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Abstract. Given a mixed Hodge module N and a meromorphic function f on a com-
plex manifold, we associate to these data a filtration (the irregular Hodge filtration) on
the exponentially twisted holonomic module N ® &7, which extends the construction
of [ESY15]|. We show the strictness of the push-forward filtered Z-module through
any projective morphism 7 : X — Y, by using the theory of mixed twistor Z-modules
of T. Mochizuki. We consider the example of the rescaling of a regular function f,
which leads to an expression of the irregular Hodge filtration of the Laplace transform
of the Gauss-Manin systems of f in terms of the Harder-Narasimhan filtration of the
Kontsevich bundles associated with f.
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1. Introduction

1l.a. The irregular Hodge filtration. The category of mixed Hodge modules on
complex manifolds, as constructed by M. Saito [Sai90], is endowed with the standard
operations (push-forward by projective morphisms, pull-back by holomorphic maps,
duality, etc.). In particular, the structure of the Hodge filtration in this category is
well-behaved through these operations. For a meromorphic function f on a complex
manifold X, holomorphic on the complement U of a divisor D of X, and for a mixed
Hodge module with underlying filtered Zx-module (N, F,N), we will define an “ir-
regular Hodge filtration”, which is a filtration on the exponentially twisted holonomic
PDx-module N ® &, where &/ denote the Ox-module Ox (xD) equipped with the
twisted integrable connection d 4+ df, that we regard as a left holonomic Zx-module.
We note that, although N is known to have regular singularities, N ® & has irregular
singularities along the components of the divisor D where f takes the value oo, hence
cannot underlie a mixed Hodge module. Therefore, the irregular Hodge filtration we
define on N ® &7, generalizing the definition of Deligne [Del07], and then [Sab10],
[Yul4], [ESY15], cannot be the Hodge filtration of a mixed Hodge module in the
sense of [Sai90]. There is an algebraic variant of this setting, where we assume that f
is a rational function on a complex smooth variety X.

Remark 1.1. Such a filtration has been constructed in [ESY15] in the following cases:

(a) f extends as a morphism X — P!, D is a normal crossing divisor and the
filtered Zx-module (N, F,N) is equal to (Ox (xD), F,0x (xD)), where the filtration is
given by the order of the pole [Del70]. In such a setting, the filtration was denoted
F,(&f(xH)), where H is the union of the components of D not in f~!(c0);

(b) X =Y x P!, f is the projection to P* and (N, F,N) underlies an arbitrary
mixed Hodge module.

Definition 1.2. By a good filtration F, indezed by Q of a Px-module N, we mean a
finite family F,, N of good filtrations(!) indexed by Z, parametrized by « in a finite
subset A of [0,1) N Q, such that Fpy,N C Fgy,N for all a, 8 € A and p,q € Z
satisfying o +p < S+ ¢.

We can thus regard it as a single increasing filtration indexed by @Q, such that
FoipN/FcqipN =0 for any «, p, except for « in a finite set A of [0,1) N Q.

For each «, the Rees module Rp,, N is the graded module defined as »  FoipN2P,
N.
We can then regard a (usual) good filtration indexed by Z as a good filtration indexed
by Q.

Theorem 1.3. Let f be a meromorphic function on X, holomorphic on U = X \ D,
where D is a divisor in X. For each filtered holonomic Px-module (N, F,N) un-
derlying a mized Hodge module one can define canonically and functorially a good
F,9x -filtration F™(N ® &7) indexed by Q which satisfies the following properties:

(1) Through the canonical isomorphism (N®E') |y = Njiy, we have F'™ (N®ET) |, =
FNp.

where 2 is a new (Laurent) polynomial variable. Then we set Rp, N := @, 4 RF. ..

(1 As usual, this is understood with respect to the filtration by the order F, Zx, and goodness means
that Fot pN =0 p < 0 locally on X, and graF+, N is gr¥ @x-coherent.
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(2) For each morphism ¢ : (N1, F,N1) — (N2, F,\Na) underlying a morphism of
mixed Hodge modules, the corresponding morphism

ol (N1 @& FIT (N, @ 1)) — (No @ &7, FI(Ny @ &)

18 strictly filtered.

(3) For each a € [0,1), the push-forward 7+(N ® &/, Fi* (N ® &f)) by any pro-
jective morphism w: X —Y 1is strict.

(4) Let m : X — Y be a projective morphism and let h be a meromorphic func-
tion on Y, holomorphic on V. =Y N~ Dy for some divisor Dy in Y. Assume that
Dx = 7~ Y(Dy) is a divisor, and set U = 7= (V) and f = hom. Then the co-
homology of the filtered compler 7 (N ® &/, F'*(N ® &), which is strict by (3),
satisfies

A7y Rpie (N @ €7) = Rpies [( #7704, N) @ E"].

(5) In cases 1.1(a) and 1.1(b) above, the filtration F" coincides with the filtration

FPe constructed in [ESY15].

The proof of the theorem is given in §5.a and relies much on the theory of mixed
twistor 2-modules of T. Mochizuki [Moc11b]. This theory allows one to simplify and
generalize some of the arguments given in [ESY15], by giving a general framework to
treat, from the Hodge point of view, irregular Z-modules like &/. By specializing (3)
to the case where Y is a point we obtain:

Corollary 1.4. For (N, F,N) underlying a mized Hodge module on a smooth projec-
tive variety X, the spectral sequence attached to the hypercohomology of the filtered
de Rham complez F DR(N ® &) degenerates at Ey for each o € [0,1). O

Remark 1.5. The assumption that D := X \ U is a divisor is not mandatory, but
simplifies the statement. In general, higher cohomology modules supported on X \ U
may appear for N @ 7.

1.b. Rescaling a function. The case 1.1(a) is essentially the only case where we can
give an explicit expression for F'*&/(xH) (see [ESY15], according to 1.3(5)). Recall
that we consider a smooth complex projective variety X together with a morphism
f:X =Pl Weset Pog = f1(c0) and P = f*(00). We also introduce a supple-
mentary divisor H (which could be empty) having no common components with Pyeq,
and we assume that D := P,.q UH has normal crossings. We set U = X \ D. We will
also consider X as a complex projective manifold equipped with its analytic topology,
that we will denote X" when the context is not clear.

Our main example in this article, that we consider in Part II, is that of the rescaling
of the function f : X — P'. The rescaled function with rescaling parameter v is the
function vf : U x C, — C, defined by (z,v) — vf(x). This function does not extend
as a morphism to X x P! — P!

We consider the projective line P! covered by two charts C, and C,, whose intersec-
tion is denoted by C?, and we regard vf as a rational function vf : X x P - - — P
We are therefore in the situation in the beginning of the previous subsection, with
underlying space X := X x P! and reduced pole divisor P eq := (Prea X PL)U (X x o0),
where co € P! denotes the point u = 0. We will also set P = (P x P!) + (X x {c0}),
H=H xPLand D = Proq UH.
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We denote by 8(”:“”(*9—() the Ox p1-module Oxp1 (xD) equipped with the con-
nection d+d(vf) (on the open set X x C,) and d+d(f/u) (on the open set X x C,,).
We denote its restriction to the corresponding open subsets by €%/ (xJ{) and £//%(xH)
respectively. According to Theorem 1.3, it is equipped with an irregular Hodge filtra-
tion. We make it partly explicit in Theorem 9.1 (only partly, because around u = 0
we only make explicit its restriction to the Brieskorn lattice, see §9.b).

1.c. Variation of the irregular Hodge filtration and the Kontsevich bundles

Regarding now v € C* as a parameter and considering the push-forward by
q: X x Pl — P! of the rescaling &)/ (x3(), our aim is to describe the variation
with v of the irregular Hodge filtration F.i"Hk (U, (Qy,d + vdf)) considered in
[ESY15], and its limiting behaviour when v — 0 or v — 0.

The irregular Hodge filtration is conveniently computed with the Kontsevich com-
plex. Recall that M. Kontsevich has associated to f : X — P! asin §1.b and to k > 0
the subsheaf Q’} of Q% (log D) consisting of logarithmic k-forms w such that df Aw re-
mains a logarithmic (k+ 1)-form, a condition which only depends on the restriction of
w to a neighbourhood of the reduced pole divisor P,eq = f~1(00). For each a € [0, 1),
let us denote by [aP] the divisor supported on P,eq with multiplicity [ce;] on the com-
ponent P; of P := f*(o0o) with multiplicity e;. One can also define a subsheaf Q’]i(a)
of Q% (log D)([aP]) by the condition that df Aw is a section of Q5 (log D)([aP]), so
that the case a = 0 is that considered by Kontsevich. Clearly, only those « such that
ae; € Z for some i are relevant. If f is the constant map, then Q’Ji = Ok (log D). One
of the main results of [ESY15], suggested and proved by Kontsevich when P = Pyeq,
is the equality, for each k,

dim H* (U, (Qp,d+df)) = > dim HY(X, 9} (a)).
p+q=k
More precisely, for each pair (u,v) € C? and each a € [0,1) one can form a com-
plex (Q}(a), ud 4+ vdf) and it is shown that the dimension of the hypercohomology

H* (X, (Q% (), ud + vdf)) is independent of (u,v) € C? and « and is equal to the
above value. The irregular Hodge numbers are then defined as

(1.6) hE(f) = dim H(X, Q5 (a)).

We have h29(f) # 0 only if p,g > 0 and p+ ¢ < 2dim X. (see Remark 8.20(3) for
the mirror symmetry motivations related to the irregular Hodge filtration.) If f is
the constant map, we recover the results of Deligne [Del70, Del71]:

dim H*(U,C) = dim H"* (U, (Q,d)) = dim H"(X, (2% (log D), d))
= > dim H(X, 0% (log D)).
p+q=k

The Hodge numbers reduce here to h77(X, D) = dim H?(X, Q% (log D)).

Following the suggestion of M. Kontsevich, let us define the Kontsevich bun-
dles #*(a) on PL. We set
A (@) = H* (X, (Q5(a)[v], d + vd ),

1.7
(17) A () = H* (X, (Q}(a)[u],ud + df)).
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Using the isomorphism Clu,u™!] —+ Clv,v™!] given by u — v~1, we have a natural
quasi-isomorphism

(1.8) a5 (@) v d o+ vdf) 5 (9 (@)u,u ], ud + df)

induced by the multiplication by uP on the pth term of the first complex. Since we

know by the above mentioned results that both modules %% (), #.*(a) are free over
their respective ring C[v] or Clu], the identification

H*(u) : H* (X, (Q}(a)[v,07"],d + vdf)) ~ H* (X, (Q}()[u, u™"],ud + df))

allows us to glue these modules as a bundle #%(a) on PL. The E;-degeneration
property can be expressed by the injectivity

H"(X,077(Q5(a)[v],d + vdf)) — H* (X, (Q}(a)[v],d + vdf)),

(1.9) E(y Spie F(x (O
H"(X,07?(Q} () [u],ud + df)) — H"(X, (Q}(a)[u], ud + df)),

where 62P denotes the stupid truncation. Since this truncation is compatible with the
gluing u*, this defines a filtration 02?.#*(a). When restricted to C, this produces
the family FI™» H" (U, (Qf;,d + vdf)).

We also notice that the pth graded bundle is then isomorphic to Op: (p)hi'kfp(f ),
so this filtration is the Harder-Narasimhan filtration F*.#*(a) and the Birkhoff-
Grothendieck decomposition of #*(a) reads

k -p
(1.10) HE(a) = @ Op(p)ha" "D
p=0
In particular, all slopes of #%(a) are nonnegative and we have
k
deg #™M(a) = Y _p- EFP(S).
p=0

We will show (see Lemma 6.2) that each .#*(a) is naturally equipped with a
meromorphic connection having a simple pole at v = 0 and a double pole at most at
v = 00. It follows from a remark due to Mochizuki (see Remark 6.3) that the Harder-
Narasimhan filtration satisfies the Griffiths transversality condition with respect to
the connection. This is a concrete description of the variation of the irregular Hodge
filtration (Corollary 6.6).

Our main result concerns the limiting behaviour of the variation of the irregular
Hodge filtration when v — 0, expressed in this model.

Theorem 1.11.

(1) The meromorphic connection V on % *(a) has a logarithmic pole at v =0 and
the eigenvalues of its residue Res,—g V belong to [—a,—a+ 1) N Q.

(2) On each generalized eigenspace of Res,—oV the nilpotent part of the residue
strictly shifts by —1 the filtration naturally induced by the Harder-Narasimhan filtra-
tion.

The proof of Theorem 1.11, which is sketched in §6, does not remain however
in the realm of Kontsevich bundles. It is obtained through an identification of the
Kontsevich bundles with the bundles .%#*(a) obtained from the push-forward 2-
modules % of £ (x3{) (see §1.b) by the projection ¢ : X x P — PL. Recall
that 4% := R*g, DRx xp1 /P2 @I (4+3() is a holonomic Ppr-module for each k.
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It is equipped with its irregular Hodge filtration Fi**. 7% obtained by push-forward,
according to Theorem 1.3(3). We define the bundles #*(a) by using this filtration,
and the main comparison tools with the Kontsevich bundles J# () are provided by
Theorems 6.4 and 6.5.

1.d. Motivations and open questions

We have already discussed in [ESY15, Introduction| the motivation coming from
estimating p-adic eigenvalues of Frobenius (Deligne) and that coming from mirror
symmetry (Kontsevich). We list below some more related questions and possible
applications for further investigations.

Numerical invariants of mized twistor Z-modules. The theory of mixed twistor
2-modules, as developed by T.Mochizuki [Mocl1b], is the convenient framework
to treat wild Hodge theory. However, this theory produces very few numerical
invariants having a Hodge flavor (like Hodge numbers, degrees of Hodge bundles,
etc.). The irregular Hodge filtration, when it does exist, is intended to provide such
invariants. Let us emphasize that, contrary to classical Hodge theory, the irregular
Hodge filtration is only a by-product of the mixed twistor structure, but is not
constitutive of its definition.

Is there a suitable well-behaved category of wild Hodge 2-modules with a forgetful
functor to the category of mixed twistor Z-modules? What about the expected
functorial and degeneration properties? The exponentially twisted Hodge modules
should give rise to an object in such a category. Moreover, following the definition
due to Simpson of systems of Hodge bundles, we can expect that the objects in this
suitable category should carry an internal symmetry (a C*-action in the case of tame
twistor Z-modules). A possible approach to this question would be to search for the
desired category as the category of integrable mixed twistor Z-modules endowed with
supplementary structures on the object obtained by rescaling the twistor variable.

Analogies with Hodge theory. Going further in the direction of Hodge theory, one
may wonder whether the irregular Hodge filtration, when it exists, shares similar
properties with the usual Hodge filtration on mixed Hodge modules. For example,
for a morphism f : X — P!, the Zx-module &/ underlies a pure integrable twistor
2-module (see Proposition 3.3(2)) and is equipped with an irregular Hodge filtration
(see Theorem 1.3 with N = (0x,d)). Let 7 : X — Y be a projective morphism.
According to the decomposition theorem for pure twistor Z-modules [Moc11a], the
push-forward 7, & decomposes, together with its twistor structure, into a direct
sum of possibly shifted simple holonomic Z-modules. One can wonder whether the
analogues of Kollar’s conjectures (proved by M. Saito [Sai91]) hold for the irregular
Hodge filtration of &7.

Also the question of the limiting behaviour, in the sense of Schmid, of the irregular
Hodge filtration raises interesting questions. We treat the case of a tame degeneration
(the case of £/ when v — 0) in §7, but the case of a non-tame degeneration (like u — 0
in §8) remains unclear in general. We expect that the good behaviour (by definition)
of the mixed twistor modules by taking irregular nearby cycles along a holomorphic
function should lead to specific limiting properties for the irregular Hodge filtration,
when it exists.



ON THE IRREGULAR HODGE FILTRATION 7

Extended motivic-exponential Z-modules. Recall that, following [BBD82, 6.2.4], one
defines the notion of a simple regular holonomic Z-module of geometric origin on
a smooth complex algebraic variety X if it appears as a simple subquotient in a
regular holonomic Zx-module obtained by using only standard geometric functors
starting from the case where the variety is a point. In particular, such a simple
regular holonomic Zx-module is a simple summand of a regular holonomic Z-module
underlying a polarizable Q-Hodge module of some weight, as defined by M. Saito
[Sai88, Sai90]. It therefore underlies a simple complex polarizable Hodge module.
In other words, there exists an irreducible algebraic closed subvariety Z C X, a
Zariski smooth open set Z° C Z, and an irreducible local system on Z°, underlying a
polarizable complex variation of Hodge structure (see [Del87]), such that this regular
holonomic Zx-module corresponds, via the inverse Riemann-Hilbert correspondence,
to the intermediate extension of this local system by the inclusion Z° <« X. In
particular, it comes equipped with a good filtration (that induced by the polarizable
Q-Hodge module) and the corresponding filtered Z-module is a direct summand of
the filtered Z-module underlying the polarizable Q-Hodge module.

M. Kontsevich [Kon09] has defined the category of motivic-exponential P-modules
by adding the twist by &/ for any rational function f to the standard permissible
operations on regular holonomic Z-modules of geometric origin on algebraic varieties.
By [Moc11b], any such motivic-exponential Z-module underlies a pure wild twistor
Z-module (see [Mocllal).

There is also the category of extended motivic-exponential Z-modules, by autho-
rizing extensions of such objects, but we will not consider it here.

One can expect that any motivic-exponential Z-module on a complex algebraic
variety is endowed with a canonical irregular Hodge filtration, and that this filtration
has a good behaviour with respect to the various permissible functors (the six op-
erations of Grothendieck, the nearby and vanishing cycles along a function, and the
twist by some £7). Theorem 1.3 is a step toward this expected result.

Remark 1.12 (Hodge filtration in presence of very irregular singularities)

The holonomic Zy-modules one obtains as /%7, (N ® &) when 7 is any pro-
jective morphism may have irregular singularities much more complicated than an
exponential twist of a regular singularity. For example, if Y is a disc, it is shown in
[Rou07] that any formal meromorphic connection at 0 € Y can be produced as the
formalization at the origin of a connection obtained by the procedure of Th.1.3(3)
for some suitable N on X =Y x P

However, these Zy-modules come equipped with a good filtration F, %, (N®EY)
obtained by pushing-forward FI™(N ® €f). If Y is projective and if for example
HFr (N® &F) = 0 except for k = k, then, according to Corollary 1.4, we obtain
the degeneration at E; of the spectral sequence attached to the hypercohomology
of the filtered de Rham complex F, DR #Z%m, (N ® &/). Examples of this kind
can be obtained by the procedure of [Rou07] with arbitrary complicated irregular
singularities.

Acknowledgments. We thank Maxim Kontsevich for suggesting us the properties
stated in Theorem 1.11 and Takuro Mochizuki for explaining us some of his results
on mixed twistor Z-modules and his useful comments. In particular, he suggested
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various improvements and simplifications to the first version of this article. We owe
him the statement of Theorem 6.4. Last but not least, we thank Héléne Esnault for
the many discussions we had together and for many suggestions and questions on the
subject of this article.

