
ar
X

iv
:1

40
6.

18
16

v1
  [

m
at

h-
ph

] 
 6

 J
un

 2
01

4

ON HYDRODYNAMIC EQUATIONS

AT THE LIMIT OF INFINITELY MANY MOLECULES

S. DOSTOGLOU, N.C. JACOB, AND JIANFEI XUE

Abstract. We show that weak convergence of point measures and (2+ ǫ)-moment condi-

tions imply hydrodynamic equations at the limit of infinitely many interacting molecules.

The conditions are satisfied whenever the solutions of the classical equations for N inter-

acting molecules obey uniform in N bounds. As an example, we show that this holds when

the initial conditions are bounded and that the molecule interaction, a certain N-rescaling

of potentials that include all r−p for 1 < p, is weak enough at the initial time. In this case

the hydrodynamic equations coincide with the macroscopic equations of Maxwell.

1. Introduction

Derivations of macroscopic hydrodynamic equations from microscopic dynamics go back

to the introduction of probabilistic methods in the description of molecular motions in [Max]

and continue in now classic works, [B], [CC], [IK], [Gr], [M], [L], to this day, see [EP] and

[GK] for recent reviews and references.

In the present article we examine macroscopic hydrodynamic equations as limits of the

classical equations of motion for a system of N interacting molecules, as N becomes infinite.

In particular, we subscribe to the idea that, whereas a classical system can be fully described

by these equations for a finite but extremely high N , a reasonable approximation of an

observer’s macroscopic perception is the limit at infinite N . Our motivation has been to

substantiate Reynolds’s tenuous definition of hydrodynamic averages in [R] and his claim

that averages, as in [Max] and [R], can only be space averages. For this, we use the classical

equations of molecular motion and we average in space (or time-space) but we do not use
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the Liouville equation and we do not average in phase space (Gibbs ensembles). At the

same time, we make no assumptions of binary collisions, molecular chaos etc. and therefore

we do not use the Boltzmann equation. In this sense our work has origins in the first part

of Morrey [M] and Jepsen & ter Haar [JtH].

Our starting point is the article [D] where weak convergence of empirical position-velocity

probability measures on R
6 and disintegration of the limit measure M with respect to its

marginal µ, the macroscopic density, provide a rigorous definition of a macroscopic velocity

u as the barycentric projection of the disintegration (formulas (3.14) and (5.27), loc. cit.).

The tools there are from [AGS]. The kinetic energy of u is, in general, only part of the

total kinetic energy of the macroscopic system (formulas (5.11) and (5.12) in [D]). This

allows for part the remaining total kinetic energy at the limit to include heat and, possibly,

other fluctuations. Following Morrey [M], it is assumed in [D] that the total mass, energy,

and moment of inertia stay bounded in N and, to deal with the non-linear terms, that

second moments locally converge. With these, [D] shows how the limits of equations for N

molecules, rescaled by a factor σN at each N as in [M], can give at the limit N → ∞ weak

versions of macroscopic equations for the limit molecule density µ and the mean velocity u.

For certain interaction potentials only the divergence of the stress tensor appears (in weak

form) in the resulting equations.

The aim of the present article is to show that the weak convergence of point measures

and a uniform bound on their (2 + ǫ)-moments imply hydrodynamic equations at the limit

of infinitely many interacting molecules and to provide examples satisfying the two assump-

tions. We also deal with two points that were not addressed in [D]: First, the existence

of subsequences of point measures weakly convergent for all t in some [0, T ]. Second, the

measurability in t and the regularity of the macroscopic velocity u. We obtain the macro-

scopic equations in section 3, first in Theorem 3.6 using measures on [0, T ]×R
6. Both issues

of common in t subsequences and the measurability of u are then overcome. The Morrey

assumptions used in [D] satisfy the assumptions of Theorem 3.6. Then in Theorem 3.8 we

consider t-families of measures on R
6 that have common weakly convergent subsequences.
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As the assumptions of Theorem 3.6 are satisfied whenever the assumptions of Theorem 3.8

are, the measurability of u is determined via comparison with Theorem 3.6. We do not

insist here on the form of the interaction part of the stress tensor – for the examples that

show later in Section 4 this term does not appear at the limit. Our main tools are the gen-

eral Fubini theorem for families of measures, disintegration of measures, and convergence

of measures.

