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Abstract

It is a classical result in combinatorics that among lattice paths with 2m steps U = (1, 1) and
D = (1,−1) starting at the origin, the number of those that do not go below the x-axis equals
the number of those that end on the x-axis. A much more unfamiliar fact is that the analogous
equality obtained by replacing single paths with k-tuples of non-crossing paths holds for every
k. This result has appeared in the literature in different contexts involving plane partitions
(where it was proved by Proctor), partially ordered sets, Young tableaux, and lattice walks, but
no bijective proof for k ≥ 2 seems to be known.

In this paper we give a bijective proof of the equality for k = 2, showing that for pairs of
non-crossing lattice paths with 2m steps U and D, the number of those that do not go below
the x-axis equals the number of those that end on the x-axis. Translated in terms of walks in
the plane starting at the origin with 2m unit steps in the four coordinate directions, our work
provides correspondences among those constrained to the first octant, those constrained to the
first quadrant that end on the x-axis, and those in the upper half-plane that end at the origin.

Our bijections, which are defined in more generality, also prove new results where different
endpoints are allowed, and they give a bijective proof of the formula for the number of walks
in the first octant that end on the diagonal, partially answering a question of Bousquet-Mélou
and Mishna.

1 Introduction

For the purpose of this article, a (lattice) path is a path in Z
2 with steps U = (1, 1) and D = (1,−1)

starting at the origin (0, 0). The length of a path is its number of steps, which we will denote by n.
Let An be the set of all lattice paths of length n, and note that |An| = 2n.

A Dyck path is a lattice path that does not go below the x-axis and ends on the x-axis. Denote
the set of Dyck paths of length 2m by D2m. It is well known that |D2m| = Cm = 1

m+1

(2m
m

)
, the

mth Catalan number.
A Grand Dyck path of length n is a lattice path that ends at (n, 0) (for even n) or at (n, 1) (for

odd n). Denote the set of Grand Dyck paths (sometimes called free Dyck paths) of length n by Gn.
It is easy to see that |Gn| =

(
n

⌊n

2
⌋

)
, since constructing a Grand Dyck path is equivalent to choosing

which ⌊n2 ⌋ among the n steps of the path are down-steps.
A Dyck path prefix is a lattice path that does not go below the x-axis, but can end at any

height. Denote the set of Dyck path prefixes (sometimes called ballot paths) of length n by Pn.
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Note that, by definition, P2m∩G2m = D2m. Counting Dyck path prefixes is a not as straightforward
as counting Grand Dyck paths, but there are several ways to show that |Pn| =

(
n

⌊n

2
⌋

)
. One such

way is to provide a bijection between Pn and Gn. Next we describe two known bijections between
these sets.

The first one, which we denote by ξ, belongs to mathematical folklore and has been used in
slightly different forms in [13, 7, 1]. The crucial idea is the construction of a matching between Us
andDs that face each other in the path, in the sense that their midpoints are at the same height and
the horizontal line segment (called a tunnel in [6]) joining them stays below the path. Thinking of
the Us as opening parentheses and the Ds as closing parentheses, the matched parentheses properly
close each other. Such a matching exists for every lattice path, and it is unique, although in general
not all the steps are matched. This matching will play an important role in our bijections in
Section 2. Note that among the unmatched steps of the path, the D steps are always to the left of
the U steps. Otherwise, if a U came before a D, then the higher one of these two steps (or both if
they are at the same height) would have been matched.

Given P ∈ Pn, in order to define ξ(P ), we start by matching Us and Ds that face each other
in P as described above. Figure 1 shows an example. Since P ∈ Pn, all D steps are matched, and
so the only possibly unmatched steps are U steps. Let j be the number of unmatched steps, which
also equals the ending height (y-coordinate) of P , and note that j and n have the same parity. Let
ξ(P ) be the path obtained by changing the leftmost ⌊ j2⌋ unmatched U steps of P into D steps.

It is clear that ξ(P ) ∈ Gn, since this path has ⌊n2 ⌋ D steps and ⌈n2 ⌉ U steps. Note also that the
pairs of steps that face each other in P are precisely the same pairs of steps that face each other
in ξ(P ). This observation allows us to find the inverse map, showing that ξ is a bijection. Indeed,
given Q ∈ Gn, we again start by matching Us and Ds that face each other in Q, and note that
the unmatched Ds precede the unmatched Us. Changing all the unmatched Ds into Us we obtain
ξ−1(Q).

7→

ξ

Figure 1: The bijection ξ : Pn → Gn. The unmatched steps changed by ξ are thicker and green.

A second bijection ν between Pn and Gn, which we will not use in this paper, is due to Nelson [8,
p.67], and it is described in [4]. Given P ∈ Pn, let h be its ending height, and let A be the last point
of P at height ⌊h2 ⌋. We construct a Grand Dyck path by splitting P at point A, reflecting the right
piece along a vertical axis (equivalently, reading the word from right to left and switching Us and
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Ds) and reattaching it to the left of the left piece (see Figure 2). The inverse map is obtained by
splitting the Grand Dyck path at its leftmost lowest point, reflecting the left piece, and reattaching
it at the right end of the path.

7→

ν

Figure 2: The bijection ν : Pn → Gn. The splitting point has a square mark, and the piece of the
path that is flipped and moved is brown and thicker.

We write the steps of a lattice path P of length n as p1p2 . . . pn, where pl ∈ {U,D} for all l. For
0 ≤ a ≤ n, the height of P at x = a, denoted ha(P ), is its y-coordinate at that point. We denote
by h(P ) = hn(P ) the ending height of P . We write P ≥ 0 to mean that ha(P ) ≥ 0 for all a, that
is, P does not go below the x-axis. We denote by −P the path obtained by reflecting P along the
x-axis.