PART I. IRREGULAR HODGE FILTRATION AND TWIST BY &F

2. Exponentially regular holonomic Z-modules

2.a. The graph construction. We refer to the expository book [HTTO8] or the
expository article [Meb04] for basic properties of regular holonomic Z-modules.
Let X be a complex manifold and let P..q be a reduced divisor in X. We set
U = X \ Peq. Let f be a meromorphic function on X which is holomorphic on U
whose pole divisor P is exactly supported by Peq, i-e., f takes the value co generically
on each irreducible component of P,.q. By definition, locally analytically on Pieq,
the function f can be written as the quotient of two holomorphic functions with no
common factor, such that the zero divisor may intersect P,q in codimension two
in X at most. There exists a proper modification 7 : X’ — X with X’ smooth,
which is an isomorphism over U, and a holomorphic map f’ : X’ — P}, such that
fin1@wy = fomz—1w). The pole divisor P’ of f’ satisfies P4 C 7 N (Peq) =: D',
and the inclusion may be strict. Let iy : U < U x C; denote the graph inclusion
of f. The closure Uy of Uy := i (U) in X x P} is a closed analytic set of codimension
one, equal to the projection by the proper modification 7 x Id : X’ x P} — X x P}
of the graph iy (X’). The projection p : X x P} — X induces a proper modification
Uf — X, and the pull-back of U in Uf maps isomorphically to U. In particular, we
have (X x 00) MUy C (Prea X P})NU ;. We summarize this in the following diagram.

i T
X ——ip(X) —— X' x P

7{ wadl wadl

X U<—>Xx

(2.1) J S j

U————U;C Ux(C

’L

Let N be a holonomic Zx-module. We assume that N is equal to its localization
N(*Prea) (if not, replace N with N(*Pyeq), which is also a holonomic Zx-module, by
a theorem of Kashiwara). The localized pull-back N’ := 7N (*D’) consists of a single
holonomic Zx/-module. We then recover N as the push-forward 7 N = 5# %7 N’
(see e.g. [Sab13, Prop. 8.13]).
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Let us set M/ =i N’ Then M’ = M/ (x(D’xP})) and since Supp M/N(X’x00) C
(D' x P}), we also have M/ = M/([(D’ x P}) U (X’ x 00)]). We clearly have N’ =
PQ.M/ — t%pop/_‘_ /‘

We set M = (m x Id); M = 29 (7 x 1d); M. Then

M = M(x(P x P})) = M(x[(P x P{) U (X x o0)]),

and N = p, M = #% .M. We notice that M does not depend on the choice of
m: X' — X. We will use the notation M = i s oN, for which we still have pyif ¢ = Id,
and which coincides with iy N if f extends from X to P! (i.e., if we can take m = Id,
so that f/ = f).

Lemma 2.2. If N 1is regular holonomic, so is M =iz oN.
Proof. Indeed, N’ is then regular, hence M’ also, and then M too. O

Remark 2.3 (The graph construction for mixed Hodge modules)

Let us now start with a filtered Zx-module (N, F,N) underlying a mixed Hodge
module [Sai90]. We still assume that N = N(xP,eq) (if this is not the case, we use the
localization functor in the category of mixed Hodge modules to fulfill the assumption).
The construction of §2.a can be done for mixed Hodge modules, by using the corre-
sponding functors in the category of mixed Hodge modules. We therefore get a mixed
Hodge module (M, F,M) on X x P} such that p, (M, F,M) = %, (M, F,M) =
(N, E,N). If f extends as a morphism X — P!, then (M, F,M) =i (N, F,N).

2.b. Exponential twist of holonomic Z-modules. The differential df of the
function f : U — C; extends as a meromorphic 1-form on X with poles along P,qq.
We denote by &7 the free & 'x (*Pred )-module of rank one equipped with the connection
d 4+ df. For N as in §2.a (in particular, N = N(xP.eq)), we consider the holonomic
9D x-module N@ﬁx gf.

Lemma 2.4. For M = i;oN, we have M ® &' ~ i (N ® €7).
This implies N ® &/ ~ p, (M ® &) = #p, (M @ EY).

Proof. Assume first that f extends as a map X — P}. We will work in the chart
centered at oo in P!, with coordinate ', and we will set ¢ = (¢ o f)~!, so that
f~Y(c0) = g71(0). We denote by e'/9 the generator of £!/9. We have

g (N@EVI) = BN EVI) 2Lt — g)
k

with its standard Zx xc,, -module structure. There exists thus a unique &x [0y]-linear
isomorphism 77 (N ® £/9) 5 M ® €/¢ induced by
(n®e9) @5t —g) — (n@8(t' — g)) @/t
In other words, for each k,
(n@e9) @ aks(t' — g) — O [(n@ 6t — g)) @e/!].

By using the same argument as in the proof of [ESY15, (1.6.5)], one shows that this
isomorphism is Zx yp1-linear.
Let us now consider the general case. By definition,

iro(N®&l) = (rx 1d)yip ¢ [ (N @ e5)(+D)].
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One then checks that
t(N® e )(xD') = (nTN)(xD) @ &' =N @ &',

so ip 4 [mT(N®&F)(xD")] = M/ ® &' by the argument above. Then, because &' =
(m x Id)T &, we have (7 x Id)y (M’ ® &) = M @ &°. O

2.c. Exponentially regular holonomic Z-modules

Lemma 2.5. Assume that M is any regular holonomic Px xp1-module. Then the push-
forward py (M ® E') has holonomic cohomology and satisfies %p, (M @ &%) =0 for
k #0.

Proof. The first statement follows from the holonomicity of M ® &'. We can assume
that M = M(x00). Let us set M = p, M. Then M is a regular holonomic Zx[t](d;)-
module, and py (M ® &%) is the complex

OHM&M%Q

where the « indicates the term in degree zero. Set K = 2~ !p, (M®¢&?) = ker(d;+1).
It is Px-holonomic, and the Zx-linear inclusion K < M extends as a natural
PDx [t](0;)-linear morphism K[t] @ E~% — M. It is clear that K[t] ® E~* is purely
irregular along ¢ = oo (this is easily seen on the generic part of the support of K)
hence, since M is regular, this image is zero, so K = 0. [

Definition 2.6. We say that a holonomic Zx-module Neyp, is exponentially regular if
there exists a regular holonomic Zx «p1-module M such that Nex, ~ #%p, (M@ EY).

Proposition 2.7.

(1) If f is meromorphic on X and holomorphic on U = X \ D, and if N = N(xD)
is a reqular holonomic Px -module, then N ® &7 is exponentially regular.

(2) Let m : X — Y be a proper morphism and let Nex, be exponentially regular
on X. Then for each j, 7w Nexp is exponentially regular on Y.

Proof. The first point follows from Lemma 2.2 and Lemma 2.4. For the second point,
set Nexp = H%p1 (M @ &%) with M regular on X x P!. We have, according to
Lemma 2.5,

K Noy = Hm (Hpx 1 (M@ 1)) = A (mpx 1 (M & ED)
— Ay (m x 1) (M 1),
Now, (7 x Id); (M ® &) = (7. M) ® &*, with 7, M having regular holonomic coho-
mology. We thus have J#*py 59 (r x Id)y (M ® &) = 0 for k # 0 according to
Lemma 2.5, hence
A (py+ (1 x 1d) 4 (M @ €)) = A py, . 7 (1 x 1) (M @ E)
= E%”Opy,_‘_((jfﬁuj\/[) 24 St) D
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3. The mixed twistor Z-module attached to &f

If f is a rational function on X with pole divisor P, the twist of a holonomic
Px-module by &l consists first in localizing this module along P,.q and then in
adding df to its connection. The main property used is that the localization functor
on holonomic Zx-modules preserves coherence (hence holonomy).

For a filtered holonomic Zx-module, the stupid localization functor (*P.eq), which
consists in localizing both the module and its filtration, does not preserve coherence
since the localization of a coherent €'x-module does not remain & x-coherent. In the
theory of mixed Hodge modules, there is a localization functor which extends the
one at the level of regular holonomic Z-modules. We will now consider the case of
X o--modules and mixed twistor Z-modules, in order to treat the Laplace transform
of mixed Hodge modules.

We keep the analytic setting of §2.a. Recall the following notation used in the
theory of twistor Z-modules (see [Sab05, Moc07, Moc11la]). For a complex mani-
fold X, we denote by Z" the product X xC, of X with the complex line having coordi-
nate z. The ring #Z 2 is the analytification of the Rees ring Rr Zx = @,y FoDx2F
attached to the ring of differential operators equipped with its standard filtration by
the order. It is locally expressed as O g (0, ,...,04,), where 0y, := 205, .

The smooth case. We denote by é"g/ * the %4 -module Oz equipped with the
z-connection zd + df. By using the same argument as in [Sab04, §2.2], one checks
that éﬂ/ * underlies a smooth twistor Z-module; equivalently, it corresponds to a
harmonic metric on the flat bundle (Oy,d + df). It follows that gg/ “ underlies
a polarized variation of smooth twistor structure of weight 0, equivalently a pure
polarized smooth twistor Z-module.

The stupid localization. Similarly, writing for short &g (% Pyeq) := O o (*(Pred X (CZ)),
we consider g (*Pred) - ef/z .= (Og (%Preq), 2zd + df), where we denote the global
section 1 of @@ g (xPseq) by e//. This is a coherent Z - (% Preq)-module (however, it is
not necessarily %4 -coherent). Note also that there is a natural action of 224., by
setting 220, (e//?) := —f -e//# in O g (¥P,eq). This action commutes with that of the
z-connection. We say that (Og (% Pred), 2d + df) is integrable (see [Sab05, Chap. 7]).

Lemma 3.1. Assume that f : U — C extends as a holomorphic map f : X — P'. Then
O (%Preq) el/% is By -coherent.

Proof. The question is local near a point of P,q and, up to shrinking X, we
may assume that f = 1/g for some holomorphic function g : X — C. Then
O g (%Preq) ceflz = Oq (x{g = 0})e1/9z. If P,eq has normal crossings, we choose local
coordinates such that g = 2, and the relation 23, e'/*"* = (—e;/xz;)e'/*"* gives
the coherence. If P,oq is arbitrary, let 7 : X’ — X be a projective modification over
a neighbourhood of the point of Peq we consider, such that 7=!(P,q) has normal
crossings. Set ¢’ = gow. Then

T (Oor(elg’ = 0)e!/9%) = HOm (O (+{g' = 0))e!/9%) = G (x{g = 0})e!/77,

since it can be seen that g is invertible on J#°7, (O (x{g' = 0})e!/9'#). By the
properness of 7, 04 (¥{g = 0})e!/9% is then % 4 -coherent. O
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Proposition 3.2. If g : X — C is holomorphic, O (x{g = 0})e'/9% underlies a pure
wild twistor Z-module of weight zero.

As a consequence, the same property holds for @y (*P.eq) - ef /Zif f .U = C
extends as f: X — PL

Proof of Proposition 3.2. This is essentially obvious from the theory of T. Mochizuki
[Moc11a], but we will make the argument precise. Firstly, one can reduce to the case
where g = 0 has normal crossings, since pure wild twistor Z-module of weight zero
are stable by 707, , if 7 is a projective morphism. Here we take 7 as in the proof of
Lemma 3.1.

Set now U = {g # 0} C X. Let (¢5°, 0, h) be the trivial bundle with its standard
holomorphic structure, equipped with its standard metric for which h(1,1) = 1. Con-
sider it as a harmonic Higgs bundle on U with holomorphic Higgs field § = d(1/g).
Since ¢ is a monomial (in local coordinates), this produces a non-ramified good wild
harmonic bundle on X, in the sense of [Mocl1a, Def. 7.1.7].

For a fixed z (denoted by A in loc. cit.), denote by E* the holomorphic bundle
(€5°,0 + 2d(1/g)). The extension PE* defined in [Moclla, Not.7.4.1] is nothing
but Ox - exp(zZ/g — z/g). Together with its natural connection, it is isomorphic to
g+l=*)/gz (see Example 7.4.1.2 in loc. cit.). Since there is no Stokes phenomenon
in rank one, the construction QF* of §11.1 in loc. cit. consists only in dividing the
irregular value by 1+ |z|2, so QE* ~ £1/9% (first point of Th. 11.1.2 in loc. cit.). Now,
€1/9% is the canonical prolongation of (¢°,0,d(1/g),h) as a coherent % -module.
It is also equal to the Z4-module denoted by € in loc. cit. (see §12.3.2). Then one
concludes by using Prop. 19.2.1 of loc. cit. O

The twistor localization. Let H be a divisor in X, locally defined by a holomor-
phic function h and let .4 be a coherent Z 4 (xH)-module. According to [Moc11b,
Def. 3.3.1], one says that .4 is twistor-specializable along H if there exists a coher-
ent Z g -submodule A [xH] C A4 such that, considering locally the graph inclusion
ip: X =Y := X x C with the coordinate ¢t on C,

« the coherent Zg (+{t = 0})-module ij 4.4 is strictly specializable along ¢t = 0,
in the sense of [Sab05, §3.4.a,

o ip,4 (A [xH]) is equal to the coherent Zz-submodule of i), 4.4 generated by
the V{ term of the V-filtration (with the convention taken in this article), denoted by
(in s N[t
If 4 [xH] exists locally, it is unique, hence exists globally. The category MTM™ is
introduced in §7.2 of [Moc11b], and the results of loc. cit. imply the following.

Proposition 3.3. Let f be any meromorphic function on X with pole divisor P.

(1) The coherent X a (xPreq)-module O g (%Preq) - ef/% s twistor-specializable
along P.eq and defines 0o (%Preq) - €/ /% [% Preq] =: 5)];/Z.

(2) Moreover, cg’)]é/z underlies an object of MTM™(X) extending the object of
MTM™ (U) that é‘g/z underlies.

(3) If f extends as a morphism f : X — P, then é”j{-/z = O 9 (¥Preq) -¢f/% and the
object of MTM™ (X)) it underlies is pure of weight zero.
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(4) Let H be any divisor in X. Then é”j’é/z(*H) is twistor-specializable along H
and the corresponding object é“’)];/z[*H] underlies an object of MTM™ (X).

Proof. Let us start by (3). Let g be a local equation of Preq. Then
ig+ (O (+Prea) - el/gz) = (ig+ O (¥Prea)) ® el/t'z
and [Sab09, Prop. 2.2.5] shows that the V* filtration is constant. Therefore,
ig.+ (O (¥Prea) - €/9%) [4'] = iy 1 (O (+Prea) - €'/9)

and thus Og (*Pred) - ef/z[*Pred] = Og (*Prea) - ef/% as wanted. The remaining
assertion in (3) is then given by Proposition 3.2.

Let us prove (1) and (2). If f does not extend as a morphism X — P! let
m: X — X beasin (21). Set D' = P/, UH’. Then, according to [Mocllb,
Prop. 11.2.1], é”)J;l,/z[*H’] underlies an object of MTM™ (X"). According to [Mocl1b,
Prop. 11.2.6], its push-forward %Ow+é”)j:,/z[*H’] underlies an object of MTM™ (X).
We also have éz’)’;/,/z[*H’] = (O (xD’) - ef'/)[xD'] and we can apply [Mocl1b,
Lem. 3.3.17] (because we work with objects of MTM(X")) to deduce that

HOn ELFHH) = A n, (O 0 (+D') - &' /7) [ Prea).

On the other hand, we have 01, (09 (xD') - ef'/%) = O 9 (% Preq) - €!/#. Therefore
the latter Z 4 (xPreq)-module is twistor-specializable along P,.q and we have & }Jz/ ? =
t%”oméa};/,/z[*H’]. This concludes (1) and (2).

Lastly, (4) follows from [Mocl1lb, Prop.11.2.1]. O

The Laplace twist. Let f: U — C be as above and let 7 be a new variable. We now
consider the function 7f : U x C; — C as a meromorphic function on X x C,. Propo-
sition 3.3 implies that éa;fx/a exists and underlies an object of MTM™ (X x C,).

In §9 we will also have to consider another variable v and the object é";vf /% of

MTM™ (X x C, x C,).

Proposition 3.4. If f : U — C extends as a morphism f : X — P!, then é”;(’;/a =
ﬁ%xcr (*Pred) . eTf/Z-

Proof. The question is local near P,oq and, using the notation as above, we have to
prove that é";(/xga = Og xc. (¥Peeq) - €7/9%. Equivalently, we should prove that the
V! filtration of (iy 4 O xc,)(*{t' = 0})-e™/# is constant. This is obtained through

the equation 6(t' — ¢g) ® eT/tE — o0t —g) ® e/t % 0

4. Strictness for exponentially twisted regular holonomic Z-modules

We will first prove a particular case of Theorem 1.3. Let p: X x P! — X denote
the projection and let ¢ be the coordinate on the affine line C = P! \ {co}. Recall
that, for (M, F,M) underlying a mixed Hodge module on X x P!, we have constructed
in [ESY15, §3.1] a filtration FP*'(M ® €!) indexed by Q (see Definition 1.2 for the
corresponding Rees construction).

Theorem 4.1. For (M,F,M) wunderlying a mized Hodge module, the complex
P+ Rppel (M ® &) is strict and has nonzero cohomology in degree zero at most.
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In the case where X is a point, this is the statement of [Sab10, Th.6.1]. If
(M, F. M) = i5+ (N, F,N) for some morphism f : X — P! and some (N, F,N) un-
derlying a mixed Hodge module on X, one can adapt the proof given in [ESY15,
Prop. 1.6.9] for N = Ox (xD), where D is a normal crossing divisor, and f~!(c0) C D,
but this case is not enough for our purposes. The proof that we give below uses the
full strength of the theory of mixed twistor Z-modules of T. Mochizuki [Moc11b].

Proof of Theorem 4.1. We first note that the second assertion in the theorem (i.e.,
the vanishing of 7 for j # 0) follows from the strictness assertion together with
Lemma 2.5. So let us consider the strictness assertion.

We refer to [ESY 15, §§2 & 3] for the notation and results we use here. Given the
filtered Zx wp1-module (M, F,M) underlying a mixed Hodge module, we associate to
it the Rees module .# := RpM = @p F, M- 2P, which is a graded Rr Zx «p:-module.
Its analytification .#Z*" (with respect to the z-variable) is part of the data defining
an integrable mixed twistor Zy yp1-module, according to [Mocl1b, Prop. 12.5.4].

Let us consider the graded RpZx ypi-module Rppa (M @ €). Our aim is to
prove the strictness (i.e., the absence of z-torsion) of the push-forward modules
Ay Rppa (M @ EY). Forgetting the grading, Rppa (M ® ') can be obtained by us-
ing an explicit expression of the V-filtration as in [ESY15, Prop. 3.1.2]. It is enough
to check the strictness property on the corresponding analytic object, by flatness.
Now, the analytification (Rppa (M ® €)™ can be obtained by using the analytic
V-filtration, by making analytic the formula of [ESY15, Prop. 3.1.2]. We then use
that the V-filtration behaves well by push-forward for mixed twistor Z-modules, ac-
cording to results of [Moc11b|. This is the main argument for proving Theorem 4.1.