To substantiate the assumptions of the main theorems, we show that the conditions of

Theorem 3.8, and therefore of Theorem 3.6, are satisfied at least when the solutions of

the classical equations for N interacting molecules, rescaled as in [M], have accelerations

uniformly bounded in N on any finite time interval. This occupies the last subsection of

section 3. The main tool here is Lévy continuity.

Finally, to provide explicit examples, we show in section 4 that on any fixed time interval

[0, T ], when the initial positions and velocities are bounded and the rescaled interaction

is weak enough compared to the initial conditions, the accelerations are indeed uniformly

bounded in N on [0, T ]. The choice of scale for each N is such that distances between

molecules can only increase in time. The main argument here is by continuity. (Under

the same assumptions Picard iteration constructs the solutions on any finite time interval.)

These examples include, but are not restricted to, certain types of “burst” configurations,

i.e. examples where the velocities are any positive multiple of the positions at the initial

moment in time.

On the other hand, the choice of scale in section 4 weakens the interaction and, for the ex-

amples in this section, the interaction term vanishes at the limit of infinitely many particles.

The stress tensor then consists only of velocity fluctuations. Therefore the hydrodynamic

equations we obtain coincide with the macroscopic equations of Maxwell in [Max]. In par-

ticular, for the examples in this section we show that on any [0, T ] the momentum equation

is precisely in the form established by Maxwell in [Max] eq. (76), nowadays derived via the



4 S. DOSTOGLOU, N.C. JACOB, AND JIANFEI XUE

Boltzmann equation as in [Gr], eq. (2.46), for example1. As Maxwell argues, this form of

the momentum equation can be approximated, up to certain order and for “quiet” flows,

by the compressible Navier-Stokes equations.

2. Hamiltonian equations

2.1. Equations of motion. We start with the motion of N classical molecules, each of

mass mN , without external forces, and with pair interaction potential energy between a

molecule at x and a molecule at y equal to m2
NΦN (|x − y|). Assuming always ΦN of

negative derivative for small distances, where molecules repulse, the force on a molecule at

x from a molecule at y is −m2
N∇xΦN(|x− y|), and the acceleration of the i-th molecule at

time t, when its position is xi(t), satisfies

mNu
′
i(t) = −m2

N∇xi

N∑

j=1
j 6=i

ΦN (|xi(t)− xj(t)|) .(2.1)

The total energy of the system consisting of these N molecules when their positions and

velocities are xi(t), ui(t) is

EN =
1

2
mN

N∑

i=1

|ui(t)|
2 +m2

N

N∑

i,j=1
i 6=j

ΦN (|xi(t)− xj(t)|) .(2.2)

2.2. A length scale from the N-molecule system. Recall that during a head-on colli-

sion between two molecules of mass mN (i.e. collision with impact parameter 0) their min-

imum distance σN satisfies v2∞ = mNΦN(σN ), when the interaction potential is m2
NΦN (r)

and for v∞ the molecules’ relative speed at t→ ±∞, see [LL], §18. For v∞ independent of

the N , this reads mNΦN(σN ) = constant, and one way to accommodate this is to set

mNΦN (r) = Φ

(
r

σN

)
,(2.3)

1Recall that the validity of the Boltzman equation has been established only for a fraction of the collision

time.
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cf. [ABGS]. This is what Morrey in [M] adopts and this is what we shall also adopt again

here. Then (2.1) becomes

dxi
dt

= ui,

dui
dt

= −

N∑

j=1
j 6=i

1

σN
Φ′

(
|xi(t)− xj(t)|

σN

)
xi(t)− xj(t)

|xi(t)− xj(t)|
, 1 ≤ i ≤ N.

