (31)

is isometric and uniquely extends, by linearity and continuity, to a Hilbert space

isomorphism of

FUb
:
(
C∞

0
(B;C), λ

)
→ HB . (32)

One can similarly define the (Vb,Vc,Uc)-Fourier-Plancherel transforms acting on

the spaces of complex, compactly supported smooth functions restricted to the

hypersurfaces H 0
b

, C and H 0
c respectively, all completed in norms like (28), and

extend the transforms to Hilbert space isomorphisms.

Not every solution of the Klein-Gordon equation belonging to the space S(B)

(or any other of the spaces defined in (23)-(25)) is compactly supported. However,

we can still form isomorphisms between the completion of each of these spaces

(in the norm λ defined above) and the corresponding Hilbert space, as in (31) and

(32). First, we note that the decay estimates found in [12] and presented at the

definition of S(B), together with smoothness of the functions in this space, let

us conclude that these functions (and their derivatives) are square integrable in



Hadamard state in Schwarzschild-de Sitter spacetime 20

the measure dUb. Hence we can apply the Fourier-Plancherel transform to these

functions. Therefore the product (30) gives, for ψ1, ψ2 ∈ S(B)
∣∣∣λ(ψ1, ψ2)

∣∣∣ =∣∣∣∣∣
∫

R×S2

ψ̂1(K, ω)ψ̂2(K, ω)2KdK ∧ r2
bdS2

∣∣∣∣∣ = 2

∣∣∣∣∣
∫

R×S2

ψ̂1(K, ω)
(
Kψ̂2(K, ω)

)
dK ∧ r2

bdS2

∣∣∣∣∣ =

2

∣∣∣∣∣
∫

R×S2

ψ̂1(K, ω)∂̂Ub
ψ2(K, ω)dK ∧ r2

bdS2

∣∣∣∣∣ = 2

∣∣∣∣∣
∫

R×S2

ψ1(Ub, ω)∂Ub
ψ2(Ub, ω)dUb ∧ r2

bdS2

∣∣∣∣∣ < ∞ .

(33)

Let again ψ̂+(K, ω) ≔ F (ψ)(K, ω)↾{K≥0}, but now ψ ∈ S(B). Then, the linear

map

S(B) ∋ ψ 7→ ψ̂+(K, ω) ∈ L2
(
R+ × S2, 2KdK ∧ r2

bdS2
)
≕ HB (34)

is isometric and uniquely extends, by linearity and continuity, to a Hilbert space

isomorphism of

FUb
: (S(B), λ)→ HB , (35)

and similarly for the horizon C . We then define the real-linear map KB as

KB ≔ FUb
: (S(B), λ)→ HB . (36)

When proving some properties of the state individuated by the two-point

function (28) (Theorem 3.2.4 below), it will be convenient to analyse the restrictions

of such two-point function to H ±
b

. The initial point of this analysis is the following

Proposition 3.2.3. Let the natural coordinates covering H +
b

and H −
b

be u ≔

(1/κb) ln(κbUb) and u ≔ (−1/κb) ln(−κbUb), respectively. Let also µ(k) be the positive

measure on R, given by

dµ(k) ≡ 1

2

keπk/κb

eπk/κb − e−πk/κb
dk . (37)

Then, if ψ̃ = (F (ψ))(k, ω) denotes the Fourier transform of either ψ ∈ S(H +
b

) or

ψ ∈ S(H −
b

) with respect to u, then the maps

S(H ±
b ) ∋ ψ 7→ ψ̃(k, ω) ∈ L2

(
R × S2, dµ(k) ∧ r2

bdS2
)
≕ HH ±

b
(38)

are isometric (when S(H ±
b

) are equipped with the scalar product λ) and uniquely extend,

by linearity and continuity, to Hilbert space isomorphisms of

F(±)
u :
(
S(H ±

b
), λ
)
→ HH ±

b
. (39)
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Proof. The measure (37) is obtained if one starts from (28), makes the change

of variables from Ub to u and then takes the Fourier transform with respect to u,

keeping in mind that limǫ→0+ 1/(x−iǫ)2 = 1/x2−iπδ′(x) [19]. The other statements of

the proposition follow exactly as the corresponding ones for the Fourier-Plancherel

transform of ψ ∈ S(B). The only formal difference is that, from the decay estimate

(23), we can now employ the usual Fourier transform. �

Hence, the real-linear maps K
βb

H ±
b

are defined as K
βb

H ±
b

≔ F(±)
u .

On the following theorem we will prove that we can construct a quasifree

pure state ωM on the Weyl algebra defined on the region B ∪ C . It is equivalent

to Theorem 3.1 of [16]. Since its proof is quite lengthy, we will relegate it to

Appendix A. On the next subsection we will show thatωM satisfies the Hadamard

condition.

Theorem 3.2.4.

(a) The pair (HB,KB) is the one-particle structure for a quasifree pure state ωB on

W (S(B)) uniquely individuated by the requirement that its two-point function coincides

with the rhs of

λ(ψ1, ψ2) ≔ lim
ǫ→0+
−

r2
b

π

∫

R×R×S2

ψ1(Ub1, θ, ϕ)ψ2(Ub2, θ, ϕ)

(Ub1 −Ub2 − iǫ)2
dUb1 ∧ dUb2 ∧ dS2 .

(b) The state ωB is invariant under the action of the one-parameter group of ∗-
automorphisms generated by X↾B and of those generated by the Killing vectors of S2.

(c) The restriction of ωB to W (S(H ±
b

)) is a quasifree state ω
βb

H ±
b

individuated by the

one-particle structure
(
H
βb

H ±
b

,K
βb

H ±
b

)
with:

H
βb

H ±
b

≔ L2
(
R × S2, dµ(k) ∧ r2

bdS2
)

and K
βb

H ±
b

= F±u ↾S(H ±
b

) .