Let us denote by .# the (stupidly) localized module .7 (x00) and by Z# the (not
graded) (Rp%Zx xp1)[7](0;)-module //?TT] ® &'7/%. By Proposition 3.4, this is also
M7 @ &7/7. Similarly, () denotes its analytification with respect to both 7
and z. We can use Proposition 3.3 together with [Moc11lb, Prop.11.3.4] to ensure
that (7)™ underlies an integrable mixed twistor 2-module.

Let p: X x P! x C; = X x C, denote the projection. Then p+‘g/'//aI‘ is strict,
each J#Ip, Z/* is strictly specializable along 7 = 0 and the V7-filtration satisfies
VIAHip, W™ = A#7p, (VI 7#*). Indeed, these properties are satisfied according
to the main results of [Mocl1b].

We will now adapt the proof given in [ESY 15, §3.2], which needs a supplementary
argument, since we cannot argue with (3.2.2) in loc. cit.

According to [ESY15, Prop. 3.1.2|, we have a long exact sequence

e AP VI T E S AT VTN —s A py (Rpoa (M@ EH))™ — -
that we can thus rewrite as
(4.2) - — VI TN T VT AT T

— %jp+(RFDe1(M X Et))an —_—

Let us first check that 7 — z is injective on each J#7p Z#>*. In the case considered
in [ESY15, §3.2], we could use (3.2.2) of loc. cit., and when X is reduced to a point,
the argument in [Sab10] uses the solution to a Birkhoff problem given by M. Saito.
We do not know how to extend the argument of [Sab10] to the case dim X > 1.
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Lemma 4.3. Let Y be a complex manifold, N2 an Ro -module which underlies a
mized twistor P-module in the sense of [Mocllb]. Let h be a holomorphic function
on'Y. Then the action of h — z is injective on N ",

Proof. Since a mixed twistor Z-module is in particular an object of the category
MTW(Y) (see [Mocllb, §§7.1.1& 7.2.1]), a simple extension argument with respect
to the weight filtration allows us to reduce to the case where .4##" underlies a pure
wild twistor Z-module (as defined in [Moc11al). Since the question is local on Y,
we fix some gy, € Y and work locally near y,.

Assume first that .4#?" underlies a smooth pure twistor Z-module. Then it is a
locally free &'z -module with z-connection, and the injectivity of h — z is clear.

In general, we know that 42" has a decomposition by the strict support
(see [Sab05, §3.5], [Moclla, §22.3.4], [Sab09, §1.4]) and we can therefore assume
that, near y,, 4" has strict support a germ of an irreducible closed analytic subset
Z CY at y,. On a dense open set Z° of the smooth part of Z, due by Kashiwara’s
equivalence for pure twistor Z-modules (see loc. cit.), we are reduced to the smooth
case considered above and the injectivity holds. Therefore, ker[(h—z) : A" — A4727]
is supported on a proper closed analytic subset Z’ of Z in the neighbourhood of ,.
Let F,. 4" be a good filtration of A" as an (Rp%y )**-module (which exists since
we work locally on Y). Then for each k, ker[(h — z) : FpA™?" — FpA?"] is a
coherent Oy . -submodule of 4" supported on Z’. The (Rp%y)*"-submodule
that it generates is a coherent (Rp %y )*"-submodule of 42" supported on Z’. It is
therefore zero since A" has strict support equal to Z. Since this holds for any k,
we conclude that ker[(h — 2) : A" — A2 = 0. O

Since 7 p, 7/ underlies a mixed twistor Z-module, we infer from Lemma
4.3 that 7 — z is injective on each #7p,Z#*. We conclude that the long exact
sequence (4.2) splits into short exact sequences and therefore J#7p, (RppaM)® is
identified with V.77 p 4™ /(1 — 2)VI A7 p, 70> for each j. Proving that the
later module is strict is a local question, near points with coordinates (7, z) in the
neighbourhood of (7,, z,) with 7, = z,.

(1) If 7, = 2, = 0, we use that V] #7p, 74> [TV #Tp, T0™ is strict, due to
the strict specializability of #7p, 74> along 7 = 0 and it is enough to prove that z
is injective on V7 #9p, 20> /(1 — 2)VI A7 pyZ#*. Due to the strictness above,
if a local section m of V7 #7p, 74/ satisfies zm = 7m’ for some local section m/
of VI p, 7™, then there exists a local section m” of V.I#7p, 74 such that
m = tm/, and since 7 is injective on V.7 7 p 7™ for o € [0,1), we have m/ = zm".
As a consequence, if a local section m of V77 p 74> satisfies zm = (1 — z)my
for some local section my of VI #7 py 2™, then there exists a local section m' of
VI #Ip, 7™ such that m-+m; = 7m” and my = zm/, hence m = (17— 2)m”’, which
gives the desired injectivity.

(2) We now assume that 7, = z, # 0. Near such a point, we have V.7 #7p 74> =
Hp T . Let us remark, however, that the V-filtration of Z#** along 7 — 7, = 0
satisfies V,C(Tfﬂ’)‘gz an — Zgan for k> (0 and Vé777°)‘? an — (T—TO)_kLg an for k <0,
according to [Sab06b, Prop. 4.1(iii)]. Applying the push-forward argument as above,
we conclude that the V-filtration of #7p, 74> along T — 7, = 0 satisfies the same
property. Therefore, setting 7 = 7 — 7, and 2’ = z — z,, we are reduced to proving
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the injectivity of 2z’ on V7' A#9p Tp™ /(1 — 2 )V A#p, 7. We can then use the
same argument as we used for the case 7, = 0. O

5. The irregular Hodge filtration

In this section, we come back to the setup of Theorem 1.3. Let f be a meromorphic
function on X with pole divisor P and let (N, F,N) be a filtered Zx-module underlying
a mixed Hodge module such that N = N(xP,eq). Let (M, F,M) be the mixed Hodge
module on X x P! associated to (N, F,N) by the construction of Remark 2.3. We know
by Theorem 4.1 that the complex pX7+RF.Del(M ® &) is strict and has cohomology
in degree zero at most, hence %Opx’+RFPe1 (M ® &) is equal to the Rees module of
N®&f with respect to some good filtration, which we precisely define as FI'"(N® ).

Definition 5.1. The filtration FI™ (N ® &f) is the filtration obtained by push-forward
from FP(M ® &).

5.a. Proof of Theorem 1.3

(1) This is clear since it already holds for FP'(M @ &°).
(2) Because the category of mixed Hodge modules is abelian, we have an exact
sequence of filtered Z-modules underlying mixed Hodge modules:

0—> (No,F.No) — (Nl,F,Nl) i) (NQ,F,NQ) — (Ng,F,Ng) — 0

which gives rise to an exact sequence of filtered Z-modules underlying mixed Hodge
modules:

0 — (Mo, F.Mo) — (M1, F.M1) =25 (M, F.M,) — (Mg, F.M3z) — 0

and therefore, according to [ESY15, Th.3.0.1(2)], to an exact sequence of filtered
2-modules:

0— (Mo ® &L FPY — (M ® &, FP) — (M, ® &, FP°l) — (M3 ® &F, FP°) — 0.

Applying ##p, we keep an exact sequence, according to the second statement in
Theorem 4.1.
(3) We consider the following diagram:

1 7T><Id[p>1
XXxXP'— Y xP

1
PXJ/ lpy
X—" vy
We thus have
T Rpier (N ® e~ (n o px)+Rppa (M@ &N ~ (py o (7 x Id)) + Rppa (M @ EN.

On the other hand, according to [ESY15, Prop.3.2.3|, (7 x Id)y Rppa(M ® &) is
strict and for each j,

A (1 x 1) Rppa (M @ €') ~ Rppa (A7 (1 x 1d)1: M) ® €.

Applying now Theorem 4.1 to 7 (7 x 1d) (M, F,M) we obtain the assertion.
(4) This point is similar to [ESY15, Prop. 3.2.3].
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(5) The case 1.1(a) follows from [ESY15, Prop.1.6.12]. Let us show the
case 1.1(b). If i : P} < P} x P! denotes the diagonal inclusion ¢ ~ (t,¢) and
p: P} x P! — P} denotes the projection (and similarly after taking the product
with X), we have an isomorphism

M ® € o AP (i (M® ) = A ((1:0) ® £°).
We claim that, for each a € [0, 1),
(5.2) Fll.(M@E") = Fr (Mo e’).
It is enough to check
(53) iy (ME,FXL(M®E)) = ((1+M) @ &, FY5 (14 M) @ £°)),

and the question is non obvious in the charts ¢ = 1/t and s’ = 1/s. Let us set
d =0(s' —t'). Let us first recall that, by definition,
iM =@ i M @k,

k>0
(5.4) Ey(iaM) = @ iuFp 1M ® 050,

k>0
(the shift by one comes from the left-to-right transformation on Rr2-modules) and,
concerning the V-filtration, one checks that(®)

V(i M) =D op(VEM @ ).
k>0
We set Gp(iM') = @oepe, =M ® 050, Let Yi_o0f(mas ® 8) € V3 (i),
Then this term is contained in G(i+M'), and its image in Gy(i+M')/Gy—1(i+ M) is
the class of mq ¢ ® 0%8, hence it is nonzero if and only if mq, # 0. In particular,
VE (i) N Go(iaM) = VEM @ 6.
We recall (see [ESY15, (3.1.1)]):

FDel (M/ ® El/t') —_ Zﬁflt/71 [(Fp—kM/ N Vé’ml) ® 81/15/]7

a+p
k>0
and, by the analogue of (5.4),
i_;,. (Fg?—il.(Ml ® gl/t’))p — F(?—ﬁij_l(M, ® el/t’) ® 6+ 88, [l+ (Fg?_ﬁl.(Ml ® gl/t/))pil].

On the other hand,
F2 ((100) @ 1) = 3 005 [(Fpon (i 00) NV (14 M) @ E1/°]
k>0
= 1 (E, (i M) NV (i M)) @ e/
+ Oy FR (1) @ V).

() The formula in the published version is not correct. We thank Takahiro Saito for noticing the
mistake
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We prove (5.3) by induction on p. Let p, be such that F, _sM = 0. Then
Fp, (i) = Fyp, s © 8 C Golis M), F2E, 1 (1) @ €Y/7) = 0 and
FRE ((ixM) @ YY) = s 71(Fp, (i M) N VE (i3 M) @ e/
=5 H(Fp, M NVIM) @ (6@ e/
= (N Ep, M NVEM) @) 26
(RO e ),
We now assume that (5.3) holds for p — 1. Let us first show that
i (P00 @ €1)) By (1, 00) @ €17,

a+p

By induction and the above formula for iy (F Del (M’ @ et/ t'))p, it is enough to check

LF2, (W @) @6 c B8 ((iaM) @ e1).

a+p
We have

FReL (W @ &MYy =t (F,o M nVEM) @ e/ 4+ 0, (28, (W @ 1)),
Then on the one hand, by induction,
0.0y (F28L_,(M' @ YY) @6 € 9 [0 (FRSL_, (W @ €YY)) @ 4]
+ 0y [0 (FREL_, (W @ €M) @ 4]
COpFR (M) @ &%) + 0y FReL | (i) @ /%)
C P28 (i) @ €M),

a+p

On the other hand, i, [t'~*(F,—1M' N VIM) @ el/tl] ® & is the degree zero term
(wrt. G,) in F2¢L (i, M) @ EY¥).
Let us now prove the reverse inclusion

Del (/. 1/s’ . Del 1/t
F ((Z+M/) ®8 ) C Z+<Fa+.(M/®S ))P

a+p

By induction and the above formula for Fol?flp((i_FM/ )@ &Y 5'), it is enough to prove

(%) §THE (M) A VS (1) @ el Ciy (FR, (W @ eVY))

Let m = Zf‘:o 85,(ma,j ® 8) be in F,(iy M) NV (i, M). We wish to prove
that it belongs to the right-hand side of (). Assume mgae¢ # 0, so that mq, €
Fp 1 M N VY (M), Then ma, ®6 € F, (i M) NV iy M) and 9% (g © 6) €
F,(i, M) N VE (iy M), Tt follows that each nonzero term in the sum expressing m
also belongs to F,(i4 M) NV (i, M), and it is enough to prove the desired inclusion
for m = 9f, (Mo ® J), that is,

(%) Opt ™ (e @6 @) € iy (FYEL (W @ VYY)
The left-hand side of (x) reads 95’ [(ma, ® /)@ 6] and is a sum of terms
(85778 Hma e @ e/) ®008, j=0,....0
We have

0 (ma @) € 0T M NVEM ) @/t C FREL (W @l
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and thus

[af/*jtlfl(mal@el/t’)] ®8§,5 c Fol?.ilp—l—j (M/®81/t’)®ag,5 ci, (Fol?fl. (M/®81/t/))p’

as wanted. O

Remark 5.5. Let f : X — P! be a morphism and let (N, F,N) underlie a mixed Hodge
module. It follows from 1.3(4) and (5) that iy (N ® &/, FI'') = (M ® &, FP), if we
set as above (M, F.M) = 5 (N, F.N).

5.b. The irregular Hodge filtration in terms of V. With the notation as in
the beginning of this section, we consider the pull-back module N[r] by the projec-
tion 7 : X x C; — X and the corresponding Rees object RpN[r] =: A[r], where
A = RpN. Denote by 42" the analytification of .4 and by r*.43" that of 4[7].
We twist 7t 42" by &7//% to obtain the object %4”, which underlies an object of
MTM™ (X xC,), according to Propositions 3.3 and 3.4, and to [Moc11b, Prop. 11.3.4
& 12.5.4].

Proposition 5.6. We have Rpix(N® N = V(AN ) /(1 — 2)VI(FN).

Proof. We associate to the mixed Hodge module (N, F,N) the mixed Hodge module
(M, F,M) as in Remark 2.3 (from which we keep the notation). It follows from (5.2)
and [ESY15, Prop. 3.1.2] that the result holds for (M, F,M) on X x P! and for f
equal to the projection to P! (note that it holds without taking “an”). Applying
the same argument as in the proof of Theorem 4.1, we conclude that the operation
VT /(T —2)V.I commutes with ##%p, . On the other hand, by definition and according
to (5.2), the operation Rpie is compatible with 27 9p,. Therefore, the result holds
for (N, E\N). O

Remark 5.7. As a consequence, one can recover the graded module Rpi (N ® eh
from V7 (74) in the following way. As an Ox|[z]-module, we have an inclusion
Rpin(N ® &) € N[z,27] and Rpin(N ® &/) is obtained from Rpin(N ® ET)an as
the graded module with respect to the filtration on RF(i!rr(N ® &) induced by the
z-adic filtration of Og @, (2] N[z, 27 1. By the proposition above, it is thus enough
to identify the inclusion as € 2 -modules

(5.7) Ve (AN /(1 = 2)Va (AN) C O @y Nz, 27 1.

By using the strict specializability of %4  along 7 = 0, one checks as in [ESY15,
Proof of Prop. 3.1.2] that (7 — 2)V.7(%A) = VI (AN )N (1 — 2)7N, so that

V(AN ) (r = 2)VI(AN) C AN (7 — 2) 5.
Let us set (recall that N = N(%Pieq))

N = (RpN)(%Prea) = B FyN(*Preq)2? C Nz, 271,
p
ﬁn =0y Rex[z] jc Oy Rox[z] N[Z,Z_l].

As an Og xc,-module we have TN = r* 4™ and thus as an O 9--module we have
TN [(1 — 2)AN = A2 This gives the desired inclusion (5.7 *).



20 C. SABBAH & J.-D. YU

PART II. THE CASE OF A RESCALED MEROMORPHIC
FUNCTION

6. Kontsevich bundles via Z-modules

In Part I1, we use the setting and notation of §1.b. It will also be convenient to work
algebraically with respect to P!, in which case we will consider the Zx [v](9,)-module
EYf(xH) := Ox (xD)[v]-e*/ and the Zx [u](,)-module Bf/*(xH) := Ox (+D)[u,u]-
ef/v where e*f and ef/* are other notations for 1 which make clear the twist of the
connection.

6.a. The Laplace Gauss-Manin bundles #*(a). The bundles 5% (a) on P! will
be obtained by gluing bundles on C, and on C,, that we describe below.

Over the chart C,. Let us denote by J#* the restriction of /% (see §1.c) to the
v-chart. This is nothing but the Laplace transform of the (k—dim X)th Gauss-Manin
system of f. It is known to have a regular singularity at v = 0 and no other singularity
at finite distance (as follows by push-forward from the arguments recalled in §7.b, or
by a general result about Laplace transform of regular holonomic Z-modules in one
variable). Moreover, J#* is equipped with the push-forward filtration F". % by
Oc,-coherent subsheaves, in a strict way according to Theorem 1.3. On C;; we obtain
in such a way a flat bundle (%’T&,V) equipped with a filtration F f“%féz indexed
by Q, which satisfies Griffiths transversality condition with respect to V (see §7.f,
see also Remark 6.3). This is the variation with respect to v of the irregular Hodge
filtration of H*(X, DR &Y/ (xH)).

We consider the limiting filtration (in the sense of Schmid) when v — 0. For
a € [0,1), let us denote by V., F the ath term of the Kashiwara-Malgrange
filtration of % at v = 0. Equivalently, due to the regularity property of the

connection at v = 0, V, % is the Deligne extension of %’1’8 on which V has a

simple pole with residue Res,—oV having eigenvalues in [—a,—a + 1). We set
gr¥ Ak =V, KV HF.

Theorem 6.1. For each o € [0,1),
(1) the jumps B € Q of the induced filtration

. Firr%k nv. %k
Firr V%k = L asCy
T T R A OV A

belong to a + Z,

(2) on each generalized eigenspace of Res,—oV acting on Vo Vo HF, the
nilpotent part of the residue strictly shifts by one the filtration naturally induced by
Firv, k.

Our proof in §7. is obtained by showing (Proposition 7.19) that the conditions
needed for applying M. Saito’s criterion [Sai88, Prop. 3.3.17| are fulfilled. More pre-
cisely, we will work with a filtration F,E/ (*J) easy to define, and we postpone to §9
the proof that this is indeed the irregular Hodge filtration of €v/(x3(). It would
also be possible, as observed by T. Mochizuki [Moc15], to directly refer to a similar
property for twistor Z-modules.
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QOwver the chart C,. Let us now consider the chart C,,. We denote by L%’jf the restric-
tion of #* to this chart. If j : C, \ {0} — C, denotes the open inclusion, we have
HF = j+<%fé;. There is a natural O, -lattice GoZF of the free O¢,[u~1]-module
¥ called the Brieskorn lattice in analogy with the construction of Brieskorn in singu-
larity theory [Bri70]. It can be defined in terms of the Hodge filtration of the Gauss-
Manin system attached to f (see the appendix). It can also be defined (see §8.d) as
the push-forward by ¢ in a suitable sense of an Ox ¢, (*Pred)-module Gogf/“(*ﬂ-f)
equipped with a u-connection ud + df : Go&//*(xH) — Go&//*(xH) @ QY and with
a compatible action of u20,.