In this paper we are interested in pairs (P,Q) of lattice paths of the same length where, at every
step, Q is weakly below P , that is, ha(Q) ≤ ha(P ) for all a. We say that (P,Q) is a pair of nested
(or non-crossing) lattice paths, and we write Q ≤ P to denote that Q is weakly below P . It is clear
that ≤ defines a partial order. More generally, we say that (P1, . . . , Pk) is a k-tuple of nested (or

non-crossing) lattice paths if Pi+1 ≤ Pi for 1 ≤ i ≤ k − 1. Denote by A
(k)
n the set of k-tuples of

nested lattice paths of length n. Similarly, denote by G
(k)
n (resp. P

(k)
n ) the set of k-tuples of nested

Grand Dyck paths (resp. Dyck path prefixes) of length n. Note that A
(1)
n = An, G

(1)
n = Gn, and

P
(1)
n = Pn.
The cardinality of G

(k)
n can be found by applying the Gessel-Viennot method [9] to count tu-

ples of non-intersecting paths with given endpoints, or by relating these tuples of paths to plane
partitions [14, 18], as described in Section 4. These methods give the known formulas

|G(k)n | = det

((
n

⌊n2 ⌋ − i+ j

))k

i,j=1

=

⌈n

2
⌉∏

i=1

⌊n

2
⌋∏

j=1

k∏

l=1

i+ j + l − 1

i+ j + l − 2
. (1)

Enumerating P
(k)
n is significantly harder. As described in Section 4, sophisticated representation-

theoretic arguments can be used to show that

|P(k)
n | = |G

(k)
n | (2)

for every k ≥ 1. Aside from the case k = 1 described above, no bijective proof of this equality
seems to be known. Equation (2) may be surprising considering that (Pn,≤) and (Gn,≤) are not
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isomorphic as partially ordered sets (already for n = 4), that is, there is no bijection between Pn
and Gn that respects the order relation of a path being weakly below another.

In this paper we present a natural bijection between P
(2)
n and G

(2)
n , described in Section 2 in

terms of paths. This map is reminiscent of the bijection ξ between Pn and Gn described above. Our
bijection is presented in more generality, allowing different endpoints for the paths. In Section 3
we translate the bijection in terms of walks in the plane with unit steps in the four coordinate
directions, constrained to lie in different regions and with restricted endpoints. In Section 4 we
discus related work in the literature involving plane partitions, partially ordered sets, tableaux,
paths, and walks. We use our set up to provide bijective proofs of some known results. Section 5
contains the proof of the fact that main map defined in Section 2 is bijective. Finally, we mention
a few open problems and future directions in Section 6.

2 The bijection for pairs of nested paths

The goal of this section is to describe a bijection between P
(2)
n and G

(2)
n . Our construction passes

through an intermediate set

M(2)
n = {(P,Q) ∈ A(2)

n : −P ≤ Q ≤ P, h(P ) = h(Q)}.

We will construct two bijections as follows:

P(2)
n

ϕ
←−M(2)

n

ψ
−→ G(2)n .

Whereas the bijection ψ betweenM
(2)
n and G

(2)
n will be relatively straightforward, the bijection ϕ

betweenM
(2)
n and P

(2)
n requires more work.

2.1 The bijection ϕ :M(2)
n → P

(2)
n

We can express these two sets as disjoint unionsM(2)
n =

⋃
iM

(2)
n,i and P

(2)
n =

⋃
i P

(2)
n,i , where

M(2)
n,i = {(P,Q) ∈ A(2)

n : −P ≤ Q ≤ P, h(P ) = h(Q) = i},

P(2)
n,i = {(P,Q) ∈ P(2)

n : h(Q) = i},

and the unions are over all i with 0 ≤ i ≤ n and i ≡ n (mod 2).

We will provide a bijection betweenM
(2)
n,i and P

(2)
n,i , and more generally, between the following

two sets:

M
(2)
n,i;j = {(P,Q) ∈ A(2)

n : −P ≤ Q ≤ P, h(P ) = i+ j, h(Q) = i− j},

P
(2)
n,i;j = {(P,Q) ∈ P(2)

n : i− j ≤ h(Q) ≤ i+ j ≤ h(P )},

for any i ≥ j ≥ 0 with i+ j ≤ n and i + j ≡ n (mod 2). Note that, by definition, M
(2)
n,i;0 =M

(2)
n,i

and P
(2)
n,i;0 = P

(2)
n,i . Thus, our bijection ϕ :M

(2)
n,i;j → P

(2)
n,i;j, in the case where j = 0 and i is allowed

to vary, will provide a bijection betweenM
(2)
n and P

(2)
n .

Before describing ϕ, let us introduce some terminology. For any P,Q ∈ An, we define their
disagreement path (P −Q)/2 to be the path with steps U , D and H = (1, 0) whose height at each
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point is half of the difference of heights of P and Q. Note that a U step in (P −Q)/2 comes from
a U step in P and a D step in Q, that a D step in (P −Q)/2 comes from a D step in P and a U
step in Q, and that H steps of (P −Q)/2 correspond to steps where P and Q agree.

For paths in An, we described a matching of U and D steps in the introduction. A very similar
matching can be performed for paths with U , D and H steps, by just ignoring the H steps, and
matching U and D steps that face each other. We define the unmatched steps of such a path to be
the U and D steps that do not get matched in this process. As before, the unmatched D steps are
always to the left of the unmatched U steps.

We will use the term flipping a step to mean changing it from a U to a D or viceversa (equiva-
lently, reflecting it with respect to a horizontal line).

Definition. Given (P,Q) ∈ M
(2)
n,i;j, define ϕ(P,Q) to be the pair of paths (P̃ , Q̃) constructed as

follows:

1. Let Q′ be the path obtained by flipping the steps of Q that end strictly below the x-axis.

2. Let χ be the set of positions of the unmatched D steps of (P − Q′)/2. Let P̃ and Q̃ be the
paths obtained by flipping the steps in χ of P and Q′, respectively.