(d) If {β(X)
τ }τ∈R denotes the pull-back action on S(H −

b
) of the one-parameter group

generated by X↾B, that is
(
βτ(ψ)

)
(u, θ, ϕ) = ψ(u − τ, θ, ϕ),∀τ ∈ R, ψ ∈ S(H −

b
), then it

holds:

K
βb

H −
b

β(X)
τ (ψ) = eiτk̂K

βb

H −
b

ψ

where k̂ is the k-multiplicative self-adjoint operator on L2
(
R × S2, dµ(k) ∧ dS2

)
. An

analogous statement holds for H +
b

.
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(e) The statesω
βb

H ±
b

satisfy the KMS condition with respect to the one-parameter group

of ∗-automorphisms generated by, respectively,∓X↾B, with Hawking’s inverse temperature

βb =
2π
κb

.

One can equally define a quasifree pure KMS state ω
βc

C
on S(C ), at inverse

temperature βc =
2π
κc

.

We have successfully applied the bulk-to-boundary technique to construct

two quasifree pure KMS states, one on W (S(B)) and the other one on W (S(C )),

with temperatures given by κb/2π and κc/2π, respectively. Thus, by the remarks

after theorems 3.2.1 and 3.2.2, we can define a state onM such that, for ψ ∈ S(M),

ωM(WM(ψ)) = e−µ(ψ,ψ) = e−µB(ψ↾B,ψ↾B)−µC (ψ↾C ,ψ↾C ) = e−µB(ψ↾B,ψ↾B)e−µC (ψ↾C ,ψ↾C )

= ωB(WB(ψ↾B))ωC (WC (ψ↾C )) . (40)

The resulting state is thus the tensor product of two states, each one a quasifree

pure state, but each one a KMS at a different temperature. Thus ωM is not a

KMS state, and neither can it be interpreted as a superposition, a mixture or

as an entangled state. However, our result is important because it shows how

expectation values of observables in the region M are related to the expectation

values on the horizons. Formally, the state itself can be written in terms of its

“initial value”.

We still must prove that the two-point function of this state is a bidistribution

in
(
C∞0
)′

(M×M). This will be easily proved in the following

Proposition 3.2.5. The smeared two-point function ΛM : C∞0 (M;R)×C∞0 (M;R)→ C
of the state ωM can be written as the sum

ΛM = ΛB + ΛC , (41)

with ΛB and ΛC defined from the following relations as in (28),

ΛB( f , h) = λB(ψ
f

B
, ψh

B
) ; ΛC ( f , h) = λC (ψ

f

C
, ψh

C
)

for every f , h ∈ C∞0 (M;R).

Separately, ΛB, ΛC and ΛM individuate elements of
(
C∞0
)′

(M×M) that we will

denote, respectively, by the same symbols. These are uniquely individuated by complex

linearity and continuity under the assumption (41), by

ΛB( f ⊗ h) ≔ λB(ψ
f

B
, ψh

B
) ; ΛC ( f ⊗ h) ≔ λC (ψ

f

C
, ψh

C
) , (42)
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for every f , h ∈ C∞0 (M;R). Here, ψ
f

B
is a “smeared solution”, ψ

f

B
=
(
E( f )
)
↾B

(similarly

for the other solutions).

Proof. The first statement follows trivially from the definition (40), theorems (3.2.1)

and (3.2.2) and the remarks at the end of section 3.2.1.

To prove the second statement, we have to prove that ΛB and ΛC are

bidistributions in
(
C∞0
)′

(M×M). For this purpose, we note that

f 7→ Λi( f , ·) and h 7→ Λi(·, h) ; i = B,C ,

are continuous in the sense of distributions. This is true from the definition ofλi(·, ·)
and the fact that the Fourier-Plancherel transform is a continuous map. Thus, both

Λi( f , ·) and Λi(·, h) are in
(
C∞0
)′

(M). The Schwarz kernel theorem [27] shows that

Λi ∈
(
C∞0
)′

(M×M). �

Before we proceed to the proof thatωM is a Hadamard state, we have to clarify

its interpretation. The fact that our state is not defined in the causal past of Bb and

in region IV of figure 3 makes ωB very similar to the Unruh state defined in the

Schwarzschild spacetime. Also the fact that ωM is Hadamard (see next section) on

H 0
b

, but not on H ±
b

, as in the Schwarzschild case [16], reinforces this similarity.

But since neither is ωM defined in the causal past of Bc and in region IV′, nor is

it Hadamard on H ±
c , although it is Hadamard on H 0

c , ωC is not similar to the

Unruh state in de Sitter spacetime. As shown in [33], the Unruh state in the de Sitter

spacetime is the unique KMS state which can be extended to a Hadamard state

in the whole spacetime. The Unruh state in Schwarzschild-de Sitter spacetime, if

it existed, should be well defined and Hadamard inM∪ J−(Bc) ∪ IV′. But such

a state cannot exist, by the nonexistence theorems proved in [28]. Therefore ωM
cannot be interpreted as the Unruh state in Schwarzschild-de Sitter spacetime.

4. The Hadamard Condition

We must analyse the wave front set of the bidistribution individuated in

Proposition 3.2.5 and show that it satisfies the Hadamard condition (equation

(9)). The proof will be given in two parts: the first part will be devoted to prove

the Hadamard condition in the region D . Here we can repeat verbatim the first
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part of the proof given in [16], where the authors showed that the Unruh state in

Schwarzschild spacetime is a Hadamard state in the wedge region. Their proof

could be almost entirely repeated from [36]. We will thus present the statements

and the main points of the proof. The second part of the proof consists of extending

these results to the regions II and II′ (see figure 3). This part of the proof can be

repeated almost verbatim from the second part of the proof given in [16], where the

authors proved that their state is a Hadamard state inside the black hole region.

The main differences rely on the fact that here we can apply the Fourier-Plancherel

transform directly to the functions in S(B) and in S(C ), since they are square-

integrable, a fact which does not hold in [16]. Besides, we do not have to handle

the solutions at infinity, only on the event horizons. Thus, our proof is technically

simpler than the one given in [16]. As a last remark, we note that the proof of

the Hadamard condition given there for the region inside the black hole is equally

valid, in our case, for the region outside the cosmological horizon (region II′).