The connection on J#* has a pole of order at most two at u = 0 when restricted
to Go " (see Remark 8.14). In the context of Zx[u](d,)-modules &f/%(xH) corre-
sponds to Ef/%(xH) = Ox (+D)[u,u e/

Gluing. We can then glue Go#ZF with V,, 5% and obtain an Op1-bundle 5% (a) with
a connection having a pole of order one at v = 0 and of order two at u = 0.

6.b. The Kontsevich bundles .#*(a). We now consider the Kontsevich bundles
introduced in §l.c. We can endow them with a natural meromorphic connection
having a pole of order one at v = 0 and of order two at most at v = co, and no other
pole.

In order to do so, we start(®) by considering the morphism of complexes

u?dy, — f (Q}(a)[u], ud + df) — (Q}(Oz + D)[u],ud + df).
Lemma 6.2. For o € [0,1), the natural inclusion of complexes
(Q%(a)[u], ud +df) — (2% (a + 1)[u],ud + df)
i a quasi-isomorphism.

This lemma allows us to define an action of u?d, on each J#*(a) ¢, and therefore
a meromorphic connection V on .#*(a) with a pole of order at most two at u = 0.
We will show that V has at most a simple pole at v = 0.

Remark 6.3 (due to T. Mochizuki). Let % be a vector bundle on P! equipped with
a connection V having a simple pole at v = 0 and a double pole (at most) at
v = 00. Then the Harder-Narasimhan filtration F'*.7# satisfies the Griffiths transver-
sality property with respect to V.

Indeed, the property is obviously true with respect to the connection d on 57
coming from d on each summand in a Birkhoff-Grothendieck decomposition. We are
thus reduced to proving a similar property for the &-linear morphism V —d, and the
result follows by noticing that (2 /FP~! )@ Q% ({v = 0} +2{u = 0}) has slopes < p
while FP# has slopes > p.

Proof of Lemma 6.2. We will show that the quotient complex has zero cohomology.
From [ESY15, Prop. 1.4.2] we know that the inclusion of complexes

Q% (), df) — (Q(a+1),df)

is a quasi-isomorphism, and thus the quotient complex (2°,df) has zero cohomology.
Let w = Z?:o wju! be a local section of 2P[u] such that (ud + df)(w) = 0. Then

(3)This was suggested to us by T. Mochizuki.
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df Awp = 0 and therefore there exists ny € 2P~ such that w = df Any. By replacing w
with w — (ud + df)no and iterating the process we can assume that w = wpu® and,
dividing by u*, that w € 2P. It satisfies then dw = 0 and df Aw = 0, so w = df An for
some 7 € 2P~ ! and therefore df A dn = 0. For any representative 7 € Q?il(a +1),
we obtain
df Adij € Q7" (a) € Q5 (log D) ([aP)).
On the other hand, we note that
Qe+ 1) = df A QK (log D)([aP]) + Q4 (log D) ([P)),

so we can assume that 77 € Q% '(log D)([aP]). Then dij € Q% (log D)([aP]), and
therefore dij € Q% (a), that is, dn = 0, so w = (ud + df)n. O

Proof of Theorem 1.11. We will compare the filtered complex a>”(Q}(a)[v], d+vdf)
with the filtered relative de Rham complex of £¥/(*J() with respect to the projection
to C,. We introduce in §7.c a filtration F{€VF (x3(), which will be shown to coincide
with FIr™*€vf (+3() in Theorem 9.1.

Theorem 6.4 (see §7.g, modulo Th.9.1). There is a natural quasi-isomorphism of filtered
complezes

(Oxxc, ®oxp (@) v],d +vdf,07P) — (DRxxc, /¢, Val® (+3), FITP)

which is compatible with the meromorphic action of V, .

It follows from (1.9) that applying Rg. to the filtered complex on the right-hand
side gives a strict complex (i.e., we have a similar injectivity statement).

We apply R¥q, to the quasi-isomorphism of Theorem 6.4. The non-filtered state-
ment gives the first point of Theorem 1.11, since V,, is compatible with proper push-
forward. The second point is then obtained by applying the second point of Theo-
rem 6.1. O

In a way similar to Theorem 6.4, but algebraically with respect to u, we in-
troduce in §8.b a filtration F*Go&S/*(x3(), which will be shown to coincide with
Firr*Go&l/*(x3) in Theorem 9.1, and we prove:

Theorem 6.5 (see §8.c, modulo Th.9.1). There is a natural quasi-isomorphism of filtered
complezes

()], ud + df,077) — (DRx GoB//"(xH), Fy™)
which is compatible with the action of Va,.

As above, it follows from (1.9) that applying Rg. to the filtered complex on the
right-hand side gives a strict complex.

By applying a degeneration statement similar to that of [Sai88, Prop.3.3.17]
proved in the appendix, we obtain a concrete description of the irregular Hodge fil-
tration of J#%.

Corollary 6.6. The isomorphism #*(a) = 7% (a) obtained by pushing forward the
quasi-isomorphisms of Theorems 6.4 and 6.5 identifies the Harder-Narasimhan filtra-
tion of X *(a) (hence of #*(a)) with the image on S*(a) of the irreqular Hodge
filtration F™* %,
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Remark 6.7. Another proof of Theorem 1.11 has recently been given by T. Mochizuki
[Moc15], by showing an analogue of Theorem 6.4 in the framework of mixed twistor
2-modules, but not referring explicitly to the irregular Hodge filtration.

7. The Zxxc,-module £/ (xH)

7.a. Setting. We will use the local setting and notation similar to that of [ESY15,
§1.1] that we recall now, together with the notation introduced in §1.b. In the local
analytic setting, the space X?" is the product of discs A x A™ x A™ with coor-
dinates (z,y) = (1, .-y Te, Y1y Yms Uiy - - - Yy ) and we are given a multi-integer
e=(e1,...,e0) € (Zsg)" for which we set:

e Sy = =l 2

. g(x,y) = l/f(x,y) =z*

e Prea ={[I{_y @i =0}, H={[1]",y; =0}, D= Peq UH.

Set 0 = C{z,y,y'} and Z = 0(0,, 0y, 0y ) is the ring of linear differential operators
with coefficients in &, together with its standard increasing filtration F.Z by the total
order w.r.t. 0y, 0y, Oy :

F,2= Y  002050),
| +]Bl+|vI<p
where we use the standard multi-index notation with a € N, etc. Similarly we will
denote by [t'] the ring of polynomials in ¢ with coefficients in & and by 2[t'](9y)
the corresponding ring of differential operators.
Consider the left Z-modules

O(%Preq) = O[z7Y], O(xH)= 0Oy, OD)= Oz~ y

with their standard left Z-module structure. They are generated respectively by
1/ TI, @ 1/ [}, y; and 1/ T, 1}~ y; as Z-modules. We will consider on
these Z-modules the increasing filtration F, defined as the action of F,% on the
generator:

F0(xPra) = Y 0021/ [Iiyzi) = Y 027271,

|la|<p la|<p
F,0(+H)= > 0-05(1/ 1L y) = > Oy,
le|<p le|<p
= > 000 iy i [y wy) = Y, Oa* hy~t,
lal+lel<p la|+|el<p

so that F}, = 0 for p < 0. These are the “filtrations by the order of the pole” in [Del70,
(3.12.1) p.80], taken in an increasing way. Regarding O (xH) as a ZP-submodule of
O(*D), we have F,0(xH) = F,0(xD) N O(xH) and similarly for € (*P,eq). On the
other hand it clearly follows from the formulas above that

F,0(+D) = Y F,0(xH)-FyO(+Pea),

q+q’'<p

where the product is taken in &(xD).
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7.b. The V-filtration of the Zx.c,-module & = £°/(xH). On X x C, we con-
sider the holonomic Zx »c,-module that we denote by "/ (x3(). It is defined by the
formula

eV (xH) = (Oxxc,(*(D x Cy)),d+d(vf)).

For the sake of simplicity, we will set & = €f(x3(). Then € has a global section, equal
to 1, that we denote by e/ on X x C,. Similarly, we will consider the v-algebraic
version of the same object, regarded as a Zx [v](9,)-module:

E = EY(xH) := (Ox («xD)[v],d + d(vf)) = Ox (+D)[v] - €*7.

It is standard that the Zxxc,-module € is holonomic. However, it is not of ex-
ponential type as considered in [ESY15] since vf is only a rational function, but is
exponentially regular according to Proposition 2.7(1), hence it enters the frame consid-
ered in §2.b. It is however known to have regular singularities along v = 0 (in a sense
made precise in [Sab06b]) which has been thoroughly analyzed in [Sab97]. On the
other hand, it is easy to check that FoOx xc, (*H)e?S generates € as a Zx »c,-module.

Let us recall the definition of the V-filtration (considered increasingly) along v = 0
over C,. For each o € [0,1) and k € Z, Vo€ is a coherent Px ¢, c,-module
(by regularity) equipped with an action of vd,, and the minimal polynomial of vd, on
Va+kE€/Vatr—1E€ has roots contained in [—a — k, —a — k 4+ 1). We have by definition,
for k > 1,

SEeimvie ifa =0,
Vaor€ = 0"Va€ and Voge=4{ 77"
Vi€ +0FV,E  ifa € (0,1).

Since v~ = j0+j6r8 is also holonomic, it also has a V-filtration. It satisfies, for
any k € Z,

Va_r(E[v71]) = vFV,E.
There is also a notion of V-filtration for holonomic Zx [v](J,)-modules and we have

Vatk€ = Oxxc, @oxp) VarkE.

Lemma 7.1 (Description of V, F). Let us fix 8 > 0 and « € [0,1).
(1) Near a point of (X ~\ Pred), we have
VorrE = pmax(=k.0) for k € Z.

(2) Near a point of Predq, in the local setting of §7.a, we have

VsE =Y (FoO(+Peea)) ([BP))(xH)[00y]2~* Pa 5(vdy) - €/,

a>0
with (convention: [[,cq*r =1)
¢ a; i +k
Pas(s) =] (s+%).

i=1k=1 €;

Proof. The first point follows from the relation 9,e"/ = fe*f. The second point is a
reformulation of [Sab97, Lem. 4.9]. O
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For each @ > 0, let us set I(a) = {i | a; = 0} C {1,...,4} and z1(q) = (¥i)ici(a)-
For A > 0 we also set Py 5(s) = (s + 8)*Pa(s). Then near a point of Peq, each
local section of V3 E has a unigue decomposition

(7.2) SN hars(@ray, vy y)a P TP, 5 5(v0,)et
a>0A>0

with haxg(%1(a), ¥,y Yy) € C{ara), ¥,y }y™']. Moreover (see loc. cit.), a section
(7.2) belongs to Vg FE if and only if

#{i|pe; €} it p >0,

A2
7.3 Va,A>0, hars#0=—
(7:3) ahs 7 {A>€+1 it 8= 0.

Let us make explicit the action of C[v] on a section (7.2). For j > 1 we have

vl ha,)\’ﬁx_[ﬂe]_lx_aPa,)\ﬁ(vav)e"’f = ha,,\,gac_we}_lx_aﬂ'ePa,)\’g(v@v — j)vjﬁge”f.

Set a—je = a'—a”, with a}, = max(a; —je;,0), a] = max(je;—a;,0). The polynomial

Pars(s =)= (s+8 =) [ 11 (s + (5 = d)ed + k) /ei)
i k=1
is a multiple of P 0 (s) and there is a polynomial Rg x ; 5(s) € Q[s] such that
Paxp(00y — o) = Ra,»,j,8(v0y) Par 0,8(v0y) = Z cuPar pu,p(00y)
nz=0

with ¢, € Q. We thus obtain

(7.4) vl ha7Aﬁx’me]’1x’“Pa7Aﬁ(v&,)e“f

= > ua® hapgr P Py 5(00, )6,
n=0

and since I(a’) = {i | a; — je; < 0} D I(a), we obtain the result in the form of (7.2).

Lemma 7.5. For any monic polynomial P(s) of degree p, there exists a monic polyno-
mial Q(s) of degree p such that P(vd,)e’f = Q(v/x®)evf in €. O

Let us then denote Qg g(s) the polynomial associated with P, x g(s) by Lem-
ma 7.5. We thus have

(7.6) VEE =" (FoOx(xPrea)) ([BP)) (xH)z™*Qan 5(vf) - €7,

a>0A>0
and we note that degQq,x,3 = |a| + A. Moreover, each local section has a unique
decomposition
(7.7) S hars@r@), vy "y )z P e TQq 5 s(uf et
a>0 >0

Corollary 7.8. Let us denote by grl”! Vs E the grading of Vg E with respect to the degree
inv. Then, in a neighbourhood of a point of P.eq, we have

gr][:]] VgE ~ (FpﬁX(*Pred))([(ﬂ +p)P])(*H) -oP.
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7.c. The filtration F,, E

Although the function vf does not extend as a map X x C, — P!, we can never-
theless adapt in a natural way the definition given in [ESY15, (1.6.1) & (1.6.2)] for
the case of the map f: X — P'.

Definition 7.9 (The filtration). For « € [0,1) we set, over C,,
FaipB" = (3 Fulx (ePrea)((a + p) P ) [e] -
k<p
FoipE = Z F,0x(+H) - Foy g B

q+q'<p
The analytification of these filtrations with respect to v are denoted F,4,&/ and
Fo1p€ respectively.
Lemma 7.10. For each o € [0,1), the filtration Foy E is an F,Zx[v](0y)-filtration
which satisfies the following properties.

(1) Foyp, B C Fgip, E for all p1,p2 € Z and B € [0,1) such that o+ p1 < S+ pa.
Moreover, FoipE =0 forp <O0.

(2) When restricted to C%, the filtration FyipE is equal to FEf;SXXc; as defined
in [ESY15, (1.6.2)] for the map vf : X x C; — P!, and for each v, € C*, we have

Foip&/(0 = 0o) Fayp€ = FOF €71 (+H).
(3) The filtration F,4 E satisfies
FoirpE = Fo,Pxxc, - FoF;
in particular, it is good with respect to F, Dx [v]{0y).
Proof. The exhaustivity is clear from the expression of Definition 7.9, and the first

two points are straightforward. Let us check (3). It is enough to check it locally
analytically on X.

Near a point of X \ Prea. If H= @ and p > 0, we have F,,E = O[v]e®/ and the
generation by F, FE is clear.
If H={y1-  ym =0} and p > 0, we have

FoypE = Z y~ 2 Lov)e" .

la|<p

Since 05y~ Ov]e?!) = xy~*"10w]e’ mod Fo1, 1 E if |a] = p, we get the genera-
tion by F,F near such a point.

Near a point of Preq. From the equalities (for some nonzero constants x):
o, (x—([ae]Jrl) .evf) - *xiflx—([ae]ﬂ) cevf ¢ *x;lx—([(a+1)e]+1)v cevf
d, (x*([aeHl)evf) = g~ ((etDel+1)  vf
we conclude
Fy Dx[0)(8y) - Fa BV = (FyO(xPreq) + F1 O(%Preq)v) [v] - x~ (0T elev!

and by iterating the argument we get the generation property. The corresponding
property for F,,FE is proved similarly. O
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We will rely on computations made in [Sab97] and we will first express differently
the filtration FioypE. Let us define G,E as the filtration by &x-modules (but not
Ox[v]-modules), defined as

P
GPE = @ (Fp—kﬁx(*H))(*Pred)Uk : evf.
k=0

The filtration G, E clearly satisfies
p<0= G,E =0,
(7.11) qg20= GENVIE=v1Gp_4E,
p—q<0= GpENvIE=0.

For a € [0,1) and p € Z, we set

(7.12) Fl B =Y (GkENVay,E).
k+ji<p
Then F, , ,E is an Ox[v]-module. Note also that F},, ,E is an F, Zx[v](0,)-filtration.

Indeed, Gy FE is stable by d,/,0,, and we have 0,,,0,,GxE C Gj41E; moreover,
Va+;E is stable by 0,, 0y, 0y, and we have 0,Voq; B C Voyji E.
Recall that, for j > 0, we have by definition V,,_;E = v/V,E, so that for k > 0,

(7.13) v GRENV,E 5 Gpy;ENV, jE.
Therefore, we can also write

P
(7.14) F(;JFPE =C(GpoENVLE)+ Y (Gp—;ENVyai;E).

J

=

It follows that F,,

E=0forp<0 (and a € [0,1)).
Lemma 7.15. For each o € [0,1) and p € Z we have
F/

a+p

E=F,,E.

Proof. Let us first consider an analytic neighbourhood of a point of X \ P,eq. Due to
the relation d,e"/ = fe*/, we have, near such a point, V,,;E = v™*(30F for any
j €Z,and G,E = @)_, F,O0(xH)vP~*e*. Then, near such a point, (7.14) reads

E = C[)(G,ENV,E)
= C]G,E = F,0(xH)[v]e") = F,\,E.

F/

a+p

We now argue locally at a point of P.q. We refine (7.2) in order to take into
account the pole order along H, so a section of V3£ can be written in a unique
way as

(716) Z Z Z ha,c,)\,B (xl(a)a Yi(e)s y/)x7[ﬁe]ilxia’yi(:ilpa,k,ﬁ(vav)evfa
a>02>0 >0

with J(c) = {j | ¢; = 0} and hq e 8(%1(a), Yi(e): ¥') € C{Z1(a), ¥, ¥’} Arguing as in
the proof of [Sab97, Lemma 4.11], we obtain that, for 8 > 0, a section (7.16) belongs
to G, ENV3E if and only if the coefficients hq ¢ 1, g are zero whenever deg P, » g+|c| =
lal + |¢| + A is > k (note that this condition clearly defines an increasing filtration
with respect to k).
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We will first show that F,E = F/E for « € [0,1). We have
F!E =C](GoENVLE)
and F,E = Fy0(xD)([aP))[v]e"”.

Here we are considering the case k = 0 and 8 = a. Let us consider a section (7.16)
in GoE N V,E. The only possible term occurs for a = 0, A = 0 and ¢ = 0, so
GoENV,E = Fy0(+D)([aP])e’S. Therefore,

(7.17) F,E = Fy0(xD)([aP])[v]e*! = C[v](GoENVLE) = F.E.

Since Foypll = F,2[v](0y) - FoE (Lemma 7.10(3)), and since F,,,E is an
F,2x [v]{0y)-filtration, it follows that F,,E C F,  E for all p.
Let us now show the reverse inclusion F,

atpl C FoqpE. Let us consider a term in
GrENVaqp—iE (0 <k < p) of the form

M1, (a), Ya(e), ¥ ) o P ey TPy 5(v0y)et
with f=a+p—Fk,a >0, \+ |a| + || < k. Let us rewrite Py x g(vd,) in terms of
the monomials v797. For j < A+ |a| < k — |c|, the result of the action of 797 on
h(T1y(a) Ya(e), ¥ )z~ P may—eterl s

h(xlﬁ(a)’ Yi(e)s y’)x—[(ﬂ-i-j)e]—lx—ay—c—lvjevf
= h(wzﬁ(a), Yi(e)s y’)x—[(a+P)e]—1x—a+(k—j)ey—c—1vjevf.