(2.4)

As energy is conserved, standard theory of ordinary differential equations, see for example

[CL], p. 7, p. 47, and [C], p. 110, gives the following:

Theorem 2.1. Let G ⊂ R
3N be G = {(x1, . . . , xN ) : xi ∈ R

3, i 6= j ⇒ xi 6= xj}. Then if

Φ has locally Lipshitz-continuous derivative on (0,∞) the initial value problem for (2.4) on

G× R
3N has, for each N , unique solution on any time interval [0, T ].

3. General results

3.1. Standard measure theory. Weak convergence of measures is important in what

follows: a sequence of measures µN converges weakly to a measure µ, or µN ⇒ µ, if∫
f(x)µN (dx) →

∫
f(x)µ(dx), N → ∞ for any f bounded and continuous. The following

is standard:

Lemma 3.1. For any sequence of positive measures µN and f measurable

sup
N

∫
|f(x)|p+εµN (dx) <∞ ⇒ lim

R→∞

∫

{|f(x)|p>R}

|f(x)|pµN (dx) → 0, uniformly in N.

(3.1)

Proof. Rε/p

∫

{|f(x)|p>R}

|f(x)|pµN (dx) ≤

∫

{|f(x)|p>R}

|f(x)|p+εµN (dx) ≤

∫
|f(x)|p+εµN (dx).

�

Following [AGS] Chapter 5, we call f ≥ 0 uniformly integrable with respect to {µN} if

lim
R→∞

∫

{f>R}

f(x)µN (dx) → 0, uniformly in N.(3.2)
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Therefore Lemma 3.1 provides a sufficient condition for |f |p to be uniformly integrable. The

following shows as part of Lemma 5.1.7 in [AGS]:

Lemma 3.2. Let µN weakly converge to µ and f continuous with |f | uniformly integrable

with respect to µN . Then the µN -integrals of f converge (without passing to subsequence):

∫
f(x)µN (dx) →

∫
f(x)µ(dx), N → ∞.(3.3)

We shall use repeatedly the following general Fubini and disintegration theorems. For

proofs in a context relevant to this article see [A], §2.6 and [AFP], §2.5, respectively. All

spaces in these theorems are Rk for some k, all σ-algebras are Borel, and a family of measures

νλ on X is Borel measurable if for any B Borel set in X the assignment λ 7→ νλ(B) is

measurable as a map from the λ’s to R. To avoid completions of σ-algebras we always

extend functions defined off a set of measure 0 by setting them equal to 0 on that set.

Theorem 3.3 (General Fubini). Let µ(dx) be a probability measure on (X, E) and µx(dy)

a measurable family of probability measures on (Y,F). Then there is unique probability

measure M on (X × Y, E × F) such that:

M(B) =

∫

X

(∫

Y
χB(x, y)µx(dy)

)
dx(3.4)

and M has the following properties:

(1) for f measurable and positive on X ×Y the assignment

∫

Y
f(x, y)µx(dy) defines an

x-measurable function and

∫

X×Y
f(x, y)M(dx, dy) =

∫

X

∫

Y
f(x, y)µx(dy)µ(dx) ∈

[0,+∞].

(2) for f on X × Y such that

∫

X×Y
f(x, y)M(dx, dy) is finite then

∫

Y
f(x, y)µx(dy)

exists for almost all x and, once extended by 0 to the remaining x’s, it defines an x-

measurable function which satisfies

∫

X×Y
f(x, y)M(dx, dy) =

∫

X

∫

Y
f(x, y)µx(dy)µ(dx).

We shall use the notation

M(dx, dy) =

∫
Mx(dy)µ(dx)(3.5)
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as a shorthand for the measure M of Theorem 3.3.