Part 1: In this first part, we will prove the following

Lemma 4.0.6. The wave front set of the two-point function ΛM of the state ωM,

individuated in (41), restricted to a functional on D ×D , is given by

WF((ΛM)↾D×D ) =
{
(x1, k1; x2,−k2) | (x1, k1; x2, k2) ∈ T ∗ (D ×D)�{0}; (x1, k1) ∼ (x2, k2); k1 ∈ V+

}
.

(43)

thus the state ωM↾D is a Hadamard state.

Proof. In [36] the authors proved that, given a stateω, if it can be written as a convex

combination of ground and KMS states at an inverse temperature β > 0 (those

authors named such state a strictly passive state), then its two-point function satisfies

the microlocal spectrum condition, thus being a Hadamard state. However, our

stateωM is not such a state, then we cannot directly apply this result. Nonetheless,

as remarked in [16], the passivity of the state is not an essential condition of the

proof. Hence we will present here the necessary material to complete the proof

that our state ωM is a Hadamard state in the region D . The proof follows the lines

of the above cited papers.

First we note that, for every f ∈ C∞0 (R;R) and h1, h2 ∈ C∞0 (D ;R), ΛB and ΛC

satisfy ∫

R

f̂ (t)ΛB(h1 ⊗ β(X)
t (h2))dt =

∫

R

f̂ (t + iβb)ΛB(β(X)
t (h2) ⊗ h1)dt (44)
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(for C , just change βb → βc). For these states, we can define a subset ofR2�{0}, the

global asymptotic pair correlation spectrum, in the following way: we call a family

(Aλ)λ>0 with Aλ ∈ W(S(D)) a global testing family in W(S(D)) provided there is, for

each continuous semi-norm σ, an s ≥ 0 (depending on σ and on the family) such

that

sup
λ

λsσ(A∗λAλ) < ∞ .

The set of global testing families will be denoted by A.

Let ω be a state on W(S(D)) and ξ = (ξ1, ξ2) ∈ R2�{0}. Then we say that ξ

is a regular direction for ω, with respect to the continuous one-parametric group

of ∗-automorphisms {αt}t∈R induced by the action of the Killing vector field§ X, if

there exists some h ∈ C∞0 (R2) and an open neighborhood V of ξ in R2�{0} such

that, for each s ∈N+, there are Cs, λs > 0 so that

sup
k∈V

∣∣∣∣∣
∫

e−iλ−1(k1t1+k2t2)h(t1, t2)ω
(
αt1

(Aλ)αt2
(Bλ)
)

dt1dt2

∣∣∣∣∣ < Csλ
s as λ→ 0

holds for all (Aλ)λ>0, (Bλ)λ>0 ∈ A, and for 0 < λ < λs.

The complement in R2�{0} of the set of regular directions of ω is called the

global asymptotic pair correlation spectrum of ω, ACS2
A

(ω).

As noted in [16], the fact that the two-point functions ΛB and ΛC satisfy (44),

suffices to prove

Proposition 4.0.7. Letω be an {αt}t∈R-invariant KMS state at inverse temperature β > 0.

Then,

either ACS2
A(ω) = ∅ ,

or ACS2
A(ω) = {(ξ1, ξ2) ∈ T ∗ (D ×D)�{0} | ξ1(X) + ξ2(X) = 0} . (45)

The proof of this Proposition can be found in the proof of item (2) of

Proposition 2.1 in [36].

With this result, we can turn our attention to Theorem 5.1 in [36], where

they prove that the wave front set of the two-point function of a strictly passive

state which satisfies weakly the equations of motion‖, in both variables, and whose

§ We remind the reader that, in the region D , X = ∂t.
‖ We say that a functional F is a weak solution of a differential operator P if, for φ such that Pφ = 0,

PF[φ] = F[Pφ] = 0.
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symmetric and antisymmetric parts are smooth at causal separation, is contained in

the rhs of (43). As further noted in [16], the passivity of the state is only employed

in the proof of step (2) of the mentioned Theorem. However, what is actually

needed for this proof is the result of Proposition 4.0.7. Moreover, as proved in step

(3) of the mentioned Theorem, the antisymmetric part of the two-point function

of the state is smooth at causal separation if and only if the symmetric part is also

smooth at causal separation. The antisymmetric part of the two-point function of

our state, by definition, satisfies this condition. Besides, the two-point function of

our stateωM satisfies weakly the equations of motion in both variables. Therefore,

with the only modification being the substitution of the passivity of the state by the

result of Proposition 4.0.7, we have proved, as the authors of [16] did, an adapted

version of Theorem 5.1 of [36]. At last, as stated in item (ii) of Remark 5.9 in [37],

the wave front set of the two-point function of a state being contained in the rhs

of (43) implies that the wave front set is equal to this set. �

Part 2: Our analysis here will be strongly based on the Propagation of

Singularities Theorem (Theorem 6.1.1 in [18]), which makes use of the concepts of

characteristics and bicharacteristics of a linear differential operator, mentioned in

section 2.1. The PST, applied to the weak bisolution ΛM implies, on the one hand,

that

WF(ΛM) ⊂
(
{0} ∪ Ng

)
×
(
{0} ∪ Ng

)
, (46)

while, on the other hand,

if (x, kx; y, ky) ∈WF(ΛM) , then B(x, kx) × B(y, ky) ⊂WF(ΛM) . (47)

We will now quote from [16] a couple of technical results which will be useful

in the final proof. The proof of these results can be found in Appendix B.

The first proposition characterizes the decay properties, with respect to

p ∈ T ∗M, of the distributional Fourier transforms:

ψ
fp

B
≔ E

(
f ei〈p,·〉

)
↾B

; ψ
fp

C
≔ E

(
f ei〈p,·〉

)
↾C

,

where we have used the complexified version of the causal propagator, which

enjoys the same causal and topological properties as those of the real one.