For @’ € Z*, let us set |a’|; = >, max(0,|a}|). Since |a|; = |a| < k, the reverse
inclusion follows from the lemma below. O

Lemma 7.18. For a' € 7' and k > 0, assume that |a’|y < k. Then for j such that
0<j <k, we have |a' — (k — j)e|+ < j.

Proof. We argue by decreasing induction on j and the result is true if j = k by
assumption. We are reduced to proving that, if |a’|4 > 1, then |a’ —e|; < |a’|+ — 1.
There exists i, such that aj > 1, so max(a; ,0) = a; > 1 and max(aj —e; ,0) <
a; — 1. Since max(aj — €;,0) < max(aj,0) for any 4, we get |a’ — e[y < [a'[; — 1, as

wanted. O

7.d. Filtration on the nearby cycles of & along v = 0. In this subsection, we
analyze the filtration induced by F,+,€ on the nearby cycles of € along v = 0. Our
objective is to show that M. Saito’s criterion [Sai88, Prop. 3.3.17] applies.

Proposition 7.19.

(1) For each o € [0,1), the filtered module (EV(x3(), oy JEY (xH)) is strictly
specializable and regular along v = 0, in the sense of [Sai88, (3.2.1)].

(2) Let V,EYT (xH) be the V-filtration of EVT(xH) along v = 0 and, for each a €
[0,1), let us set

Yo exp(—2amia) € (+3C) 1= gryy €7 (+30) = Vo€ (x30) [Vea € (+70).

For each a € [0,1) the jumps of the induced filtration (considered as a filtration
indexed by Q)

) F, NV, & (+H)
Fbvop(-amio)€ (00 = ogran
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occur at a + Z at most, and the filtration

Fp¢vgvf(*%) = @ Fa+p¢v,cxp(—2wio¢)€vf(*g{)
a€el0,1)
is (up to a shift by dim X — 1 on 1, 1€ and by dim X on v, 1€YF) the Hodge
filtration of a mized Hodge module.
(3) If moreover H = &, this mized Hodge module is polarized by the nilpotent part
of the monodromy naturally acting on 1,EYY, induced by the action of exp —2mwivd,.

The latter statement means that the weight filtration of the corresponding
mixed Hodge module is, up to a shift which depends on whether @« = 0 or o # 0,
the monodromy filtration of the nilpotent endomorphism induced by vd, + « on

wv,exp(f%ria)gvf'

Proof of Proposition 7.19(2) and (3). It is enough to work in the algebraic setting
with respect to v. Recall that we set E = E/(xH) for short and that F’ was defined
by (7.12). Let 8 € [0,1). We claim that

720 . Cl(GpENVaE) + (Gp1 ENVRE) if B> a,

!y ENVEE =

vCP|(GpENVLE)+ (G, ENVaE) if < .
This implies that

Gp_lgr‘ﬂ/E:F’ grgE if 8> «a,

<a-+p
(7.21) Fl ety E= . / " .
Gpgry E=F5 et E if 8 < a.
Let us prove (7.20). We have Fy,, ) C V4, and

p—1

F, ,ENVoip 1E=CRl(GENVLE) + Z(Gp,gE NVateE) + (GoENVyyp 1 E)
=1
p—1

= C)(GoENVaE) + > (GyptE N VayE),

=1

and by decreasing induction one eventually finds

Fl . ENVai1 E=CP|(Go,ENVLE)+ (Gp1ENVyai E).

a+p
Intersecting now with Vg FE gives the first line of (7.20). The second one is obtained
by showing in the same way

Fl )ENV,E = Co)(GpE N VaE) = vC)(GpE N VaE) + (GpE N Vo E).

Lemma 7.15, together with (7.21) and [Sab97, Th. 4.3], proves 7.19(2) and (3). O
Proof of 7.19(1). Continuing the proof of (7.20) gives, for 8 € [0,1) and £ > 1,

UZ(C[U](GPE NVLE)+ (Gp+g_1E N Vg_gE) if B> a,

!
F;+P

ENVg_FE =
vV HC(GoENVLE) + (GprtENVa_E) if B < a,

which amounts to
V! [@[v](GpE NVoE) + (GprEN vﬁE)} if 8> a,
Fl,ENVs_(E =
ot [’UC[’U](GPE AVaE) + (G,EN VﬁE)} if < a,
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that is, in any case,

F/

Ly ENVa_oE ='(F),

atpl N V3E),
which is [Sai88, (3.2.1.2)] (up to changing the convention for the V-filtration), since v
acts in an injective way on V3.

We now wish to prove that Property (3.2.1.3) of [Sai88| holds, that is, for each

B > 0 and for each « € [0,1) and p € Z, the morphism
Oy:Fly ety E—F/ gt E

is an isomorphism. Assume first that there exists p, > 0 such that a +p, < 8 <
a+ p, + 1 (otherwise, 0 < 8 < «, a case which will be treated separately). Then a
computation similar to that for proving (7.20) gives

Po
CWIGrENVaE) + Y (GptENVastE) + (Gpp,-1ENVEE)
=1 .
Fl ,ENV4E = if a+p,<B<a+tp,+1,

Po
C(GrENVaE) + Y (GpyENVaysE) if B=a+p,.
=1

As a consequence, we find

o Gp,po,lgrgE ifat+p, <pf<a+p,+1,

1%
a+p 83 E=

Gp—p, grg E if 6=a+ p,.

If 0 < B8 < «a, we also get F(’Hp gr‘ﬁ/ E=aG, gr‘ﬁ/ E. So we are reduced to proving that,
for any 5 > 0 and any k, the morphism

(7.22) Oy : G grg E— Gy gr};+1 E

is an isomorphism.

Away from P,.q, we have gr}j/E = 0 for each 8 > 0, so the assertion is empty.
Let us prove the assertion in the neighbourhood of a point of P,.q. The left action
of 9, on a term of the sum (7.16) gives, since d,e*f = r~¢e*/ and due to standard
commutation rules,

Pas(v8y + Dhaexs(Tr(a), (e, y o FHe-1gmayme=1evf,

We have Py » g(v0y + 1) = Pg x g+1(v0,) and we use (7.3) for 8 > 0 to conclude that
(7.22) is an isomorphism.

It remains to be checked that F)_, grg E is a good filtration for any 5 € R. The
previous arguments reduces us to checking this for § € [0,1], and we are reduced
to proving that, for any such 38, G, grﬂVE is a good filtration. This follows from
[Sab97, 4.14], since this filtration is identified (after grading by a finite filtration) to
a filtration which is already known to be good (and which is the Hodge filtration of
a mixed Hodge module). O

7.e. Computation of F,,E NV E. The previous section shows that, for a, § €
[0,1), the computation of Fg,E NV,E is interesting mainly when § = a. Note that
FoipE =0 for p <0 and that, away from P..q, we have Fa+pE”f NVEvf = Evf =
ﬁxe“f.
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Lemma 7.23. For a € [0,1) and p > 0, we have

g Valr = @ (@15 Va rB/ 818y Vo k1 E)
(7.23 %) k>0
~ Cv] ®c (grf Vo E/ grg Va,1E>.

Note that, for p = 0, we have gr§ Vo, £ = GoE NV, E.

Proof. On the one hand, the natural map G,E N V,E — grgﬂ VoE has ker-
nel equal to GpLE N Vo,E N (Zk}O(GP—l-‘rkE N Va_iE)), according to (7.12).
The latter space is contained in G,E N (Gp—1E N Vo E + Vo1 E), that is, in
(Gp1 ENVLE) + (GpENV,_1E); but clearly the converse inclusion is also true.
We thus have an inclusion

G, ENV,E
(Gp1ENVLE)+ (GoENV4_1E)

On the other hand,

(7.24)

— grg“ VL E.

G,ENVaEN (Z GpinF N Va_kE) C GpENVa B C FaypiF,
k>1

so (7.24) is a direct summand in grga V.E, and one can continue to get the first

expression in (7.23 *). For the second expression, we use (7.13). O

Lemma 7.25. For o € [0,1), p > 0, near a point of Pyeq, the following holds:
(1) The natural morphism, induced by the inclusion of each summand in
Ox (%Preq)[v):
(7.25 %) &P ﬁI(a)xf[ae]71:57@@(171)_‘0‘)&(0/179,) — grlcf v, E*f
a>0
la|<p
s an isomorphism.
(2) For eachi=1,...,L, the morphism 0; : grf V,EY — grgﬂ Vo EVT induced by
—0y,/ei is given by
aiha,,pf|a,|7o¢ (mI(a)a y/)xi[ae]ilmiaQamf\a\,a(v/xe)
ha,p7|a|,a($1(a)7 y,)x_[ae]_1x_(a+11")Qa+1i,p+17|a+1i|,a(’U/xe) ZfZ ¢ I(a’)7
hap—lal,a (05 y )z~ e=@FDQ 1y 01y, (v/29)
+ hi)pflal’a(ml(a),y’)x_[o‘e]_1x_aQa7p+1,‘a‘,a(v/me) ifi € I(a),

where, fori € I(a), we set
ha,p7|a|,a (xl(a)7 y/) = ha,p7|a|,a(0i7 y/) + xihg,)p_‘aLa(l‘I(a% y,)a
and 0; means that x; is set to be 0 in xy(q).

Proof. The first point follows from [Sab97, Lemma 4.11]. For the second point we
have, modulo GpE”f NV,EY,

aiha,pf\a\,oz(xl(a)a y/)x_[QEJ_lx_aQa,pmea (’U/xe)

= hu,,p7|a|,a($l(a)a y/)x_[ae]_lx_(a+1i)Qa+1i,p7|a|,a(U/xe)~
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However, this is possibly not written in the form above if i € I(a) (ie., a; = 0)
and we modify this expression as indicated in the statement to obtain, modulo
G,,E”f N V,Ev7T, the desired formula. O

7.f. The filtered relative de Rham complex and the rescaled Yu complex

We consider the relative de Rham complex DR x ¢, /c, € which is nothing but the
complex of Oc, -modules

d+vdf
e

0— & Qe — -

and the action of 9, by 9/0v+ f induces a C[v](,)-structure on each term compatible
with the differentials.
We filter this complex as usual by subcomplexes of C[v]-modules:

d+wvd
A o] @ Fagpir€ — - ).

Fotp DRxxc, /e, € = {Fatpé
As usual we set F} = F,_,. The action of 9, on DRx xc, /c, € induces a morphism
Oy : Fayp DRxxc, /c, € — Fatpr1 DRxxc, /e, €
We will use the following notation, as in [ESY15]:
0 if j <0,

k o a+j =
Vivc, e, U0 D)([(@+1)P])s {Q,;(XCUMO@)(KQH)TD o0

We define the rescaled Yu complex as being the filtered complex (a € [0,1) and p € Z):

F, DRx«ce, /e, €

d+vdf
e

= Oxxc,([(a+p)P))+ Qx e, /e, log D)([(a +p+ DP))s — -+

which is a complex of &¢, -modules. The connection 9/0v + f induces a morphism
Vo, : FX¥, DRy xc,/c, € = F)Y, 1 DRxxc, /c, €

Proposition 7.26. The natural morphism
FXY,DRxxc,/c, € — Fatrp DRxxc,/c, €

is a quasi-isomorphism for each a€[0,1) and pE€Z compatible with the action of .

Proof. The existence of a natural morphism follows from Lemma 7.10. The compati-
bility with respect to the action of J, is then clear. The proof is then similar to that
of [ESY15, Prop. 1.7.4]. We note that, away from P4, we use that the morphism

(7.27) (% ¢, /¢, (logH),d +vdf) — (Qx <, jc, (*H),d + vdf),

is a filtered quasi-isomorphism. Here the analytic version of € is needed in order to
write d + vdf = e " odoe’f. O
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7.g. Proof of Theorem 6.4. We consider the complex (Q%(a)[v],d + vdf). We
have a natural connection

Vo, + (Q3(a)[v],d+vdf) — (Q(a + 1)[v],d + vdf)

induced by the action of f + 9/0v on each term of the complex.

Lemma 7.28. For o € [0,1), there is a natural filtered morphism
(Oxxc, ®oy ) ()], d +vdf, 0??) — (DRxxc, /c, Va&, F2 DRy xc, /c, Val)
which makes the following diagram commutative:

(ﬁXva Rex [v] Q}(a)[v], d+ Udf) E— DRXXCU/(CU V€

V&l lvav

(Oxxc, ®oyw (a+ D[], d+vdf) —— DRxxc,/c, Vati€

Proof. Once the morphism is defined, the commutativity of the diagram is straight-
forward: let d denote the differential with respect to X and d, that with respect to v;
the verification reduces to checking that e=*f od o ¥/ commutes with e/ od, o0 e’
a statement which follow from the commutation of d with d,.

Away from P,eq, the morphism is given by (7.27). At a point of Peq, we will use
the algebraic version FE of € for simplicity. For each k > 0, we have a natural inclusion

(FoO(%Prea)) (JaP])(xH)v e C V,E.
Indeed, it is enough to prove the inclusion
4 (Fy0(+Prca)) ([aP)(H) - (v/a°)*e"! C V,E
and then the inclusion
xke(Foﬁ(*Pred))([aP])(*H)QOJ,a(v/x"‘) C VoE  with Py ja(s) = (s +a)l,

by expressing (v/2€)"* in terms of the Qo j o (v/x®) with j < k. The assertion is then
clear by taking the term with a = 0 in the expression of Lemma 7.1. We thus obtain
the desired morphism.

In order to prove that it is filtered, we note that for each k& > 0, the natural inclusion
morphism Q’}(a)[v] — Q% ®4, E factorizes through the subsheaf Q% @4, F,V,E.
Indeed, according to (7.17), we have F,Vo,FE = F,E = FyOx(xD)([aP])[v] - e*f, so
we are reduced to proving the inclusion Q’}(a) C Ok ® FoOx(xD)([aP]). This is
clear away from P,eq since this reduces to Q% (log H) C Q% ® Fy@x (xH). In the local
setting of §7.a near a point of Pq, the conclusion follows from [ESY15, Formula
(1.3.1)] for a = 0, and the same formula multiplied by z~[*¢l if o € (0,1). O

We will show Theorem 6.4 with the filtration F; introduced in Definition 7.9. That
this is the filtration Fi'™* will be shown in Theorem 9.1. Near a point of (X N\ Preq) xC,
we can write d +vdf = e~/ od o e’/ to reduce the statement to the standard result
proved by Deligne [Del70].

We will thus focus on P,eq X C,, and it will be enough to consider the v-algebraic
version of the statement. It is also enough to prove that for each p > 0, the pth
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graded morphism is a quasi-isomorphism. We are thus lead to proving that for p > 0
the following vertical morphism is a quasi-isomorphism:

0 —— Q4 (a)[v] 0

(7.2 | l

0— F,VuEQQ — gri“V,FoQrtt — ...

Since the question is local, we can treat separately the variables x and y, and the
main problem remains the case of the x variables, so that we will assume H = &. We
will use the computations of §7.e, from which we keep the notation.

Lemma 7.30. Near a point of Prea, for ¢ € Z and a € [0,1), the relative de Rham
complex

0— gqu V., BT —s grgrl V,E T Q' — ... — gqu+n V,EY 20" — 0

has zero cohomology in degrees > —q + 1 (recall that gqu V,E'F =0 forq<0).

Sketch of proof. We will forget the variables 4’ and work with the variables = € C*,
so we will replace n with £ in the de Rham complex above. We then note that this
complex is the simple complex associated with the hypercubical complex built on the
cube in R? with vertices € € {0,1}*, whose vertex at ¢ is gquHe‘ Vo E¥f and whose
arrows (g; = 0) — (g; = 1) are the derivatives J,,. We may as well replace the
arrow 0y, with 9; = —0,,/e;.
The formula of Lemma 7.25(2) shows that, if ¢; = 0, the arrow 9; : € —» e+ 1; is
injective, with cokernel identified with
é ﬁI(a/)x*[ae]*lx*“'Qa@o,a(’u/xe).

a’>0,a,=0

la’|=g+1
We use the convention that a sum indexed by the empty set is zero, a case which
occurs if ¢+ 1 < 0.

. If £ =1, we only need to consider the case ¢ > 0. The cokernel of 9y is then equal
to zero, showing that 0; is bijective in this case, which implies the desired assertion.
«If ¢ > 2, we replace (with a shift) the hypercubical f-complex with the
(¢ — 1)-complex made of the cokernels of the injective arrows 0, and the formula

for the induced arrows Os,..., 0, is then that of the case i ¢ I(a) in the formula of
Lemma 7.25(2). Now, the maps induced by 0, are injective, with cokernel
ﬁl(au)x_[o‘e]_lx_auQa//707a(v/xe), etc. O
a” >0, a)/=a} =0
la”|=q+2

From Lemma 7.30 we conclude that for o € [0,1) and each p > 0, the de Rham
complex

(7.31)4 0— - —0—af VB0 — af V,EY @ Pt — ...
has zero cohomology in degrees > p + 1, while the de Rham complex
(7.31)g1 00— - —0=g§ Vo 1B @ — ¥V, |E/ Pt — ...

has zero cohomology in degrees > p+ 2 since gr{ V,,_1EV/ ~ gr{ | V,, E*/| according
to (7.13). Therefore, the quotient complex (7.31),/(7.31),_, has zero cohomology in



ON THE IRREGULAR HODGE FILTRATION 35

degrees > p+ 1. It follows then from Lemma 7.23 that the bottom line of (7.29) has
zero cohomology in degrees > p + 1. It remains to identify the degree p cohomology
of this bottom line. As noted above, we have

FVoE" = F,E% = Fy0(+P.eq)([P])[v]e"7,

so the cohomology consists of sections of F&'(*Preq)([P])[v] ® QP whose image by
d+vdf belong to FyO (% Preq)([aP])[v] ® QP+, This cohomology is then contained in
QP (log Prea)([aP])[v], according to Lemma 7.32 below, and it is then easy to identify
it with QI; (a)[v]. O

Lemma 7.32. Fork >0, a section of FoO (% Preq)Q2* belongs to QF(log Preq) if and only
if its exterior product by Zle e;dx;/x; belongs to FoO (xPreq) QR O

7.h. Some properties of the filtration F.2%. Recall that the Z¢, -module S2*
is defined in §1.b. For a € [0,1), we denote by V, 2 the free C[v]-lattice of "
on which the connection V induced by the Z¢, -module structure has a simple pole,
with residue as in Theorem 1.11(1). This is also the part of indices in [0,1) of the
Kashiwara-Malgrange V-filtration of %%, which exists since it is a holonomic %, -
module.