An example of the construction of ϕ(P,Q) is given in Figure 3.

Theorem 1. The map ϕ is a bijection between M
(2)
n,i;j and P

(2)
n,i;j.

For the sake of continuity, the proof of this theorem will be postponed until Section 5.

2.2 The bijection ψ :M(2)
n → G

(2)
n

As we did for ϕ in the previous subsection, we will provide a bijection between more general sets

than M(2)
n and G(2)n . For any P,Q ∈ An, define their agreement path (P + Q)/2 to be the path

with steps U , D and H whose height at each point is half of the sum of heights of P and Q. Note
that this path agrees with P and Q in the positions where P and Q agree, and it has H steps in
the positions where P and Q disagree. Define ℓ(P,Q) to be the y-coordinate of the lowest point of
(P +Q)/2.

Fix i ≥ j ≥ 0 with i+ j ≤ n and i+ j ≡ n (mod 2), and let

G
(2)
n,i;j = {(P,Q) ∈ A(2)

n : ℓ(P,Q) = ⌊i/2⌋, h(P ) = j + δi, h(Q) = −j + δi},

where δi denotes the remainder of the division of i by 2.

Next we describe a bijection ψ : M
(2)
n,i;j → G

(2)
n,i;j. Note that, in the special case that j = 0,

taking the union over all i with 0 ≤ i ≤ n and i ≡ n (mod 2), the map ψ will give a bijection
between

M(2)
n =

⋃

i

M
(2)
n,i;0 and G(2)n =

⋃

i

G
(2)
n,i;0.

Given (P,Q) ∈ M
(2)
n,i;j, the path (P +Q)/2 never goes below the x-axis because −P ≤ Q. The

non-horizontal steps in (P +Q)/2, which are those in the positions where P and Q agree, form a
Dyck path prefix ending at height

h

(
P +Q

2

)
=
h(P ) + h(Q)

2
=

(i+ j) + (i− j)

2
= i.
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P

Q

R R

i− j

i+ j
M

(2)
n,i;j

l

P

Q′

R

R

Q′

0

Q′

1

χ

χ
P−Q′

2

i− j

i+ j

l

P̃

Q̃

χ

χ
P̃−Q̃
2

i− j

i+ j

P
(2)
n,i;j

Figure 3: The bijection ϕ :M
(2)
n,i;j → P

(2)
n,i;j. The steps that are flipped in going between Q and Q′

are dotted in yellow. The steps χ that are flipped in going between (P,Q′) and (P̃ , Q̃) are thicker
and green in the disagreement path.

One can apply to these steps the bijection ξ described in the introduction, which turns the leftmost
⌊i/2⌋ unmatched U steps into D steps, producing a Grand Dyck path. Let P̂ and Q̂ be the paths
obtained by changing the corresponding ⌊i/2⌋ U steps of P and Q, respectively, into D steps.
Define ψ(P,Q) = (P̂ , Q̂).

Proposition 2. The map ψ is a bijection between M
(2)
n,i;j and G

(2)
n,i;j.

Proof. Let (P,Q) ∈ M
(2)
n,i;j and let (P̂ , Q̂) = ψ(P,Q). When ξ is applied to the non-horizontal steps
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P

Q
i− j
i

i+ j
M

(2)
n,i;j

P+Q
2

l

P̂

Q̂

j + δi

−j + δi
−⌊i/2⌋

G
(2)
n,i;j

P̂+Q̂
2

Figure 4: The bijection ψ :M(2)
n,i;j → G

(2)
n,i;j. The unmatched steps of the agreement path that are

changed are thicker and green, while the remaining unmatched steps are purple.

of (P +Q)/2 to produce the path (P̂ + Q̂)/2, it changes the leftmost ⌊i/2⌋ unmatched U steps into
D steps. It follows that

ℓ(P̂ , Q̂) = −

⌊
i

2

⌋
,

that

h(P̂ ) = h(P )− 2

⌊
i

2

⌋
= i+ j − (i− δi) = j + δi,

and similarly that h(Q̂) = −j + δi, so (P̂ , Q̂) ∈ G
(2)
n;j .

To see that ψ is a bijection, we describe its inverse. Given (P̂ , Q̂) ∈ G(2)n,i;j, consider the path

(P̂+Q̂)/2. Its non-horizontal steps determine a Grand Dyck path, since h((P̂+Q̂)/2) = δi ∈ {0, 1}.
Applying ξ−1 to this path changes its ⌊i/2⌋ unmatched D steps into U steps, producing a path that
does not go below the x-axis. Let P and Q be the paths obtained by changing the corresponding
D steps of P̂ and Q̂, respectively, into U steps. Then h(P ) = h(P̂ ) + 2⌊i/2⌋ = i + j and h(Q) =
h(Q̂) + 2⌊i/2⌋ = i− j. Additionally, since (P +Q)/2 ≥ 0, we have that −P ≤ Q ≤ P . Finally, the
fact that ξ is a bijection guarantees that (P,Q) is the unique pair such that ψ(P,Q) = (P̂ , Q̂).

Corollary 3. The map ψ ◦ ϕ−1 restricts to a bijection between P(2)
n and G(2)n .

Proof. By Theorem 1 and Proposition 2, we have bijections

P
(2)
n,i;j

ϕ−1

−→M
(2)
n,i;j

ψ
−→ G

(2)
n;i,j.
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Setting j = 0 and taking the union over all i with 0 ≤ i ≤ n and i ≡ n (mod 2), we obtain bijections

P(2)
n =

⋃

i

P
(2)
n,i;0

ϕ−1

−→M(2)
n =

⋃

i

M
(2)
n,i;0

ψ
−→ G(2)n =

⋃

i

G
(2)
n,i;0.