Henceforth 〈·, ·〉 denotes the scalar product in R4 and | · | the corresponding norm.
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Proposition 4.0.8. Let us take (x, kx) ∈ Ng such that (i) x ∈ II (or II′) and (ii) the unique

inextensible geodesic γ cotangent to kx at x intersects B (C ) in a point whose Ub (Vc)

coordinate is non-negative. Let us also fix χ′ ∈ C∞0 (B;R) with χ′ = 1 if Ub ∈
(−∞,Ub0

]

and χ′ = 0 if Ub ∈
[
Ub1

,+∞) for constants Ub0
< Ub1

< 0 (χ′ ∈ C∞0 (C ;R), χ′ = 1 if

Vc ∈
(−∞,Vc0

]
and χ′ = 0 if Vc ∈

[
Vc1
,+∞), Vc0

< Vc1
< 0).

For any f ∈ C∞0 (M) with f (x) = 1 and sufficiently small support, kx is a direction of

rapid decrease for both p 7→ ‖χ′ψ fp

B
‖B and p 7→ ‖ψ fp

C
‖C (p 7→ ‖ψ fp

B
‖B and p 7→ ‖χ′ψ fp

C
‖C ),

where ‖ · ‖B is the norm induced by λB (and similarly for C ; see equations (34)-(36)).

The second technical result is the following Lemma, which states that

Lemma 4.0.9. Isolated singularities do not enter the wave front set of ΛM, i.e.

(x, kx; y, 0) <WF(ΛM) ; (x, 0; y, ky) <WF(ΛM)

if x, y, ∈ M ; kx ∈ T ∗xM , ky ∈ T ∗yM .

Hence, (46) yields

WF(ΛM) ⊂ Ng ×Ng . (48)

Now, we need to analyse the points of ΛM such that (x, kx; y, ky) ∈ Ng × Ng

with either x, either y, or both of them inM�D . The case where either x or y is in

M�D will be treated in Case A below. The case when both x and y lie inM�D

will be treated in Case B.

Case A: If x ∈ M�D and y ∈ D (the symmetric case being analogous), suppose

that (x, kx; y,−ky) ∈ WF(ΛM) and there exists a representative of (q, kq) ∈ B(x, kx)

such that (q, kq) ∈ T ∗(D)�{0}. Then (q, kq; y,−ky) ∈ WF((ΛM)↾(D×D)) and, by the

results of Part 1 above, WF((ΛM)↾(D×D)) is of Hadamard form. Since there exists

only one geodesic passing through a point with a given cotangent vector, the

Propagation of Singularities Theorem allow us to conclude that (x, kx) ∼ (y, ky)

with kx ∈ V+, thus WF(ΛM) is of Hadamard form. We remark that this reasoning

is valid for both x ∈ II and x ∈ II′.

We are still left with the possibility that x ∈ M�D and y ∈ D , but no

representative of B(x, kx) lies in T ∗(D)�{0}. We intend to show that, in this case,

(x, kx; y,−ky) < WF(ΛM) for every ky. Without loss of generality, we will consider

x ∈ II, the case x ∈ II′ being completely analogous.

We start by choosing two functions f , h ∈ C∞0 (M;R) such that f (x) = 1 and

h(y) = 1. Since B(x, kx) has no representative in D , there must exist (q, kq) ∈ B(x, kx)
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with q ∈ B such that the coordinate Uq is non-negative. Now, considering the

supports of f and h to be sufficiently small, we can devise a function χ such that

χ(Uq, θ, ϕ) = 1 for all (θ, ϕ) ∈ S2 andχ = 0 on J−(supp h)∩B. Besides, we can define

χ′ ≔ 1−χ and, by using a coordinate patch which identifies an open neighborhood

of supp( f ) withR4, one can arrange a conical neighborhood Γkx ∈ R4�{0} of kx such

that all the bicharacteristics B(s, ks) with s ∈ supp( f ) and ks ∈ Γkx do not meet any

point of supp(χ′). One can analyse the two-point function ΛM as

ΛM( fkx ⊗ hky) = λB(χψ
fkx

B
, ψ

hky

B
) + λB(χ′ψ

fkx

B
, ψ

hky

B
) + λC (ψ

fkx

C
, ψ

hky

C
) . (49)

Lemma 4.0.9 above tells us that only nonzero covectors are allowed in the wave

front set of ΛM. The analysis of the points of the form (x, kx; y, ky) ∈ Ng × Ng is

similar to the analysis presented after equation (B.2) in the proof of the mentioned

Lemma.

Case B: The only situation not yet discussed is the case of x, y < D and B(x, kx),

B(y, ky) having no representatives in T ∗(D)�{0} (if either B(x, kx) or B(y, ky) has a

representative in T ∗(D)�{0}, then we fall back in the previous cases).

As in Case A, we will consider x, y ∈ II, the case x, y ∈ II′ being completely

analogous. We introduce a partition of unit χ, χ′ on B, χ, χ′ ∈ C∞0 (B;R) and

χ+χ′ = 1. Moreover, these functions can be devised such that the inextensible null

geodesics γx and γy, which start respectively at x and y with cotangent vectors kx

and ky intersect B in Ux and Uy respectively, included in two open neighborhoods,

Ox andOywhere χ′ vanishes (possibly Ux = Uy andOx = Oy; we omit the subscript

b to simplify the notation). Hence, the two-point function reads

λM(ψ fkx , ψhky ) = λB(χψ
fkx

B
, χψ

hky

B
) + λB(χψ

fkx

B
, χ′ψ

hky

B
)

+ λB(χ′ψ
fkx

B
, χψ

hky

B
) + λB(χ′ψ

fkx

B
, χ′ψ

hky

B
) + λC (ψ

fkx

C
, ψ

hky

C
) . (50)

The results of Proposition 4.0.8, Lemma 4.0.9 and of Case A above tell us that all

but the first term in the rhs of (50) are smooth. We will then focus on this term.