Theorem 3.4 (Disintegration). For M probability measure on (X×Y, E ×F) and µ(dx) =

(pr1)#M(dx) on (X, E) there exists a µ-almost-all uniquely determined Borel measurable

family of probability measures {µx(dy)} on (Y,F) such that M(dx, dy) =

∫
µx(dy)µ(dx).

3.2. Molecule Measures. For x
(N)
i (t), u

(N)
i (t) solutions of the N -system (2.4) on some

fixed time interval [0, T ] with T <∞, define for each t the time dependent vector field

(3.6) uN (t, x) =





dx
(N)
i (t)

dt
if x = x

(N)
i (t)

0 o/w,

and the (molecule-velocity density) probability measures on R
6

M
(N)
t (dx, dv) :=

1

N

N∑

i=1

δ(
x
(N)
i

(t),u
(N)
i

(t)
)(dx, dv).(3.7)

The first marginal of M
(N)
t is

µ
(N)
t (dx) :=

1

N

N∑

i=1

δ
x
(N)
i

(t)
(dx),(3.8)

or2 M
(N)
t (dx, dv) = (Id× uN )# µ

(N)
t (dx, dv). Notice that for all t the field uN (t, .) is defined

for µt(dx)-almost all x. The total mass being 1 for all N , the factor 1/N is the mass of

each molecule in the N -system.

The family
{
M

(N)
t (dx, dv) : t ∈ [0, T ]

}
is Borel measurable: for any Borel B ⊂ R

6, t →

M
(N)
t (B) =

1

N

N∑

i=1

χB

(
x
(N)
i (t), v

(N)
i (t)

)
is Borel since

(
x
(N)
i (t), v

(N)
i (t)

)
is continuous in t

and χB is Borel. Then according to Theorem 3.3 the measure

M (N)(dt, dx, dv) =

∫
M

(N)
t (dx, dv)dt(3.9)

2For h measurable and ν measure, h#ν(B) = ν(h−1(B))
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is well defined. Conversely, given a probability measure M(dt, dx, dv) and for pr1,2 :

(t, x, v) 7→ (t, v), define

µ(dt, dx) := (pr1,2# M)(dt, dx, dv)(3.10)

and disintegrate M(dt, dx, dv) according to Theorem 3.4 with respect to µ(dt, dx)

M(dt, dx, dv) =

∫
Mt,x(dv)µ(dt, dx),(3.11)

to get a (t, x)-Borel measurable family of measures Mt,x(dv). When M(dt, dx, dv) has finite

first moment the barycentric projection u(t, x) given by

u(t, x) =

∫
vMt,x(dv)(3.12)

is, according to item (3) of Theorem 3.3, well-defined for µ-almost all (t, x) and, once ex-

tended by 0 to the remaining (t, x)’s, it defines an (t, x)-measurable function which satisfies∫

[0,T ]×R6

vM(dt, dx, dv) =

∫

[0,T ]×R3

u(t, x)µ(dt, dx).

Lemma 3.5. For each N let
{
ν(N)
x (dy)

}
be a Borel measurable family of probability mea-

sures on Y and let ν(N)
x (dy) converge weakly to νx(dy) for all x ∈ X. Then for µ a probability

measure on X

(1) {νx(dy)} is a Borel measurable family, and

(2)

∫
ν(N)
x (dy)µ(dx) ⇒

∫
νx(dy)µ(dx).

Proof. Let M = {B ∈ B(Y ) : x→ νx(B) Borel measurable}. For the first assertion, it is

enough to show M = B(Y ). By definition M ⊂ B(Y ), so it is enough to show B(Y ) ⊂ M.

Or, for C = {B ⊂ Y, closed} it is enough to show σ(C) ⊂ M.

First notice that M is closed under increasing limit and with respect to difference of sets:

for any increasing sequence in M, B1 ⊂ B2 ⊂ . . . such that Bn → B, νx(Bn) → νx(B).