3 Walks in the plane

In this section we interpret the above results about pairs of paths in terms of lattice walks in the
plane with steps N = (0, 1), S = (0,−1), E = (1, 0) and W = (−1, 0) starting at the origin. The
term walk will always refer to such a lattice walk in this section. Note that walks are allowed to
self-intersect. The length of a walk is its number of steps. We write the steps of a walk w as
w1w2 . . . wn, where wl ∈ {N,S,E,W} for all l.

Next we describe a standard bijection ω between An × An and the set of walks of length n.
This bijection has been used, among other places, in [10, 3]. Given a pair of lattice paths (P,Q) ∈
An × An, define a walk w = ω(P,Q) as follows. For each 1 ≤ l ≤ n, the l-th steps of P and Q
determine the l-th step of w according to the following rule:

pl ql wl
U U 7→ E
U D 7→ N
D U 7→ S
D D 7→ W

Note that if hl(P ) = a and hl(Q) = b, then the coordinate of ω(P,Q) after l steps is
(
a+b
2 , a−b2

)
.

Equivalently, if the coordinate of ω(P,Q) after l steps is (x, y), then hl(P ) = x+y and hl(Q) = x−y.
An easy consequence is that, under the bijection ω, conditions about the paths P andQ translate

into conditions on the walk ω(P,Q) as described in Table 1.

Conditions on (P,Q) ∈ An ×An Conditions on w = ω(P,Q)

P ≥ Q w does not go below the x-axis
Q ≥ 0 w does not go above the line y = x
−P ≤ Q w does not go left of the y-axis

h(P ) = h(Q) w ends on the x-axis
h(Q) = i w ends on the line y = x− i

h(P ) = i+ j and h(Q) = i− j w ends at (i, j)
i− j ≤ h(Q) ≤ i+ j ≤ h(P ) w ends in sh(i, j)

Table 1: Correspondences between properties of paths and properties of walks through the bijection
ω.

Let On be the set of walks of length n constrained to the first octant (that is, the region
x ≥ y ≥ 0), and let On,i be the subset of those that end on the line y = x− i. From Table 1, we see

that ω restricts to a bijection between P
(2)
n,i and On,i for every i, and thus, taking the union over

all i, to a bijection between P
(2)
n and On.
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Let Qn be the set of walks of length n constrained to the first quadrant (that is, the region
x, y ≥ 0), and let Qxn be the subset of those that end on the x-axis. Furthermore, let Qxn,i ⊂ Q

x
n

denote the set of paths that end at (i, 0). From Table 1, we see that ω restricts to a bijection

betweenM
(2)
n,i and Q

x
n,i for every i, and thus to a bijection betweenM

(2)
n and Qxn.

Let Hn be the set of walks of length n constrained to the upper half-plane (that is, the region
y ≥ 0), and let H0

n be the subset of those that end at (δn, 0). Then ω restricts to a bijection between

G(2)n and H0
n.

Analogously to how we generalized in Section 2 the definitions of sets of nested paths by in-
troducing a parameter j, the definitions of the above sets of walks can be extended as well. To
generalize On,i, we need to introduce the concept of shadow of a point. For any lattice point (i, j)
with i ≥ j ≥ 0, its shadow is defined to be the region

sh(i, j) = {(x, y) : i− j ≤ x− y ≤ i+ j ≤ x+ y}.

(i, j)
sh(i, j)

Figure 5: The shadow of a point (i, j).

For i ≥ j ≥ 0 with i+ j ≤ n and i+ j ≡ n (mod 2), define the following sets. Let On,i;j be the
set of walks in On that end in the region sh(i, j). Let Qn,i;j be the set of walks in Qn that end at
the point (i, j). Note that On,i;0 = On,i and Qn,i;0 = Qxn,i. Let Hn,i;j be the set of walks in Hn that

end at (δi, j) whose leftmost point lies on the line x = −⌊i/2⌋. Note that
⋃
iHn,i;0 = H0

n, where
the union is over all 0 ≤ i ≤ n with i ≡ n (mod 2).

Using Table 1, it is easy to check that ω gives bijections between P
(2)
n,i;j and On,i;j, between

M
(2)
n,i;j and Qn,i;j, and between Hn,i;j and G

(2)
n,i;j. In particular, the bijections in Section 2 can be

interpreted, via ω, as bijections for lattice walks as shown in Figure 6, where we write ϕ̃ := ω◦ϕ◦ω−1

and ψ̃ := ω ◦ ψ ◦ ω−1.
Setting j = 0 and taking the union over all i with 0 ≤ i ≤ n and i ≡ n (mod 2), we obtain the

diagram of bijections in Figure 7. Note that the top row consists of the bijections in Corollary 3.

3.1 The bijections in terms of walks

Next we describe the bijections ϕ̃ and ψ̃ in the bottom row of Figures 6 and 7 directly in terms of
walks.

We start with ϕ̃ : Qn,i;j → On,i;j. Given w ∈ Qn,i;j, its image w′′ = ϕ̃(w) is constructed as
follows:

1. Let w′ be the path obtained by reflecting along a line of slope 1 (that is, switching N with E
and S with W ) all the steps of w that end in the region y > x.

9



P
(2)
n,i;j

ϕ
←→ M

(2)
n,i;j

ψ
←→ G

(2)
n,i;j

lω lω lω

On,i;j
ϕ̃
←→ Qn,i;j

ψ̃
←→ Hn,i;j

(i, j)
sh(i, j)

(i, j)

x = −⌊ i

2
⌋

(0, j) (1, j)

Figure 6: The bijections between pairs of lattice paths (top row) and their corresponding lattice
walks (bottom row). The pictures show the shaded region where walks are constrained to, and the
orange region where the walks can end. In the picture on the right, the leftmost point of the walks
must lie on the vertical magenta line.

P
(2)
n

ϕ
←→ M

(2)
n

ψ
←→ G

(2)
n

lω lω lω

On
ϕ̃
←→ Qxn

ψ̃
←→ H0

n

y = 0 (0, 0) (1, 0)

Figure 7: The corresponding bijections for the case of j = 0 and arbitrary i.