Writing the integral kernel of λB as T, interpreted as a distribution in (C∞0 )′(B×B),

we notice that, as an element of (C∞0 )′(B ×B), λB can be written as

λB(χψ
fkx

B
, χψ

hky

B
) = χTχ

(
E↾B ⊗ E↾B( f ⊗ h)

)
, (51)

where E↾B is the causal propagator with one entry restricted to B and χTχ ∈
(C∞)′(B × B) (as an element of the dual space to C∞, χTχ is itself a compactly
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supported bidistribution). For the composition χTχ(E↾B ⊗ E↾B) to make sense as

a composition of bidistributions, Theorem 8.2.13 of [27] shows that it is sufficient

that

WF(χTχ) ∩WF′(E↾B ⊗ E↾B)Y×Y = ∅ . (52)

The subscript Y makes sense if the bidistribution is viewed as an element of

(C∞0 )′(X × Y) and, for a general bidistribution Λ2 of this sort¶,

WF′(Λ2)Y =
{
(y, η); (x, 0; y,−η) ∈WF(Λ2) for x ∈ X

}
. (53)

The wave front set of E was calculated in [34]:

WF(E) =
{
(x, kx; y, ky) ∈ T ∗(M×M)�{0}|(x, kx) ∼ (y,−ky)

}
. (54)

The wave front set of E ⊗ E, from Theorem 8.2.9 of [27], is

WF(E⊗E) ⊂ (WF(E) ×WF(E))∪((suppE × {0}) ×WF(E)
)∪(WF(E) × (suppE × {0})) .

(55)

From this last equation and the fact that the zero covector is not contained in

WF(E), we conclude that

WF′(E↾B ⊗ E↾B)Y×Y = ∅ . (56)

Thus the composition χTχ(E↾B ⊗ E↾B) makes sense as a composition of

bidistributions, and Theorem 8.2.13 of [27] shows that

WF(χTχ(E↾B ⊗ E↾B)) ⊂WF(E↾B ⊗E↾B)X×X ∪WF′(E↾B ⊗ E↾B) ◦WF(χTχ) . (57)

The same reasoning which led to equation (56) leads to the conclusion that the first

term in the rhs of (57) is empty.

The wave front set of T was calculated in Lemma 4.4 of [32]. We will again

introduce a coordinate system at which the coordinate along the integral lines of X

is denoted by t, the remaining coordinates being denoted by x. The same splitting

will be used for covectors. The wave front set of T is written as

WF(T) = A ∪ B ,

¶ The subscript Y means that the “original” wave front set must contain the zero covector of T ∗X
and the ′ means that the nonzero covector has its sign inverted. For more details, see section 8.2 of

[27]
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where

A ≔
{(

(t, x), (t′, x′); (kt, kx), (kt′ , kx′)
)
∈ T ∗(B ×B)�{0} | x = x′; kx = −kx′ ; kt > 0

}

B ≔
{(

(t, x), (t′, x′); (kt, kx), (kt′ , kx′)
)
∈ T ∗(B ×B)�{0} | x = x′; kx = −kx′ ; kt = kt′ = 0

}
.

(58)

With these at hand, the author of [32] proved that the wave front set (57) is of

Hadamard form.

Hence we have completed the proof of

Theorem 4.0.10. The wave front set of the two-point function ΛM of the state ωM,

individuated in (41) is given by

WF(ΛM) =
{
(x1, k1; x2,−k2) | (x1, k1; x2, k2) ∈ T ∗ (M×M)�{0}; (x1, k1) ∼ (x2, k2); k1 ∈ V+

}
,

(59)

thus the state ωM is a Hadamard state.

5. Conclusions

The state we constructed here, to our knowledge, is the first explicit example

of a Hadamard state in the Schwarzschild-de Sitter spacetime. It is not defined in

the complete extension of this spacetime, but rather in the (nonextended) region

between the singularity at r = 0 and the singularity at r = ∞. In this sense, our

state cannot be interpreted as the Hartle-Hawking-Israel state in this spacetime,

whose nonexistence was proven in [28]. It can neither be interpreted as the Unruh

state because, in the de Sitter spacetime, the Unruh state can be extended to the

whole spacetime while retaining the Hadamard property [33]. Hence we have

exploited the features of field quantization in spacetimes with bifurcate Killing

horizons to construct a Hadamard state which is invariant under the action of

the isometries generated by the Killing vector in a spacetime with two bifurcate

Killing horizons. Its generalization to spacetimes with more than two bifurcate

Killing horizons might face difficulties similar to the ones pointed by [28].

Since our state was constructed solely from geometrical features of the

Schwarzschild-de Sitter spacetime, it is automatically invariant under the action

of its group of symmetries. Moreover, we showed that it can be isometrically

mapped to a state on the past horizons, as expressed in equation (40). This result
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shows how expectation values of observables in the region M are related to the

expectation values on the horizons. Formally, the state itself can be written in

terms of its “initial value”.

This feature sufficed to prove, for the analogous state constructed in the

Schwarzschild case [16], that they had constructed a KMS state. Our state is not

KMS because, under this mapping, the functional is written as the tensor product

of two functionals, each corresponding to a KMS state at a different temperature.

We further remark that, even in the Schwarzschild spacetime, the existence of

the Hartle-Hawking-Israel state, whose features were analysed in [28], was only

recently proved in [38], where the author analysed a Wick rotation in the Killing

time coordinate. We believe that the method put forward in [38], if applied to the

Schwarzschild-de Sitter spacetime, would give rise to the contradictions pointed

out in [28].

At last, we remark that one of the issues explored by the authors of [28] to

prove that the Hartle-Hawking-Israel state does not exist in the Schwarzschild-de

Sitter spacetime, already mentioned with the same purpose in [20], was that a

thermal equilibrium state cannot exist, in this spacetime, because each of the event

horizons would work as a “thermal reservoir”, each at a different temperature.

It is well known that thermal equilibrium cannot be attained in such a situation.