By a standard result on the strictness of the Kashiwara-Malgrange V-filtration
with respect to proper push-forward, we have:

Vat" = im [qu+(DRXXCv/CU Vo€) — RFqy (DRx e, /e, €)
and the latter morphism is injective. We obtain, as a consequence of Proposition 7.19:

Corollary 7.33 (of [Sai88, Prop.3.3.17]). For each k,c,p, F3 7 satisfies the properties
[Sai88, (3.2.1)]. O

Let us consider the restriction j*F2 2% (j: C: — C,).

Corollary 7.34. For each o € [0,1) and p € Z, we have an isomorphism of
Ocx -modules:

JFRA) ~ Ocy @c FY"PHig (U, V).
In particular, j*FPAF = jﬁ& for p <0 and j*FPAF =0 forp > k.

Proof. The first part follows from Lemma 7.10(2) and the second part follows from
the property gr? .., Hy (U, V) = 0 for p ¢ [0, k], which is a consequence of [ESY15,

Cor. 1.5.6]. O

Recall that the irregular Hodge numbers h2:%(f) are defined by (1.6). As a conse-
quence of Corollary 7.34 we have

he(f) = rkgrf, jo 7.
Corollary 7.35. For a € [0,1), we have FOF DV, k.

Proof. We have seen that both ¢, -modules coincide with *[v~!] after tensoring
with Oc, [v=1] (by Corollary 7.34 for the first one, and by a standard property of the
V-filtration for the second one). Hence for any m € V, 2% there exists £ > 0 such
that v'm € FOF. Let p € Z be such that m € FPZF. Corollary 7.33 implies that
Property [Sai88, (3.2.1.1)] holds for the filtration F2.#F, and thus the morphism

v
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o8 (FAAF NV tF) — (FIAF NV, H#F) is an isomorphism for each ¢. It follows
that
m € FPAF NV F and v'm € FOF NV g8 — m € FOF NV, 25,

as was to be proved. O

7.i. Nearby cycles and the monodromy filtration. We now consider the functor
Uy exp(—27ip) (B € [0,1)). The result of [Sai88, Prop.3.3.17] implies then that, for
each B € [0, 1), the filtration naturally induced by the Q-indexed filtration F*.Z* on
wv,exp(,gﬂﬁ)%’j}k is equal to

(7.36) F*H"(X, DRy oxp(—2rip) &) i= H" (X, F* DRy, oxp(—2ri)E)

and therefore has jumps at 8+ Z at most. It is then enough to consider the filtration
induced by F /}%’;’“ on wv’exp(,gﬂiﬁ)%}k. Then, according to the previous results, we
have

’(/}v,cxp(f27ri6)f%€;k 1fp <0,

prvex —27i %k:
B ¥ v exp(=2mif) 0 ifp> k.

Definition 7.37. For a € [0,1) and k > 0, the spectral multiplicity function is the
function

Z>pr— U(];(p) = dim gr?«"a 17[}11%;]6 = Z dim gr:;)«"a wv,exp(f%riﬁ)%;k'
B€[0,1)

Lemma 7.38. For each o € [0,1), k € N and p € Z, we have
pe(p) = hEEP.

In particular, ¥ (p) =0 for p & [0, k].

Proof. For € [0,1), we have an isomorphism (see Corollary 7.33):

(7.39) v (FEAHF N Vat*) = (FEA* NV %),
Therefore,
> dim F2Yy exp(—2mip S = Y dimFlgry AF = > dim Ffgry )
B€0,1) B€[0,1) Be(a—1,a]

FLAE N Vo A
Fg%k N Vozfljﬁ;k

= dim

FLAL O Va A
V(FEAF O Vo)

Since Vo, 2% is Oc, -free for a € [0,1), the Oc,-module FPIZF N V,F is
Oc,-torsionfree, hence O, -free, and the latter term is equal to rk(FPZF NV, %),
hence to tk(FP£%)[v~1], that is, dim FY"PH%: (U, V), according to Corollary 7.34.
The result follows from [ESY15, Cor.1.4.8]. O

= dim

(Corollary 7.33).

Proof of Theorem 6.1. By Lemma 7.15 and (7.21), we can apply [Sab97, Th.5.3| to
the filtration given by (7.36). It remains to identify the latter with the irregular Hodge
filtration. This follows from Theorem 9.1 below. O
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8. The Zxxc,-module &7/%(xXK)

We now focus on the u-chart. In this section, we will consider the Zx[u](0,)-
module Ef/%(xH) := (Ox (+D)[u,u™],d + d(f/u)) and we use the identification

B!/ (xH) = Ox (+D)[u,u™"] - !/,

which makes clear the twist of the Zx[u](0,)-structure. We will denote for short
E = ET/(xH).

8.a. The Brieskorn lattice of the Zx[u](d,)-module Ef/*“(xH). Let F,Zx de-
note the filtration of Zx by the order of differential operators, and consider the
Rees ring RpPx = @, FrPx - u¥, which can be expressed in local coordinates as
Ox [u]{(udy, udy, ud, ). It will be useful to extend it by adding the action of u>du. We
obtain in this way a sheaf of rings Rr Zx (u?d,), that we will denote by GoZx [u](9,,).
It is naturally filtered by the order with respect to the partials, a filtration that we
denote by F,GoZx [u](Oy).

Remark 8.1. The Rees construction is the same as that used in §3. However the
notation for the extra variable used here is not the same as in §3 since it will not play
the same role. We will use both in §9.

The Brieskorn lattice GoE defined in [Sab99, §1] is the Ox (% Peq)[u]-module
(8.2) GoE := @(F;Ox (xH)) (% Preq) - w'e! /",
J

and we set, for each p € Z, G,F = v PGoE. Then G,FE is an increasing filtration
of E indexed by Z. Note that, if 57 denotes the relative connection on F induced
by the Zx-module structure, then GoFE is preserved by uy/. It is also preserved by
the action of u?9,. In other words, GoF is a Go%Zx [u](d,)-module. For example, if
H = @, we have

GoE!/" = Ox (+Prea)[u] - /"

Using the Rees module notation, we can also write

(G()E, UV) = ((Rpﬁx(*H))(*Pred)7 ud + df)

8.b. The filtration F,, ,GoE'/*(xH)

Although the function f/u does not extend as a map X x C, — P!, we can
nevertheless adapt in a natural way the definition given in [ESY15, (1.6.1) & (1.6.2)]
for the case of the map f: X — PL.

Definition 8.3 (The filtration). For « € [0,1) we set
Fa+pG0Ef/u = FpﬁX(*Pred)(Ka + p)PD [u] - ef/v,
FarpGoE = Y u'Fy0x(xH) ForgGoE'/".
q+q'<p
Lemma 8.4. For each a € [0,1), the filtration Foy GoE is an F,GoPx[u](0y)-
filtration which satisfies the following properties.

(1) Foyp,GoE C Fpyp,GoE for all p1,ps € Z and B € [0,1) such that o + p1 <
B + pa2. Moreover, F1,GoE =0 forp <0.
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(2) The filtration Foy GoE satisfies
Fa+pGOE == FpGo.@X [u]<6u> . FaGOE;

in particular, it is good with respect to F,GoDx [u]{0y).
Proof. Similar to that of Lemma 7.10. O

We will give an expression of F,,,GoE in terms of the V-filtration. We set
GoE = v PGoE and we identify E[u~!] with E*f(xH)[v™!], so that we can define
the filtration V1 (E[u"!]) as being the filtration V4 x(E (+H)[v™!]) considered in
§7.b. Note that, since v is invertible on E¥f (xH)[v~!] and since V,,(EVf (+H)[v~}]) =
Vo (B (xH)) for a € [0, 1), we have

Vask(Elu™)) = Vagr (B («H)[v™Y]) = v Vo (EY (+H)) = "V, E.
For o € [0, 1), we set
(8.5) F,,GoFE := uPClu](GyENV,E) = Clu](GoE NuPV,E),

where the intersection is taken in E[u~!]. This is an F,(GoZx [u](0,))-filtration since
u0y, sends Vo E to uV, E, and so does u20, = —0,.

Lemma 8.6. For each oo € [0,1) and p € Z we have

Fl ,GoB = FoyyGoE.

Proof. It will be similar to that of Lemma 7.15. In the neighbourhood of a point
of X \ Preq, Definition 8.3 gives Foi,GoE = Y77 _uiF,0(xH)[u] - ef/*, while a
computation similar to that at the beginning of the proof of Lemma 7.15 gives
G, ENV,E = @ogqu F,0(+H)u™? - ef/% hence the result by multiplying the latter
term by uPClu].

In the neighbourhood of a point of P..q, the inclusion D is proved exactly as in
Lemma 7.15. For the inclusion C, we use (7.16) with 3 = «. Using similarly v70}
instead of (v9,)?, and replacing v/ with u=7, a term of G,ENV,E in the sum (7.16)
can be written as

ha.engia(Tr(ay Yooy, y )z~ (T gmaymemty~iel /.

with j < ¢ := A+ ]a| and ¢ :=|c| < p—¢'. Note that p—q—j > 0. So each term in
uP(Gp NV,) is a sum of terms

ha’c7)\’j7a<x1(a)7 yJ(C)7 y/) . a’:_[(a+q/)e]_1x_(a‘_(q/_j)e)up_q_j . (qu_c_1>ef/u

which all belong to Fi4,GoFE (Definition 8.3), since a > 0, |a| < ¢’ hence, according
to Lemma 7.18, |a — (¢’ — j)e|+ < j < ¢ for any j such that 0 < j < ¢'. O

Remark 8.7. We conclude from the lemma that the filtration F,,gr§’ E induced by
Fo+pGoFE is nothing but the filtration induced by u?V,(E[u™']) = Vayp(Eu™]).
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Indeed, recalling that uGy = G_1, we have
Clu)(GoE NuPVy(E[u=1)))
uGoE N (Clu)(GoE NuPVy(E[u=1))))
GoE NuPVy(E[u~1])
(uGoE NuPVo(Elu—1)) + [GoE NurVy (Eu1) NuCul(GoE NuPVy (Eu=1]))]
GoE NuPV,(E[u~1])
G_1ENuPV,(Eu1])

It follows that
Fotp grOG E P

vV __G G .V wf
E = EY (xH),
Foary0 B gr,, er, gry, gro, BV (x3)

and we conclude that gry, ) erf’ E can be computed from data in the v-chart.

8.c. Proof of Theorem 6.5. We have

DRy E = {0 N P L N

A on D) Y] — 0}.

It will be convenient to use the complex
ud +df
%

DRyE = {0 s Ox (+D)u,u" "]
ud + df
ere g

% (xD)[u, ufl] — O}.

Both complexes are obviously isomorphic by multiplying the kth term of the first one
by u*, a morphism that we denote by u°.
The subcomplex DRx GoF of DRx FE is defined by

(8.8) DRx GoFE := {O — (RpOx (xH))(%Peea) d—l——df/u>

A+ dffu, Q% @ (u"RpOx (+H))(*Prea) — O}'

Similarly, the subcomplex DR x Gy FE of DRx E is defined by

(8.9) DRxGoF i= {0 — (RpOx (+H))(+Pea) _ud+df

AT on g (RO (£H)) (< Preq) — 0}.

For example, if H = &, we obtain the complexes

d+df/u d+df/u

{o S Ox (*Prea) 1] wPL (% Prod ) [u] — 0}

g {0 — Ox (% Preq)|u] ud +df ud +df Q% (% Pred) [u] — 0}.

The relative de Rham complex DR x G F is naturally filtered by
(8.10)  FaypDRxGoE = {o s FriyGol — Q% @ Fopy1GoE — -+ }

The proof of Theorem 6.5 is obtained by adapting the proofs of [ESY15, Cor. 1.4.5
& Prop.1.7.4] to the present situation. We add the parameter v and we consider
the u-connection ud 4 df. The natural inclusion morphism Q% (a)[u] — Q% ®ey E
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factorizes through Q% @4, FoGoE since F,GoE = FyOx (+D)([aP])[u]-e//*, and this
shows that the filtered morphism of Theorem 6.5 is well-defined. To prove that it is a
filtered quasi-isomorphism, we note that, for the analogue of [ESY15, Prop. 1.7.4] the
ultimate step of the proof, after grading the complexes, is the same as in loc. cit., since
the graded differential is dlogz~¢ in both cases. Similarly, the arguments of [Yul4]
used in the proof of [ESY15, Prop. 1.4.2 & Cor. 1.4.5] reduce the problem to proving
a quasi-isomorphism with a graded differential which does not depend on u. O

8.d. Push-forward of the Brieskorn lattice. Let us consider the push-for-
ward % as obtained in the chart C,,, that is,
HF = R*q. DRxc, e, (8) & R*.DRxxc, e, (€).
We set H® := T'(C,,, #), so that the above isomorphism becomes
(8.11) H! ~ H* (X, (Q% (+D)[u,u™"],ud + df))
We obviously have HY = H*[u~'] = H*[v~'], and it is a free C[u, u~']-module with

connection.
Let us consider the Clu]-module

GoH = H* (X, (Q% ®6y(u"RpOx (+H))(%Prea),d + df/u))

(8.12) ~ H* (X, (% ®ox(RpOx (xH))(*Preq), ud + df))

= H” (X, DRx«c, c,(Go€)) according to (8.9).
For example, if H = @, we have

Go&l/% = Ox (%Prea)[u] - e/,
and GoH} = H* (X, (u™ Q% (+Peea) [u], d + d f /u))
~ H"(X, (Q (+Prea)[ul, ud + d ).

According to [Sai90], we can apply the proposition in [Sab99, §1] to &[v~!] and get:
Proposition 8.13. For each k, GoH" is a free Clu]-module, hence is a Clu]-lattice

of HY, and we have Clu,u™! ®cu] GoHY ~ H" = H*[v="] by the isomorphism
(8.11). O

Remark 8.14 (Stability under u20,). The natural action of u29, on GyFE induces an
action on u~*Q% ® GoE which defines an action of u?d, on the complex DRx (GoE),
hence on its cohomology GoH ﬁ (equivalently, a shifted action by w20, — ku on
Q% @ GoE, hence on DRx (GoX) and on its cohomology). In other words, the action
of 9, on H ﬁ has a pole of order at most two when restricted to GoH ﬁ

For each k, we have a natural morphism (see (8.10))
(8.15) H"(X,Fai,DRxGoE) — H" (X, DRxGoE) =: GoH,

whose image is denoted by F1,GoH ¥ The source of this morphism is a C[u]-module
of finite type because ¢ is proper and the terms of the complex (8.10) are Ox[ul-
coherent. As already mentioned after Theorem 6.5, (8.15) is injective for each k. The
filtered GoC[u](d,)-module (GoH, F,,,GoH?) is the (k — dim X)th push-forward
of the filtered GoZx[u](0,)-module (E, Fy1,E).
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8.e. The case of cohomologically tame functions on affine varieties. In this
subsection we use the Zariski topology on U, X and X x Al. We still denote by &
the Zx a1, -module Ox ,pm (¥D) - ef/* and we make the abuse of identifying it with
Ox (*D)[u,u~] - ef/* (where X has its Zariski topology).

Assume that U is affine and that f : U — Al is a cohomologically tame function,
in the sense of [Sab06a, §8| (see also [Kat90, Prop. 14.13.3(2)] for a weaker condi-
tion). In particular, f has only isolated critical points. Then HAg(U,d +df) = 0
unless £ = n := dim X, and dim HJ (U,d + df) is equal to the sum of the Milnor
numbers at the critical points. The Brieskorn lattice Go(f) is defined as Go(f) =
Q(U)u]/ (ud + A2 L(U) u].

Proposition 8.16. Under this tameness assumption on f, the natural morphism of
complezes

R DRx xm, i, (Go€) — Rau (U jp,ud + df) = (Q°(U)[u], ud + df)
is a quasi-isomorphism, from which one deduces, through H"(u®), an equality
GoH; =u "Go(f) in
H ~Q"(U)u,w "]/ (ud + df)Q" " (U)[u, u™].
Proof. The natural morphism is induced by
(FxOx (xH))(%Preq) — (FxOx (xH))(xD) = Ox (xD) = 7.0y

(where j, is taken here in the Zariski topology). Through this morphism, H*(u®)
corresponds to u® termwise on the right-hand complex. Since H:p (U,d + df) = 0
unless £k = dim X = n, we also have Hﬁ = 0 unless £ = n, and since the kth
cohomology of the left-hand complex is contained in H ﬁ, we conclude that the left-

hand complex has cohomology in degree n at most. We therefore obtain a morphism
(8.17) GoH] — u"Go(f),
whose localization with respect to u is an isomorphism, because RpOx (xH)[u™!] =
Ox (*H)[u,u™"] and thus (RpOx (xH))(*Pred)[u™t] = Ox (*D)[u,u™?], hence
H ;= H* (X, (W (+D)[u, u” ], d + df /u))

= H"(U, (9} [u,u™"],d + df /u))

= H*Q(U)[u,uY],d+df/u) (U affine).
Both terms of (8.17) are C[u] free of the same rank, hence the morphism (8.17) is

injective, and we may regard it as an inclusion in H, through the previous identifi-
cation. The conclusion follows from the lemma below. O

Lemma 8.18. The morphism (8.17) is an isomorphism, in other words, GoH, =
u "Go(f) in H,.

Sketch of proof. We will see in §A.b that the Brieskorn lattice Go H, is identified with
the Brieskorn lattice attached to the filtered Zp1-module underlying the mixed Hodge
module associated with s#°f, 0. On the other hand, it is shown in [Sab08, §4.c|
that Go(f) is identified to the Brieskorn lattice of the Hodge filtration of s#°f, 0y
shifted by n, which leads to the result. O
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Recall (see [Sab06a]) that the spectrum of f at infinity is defined as the set of
pairs (v,0,), with v € Q and 0, = dimgr} Go(f). It is known (see loc. cit.) that
0y = 0 unless v € [0,n] and that 6, = d,—- (i.e., the spectrum is symmetric with
respect to n/2).

Corollary 8.19. Under the previous assumptions, let us set v = a+ q, with o € [0, 1)
and q € Z. Then we have
0y = pg(n —q) = hy 9 = dimgr’y. " Hig (U, d +df).
Yu

Proof. We have isomorphisms
Y Golf) A g, GoHL = g, GoHL ¥ GrHT. O
gry O(f) T> gy _nGoldy =8l q—n bolly, ﬁ gry u*

Remarks 8.20.

(1) The duality 6, = J,,— implies, together with the general duality statement of
[Yul4, Th.2.2], that, if U is affine and f is cohomologically tame, we have

dim gr;‘,;u H7e (U, d + df) = dim gr;;u Hig (U, d+df) VA

(2) Assume that U = (C*)" with coordinates z1,...,z, and that f is a convenient
and non-degenerate Laurent polynomial (in the sense of Kouchnirenko [Kou76]).
Then it is known that f is cohomologically tame. Moreover,

Go(f)/uGo(f) = Q*(U)/df AQ"H(U)
~ Clai!,..., x5 /(x10f )01, ..., 2,0f |0x,) = ClzF]/I(f),

where the isomorphism is obtained by dividing by dzy/z1 A---Adx,/2,, and the
filtration V,, (Go(f)/uGo(f)) is identified with the Newton filtration N, (C[z*]/J(f))
(see [DS03, Th.4.5]). Therefore,

dim grj‘,;u Har(U,d + df) = dim gr}?{/\ Har(U,d + df) = dimgry (ClzE1/J(f)).