2. Let w′′ be the path obtained from w′ by changing into N steps all the S steps of w′ that end
at a lower y-coordinate than all the previous steps of w′.

It is easy to check that this definition of ϕ̃ is equivalent to the definition of ϕ given in Section 2.
Figure 8 gives an example of this construction, which is the translation to walks of the example
given in Figure 3 for paths.

Next we describe the bijection ψ̃ : Qn,i;j → Hn,i;j. A walk can be decomposed uniquely as a
sequence of (vertical) N and S steps interleaved with a sequence of (horizontal) E and W steps.

A lattice walk belongs to Qxn if and only if its NS-subsequence, after substituting U for N and
D for S, is a Dyck path, and its EW -subsequence, after substituting U for E and D for W , is a
Dyck path prefix. Similarly, a walk belongs to H0

n if and only if its NS-subsequence produces a
Dyck path, and its EW -subsequence produces a Grand Dyck path.

The bijection ψ̃ : Qxn → H
0
n has a simple description in terms of this decomposition. Given

w ∈ Qxn, consider the Dyck path prefix determined by its EW -subsequence, and apply ξ to it to
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4 8

20 1318
2 12

151617

19

21

3

5 6 7

9 10 11

14

w

(i, j)

Qn,i;j

l

3 5 8

20 1318
12

151617

19

21
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Figure 8: The bijection ϕ̃ : Qn,i;j → On,i;j. The steps that are changed in going between w and w′

are dotted in yellow. The steps that changed in going between w′ and w′′ are thicker and green.

obtain a Grand Dyck path of the same length (with steps E,W playing the role of U,D). The
resulting walk belongs to H0

n because it consists of a Dyck path interleaved with a Grand Dyck
path. More generally, a similar description can be given for ψ̃ : Qn,i;j →Hn,i;j. The only difference
is that the NS-subsequence gives a Dyck path prefix ending at height j, and the EW -subsequence
is mapped via ξ from a Dyck path prefix ending at height i to a Grand Dyck path with lowest point
at height −⌊i/2⌋.
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4 Connections to work in the literature

In this section we discuss related results in the literature, and we show how our work applies in
different contexts.

4.1 Plane partitions

A non-bijective proof of the fact that |P
(2)
n | = |G

(2)
n |, which we proved bijectively in Corollary 3,

and more generally of Equation 2, follows from a result of Proctor [19] on plane partitions. Recall
that a plane partition is a two-dimensional array of nonnegative integers ai,j weakly decreasing in
rows and columns. In the rest of this section we assume that p ≥ q. A plane partition is said to
be contained in the rectangle shape (pq) if the range for the indices is 1 ≤ i ≤ q and 1 ≤ j ≤ p,
and contained in the shifted shape [p+ q − 1, p+ q − 3, . . . , p− q + 1] if the range is 1 ≤ i ≤ q and
i ≤ j ≤ p+ q − i. A plane partition has part size bounded by k if 0 ≤ ai,j ≤ k for all i, j.

It is easy to see that tuples of paths in A
(k)
p+q ending at (p+ q, p− q) are in bijection with plane

partitions contained in the rectangle shape (pq) with part size bounded by k. The idea is that
for each 1 ≤ i ≤ k, the boundary between entries smaller than i and entries larger than or equal

to i in the array determines a path in the k-tuple. Similarly, tuples of paths in P
(k)
p+q ending at

height at least p− q are in bijection with (shifted) plane partitions contained in the shifted shape
[p+ q− 1, p+ q− 3, . . . , p− q+1] with part size bounded by k. The main result in [19] is that these
two sets of plane partitions have the same cardinality. The proof uses combinatorial descriptions
of finite-dimensional representations of semisimple Lie algebras, and it is not bijective.

Using the above correspondences between tuples of paths and plane partitions, Corollary 3 gives
a bijective proof of Proctor’s result for k = 2 and p = q. In fact, we can use a slight modification
of ψ̃ to get rid of the restriction p = q and provide a bijective proof of Proctor’s result for k = 2 in
a somewhat more general form. In terms of pairs of nested paths, letting n = p+ q and s = p− q,

Proctor’s result for k = 2 states that, for any s ≡ n (mod n), the number of pairs (P,Q) ∈ P
(2)
n

with h(Q) ≥ s equals the number of pairs (P,Q) ∈ A
(2)
n with h(P ) = h(Q) = s. When translated

in terms of walks using ω, it states that the number of walks in On ending in the region y ≤ x− s
equals the number of walks in Hn ending at (s, 0).

First we modify the bijection ξ : Pn → Gn by introducing a parameter s ≥ 0 as follows. Given
a path P ∈ Pn with h(P ) = i, where i ≥ s and i ≡ s (mod 2), let ξs(P ) be the path obtained by
changing the leftmost (i − s)/2 unmatched U steps of P into D steps. It is clear that ξs(P ) ends
at height s. The same argument that proves that ξ is a bijection between Pn and Gn shows that,
for any i as above, the map ξs is a bijection between paths in Pn ending at height i and paths in
An ending at height s whose lowest point is at height −(i− s)/2.

By modifying ψ̃ accordingly, we define a map ψ̃s as follows. Let j and n be such that s+ j ≡ n
(mod 2). Given a walk w ∈ Qn,i;j, where i ≥ s and i ≡ s (mod 2), apply ξs to its EW -subsequence
(with steps E,W playing the role of U,D). The resulting walk ψ̃s(w) ends at (s, j), and its leftmost
point has x-coordinate −(i− s)/2. In fact, ψ̃s is a bijection between Qn,i;j and the set of walks in
Hn ending at (s, j) whose leftmost point lies on x = −(i − s)/2. Taking the union over all i with
i ≥ s and i ≡ s (mod 2), the map ψ̃s gives a bijection between

⋃
i≥sQn,i;j and the set of walks

in Hn ending at (s, j). Thus, the composition ψ̃s ◦ ϕ̃−1 is a bijection between the disjoint union⊔
i≥sOn,i;j (note that in general the sets On,i;j are not disjoint) and the set of walks in Hn ending

at (s, j).
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Restricted to the case j = 0, our modified map ψ̃s ◦ ϕ̃−1 is a bijection between walks in On
ending in y ≤ x− s and walks in Hn ending at (s, 0), as illustrated in Figure 9, proving Proctor’s
result for k = 2.