The authors of [28] went even further and proved the nonexistence by showing

that such a state would give rise to contradictions related to causality. We remark

that the point of view adopted in [28] is more robust because, recently, a novel

definition of local thermal equilibrium has been proposed [8, 9] and one of the

consequences of this definition is that a thermal state does not always describe a

situation in which local thermal equilibrium is attained [10, 40]. We do not wish

to extend the discussion here, but we will address this topic in more detail in a

future work.
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Appendix A. Proof of Theorem 3.2.4

Proof. (a) Recall the definition of one-particle structure given in section 2.1. The

map KB , as defined in (36), is a real-linear map which satisfies KBS(B) = HB.

Therefore, we only need to show that KB satisfies the other hypotheses of that

Proposition. First,

KB : S(B) ∋ ψ 7→ KBψ ∈ HB

and

λ(ψ1, ψ2) = 〈KBψ1,KBψ2〉HB
.

The symmetric part of this two-point function is given by

µB(ψ1, ψ2) = Re〈KBψ1,KBψ2〉HB
.

We need to check that µB majorizes the symplectic form. Since

σB(ψ1, ψ2) = −2Im〈KBψ1,KBψ2〉HB
,

we have

|σB(ψ1, ψ2)|2 = 4|Im〈KBψ1,KBψ2〉HB
|2 ≤ 4|〈KBψ1,KBψ2〉HB

|2

≤ 4〈KBψ1,KBψ1〉HB
〈KBψ2,KBψ2〉HB

= 4µB(ψ1, ψ1)µB(ψ2, ψ2) .

We thus proved that (HB,KB) is the one-particle structure associated to the state

ωB. Since KBS(B) = HB, this state is pure.

(b) On B, defining

u ≔
1

κB

ln(κBUb) on H
+

b ,

u ≔ − 1

κB

ln(−κBUb) on H
−

b ,

we have

∂t↾H −
b
= ∂u = −κBUb∂Ub

(on H +
b

, the future-pointing Killing vector is −∂t = −∂u = −κBUb∂Ub
).

The one-parameter group of symplectomorphisms β(X)
τ generated by X

individuates β(X)
τ (ψ) ∈ S(B) such that β(X)

τ (ψ)(Ub, θ, ϕ) = ψ(eκbτUb, θ, ϕ). Since
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β(X)
τ preserves the symplectic form σB, there must be a representation α(X) of β(X)

τ in

terms of ∗-automorphisms of W (S(B)). From the definition of KB, one has

KB(β(X)
τ (ψ))(K, ω) =

1√
2π

∫

R

eiKUbψ(eκbτUb, ω)dUb

= e−κbτ
1√
2π

∫

R

ei(Ke−κbτ)U′ψ(U′, ω)dU′ = e−κbτψ̂(e−κbτK, ω) .

One then has KB(β(X)
τ (ψ))(K, ω) ≕ (U(X)

τ ψ)(K, ω) = e−κbτKB(ψ)(e−κbτK, ω), ∀ψ ∈
S(B). Thus,

〈KB(β(X)
τ (ψ1)),KB(β(X)

τ (ψ2))〉HB
=

∫

R×S2

e−κbτψ̂1(e−κbτK, ω)e−κbτψ̂2(e−κbτK, ω)2KdK ∧ r2
bdS2 =

∫

R×S2

ψ̂1(e−κbτK, ω)ψ̂2(e−κbτK, ω)2 (e−κbτK) d (e−κbτK) ∧ r2
bdS2 = 〈KBψ1,KBψ2〉HB

,

hence U(X)
τ is an isometry of L2

(
R × S2, 2KdK ∧ r2

b
dS2
)
. In view of the definition of

ωB, it yields that ωB(WB(β(X)
τ (ψ))) = ωB(WB(ψ)) ∀ψ ∈ S(B), and, per continuity

and linearity, this suffices to conclude that ωB is invariant under the action of the

group of ∗-automorphisms α(X) induced by X. The proof for the Killing vectors of

S2 is similar.

(c) We only consider H +
b

, the other case being analogous. The state ω
βb

H +
b

,

which is the restriction of ωB to W (S(H +
b

)), is individuated by

ω
βb

H +
b

(WH +
b

(ψ)) = e
−µ

H +
b

(ψ,ψ)/2
, for ψ ∈ S(H +

b ) .

Then, if ψ,ψ′ ∈ S(H +
b

), the symmetric part of λ is given by

µH +
b

(ψ,ψ′) = Reλ(ψ,ψ′) = Re〈F(+)
u ψ, F(+)

u ψ′〉
H
βb
H +

b

= Re〈Kβb

H +
b

ψ,K
βb

H +
b

ψ′〉
H
βb
H +

b

.

It is immediate that

σH +
b

(ψ,ψ′) = −2Im〈Kβb

H +
b

ψ,K
βb

H +
b

ψ′〉
H
βb
H +

b

.

Therefore,

|σH +
b

(ψ,ψ′)|2 ≤ 4µH +
b

(ψ,ψ)µH +
b

(ψ′, ψ′) .
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This, and the fact that K
βb

H +
b

is a real-linear map which satisfies K
βb

H +
b

S(H +
b

) = H
βb

H +
b

,

suffice to conclude that (H
βb

H +
b

,K
βb

H +
b

) is the one-particle structure of the quasifree

pure state ω
βb

H +
b

(a completely analogous statement is valid for the state ω
βb

H −
b

).

(d) In S(H −
b

), the natural action of the one-parameter group of isometries

generated by X↾H −
b

is β(X)
τ : ψ 7→ β(X)

τ (ψ) with β(X)
τ (ψ)(u, θ, ϕ) ≔ ψ(u − τ, θ, ϕ), for all

u, τ ∈ R, (θ, ϕ) ∈ S2 and for every ψ ∈ S(H −
b

). As previously, this is an obvious

consequence of X = ∂u on H −
b

. Since β(X) preserves the symplectic form σH −
b

, there

must be a representation α(X) of β(X) in terms of ∗-automorphisms of W(S(H −
b

)).

Let us prove that α(X) is unitarily implemented in the GNS representation of ω
βb

H −
b

.