(3) Let Y be a toric Fano manifold.(*) Mirror symmetry associates with it a
convenient and non-degenerate Laurent polynomial f, and the cohomology H* (Y, C)
is identified with C[z*']/J(f) graded by the Newton filtration (see [BCS05]). Since
the cohomology is generated by divisor classes (see e.g. [Ful93, §5.2]), it is of Hodge-
Tate type and the Hodge filtration reduces to the filtration by the degree of the
cohomology. It follows from the previous results that the Hodge numbers of Y coincide
with the irregular Hodge numbers associated to f. Such a mirror correspondence was
one of the motivations of Kontsevich to introduce the complexes (2%, ud +vdf).

9. Relation with the irregular Hodge filtration of &)/ (x3()

In this section, we set € := &)f (x(). We will compare the filtration F,,€ with
the irregular Hodge filtration F; Oif_f_.(‘l as defined in §5, namely, we consider the case
where N = O (xD) (notation of §7.a) with its differential d twisted by the exponential
of the rational function vf : X x P! = X - - — P!, The module 4" considered in
§5.b is obtained here by gluing &7//#[xH] (notation of Proposition 3.3) in the v-chart

() We thank E. Mann, Th. Reichelt and Ch. Sevenheck for providing us with the necessary arguments.
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with &7//“#[xH] in the u-chart, and we will regard these modules algebraically with
respect to 7, (viu) and z. We will use the notation introduced in §3.

Theorem 9.1. For each o € [0,1), we have
F(Jt-i-ogvf(*j{) = ng—oevf(*j{)a
For JGo&l /M (x30) = FI &7/ (x3() N Go&f/ (x3).

The proof of the theorem will be done in various steps. For the sake of simplicity,
we will only treat the case where H = &.

. Firstly, one identifies 677/ as a submodule of @x (xPeeq)[v, T, 2] - €*F/# and
&7z as a submodule of Ox (%Preq)[u,u™t, 7, 2] - e™//%*. According to Proposition
3.4, we may have a strict inclusion only near points of P.q X {v = 0} and points of
{f = 0} x {u = 0}. For the latter set, the computation is much simplified because
we only consider the intersection with Gy€. For the former set, we will need explicit
computations of the V-filtration entering the very definition of &7%//# in Proposi-
tion 3.3.

« Secondly, one computes the terms V.7 &7°//% (vesp. V.7 &7F/4%) of the V-filtration
relative to 7 = 0, in order to apply Proposition 5.6. We will work analytically with
respect to the variables of X and algebraically with respect to 7, (u : v) and z.

9.a. Computation in the v-chart. We use the algebraic version (with respect
to v,7,2) Rp(Zx[v,7](0y,0;)) of o xc,xc.. Recall that &7°/% is a coherent
Rr(Zx[v,7](0y, 0;))-submodule of Ox (xPreq)[v, 7] - e7F/%. We will set e = e™//%

Computation away from Pieq. Since Tvf is holomorphic, we have the equality
E™IE = Ox _p.,[v,7] - €™//%. Then, from the relation d,e = vfe, we conclude
that &7v7/* is already (RpZx|[v,7](d,))-coherent, and hence the V7-filtration is
given by V,ggfvf/z = qoax(=k0) £7vf/2; Ly uniqueness of the V7-filtration, it is
enough to check the strictness of the gr,‘cﬂ &71/% which is clear. Therefore, only
a = 0 is relevant. In particular, VOTé"”’f/Z = &7f/% Hence, the quotient modulo
(1 — 2)&7F/% is equal to E*/[2].

On the other hand, we have F,,E"/ = E*f for any o € [0,1) and p > 0, and
F,_1E"f =0, that is, RpE"T = E*f[2].

Computation in a neighbourhood of P,eq. Near a point of Pieq, let us set g = 1/f,
which is holomorphic in a neighbourhood of this point. In local coordinates we have
g =z°.

First step: computation of &7"/9%. By the very definition of Proposition 3.3(1)
we have, on this neighbourhood, &7%/9% = (Ox (%Pieq)[T, v, 2] - €7/9%)[¥Prcq]. Let
ig : X — X x Cy denote the graph inclusion of g and let p : X x Cp — X denote the
projection. Then, by definition of [ Preal, iy, + &7/ 9% is the Rp(Zx [t', v, 7]{Opr, Oy, O ))-
submodule of (iy  Ox (% Prea)[v, 7, 2]) - €7/¥'% generated by V7 .

Lemma 9.2. The submodule £7V/9% is generated by v~ *e as an Rp(Zx[v,7)(Dy,:))-
module. Moreover,

(9.2 %) ETI N (1 — 2)Ox (xPeea) 0,7, 2] - € = (T — 2)ETV/97.
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Proof. Our first task is to compute the V' -filtration of (iy 4 Ox (% Prea)[v, 7, 2])-€7%/1'# =
D0 Ox (*Prea)[v, T, 2](0%6) @ e™/¥'%. For a € [0,1), let us set

(5 ® e)1+a = 1.*[016]715 ® e‘rq)/t’z
(0@ e)cisq =a [*lo@em/

Then (§ ® €)1+, satisfies the following equations:

6'0 (6 ® e)1+a = (6 ® e)1+oc

0:(0®e)1ta=—(0 ®e)11a

Qe |3

’ TV
30 (0 ® ) 140 =2 (718, 0) @ ™/ 7 — 97(5 ®e)lta

(A +aei)z + t’ESTESU) (d®e)1ta-

6581' (5 X e)1+a = —% (ag/t/ +

1 el
As a consequence we have

(U + laei])z

(2

1020 @ e)1ye = (—€)°TT I1 (¥00 +

+ t’BTEiU) (0 ® e)11a-
i j=1

Similarly for (§ ® €)<1.+, the last line of (9.3) reads

0z, (0 ® €) <140 = —% (5%/ + @ + t/676v) (6 ®e)<ita

and we have

(U + [aei])=

e;—1
VL0 ®e)crra = (~)°TT [T (Y00 + L2054 49,0,) (0 ) <o
i =0 i
We then easily deduce a Bernstein relation for (0 ® €)1y, and for (6§ ® €)<ita,
showing that (§ ® e)144 belongs to Vi, (ig+Ox[v,7,2]) - €™/"% and (§ @ €)<i1a

to Vé/Ha (tg,+O0x|v,T,2]) - e™/t"2 We will now give an explicit expression of these

modules.
We have
(ig.4 Ox[v,7,2]) - e™/"'% = ijO Ox (*Prea)[v, 7, 2)(356) @ e™/¥'2
= kE>BO ﬁx(*Pre;)[v, 7,2]04 (0 ® €)1  (third line of (9.3))
= k@o Ox (+Prea)v, 7, 205" (5 @ €)14a (F(0® €)110) = 9(0 ® €)110)
= keéo Ox (xPecd) [V, 7, 2] (00t )¥ (6 ® €)144 (setting v’ =v/g, 7/ = 7/g)

= ﬁX(*Pred)[v/a T/a 7, Z] (Setting n= 8t’t/7 and (5 ® e)l-i-a — 1)

We have a similar identification by using (§ ® €)<144. Let us write the last line of
(9.3) as

(O, + eixeiliéva‘r)(é ®e)ita = 7% (6t’t/ + M) (d®e)ita-

7 e’L
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For a € N* and a € [0,1), let us set (with the convention that a product indexed by
the empty set is equal to one):

(9.4) 1 .
@i + |ae; )z
Pa<als,z) =11 I1 (S n M)
i j=0 €i
We then have
(0, + eixe_li 0,0,)*(0 ® €)14a = (_e)ax_apa,a(égtlv z)(d®e)ita

(0, + ;2% 10,0,)%(0 ® €)<c14a = (—€)%0 *pa.<a(0jt', 2)(§ ® €) <14a-

Let us set
U1+a = Z Ox [U/7 7—/; , Z]xia‘pa,a(na Z) C ﬁX(*Per)[U/a 7-/’ m, Z]
a>0
U<l+a = Z ﬁX [vla T/a m, Z]x_apa,<a<na Z) C ﬁX(*Pred)[’U/7 7/7 m, Z]
a>0

We thus have isomorphisms, by sending 1 to Oy t':

i (5 & e)1+a
—_—

Ulta VE Rp(2x [, 0,701, 0y, 0:)) - (0 @ €)1 4

. 6®e « ’
U<1+a % Vbt RF(@X[t’,v,T]<8t/,8U,6T>) . ((5 ®e)<1+a

~

If we set I(a) = {i | a; = 0} for @ € N and if I(a)® = {i | a; > 1} denotes its
*Preq)[v', 7', 71, 2] can be written

complement in {1,..., ¢}, then every element in Ox(
in a unique way as
(95) Zﬁa(xl(a)vv/77/7naz)x_a

az>0

with iNLa(xI(a),v’,T’,n, z) € C{zpa)}[v',7',m, 2]. Since pq o divides par o if @’ > a, we
deduce that each element of U;;, can be written as
(9.6) Z ha,a(Tr(a), v, 7' 1, 2) 2" *Pa,a(n, 2),
az>0

and the coefficient hq of 2~ in its decomposition (9.5) is ha o (Z1(a), V', 7', 1, 2)Pa,a (1, 2)-
By uniqueness, we conclude that an element written as (9.5) belongs to Uj 4, if and
only if pq o (7, ) divides Ea(ajI(a),v’,T’,n, z). In particular, the decomposition (9.6)
is unique.

We wish to identify Uy 4o (6@ e)11q with Vi (ig 4+ Ox (+Prea)[v, 7, 2]) - €7/1'% and
Ucira (0@€)c1pa with VI, (ig+ Ox (%Prea)[v, T, 2]) -€7%/¥'#. Tt is enough to check

0y +(1+)2)"Ulya - (6®€) 140 CUcitia- (I @€)c11q for m big enough

and
Ulro - (0®€)140/Ucita - (0 ® €) <14 has no z-torsion
(see [Sab05, Lem. 3.3.4 & §3.4.a]). For the first point, we set

In={i|ae; €Z} and, fora >0, I,(a)=1I1,NI(a)and [,(a)°=1I,NI(a)‘
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Then (§ ® €)144 = 7o (§ ® €) <144, and we have the relation

[T (02, — eix®110,0,) - (6 @ @) <140 = (—€)' 1o (Burt’ + a2)* (6 @ €)1 40
i€lq

= (—e)'= (10 + (1 + )2) (0@ ) 140

For the torsion-free assertion, let us consider a section (9.6) of Uiy, and let us de-
compose (in a unique way) hq o(zr(a), v, 7,1, 2) as
ha,oé(xl(a)avlaT/anaz) = Z ha,a,s(xl(a-‘rlza—s)aU/a'r/anvz)xea
56{071}111(“)

where hq e is holomorphic in its z-variables and polynomial in v’, 7/, 7, z. Then the
decomposition (9.6) reads

Z Z haya,€($1(a+11a —s)vU/a’r/anaz)mi(aie)pa,a(nvZ)'
a>0 56{071}10(ﬂ)

We now note that, for € € {0,1}/«(®) setting b=a + 1, — €, we have
pb,<a(”7a Z) = (77 + az)#la(b)c ) pa,a(na Z)

The unique decomposition (9.6) can thus also be written uniquely as

’ o -b pb,<a<naz) o lr,
(97) bzwhb,a(l'[(b),v,T,T],Z).r W T 5

with hj, , = ha,a.e, Where (a,€) is defined by the following conditions:
a; = bl if ¢ ¢ Ia,
a;=b;,—1landeg; =0 ifiel, andbi>1,
a; =0andg; =1 ifiel, and b; = 0.

The condition that a section (9.7) - (6 ® €)14a = (9.7) - 71 (§ ® €) <144 belongs to
Ucita (0 ® €)c14q now reads

Vb >0, (n+az)?®" divides P.o(T1v), V', 731, 2).

It is therefore clear that a section of Uy - (§ ® €)1.44 belongs, when multiplied by z,
t0 Uciqa - (0 ® €)<14q if and only if it already belongs to Uciia - (0 @ €)c14q. In
other words, Uyt - (0 ® e)1+a/U<1+a - (0 ® €) <144 has no z-torsion.
We conclude that
Ve Re(2x[t', 0,710, 00,07)) - (G @ €)1 = Uy - (3@ )y
=V (ig.4 Ox (+Pred)lv, 7, 2]) - (0 @ @)1,
hence i, &7V/9% is generated by (J®e);. It follows that £7V/9% is generated by =~ e.

We will prove the analogue of (9.2 ) after i, 4, from which one deduces similarly
(9.2%). We first notice that the equality

VI (g4 719 N (7 = 2) (gt Ox (+Prca) v, 7, 2]) - €712 = (7 = 2)V (i, 67/9%)

immediately follows from the unique decomposition (9.6) of a local section of
Vf/ (ig,4+& v/ 9%). To end the proof, it therefore suffices to produce a similar unique
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decomposition of local sections of Vi, (ig+&7%/9%) := Zj:o 5,V (ig 4 ETV/9%) for
any k > 1. This is obtained by writing
k—1
(e @e) =a bt (@e) =x7% T] (But' + j2)(0 @ €)1,
=0
giving rise to a formula similar to (9.6) for sections of Vf;_k (ig,+&7V/9%), which makes
use of polynomials pg ; (kK > 1), derived from pq o like in [Sab97, Lem. 4.7]. O

Second step: computation of the V7 -filtration of £7%/9%. For a € [0,1), let us set
€, = e*rv/gz/m[oze]+1.

Lemma 9.8. The V7 -filtration of &7V/9% satisfies
VIET9% = VI Rp(Px[v,7)(8,,0:)) -ea Ya €[0,1).

Proof. Since we are only interested in giving the formula for V7 &7%/9% we can as well
work with the localized module &7%/9%[7~1] (see [Sab05, Lem. 3.4.1]). In such a way,
we can write

e, =z loe (z7te) = 1:[(1*“)817'*131,(x*1e),
showing that e, is a section of &7%/9%[r~1]. For a € [0,1) let us also set

iel,
and, for p € Z,
Ui (€797 [ 1)) = 77PVG Rp(Zx [0,7)(00,07)) - €a
U;a-&-p(gﬂ)/gz[T_l]) = T_p‘/()TRF(-@X [U7 T} <6U7 (97—>) )

so that, clearly,
(9.9) UZasp(ET97[r7]) C UG, (ET/ 17 71)).

For p < 0, we will set U7, ,&7/9% = U7, (£7/9%[r71]) and UZ,,, 679 =
U2a+p((g77—v/gz[T71}). We will prove that U7 (&£7%/9%[r=1]) is the good V™-filtration
of &7/9%[r=1]. Tt is enough to prove that UJ&7V/9% = VI E™/9% for a € [0,1). The
proof will be very similar to that of Lemma 9.2, although with the variable 7 instead
of the variable t'.

By using (9.9), one first easily checks that U7_,&7v/9% Uzaé"”/gz and

(79, + az)#leyr&m/9: c UL &7/9%.

Indeed, the first point follows from the relation Te, = 2¢9,e, = £ 2 d,e.q, and
the second one follows from the relation
(-1

(Hiela ei) igﬂ 69:1 €cn-
Due to the uniqueness of the V7-filtration, the assertion of the lemma would follow
from the property that grgT &7V/9% has no z-torsion. We will argue in a way similar
to that of Lemma 9.2 by finding a suitable expression for the sections of U7 &7v/9%,

Let us decompose Ox [z~ 1, z][v, 7] as Ox[x~1, 2][v,v7] ® TOx[x~ 1, z][vr, 7]. Due
to the relation vTe = 73, e, we have isomorphisms of Ox[r~!, z]-modules

(10, + az)#lee, =

(9.10) Ox[z™", 2], v7] - e T Oxlz™", 2,0][70,] - e
Ox[z7 1, 2][vr, 7] - = Ox [z, 2, 7](rD,) - e
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given respectively by

, k=1 4 -t
vl (vr)ke — aFevd TT (70, —iz)e, (vr)!r" — 27°7F T (70, —iz)e.
i=0 =0

We thus obtain an isomorphism of free Ox [z}, z]-modules:
Ox[z ", 2|v, 7] e = (Ox[z™", 2,0][r0;| & TOx [z, 2, 7](7D;)) - €.

We can replace e with e, or e, in the above isomorphism. We will express U7 & Tv/9z

and UZ,& Tv/9% as sub-Ox [z]-modules of the right-hand side, and by using the gen-
erator e, in both cases, to make the computation of the quotient module easier.

We note first that UZ&7/9% = Ox|v, 2](d,,0,,70,) - €4, i.e., we can forget the

k kegh

action of 7, since 7"e, = x e,. We have a similar assertion for Ugaéa“’/gz.

From the relation
*x*(a+(k*€)6)7k4pava(75, +(k—20)zz2)-
v*020" (19, ) e = (107 + (k — £)2)? Hf:é (10, —iz)e, ifk>£2>0,
* 2 Fpg o (105, 2) (10, ) [[1g (70, — i2)ea if 0 <k <Y,

for some nonzero constants * and with pg o (s, z) defined by (9.4), we conclude that,
through the isomorphism (9.10),

UrE™/97 = Z Ox[2][v,70;:] - 27 %Pa,a (707, 2)eq
a>0

+ Z Z T Ox|7] [767]1‘_(&+ne)pa7a(7'67 +nz,z)e,
a>0n>0
Formula (9.4) shows that, if @ > a’ > 0, then pg/ o divides pg . It follows that
any section of UZ&7Y/9% can be written as

9.11 ha.o(Z1(a),V, 70, 2)T" *Da.o(T0,, 2) - €4
: (@) ,

a>0
+ Z " Z Ja,an(T1(atne), TOr, 2)a~ @) pg o (70, + 1z, 2) - eq
n>0 a>0
with hg, o holomorphic in its z-variables and polynomial in v, 70,, 2, and gq,a,n holo-
morphic in its z-variables and polynomial in 70, z.

Let us check that the decomposition (9.11) is unique. The coefficient h(™ of 7™ (n.>0)
is uniquely determined by the section. If n = 0, the function h(®) € Oxolz™ 10,1, 2]
decomposes uniquely as Za>0 h,(lo) (T1(a),v,m, 2)x~*. Thus hf,o) must be divisible by
Pa,a(n,2) and this determines uniquely hq,o(T(a),v,n,2). We argue similarly for
n >0 and (™ € Ox o[z~1, 7, 2].