⋃
i≥s Pn,i

ϕ
←→

⋃
i≥sM

(2)
n,i

ψs

←→ {(P,Q) ∈ A
(2)
n : h(P ) = h(Q) = s}

lω lω lω
⋃
i≥sOn,i

ϕ̃
←→

⋃
i≥sQn,i

ψ̃s

←→ {w ∈ Hn ending at (s, 0)}

y ≤ x− s x ≥ s, y = 0 (s, 0)

Figure 9: The bijections proving Proctor’s result for k = 2.

4.2 Partially ordered sets

In Stanley’s book [21, Exercise 3.47(f)] we find another appearence of Proctor’s result in a slightly
different form. This exercise asks to show that the order polynomials of two posets are the same.
The first poset is the product of two chains of length q and p, and the second is the poset of pairs
{(i, j) : 1 ≤ i ≤ j ≤ p+ q − i, 1 ≤ i ≤ q} ordered by (i, j) ≤ (i′, j′) if i ≤ i′ and j ≤ j′. Recall that
the order polynomial of a poset evaluated at k is the number of order-preserving maps from the
poset to a k-element chain. Such maps correspond to the plane partitions considered by Proctor.
In [19], Proctor also shows that both posets have the same number of l-element chains for all l
(equivalently, they have the same zeta-polynomials). A different proof of this fact using symmetric
functions is also given by Stembridge [22].

Very closely related to Proctor’s result for plane partitions is the following result of Haiman.
In [12, Prop. 8.11], Haiman gives a bijection between standard Young tableaux of rectangular shape
(pq) and standard Young tableaux of shifted shape [p+ q− 1, p+ q− 3, . . . , p− q+1]. His bijection
is based on Shützenberger’s jeu de taquin [20]. The fact that these shapes have the same number
of standard Young tableaux follows from Proctor’s result. However, it is not clear whether it is
possible to generalize Haiman’s bijection using jeu de taquin to plane partitions.

4.3 Watermelons and stars with a wall

Tuples of paths in A
(k)
p+q ending at (p+ q, p− q) are called watermelons in [14], where they are enu-

merated using a correspondence between watermelons and certain semistandard Young tableaux.
A determinantal formula can also be obtained using the Gessel–Viennot method [9]. Alternatively,
since these tuples are in bijection with plane partitions contained in the rectangle shape (pq) with
part size bounded by k (or, as they are commonly described, plane partitions that fit in a p× q× k
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box), their number is given by the following formula of MacMahon [18] (see also [17]):

p∏

i=1

q∏

j=1

k∏

l=1

i+ j + l − 1

i+ j + l − 2
, (3)

which we used to obtain the right-hand side of (1).

Tuples of nested lattice paths of the same length (elements of A
(k)
n in our terminology) are called

stars in [14, 16]. Krattenthaler, Guttmann and Viennot [16] consider stars with a wall restriction,

and they show [16, Theorem 7] that the number of tuples in P
(k)
p+q ending at height at least p− q is

also given by Equation (3). Their proof, which is based on Proctor’s proof, uses a correspondence
between these tuples of paths and symplectic tableaux (that is, semistandard Young tableau where
entries in row r are at least 2r−1 for all r) with entries bounded by p+ q−1 having at most p rows
and at most k columns. The proof then follows from an identity relating symplectic characters and
Schur functions of rectangular shape, which is a special case of an identity for universal characters.

4.4 Walks in the octant

Walks in the first octant with specific endpoints have been enumerated by Bousquet-Mélou and
Mishna [3, Section 5.3] using functional equations and the kernel method. The walks studied in [3]
are walks in the first quadrant with slightly different types of steps, but they are trivially equivalent
to ours through a linear transformation.

Bousquet-Mélou and Mishna give a formula for the number of walks inOn with a given endpoint,
and from it, using Gosper’s algorithm to sum hypergeometric sequences, they deduce the following
closed expressions, which we write in terms of the Catalan numbers Cm:

|{w ∈ On : w ends on the x-axis}| =

{
CmCm+1 if n = 2m,

C2
m+1 if n = 2m+ 1,

(4)

|{w ∈ O2m : w ends on y = x}| = |O2m,0| = CmCm+1, (5)

|On| =

{
(2m+ 1)C2

m if n = 2m,

(2m+ 1)CmCm+1 if n = 2m+ 1.
(6)

Of course, since |On| = |P
(2)
n | = |G

(2)
n |, we know that the formula (6) agrees with the two

expressions in Equation (1) for k = 2, and also with the formula

|G(2)n | = |H
0
n| =

⌊n

2
⌋∑

l=0

(
n

2l

)
|D2l||Gn−2l| =

⌊n

2
⌋∑

l=0

1

l + 1

(
n

l, l, ⌊n2 ⌋ − l, ⌈
n
2 ⌉ − l

)
,

which follows from the decomposition of walks in H0
n obtained by separating their NS- and EW -

subsequences, as described in the Section 3.1.
The nice product of Catalan numbers in Equation (4) was first discovered by Gouyou-Beau-

champs [10], who gave a combinatorial proof of this formula. Interpreting walks ending on the
x-axis, via ω, as pairs of Dyck path prefixes having the same endpoint, he first expresses their
number as a sum over all possible endpoints. For each given endpoint, non-crossing pairs of paths
are easily counted using the Gessel–Viennot method [9], by subtracting crossing pairs from all pairs,
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for which there are simple formulas. The sums over all possible endpoints are then interpreted as
concatenations of paths, and finally a clever involution is applied to cancel positive and negative
terms and obtain the formula (4). Additionally, Gouyou-Beauchamps [11] provides a bijection
between walks in On ending on the x-axis and standard Young tableaux with n cells having at
most 4 rows.