To this end, we notice that β is unitarily implemented in HH −
b

, the one-particle

space of ω
βb

H −
b

, out of the strongly-continuous one-parameter group of unitary

operators Vτ such that (Vτψ̃)(k, θ, ϕ) = eikτψ̃(k, θ, ϕ). This describes the time-

displacement with respect to the Killing vector ∂u. Thus the self-adjoint generator

of V is h : Dom(k̂) ⊂ L2
(
R × S2, dµ(k) ∧ r2

b
dS2
)
→ L2

(
R × S2, dµ(k) ∧ r2

b
dS2
)

with

k̂(φ)(k, θ, ϕ) = kφ(k, θ, ϕ) and

Dom(k̂) ≔

{
φ ∈ L2

(
R × S2, dµ(k) ∧ r2

bdS2
) ∣∣∣∣
∫

R×S2

|kφ(k, θ, ϕ)|2dµ(k) ∧ r2
bdS2 < +∞

}
.

Per direct inspection, if one employs the found form for V and exploits

ω
βb

H −
b

(WH −
b

(ψ)) = e
− 1

2 〈ψ̃,ψ̃〉L2(R×S2 ,dµ(k)∧r2
b

dS2) ,

one sees, by the same argument as in the proof of item c) above, that ω
βb

H −
b

is

invariant under α(X), so that it must admit a unitary implementation.

(e) We will prove this statement by explicitly calculating the two-point

function and verifying that it satisfies the KMS condition. Let ψ,ψ′ ∈ S(H −
b

).
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Since these are real functions, ψ̃(k, θ, ϕ) = ψ̃(−k, θ, ϕ). Then

λ(β(X)
τ (ψ), ψ′) = 〈eiτk̂K

βb

H −
b

ψ,K
βb

H −
b

ψ′〉
H
βb
H −

b

=
r2

b

2

∫

R×S2

e−iτkψ̃(k, θ, ϕ)ψ̃′(k, θ, ϕ)
keπk/κb

eπk/κb − e−πk/κb
dk ∧ dS2

=
r2

b

2

∫

R×S2

e−iτkψ̃′(−k, θ, ϕ)ψ̃(−k, θ, ϕ)
keπk/κb

eπk/κb − e−πk/κb
dk ∧ dS2

k→−k
=

r2
b

2

∫

R×S2

ψ̃′(k, θ, ϕ)eiτkψ̃(k, θ, ϕ)
ke−πk/κb

eπk/κb − e−πk/κb
dk ∧ dS2

=
r2

b

2

∫

R×S2

ψ̃′(k, θ, ϕ)e−2πk/κb eiτkψ̃(k, θ, ϕ)
keπk/κb

eπk/κb − e−πk/κb
dk ∧ dS2

= 〈Kβb

H −
b

ψ′, eik̂(τ+2πi/κb)K
βb

H −
b

ψ〉
H
βb
H −

b

= λ(ψ′, β(X)

τ+iβb
(ψ)) (A.1)

�

Appendix B. Proof of technical results

Proof of Proposition 4.0.8:

Proof. The proof here is an adapted version of the proof of Proposition 4.4 of [16].

It consists in analysing the behavior of the constant Cφ appearing in (22) and (24)

for large values of p ∈ Vk (k a direction of rapid decrease). The constant Cφ is given

in [12] as a constant dependent on the geometry of the spacetime multiplied by

the square root of

E0(φl, φ̇l) = ‖∇φl‖2 + ‖φ̇l‖2 , (B.1)

where ‖·‖ is the Riemannian L2 norm on Σ ∩ J−(D) (see Figure 3).

Now, we can choose the support of f so small that every inextensible geodesic

starting from supp( f ), with cotangent vector equal to kx, intersects B in a point

with coordinate Ub > 0 (similarly for C ). Hence, we can fix ρ ∈ C∞0 (K ;R) such

that (i) ρ = 1 on J−(supp( f );M) ∩ Σ and (ii) the null geodesics emanating from

supp( f ) with kx as cotangent vector do not meet the support of ρ. Henceforth we

can proceed exactly as in the proof given in [16] using the properties mentioned in

this paragraph, together with the compactness of the support of f , to coclude the
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proof of this proposition. We only remark that, differently from the Schwarzschild

case, our Cauchy surface Σ does not intercept the bifurcation surfaces Bb and Bc,

hence the reasoning depicted here is valid both for x in II (II′) and for x on H 0
b

(H 0
c ). �

Proof of Lemma 4.0.9

Proof. We start by noting that the antisymmetric part ofΛM is the advanced-minus-

retarded operatorE and that the wave front set of E contains no null covectors [34].

Hence, (x, kx; y, 0) ∈ WF(ΛM) ⇔ (y, 0; x, kx) ∈ WF(ΛM), otherwise WF(E) would

contain a null covector. Thus it suffices to analyse (x, kx; y, 0) ∈ T ∗ (M×M)�{0}
and to show that it does not lie in WF(ΛM). Besides, from the proof of Part 1 above,

if (x, y) ∈ D × D ⇒ (x, kx; y, 0) < WF(ΛM). From the Propagation of Singularities

Theorem, if there exists (q, kq) ∈ B(x, kx) such that q ∈ D (x < D), then again

(x, kx; y, 0) <WF(ΛM).

For the case x ∈ II, y ∈ D with B(x, kx) ∩ T ∗(D)�0 = ∅, there must exist

q ∈ H +
b
∪ Bb such that (q, kq) ∈ B(x, kx). Besides, we can introduce a partition of

unit with χ, χ′ ∈ C∞0 (B;R), χ + χ′ = 1 such that χ = 1 in a neighborhood of q.