There is a similar decomposition for sections of UZ,& Tv/9% by replacing
Pa,a(T0r, 2) - €4 With pg <o (70-,2) - €co. In order to check whether a section
(9.11) belongs to U;azo‘“'”/gz, we replace e, with z7!ae.,. Let us decompose
(in a unique way) ha,o(21(a), v, 707, 2) as

€
ha,a(xl(a)ava7-6'raz) = g ha,a,s(xl(a—&-ha —€)7U7T57‘72)x y
e€{0,1} a(a)

where hg o is holomorphic in its z-variables and polynomial in v, 70,,2. We have
a similar decomposition for ga .n(Zr(atne), 70r,2). Then the decomposition (9.11)
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reads

—(a+1; —
§ § ha,a,e (Z‘I(a.JrllCY ) 7-67'7 Z)l‘ (a+1r €)pa,a(7-577 Z) ‘€
a>0ec{0,1}{a(a)

+ Z Z Z Tnga’a,n<x1(a+ne+1la —),T0r,2)

az0n>0egc{0,1}{a(atne)
-l‘_(a+ne+h"‘ —s)paﬂ(TaT +nz, Z) Cecq.
We now note that, for e € {0,1}72(®) setting b= a + 1;, — €, we have
Db,<alS,2) = (s + ocz)?‘ﬂc’(b)c ‘Pa,al(8,2).

The unique decomposition (9.11) can thus also be written uniquely as

’ —b_ Pb<a(707,2)
(9.12) bgohb’a(xl(b),vﬂﬁﬂzn (79, 1 a2) 1. OF “ecq

- Pb<a(T0r + 12, 2)
+ " g4 x 0,70, z)x~ (0Fne) d e
; 7;0 I (Fr(bene %) (70, + (n + a)z)#lab)  ~<¢

with him = hg,a,e, Where (a,€) is defined by the following conditions:

a; :bi if 4 ¢ Ia,

a;=b;—1landeg; =0 ifiel, and b, > 1,

a;=0andeg; =1 ifiel, and b; =0,
and similarly for g; , . The condition that a section (9.12) belongs to U;acg’”/gz
now reads

Vb>0, (19, + az)#®)" divides R0 (T1(b), v, 7O, 2),

and  Vb>0,Yn>0, (70, + (n+a)z)#=®" divides Ib.cn(T1(btne), TO7, 2).
It is therefore clear that a section (9.12) of UZ&7V/9% belongs, when multiplied by z, to

Uzaé‘)”’/gz if and only if it already belongs to Uzaéa”’/gz. In other words, gr¥” &7v/9%
has no z-torsion. O

Third step: FEnd the proof of Theorem 9.1 in the v-chart. We will now use the
expression of Lemma 9.8 to regard V(fé””/gz as an Oxlv,T,z]-submodule of
Oxlx=Yv,7,2] - 4. We can write (locally on X near P):

VOT(RFQ)([’U,T] <8v, 8T>) = ﬁx ['U,T, Z} <6z,5y/,67j,7'57>

and we notice that the action of 70, on e, is equal to that of vd,, so we can for-
get 70,. We will also forget (y’,d,/) which plays no significant role. Recall that the
variables = are indexed as x1,...,z,. Working now within Ox[z~!,v,7,2] - €4, we
have by induction on |a,

la|

(29,)%0¢e, = zlalteg—ce ( Z da.c,j (x)x_jeW)ea mod (7 — 2)Ox [z~ v, T, 2],
=0

where g, j(x) is some polynomial and g4 c |q|(2) is a nonzero constant. From this
one concludes that there exist polynomials 74 c j(, z) With r4 ¢ |q|(2, 2) constant, such
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that

la|
6;658,1 = Z|a+cm—(a+c)e(zrmc,j($’ Z)x(|a|—3)e—avj)x—[ae]—le
Jj=0

mod (17 — 2)Ox [z~ v, T, 2],
and since for 0 < j < |a| we have |a — (Ja| — j)e|+ < j (see the end of the proof of

Lemma 7.15), the coefficient of v7 belongs to F; Ox (* Prea) ([(a+p) P]) with p = |a|+c.
Using that

(1 — 2)VIET9% = (71 — 2)ETV/9* N VIE™/9%  (see [ESY15, Proof of Prop. 3.1.2])
= (1 —2)0x[z" v, 7,2] N VIE™/9*  (Lemma 9.2),

we conclude that the coefficient of 27 in the gr (V7 &7%/9% /(1 — 2)VIE7V/9%) (graded
with respect to the z-adic filtration) is contained in Fny,E"/, so FI E"/ C
Faﬂ)E”f, according to Remark 5.7.

In order to obtain the reverse inclusion, we remark that, for |a| + ¢ = p fixed,
gmaylalef /glledPeltl € B Ok (% Preq) ([(or + p) P])vl?le’f is equal, up to a nonzero
constant and modulo >, |, FjOx (+Frea)([(a + p)P))v’ef | to the class of 320¢e,.
We conclude by induction on |al, the case where |a| = 0 being clear. O

9.b. Computation in the u-chart

Computation away from P..q. We have Fa+pGoEf/“ = GoE//v = Ox - plulef/* for
p > 0. We set similarly e = e”//42,

Lemma 9.13. With respect to the inclusion 75/"* C Ox_p,_,[u,u™"
ec &/vz,

,T, 2] - e, we have

Proof. The question is local near a point of {f = 0}, since otherwise we have equality
in the previous inclusion, according to Proposition 3.4, and it amounts to proving
that e € V*(Oxp,.,[u,u"t, 7,2] - €), so we are reduced to computing the order of e
with respect to the V*-filtration.

Let us first assume that the divisor {f = 0} has normal crossings. Let us choose
local coordinates 1, ...,x, such that f(z) = 2™ with m € N™ (a local setting not
to be confused with that of §7.a). From the relation ud,e = —(7f/u)e we obtain

m;z m; T
9z.(fe) = :1771 zMe+ 9371 ?f z™e = —m;(ud, — z)z™ Ve,
? [

and iterating the process we find
oy (fe) = (—m)™ Hl Hl(u3u —jz/mi) - e.
1= j:

Since fe = wud,e, this gives a Bernstein relation for e showing that e €
VgO(ﬁX\Pred [uv u_17 7, Z] . e)'

When {f = 0} is arbitrary, the proof proceeds exactly like in [Kas76]. We work
locally near a point of {f = 0} and we choose a projective birational morphism
7 : X’ — X which is an isomorphism away from {f = 0} and such that f' := for
defines a normal crossing divisor. Using the global section e”f uz of V& f'fuz (first
part of the proof), one constructs a global section € of 071, V¥ &™/ /%% which
coincides with e away from {f = 0}. This is done by using the global section
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1o of Boy a|u, 7){ud,). Because &7F'/v= ynderlies a mixed twistor module,
HAOn 7% s strictly specializable along u = 0 and we have V.01, &7/ /v =
O VI ETT /W Therefore, € is a section of V¥ # 0 &7'/** and thus satisfies
a non-trivial Bernstein equation of the form

IT (ud, + B2)"* - € = uP(x,u,0,,0,,ud,) - €.

B<0
We conclude that e satisfies the same equation away from {f = 0}, hence everywhere,
since Ox[u,u™!,7, 2] has no @x-torsion. O
Due to the relation fr0,e = —7202e we conclude that

Vg &z 5 Vo Rr(Zxp)[u, T](0u, 07)) - € D Ox plu,T,2] - €.

Then, computing modulo (7 — z)&7/*# Fit Ef/* contains Ox . plu,2] - ef/* =
GoEf/", hence F,4,GoET/* = FéfijoEf/“ away from P,eq.

Remark 9.14. The explicit computation of ng_pEf /% in the neighbourhood of f = 0
would be more complicated, and restricting to GoE//* allows us to avoid this compu-
tation. Let us however note that, in the neighbourhood of the smooth locus of f~1(0),
an explicit formula for F CiyrfrpEf /% can be obtained from Lemma 9.8 by setting there
g =u and v = f. Since the order of the pole at v = 0 is one, the only interesting «
is zero, and the result is:

irr o f /u 1 - fk u
Rl = — (Y Oxluliy ) e/ (f smooth).
=0

This formula extends in a natural way to F(i,ffrpEf /*(xH), provided that moreover
f£71(0) has no common component with H and that f~1(0)UH has normal crossings.

Computation near P.q. The computation is similar to, and even simpler than, the
computation done in the v-chart. Indeed, due to Proposition 3.4, we have &7/ =
Ox (%Prea)[u,u™", 7, 2] - €7/“*°% and there is no need for an analogue of Lemma 9.2.
We will consider the variable u as part of the z-variables, and the divisor u = 0 of X
(see §1.b). For a € [0,1), we set e, = e/""? /ygleel+1 The following lemma is

similar to Lemma 9.8.
Lemma 9.15. The V -filtration of &7/"*°% satisfies
VIET M = VT Rp(Px [u, 7)(0u, 0r)) €0 Va €[0,1). O
We also obtain

030eq € 24 Flapyy(Ox (+Prea)[usu ™) ([(a + la| + b)F]) - 7/
mod (7 — 2)&7/4°%
where F,(ﬁX(*Pred)[u,u’l]) is the filtration by the order of the pole along Peq.

Moreover, the coefficient of (uz®)~(el+0) . (yglael+1)=1.67/us%2 i5 4 nonzero constant.
It follows that

B B = By (0 (s Paa) ) (04 p)]) - €1/

a+p
Intersecting with GoEY/ """ = Ox (% Preq)[u)e/**" gives

Fitp BV 0GBV = Fy0x (+Prea) ([(a+ p) P)) [u] - /" = Foy Go B/ ",
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This ends the proof of Theorem 9.1. O

9.c. Another approach of Theorem 9.1 at the de Rham level. Let us assume
that the zero divisor f=1(0) of f : X — P! is smooth, that it has no component in
common with D, and that f~1(0) U D still has normal crossings. We have a filtration
Fy i E (by using the formula given in Remark 9.14 in the u-chart). Then the proof
of Theorem 9.1 gives in fact the equality F,4,E = ng_E

Let 7 : X — X be a projective birational morphism such that vf extend as a
morphism vf X —=PlandD =7 1(D) is a normal crossing divisor in X. The
pole divisor of vf is Preq and that of v f , that we denote by ﬁv’red, is contained in
7 (Prea). We denote by H the remaining components of D. The construction of
[ESY15] produces a filtration Fg?_ﬁl.gﬁ(*j:() Note that

7 &9 (+50) = #0789 (+3() = WS (33() =: €.
By Theorem 1.3, the push-forward (8;?(*5?), Fgf{&ﬁ(*ﬁ)) is strict, since
Fo?ﬁl.ﬁv-f(*ﬂff) = F;’Z’fr.ce,”f(*i(), and produces the filtration FIT €, which is nothing

but F,4.E by Theorem 9.1 in the present setting. The strictness of the push-forward
implies a quasi-isomorphism at the de Rham level:

(9.16) F?DRE ~ Rr.Fp, DR Y7 (x50),
where, as usual, we set for a filtered Z-module (M, F,M),
FPDRM={F_ M — Q'@ F_, . ;M — -}

We will show how to recover the quasi-isomorphism (9.16) for a suitable modification
X =X by a direct computation. This will give, in the present setting, a proof
of the degeneration at Ey of the spectral sequence attached to the hypercohomology
of H*(X, F,,,DR¢&) which only relies on [ESY15] for vf : X — P!, and not on
the finer results of Theorem 1.3. However, the identification at the level of filtered
Z2-modules, and not only at the level of filtered de Rham complexes, is needed for the
application to Kontsevich bundles given in Theorem 1.11.
Let us set, for each p and « € [0,1),

d+d(vf)

F{, DRE = {0, (log D) o) 4 (log D) (e + 1)F]) — -+ }[-p.

Such a filtration already appeared in [Yul4] in the study of the toric case, where the
notation FQp (V) was used (NP for Newton polygon).

Lemma 9.17. The natural morphism Flg,a DR & — FPDRE is a quasi-isomorphism.

Proof. Let us prove the lemma in the v-chart for instance (the proof in the u-chart is
similar), and let us assume that H = & for the sake of simplicity, so that D = P..q (the
general case is obtained by a Kunneth formula). Recall that n = dim X. Everything
below is thus only valid on X xC,. Consider the following complexes, with differentials
induced by d + d(vf):

Dy (p) : {Q&(log Tred)([cw’]) — Q&H(log Prea) ([( + 1)P]) — - -

— Q" (log Prea) ([(a+ 0 = p + 1)P]) 1)
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and, for k such that 1 <k <n—p+2,
D (p) : {@f"—k” — FyOx (+Prea) Uy " ([(a+n—p—k+2)P]) — -+
k—1
— (D2 FiOu(ePrea)? ) O ([0 4 n = p+1)7)) }.
7=0
Then ®;(p) = F\p,DRE and @, 12(p) = FEDRE. On each successive quotient

grf = ®;/®j_1, the induced differential becomes —(v/z€) " e;dz;/x;. Except at
the first non-zero term, the complex grf decomposes into many parts of the Koszul

complex associated with —(v/x®){e1dx1/x1, ..., edzs/xe}. By a direct computation,
the first non-zero chain map of gr%> is injective. In particular, gr%> is quasi-isomorphic
to zero. O

Let us now end the direct proof of (9.16). In the discussion of the toric case in
[Yul4, §4], a specific resolution 7 : X — X of v f is constructed inductively by taking
blowups along irreducible components of the intersection of the pole set Preq of v f
with its zero set (f71(0) x PL) U (X x {v = 0}). Then it is shown in loc. cit. that
(9.16) holds when we replace its left-hand side with F{ , DRE. Lemma 9.17 allows
us to conclude. O

Appendix. Brieskorn lattices and Hodge filtration

A.a. Brieskorn lattices in dimension one. Let (M,F,M) be a holonomic
C[t](0;)-module equipped with a good filtration. We denote by G the holonomic
C[t)(dy)-module C[0;,0; '] ®cpa,) M. If we identify C[t](0;) with C[v](0,) by the
Laplace correspondence t — 0,, 0; — —wv, we also regard G as a holonomic
C[v]{0y)-module on which the multiplication by v is bijective. It is therefore also a
C[v,v~1]-module. We will denote by loc the natural morphism M — G.

The Brieskorn lattice G(()F‘) of the filtration F,M is defined as the saturation of
the filtration by the operator 0; ! that is,

(%) Gy =" 0, loc(F;M) C G.
J

It is naturally a C[d; ']-module (equivalently, a C[v~!]-module). We will also set
Gz(jF.) = v‘pG(()F') for any p € Z. Let us make the link with the definition in [Sab08,
§1.d]. Let p, be an index of generation, so that F, . M = F, M +---+ 9{F, M for
any ¢ > 0. Then the definition in loc. cit. is

(%) Go™ = 0,7 3 0, loc(Fy, M).
Jj=0
Let us check that both definitions give the same result. Let us write (x) as
F, —Po -
Gé )= o ° Zat Noc(Fp,+;M).
J

Firstly, for j < 0, we have
0y "10¢(Fy, 4 ;M) = 1oc(8; 7 Fy, ;M) C loc(F,, M),
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so we can also write

Gy =07 0y loc(Fy, ;M)

7=0

= 0,70, [loc(Fy, M) + -+ + & loc(Fp, M)]
320

= 0,7 0, loc(Fy, M) = ().
j=0

We now express the Brieskorn lattice of the filtration as obtained by a push-
forward operation. We consider the holonomic Cl[t,v](d;,d,)-module M [v,v~!]evt.
The (t,v)-Brieskorn lattice is the C[t,v™!]-module defined by the following formula
(see [Sab99, §1]):

Go(M, F.M) = @ F;M - v  Mlv,v™ e, 97(M, F.M) = v"%(M, F.M).
J

We have 0,9P(M,F,M) C 9P=Y(M,F,M) since O,F;M C Fj 1M and 0:e"t = vet.
The relative de Rham complex

DR(M][v,v"]e"t) := {M[v,fl]evt O, M[v,fl]evt}
has cohomology in degree one only, and we have a natural identification as C[v](9,)-
modules
coker [(% : M[v, v et — M[U,v_l]e”t} ~G

by sending Y-, mjv7e" to Zj(fﬁt)’jlo/\c(mj). This relative de Rham complex is
filtered by the subcomplexes

(A1) 9PDR(M[v,v"et) == {gP(M, ) -2 g1, F,M)}.

Lemma A.2 (Push-forward). The relative de Rham complex is strictly filtered by the
G*_filtration and, through the previous identification, the filtration on its H' ~ G is
equal to GZ;}).

Proof. With respect to the previous identification, ¥P(M, F,M) is sent onto GI(7 £
according to the definition (x). It remains to show that (imd;) N ¥P(M,F,M) =
0y4PTY (M, F,M) and it is enough to check this for p = 0.

We have 9 (3", mjv~7e") = 32 (8ym; + mji1)v~7e’ and by induction on j we
deduce that (9ym; +m,11) € F;M for all j implies m; € F;_1M for all j. O

Remark A.3 (Rees modules). It will also be useful to have the following interpretation
in terms of Rees modules (see Proof of Theorem 4.1), for which we use the variable u
instead of z here. We can twist the Rees module RpM by e*/* by changing the
action of ud; to that of ud; + 1. We denote the corresponding RrC[t](0;)-module by
RpM -e'/*. This is nothing but %,(M, F,M) by the change of variable v = v~

The push-forward of an RpClt](9;)-module .# by the constant map ¢ : C; =
Spec C[t] — Spec C is nothing but the de Rham complex 9; : .# — u~'.#, where the
latter term is in degree zero. The push-forward ¢, (RpM - e*/*) is thus equal to the
complex (with the « in degree zero):

RypM - ot/v O, u Ry M -t/
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Setting w = v~! we thus have an identification

B)
G (M, F.M) —— 4~ (M, F,M)

Oy
RpM -et/t — 2t s = RpM - et/

so we can interpret G(_Fl.) as Hoqy (RpM -et/*), while H='q, (RpM - e"/*) = 0.

A.b. Brieskorn lattices in arbitrary dimension. We fix k and we will apply the
previous result to (M, F,M) = s#%=4mX ¢ (Ox (xD), (F,Ox (+H))(*P.eq)). Here, we
identify filtered C[t]{9;)-modules and Zp: (x00)-modules filtered by Op:1 (*x00)-modules.
We know that the latter underlies a mixed Hodge module (up to a shift of the filtra-
tion), according to [Sai90]. Working with Rees modules, the strictness property for
the push-forward f; of mixed Hodge modules can also be stated by saying that the
push-forward f, [(RpOx (xH))(*Peea)] is strict, and thus

AP AKX f (RpOx(+H))(*Prea)) = R M.
On the other hand, one checks that
AN ((RpOx (+H)) (4 Prea) ! /) o (AN f L (Rp Ox (+H) (Prea)) -/,
and since A7 q (RpM - et/*) = 0 for j # 0, we conclude
AP (o f) 1 (RpOx (+H))(+Prca) - /1) = A g (Rp M - '),
The left-hand term is by definition equal to
H"(X, (9% ®ox(u" RpOx(xH))(xPrea),d + utdf)),

that is, to GOHfj as defined by (8.12), while the right-hand term is equal to G~!
defined above.
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