On the other hand, it seems that no combinatorial proof of Equation (5) is known. This
equation counts walks ending on the diagonal, or equivalently, via ω, pairs of nested paths (P,Q)
where P ∈ P2m and Q ∈ D2m. In [3, Section 7.1], Bousquet-Mélou and Mishna leave open the
question of finding a bijective proof of the fact that expressions (4) and (5) agree for even n, that
is, that the number of walks in On ending on the x-axis equals the number of those ending on the
diagonal. Next we provide a bijective proof of Equation (5).

Corollary 4. There is an explicit bijection between the set O2m,0 of walks in the first octant ending
on the diagonal and the set D2m ×D2(m+1) of pairs of Dyck paths.

Proof. Our bijection ϕ̃ : O2m → Qx2m restricts to a bijection between O2m,0 and Qx2m,0, the set of
walks in the first quadrant of length 2m that end at the origin. Composing ϕ̃ with any of the known
bijections between Qx2m,0 and pairs of Dyck paths provides the desired bijection. The first bijection
between Qx2m,0 and D2m × D2(m+1) was constructed recursively by Cori, Dulucq and Viennot [5],
and later a more direct bijection passing through certain planar maps was given by Bernardi [2].

We point out that Guy, Krattenthaler and Sagan [15] gave another simple proof of the fact that
|Qx2m,0| = CmCm+1 using the reflection principle, and thus involving negative signs.

5 Proof of Theorem 1

The proof of Theorem 1 will follow from Lemmas 6, 7 and 8 below. It will be convenient to introduce
some notation for the proofs, and to refer to the example in Figure 3. Let R be the set of U steps
of Q that end on the x-axis, which we call lower returns of Q, and let r = |R|. Let |Q| be the path
obtained by flipping the steps of Q below the x-axis. Note that ha(|Q|) = |ha(Q)| for all a. For any
nonnegative integer a, let R≤a be the set of steps in R to the left of x = a. Define χ≤a similarly.

Lemma 5. The transformation Q 7→ Q′ in step 1 of the description of ϕ is a bijection between paths
Q ∈ An with h(Q) ≥ 0 having r lower returns, and paths Q′ ∈ Pn with h(Q′) ≥ 2r. Additionally,

ha(Q
′) = ha(|Q|) + 2|R≤a| (7)

for all a.

Proof. The path Q′ is obtained by flipping all the steps of Q below the x-axis except for those in
R. Thus, Q′ and |Q| differ precisely in the steps in R, which are U steps in Q′. Equation 7 follows,
and in particular h(Q′) = h(|Q|) + 2r = h(Q) + 2r.

Now we show that this map is a bijection. If the steps in R are u0, u1, . . . , ur−1 from left to
right, then step ul becomes the rightmost U step of Q′ rising from height 2l+1 to height 2l+2. The
transformation Q 7→ Q′ flips, for each 0 ≤ l < r, the fragment of Q between ul and the previous
point at height 0 (not including step ul itself), and this fragment becomes the piece of Q′ between
the last point at height 2l and the last point at height 2l + 1. Thus, one recovers Q from Q′ by
flipping these fragments again.
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Lemma 6. ϕ(M
(2)
n,i;j) ⊆ P

(2)
n,i;j.

Proof. Let (P,Q) ∈ M
(2)
n,i;j and let (P̃ , Q̃) = ϕ(P,Q). We will prove that (P̃ , Q̃) ∈ P

(2)
n,i;j by showing

that P̃ ≥ Q̃ ≥ 0 and that h(P̃ ) and h(Q̃) satisfy the required inequalities.
The fact that P̃ ≥ Q̃ is clear from step 2 in the description of ϕ. Indeed, since the path (P̃−Q̃)/2

is obtained by turning all the unmatched Ds of (P −Q′)/2 into Us, we have that (P̃ − Q̃)/2 ≥ 0,
and so P̃ ≥ Q̃.

Next we show that Q̃ ≥ 0. It follows from Equation (7) that h(Q′) = h(Q)+2r = i− j+2r and
that Q′ ≥ 0. Since −P ≤ Q ≤ P , or equivalently |Q| ≤ P , it also follows that ha(Q

′) − ha(P ) ≤
2|R≤a|. The right hand side of this inequality is weakly increasing in a, and so

2|χ≤a| = max
0≤b≤a

{hb(Q
′)− hb(P )} ≤ 2|R≤a|, (8)

where the left equality is a consequence of the definition of χ.
Using the definition of Q̃ and Equations (8) and (7), in this order, we obtain

ha(Q̃) = ha(Q
′)− 2|χ≤a| ≥ ha(Q

′)− 2|R≤a| ≥ 0

for every a, and so Q̃ ≥ 0.

Next we show that the ending heights of P̃ and Q̃ are in the required intervals. Equation (8)
for a = n implies that |χ| ≤ r. Noting that the ending height of the path (Q′ − P )/2 is

h(Q′)− h(P )

2
=
i− j + 2r − (i+ j)

2
= r − j

and that its maximum height is |χ|, we obtain

r − j ≤ |χ| ≤ r. (9)

By construction of P̃ and Q̃, we have that

h(P̃ ) = h(P ) + 2|χ| = i+ j + 2|χ| ≥ i+ j

and that
h(Q̃) = h(Q′)− 2|χ| = i− j + 2(r − |χ|),

and so i− j ≤ h(Q̃) ≤ i+ j by Equation (9).