Hence, with the same definitions as in the Proposition above,

ΛM( fkx , h) = λB(χφ
fkx

B
, φh

B
) + λB(χ′φ

fkx

B
, φh

B
) + λC (φ

fkx

C
, φh

C
) . (B.2)

Since all the terms in equation (B.2) are continuous with respect to the

corresponding λ-norms, the second and third terms in (B.2) are dominated by

C‖χ′ψ fkx

B
‖B‖ψh

B
‖B and C′‖ψ fkx

C
‖C ‖ψh

C
‖C , respectively, where C and C′ are positive

constants. From Proposition 4.0.8, we know that ‖χ′ψ fkx

B
‖B and ‖ψ fkx

C
‖C are rapid

decreasing terms in kx ∈ T ∗(M)�{0} for any f with sufficiently small support and

for kx in an open conical neighborhood of any null direction. By a similar argument

as the one presented in the proof of that Proposition, one can conclude that ‖ψh
B
‖B

and ‖ψh
C
‖C are bounded. Hence, we need only focus our attention on the first term,

λB(χψ
fkx

B
, ψh

B
).

Choosing again f and h with sufficiently small, compact support, we can

choose χ′′ ∈ C∞0 (B;R) such that both χ′′(p) = 1 for every p ∈ supp(ψh
B

) and

supp(χ) ∩ supp(χ′′) = ∅. We can write the λ-product as

λB(ψ
fkx

B
, ψh

B
) =

∫

B×B
χ(x′)(E( fkx))(x

′)T(x′, y′)χ′′(y′)ψh
B

dUx′dS
2(θx′ , ϕx′)dUy′dS

2(θy′ , ϕy′) .

(B.3)
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ψ
fkx

B
was written as (E( fkx))(x

′) and T(x′, y′) is the integral kernel of λB, viewed as

a distribution in (C∞0 )′(B ×B). The integral kernel χTχ′′(x′, y′), with one entry x′

restricted to the support of χ, and the other y′, restricted to the support of χ′′, is

always smooth. Besides, if one keeps x′ fixed, this kernel is dominated by a smooth

function whose H1-norm in y′ is, uniformly in x′, finite+. Hence the H1(B)Ub
-norm

‖(Tχ′′) ◦ χE fkx‖H1(B)Ub
is dominated by the product of two integrals, one over x′

and one over y′. Since χ is a compactly supported function, the integral kernel of

χTχ′′ is rapidly decreasing in kx. Furthermore, as stated above, ‖ψh
B
‖B is bounded.

Putting all this together, we have

|λB(ψ
fkx

B
, ψh

B
)| ≤ C′′‖(Tχ′′) ◦ χE fkx‖H1(B)Ub

‖ψh
B
‖B . (B.4)

The fast decrease of the first norm, together with the boundedness of the second

norm, imply that (kx, 0) is a direction of fast decrease of λB(ψ
fkx

B
, ψh

B
).

Now, let us look at the case x ∈ D , y ∈ II. Adopting a coordinate system in

which the coordinate along the integral lines of X is denoted by t, and the others

are denoted by x, the pull-back action of the one parameter group generated by X

acts like (β(X)
τ f )(t, x) = (t − τ, x). Exploiting the same splitting for the covectors, we

write T ∗x (M�D)�{0} ≡ R4 ∋ kx = (kxt, kx).

We can now construct the two non-null and non-vanishing covectors q = (0, kx)

and q′ = (−kxt, 0). Since (x, q; y, q′) < WF(ΛM), from Proposition 2.1 in [42] there

exists an open neighborhood V′ of (q, q′), as well as a function ψ′ ∈ C∞0 (R4 ×R4;C)

with ψ′(0, 0) = 1 such that, denoting x′ = (τ, x′), y′ = (τ′, y′), there exist constants

Cn ≥ 0 and λn > 0, such that for all p > 1, for all 0 < λ < λn and for all n ≥ 1,

sup
k,k′∈V′

∣∣∣∣∣
∫

dτdτ′dx′dy′ψ′(x′, y′)eiλ−1(ktτ+kx′)eiλ−1(k′tτ
′+k′y′)

ΛM

(
β(X)
τ ⊗ β(X)

τ′ (F
(p)

(x′,y′),λ)
)∣∣∣∣∣ < Cnλ

n ,

(B.5)

as λ→ 0, where

F
(p)

(x′,y′),λ(z, u) ≔ F(x + λ−p(z − x′ − x), y + λ−p(u − y′ − y)) and F̂(0, 0) = 1 ,

+ The H1-norm of a function f is defined as

‖ f ‖H1(Ω) =



∑

|α|≤1

‖Dα f ‖2
L2(Ω)




1/2

,

whereΩ is an open measurable space and α is a multi-index.
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where F̂ is the usual Fourier transform. Since ΛM is invariant under β(X)
−τ−τ′ ⊗ β

(X)
−τ−τ′ ,

we infer that ΛM

(
β(X)
τ ⊗ β(X)

τ′ (F
(p)

(x′ ,y′),λ)
)
= ΛM

(
β(X)
−τ′ ⊗ β

(X)
−τ (F

(p)

(x′,y′),λ)
)
. This implies that

(B.5) also holds if one replaces (i) ψ′ by ψ(x′, y′) = ψ((τ′, x), (τ, y′)) and (ii) V′ by

V =
{
(−k′t, k), (−kt, k′) ∈ R4 ×R4 | ((kt, k), (k′t, k

′)) ∈ V′
}
. This is an open neighborhood

of (kx, 0) as one can immediately verify since (q, q′) ∈ V′, so that (kx, 0) ∈ V, and the

map R4 × R4 ∋ ((kt, k), (k′t, k
′)) 7→ ((−k′t , k), (−kt, k′)) ∈ R4 × R4 is an isomorphism.

Hence, once again from Proposition 2.1 in [42], (x, y; kx, 0) <WF(ΛM).

For the case when both x, y ∈ M�D , if a representative of either B(x, kx) or

B(y, ky) lies in T ∗(D), then we fall back in the case above. If no representative of

both B(x, kx) and B(y, ky) lies in T ∗(D), we can introduce a partition of unit on B

(or C ) for both variables, and get a decomposition like (B.2), for both variables.

The terms of this decomposition can be analysed exactly as above. �
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