Lemma 7. The map ϕ :M
(2)
n,i;j → P

(2)
n,i;j is injective.

Proof. We show that the transformations Q 7→ Q′ and (P,Q′) 7→ (P̃ , Q̃) in the definition of ϕ are
invertible. Note that the values i and j are fixed, so we can use the knowledge of i + j and i − j
when inverting these transformations.

Given (P̃ , Q̃) ∈ P
(2)
n,i;j, in order to recover (P,Q′) it is enough to determine the set χ of positions

of the steps that have been flipped. Recall that the paths P̃ and Q̃ differ from P andQ′, respectively,
exactly in the positions of the unmatched D steps of (P −Q′)/2. In these positions, P and Q̃ have
D steps, whereas P̃ and Q′ have U steps. Flipping the unmatched D steps of (P − Q′)/2 turns
these steps into the leftmost |χ| unmatched U steps of (P̃ − Q̃)/2.
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Note that |χ| can be easily determined from P̃ , since h(P̃ ) = i+j+2|χ|, so |χ| = (h(P̃ )−i−j)/2.
Thus, the leftmost (h(P̃ ) − i − j)/2 unmatched Us of (P̃ − Q̃)/2 determine χ, and flipping the
corresponding steps in P̃ and Q̃ we recover P and Q′, respectively.

The fact that the transformation Q 7→ Q′ is invertible follows from Lemma 5, noticing that the
value r = |R| can be obtained from Q′ using that h(Q′) = i− j + 2r, since i− j is known.

The proof of Lemma 7 yields a description of the inverse map ϕ−1. Given (P̃ , Q̃) ∈ ϕ(M
(2)
n,i;j) ⊆

P
(2)
n,i;j, its preimage (P,Q) = ϕ−1(P̃ , Q̃) can be obtained as follows:

1. Let χ be the set of positions of the leftmost (h(P̃ )− i− j)/2 unmatched U steps of (P̃ − Q̃)/2.
Let P and Q′ be the paths obtained by flipping the steps in χ of P̃ and Q̃, respectively.

2. Let r = (h(Q′) − i + j)/2. For 0 ≤ l < r, let Q′
l the fragment of Q′ between the rightmost

point at height 2l and the rightmost point at height 2l+1. Let Q be the path obtained from
Q′ by flipping the steps in each Q′

l.

Lemma 8. The map ϕ :M
(2)
n,i;j → P

(2)
n,i;j is surjective.

Proof. We will show that when the above construction for ϕ−1 is applied to an arbitrary pair

(P̃ , Q̃) ∈ P
(2)
n,i;j, it produces a pair (P,Q) ∈ M

(2)
n,i;j such that ϕ(P,Q) = (P̃ , Q̃).

From step 1 in the description of ϕ−1, we see that

h(P ) = h(P̃ )− 2|χ| = i+ j,

and that h(Q′) = h(Q̃) + 2|χ| ≥ h(Q̃) ≥ i − j, which implies that the value of r defined in step 2
is nonnegative. Additionally, since i ≥ j, we have that 2r ≤ h(Q′), and thus the pieces Q′

l for
0 ≤ l < r are non-empty. After they are flipped to build Q, we get

h(Q) = h(Q′)− 2r = i− j

as desired.
It remains to show that the paths P and Q produced by ϕ−1 satisfy −P ≤ Q ≤ P . By

construction of Q′, we have ha(Q
′) = ha(Q̃)+ 2|χ≤a| ≥ 2|χ≤a| for all a. Since |χ≤a| is increasing in

a, it follows that
min
a≤b≤n

hb(Q
′) ≥ 2|χ≤a|. (10)

By Lemma 5, the transformation Q 7→ Q′ is a bijection whose inverse is given by step 2 of the
description of ϕ−1. Let R be the set whose elements are, for each 0 ≤ l < r, the rightmost U step
of Q′ rising from height 2l + 1 to height 2l + 2. The proof of Lemma 5 shows that the steps R
become the lower returns of Q. Defining R≤a accordingly, it is clear from the definition that

2|R≤a| ≥ min
a≤b≤n

hb(Q
′). (11)

By construction of P and Q′ in step 1 of the description of ϕ−1, we have that ha(Q
′)−ha(P ) ≤

2|χ≤a|, which, in combination with inequalities (10) and (11), implies that ha(Q
′)−ha(P ) ≤ 2|R≤a|.

Now we use equation (7) to conclude that

ha(|Q|) = ha(Q
′)− 2|R≤a| ≤ ha(P )

for all a. This proves that |Q| ≤ P , or equivalently, −P ≤ Q ≤ P .
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6 Open problems

The main contribution of this article is a bijection between P
(2)
n and G

(2)
n , which extends the known

bijections between Pn and Gn. Generalizing our bijection to k-tuples of paths remains an open
problem.

Problem 1. Find an explicit bijection between P
(k)
n and G

(k)
n for k ≥ 3.

Finding an extension of Haiman’s bijection mentioned in Section 4 to plane partitions would give

a bijection between P
(k)
n and G

(k)
n , although it would not be as direct as the bijection in Corollary 3,

which can be described easily at the level of paths.
Our final open question was formulated by Bousquet-Mélou and Mishna in [3]:

Problem 2. Find a direct (and involution-free) bijection between walks in O2m ending on the x-axis
and those ending on the diagonal.

Whereas Corollary 4 proves Equation (5) bijectively, it does not completely solve the above
problem, partly because Gouyou-Beauchamps’s proof of Equation (4) involves negative signs and
cancellations. Note also that our bijection ϕ̃ restricts to the identity on paths in the octant that
end on the x-axis. In terms of nested paths, Problem 2 translates into finding a direct bijection

between those pairs (P,Q) ∈ P(2)
2m with h(P ) = h(Q) and those with h(Q) = 0. This question is

reminiscent of the symmetry between top and bottom contacts of lattice paths between two fixed
boundaries discussed in [7].
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