Therefore νx(B) is Borel, i.e. B ∈ M. Also if both A and C are in M and A ⊂ C, we have

νx(C\A) = νx(C)− νx(A), therefore νx(C\A) is Borel and C\A ∈ M.
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Next we show C ⊂ M. For any B ∈ C, approximate fn(y) → χB(y), n → ∞ by fn

positive, continuous and bounded (e.g. fn(y) = (1 + nd (y,B))−1). Then

νx(B) =

∫
χBνx(dy) = lim

n→∞

∫
fnνx(dy) = lim

n→∞
lim

N→∞

∫
fnν

(N)
x (dy).(3.13)

By assertion (2) in Theorem 3.3 (General Fubini),

∫
fnν

(N)
x (dy) is Borel, therefore so is

νx(B).

It is clear that C is closed under finite intersections and Y ∈ C. Then by the Monotone

Class Theorem, [JP], p.36, σ(C) ⊂ M.

For the second assertion note that for any f(x, y) bounded continuous,

lim
N→∞

∫∫
f(x, y)ν(N)

x (dy)µ(dx) =

∫
lim

N→∞

(∫
f(x, y)ν(N)

x (dy)

)
µ(dx)

=

∫ (∫
f(x, y)νx(dy)

)
µ(dx)

=

∫∫
f(x, y)νx(dy)µ(dx).

(3.14)

�

Remark 1. Suppose ν(N)
x (dy) converges weakly to νx(dy) for µ-a.e x ∈ X. Then Lemma

3.5 holds for νx(dy) extending trivially.

3.3. Interaction Terms. Define now for Φ from (2.4) and for any ϕ ∈ C∞
0 ((0, T ) × R

3)

I
(N)
Φ (t, ϕ) := −

1

NσN

N∑

i=1

ϕ(t, xi(t))

N∑

j=1
j 6=i

Φ′

(
|xi(t)− xj(t)|

σN

)
xi(t)− xj(t)

|xi(t)− xj(t)|
,(3.15)

I
(N)
Φ (ϕ) =

∫ T

0
I
(N)
Φ (t, φ) dt,(3.16)

and

IΦ(ϕ) := lim
N→∞

I
(N)
Φ (ϕ),(3.17)

when the limit exists. We will not insist on the form of the IΦ term here. [D] shows how IΦ

can be weakly of the form divS for interaction potentials without forces close to the center
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of the interaction, cf. [G], p. 110. IΦ vanishes for the examples that follow here in section

4. Other forms of I and its role will appear elsewhere.

3.4. The Main Theorems. We are now ready to prove the main theorems on the hydro-

dynamic equations at the limit of infinitely many molecules.

Theorem 3.6. Assume that

(1) M (N)(dt, dx, dv) as in (3.9) converge weakly to M(dt, dx, dv) and

(2) for some ε > 0

sup
N

∫
|v|2+εM (N)(dt, dx, dv) <∞.(3.18)

Then the barycentric projection u of M(dt, dx, dv) as in (3.12) satisfies u ∈ L2+ε([0, T ] ×

R
3, µ) for µ(dt, dx) as in (3.10), and for µt such that µ =

∫
µt(dx)dt and any ϕ ∈

C∞
0 ((0, T ) × R

3) the following continuity and momentum equations hold:

∫ T

0

∫

R3

{
∂ϕ

∂t
(t, x) +∇xϕ(t, x) · u(t, x)

}
µt(dx) dt = 0,(3.19)

∫ T

0

∫

R3

∂ϕ

∂t
(t, x)u(t, x)µt(dx)dt+

∫ T

0

∫

R3

∇ϕ(t, x) · u(t, x)u(t, x)µt(dx)dt

= −

∫ T

0

∫

R3

∇ϕ(t, x) ·

∫
(v − u(t, x))(v − u(t, x))Mt,x(dv) µt(dx)dt + IΦ(ϕ).

(3.20)

Proof. For any ϕ(t, x) ∈ C∞
0 ((0, T ) × R

3), by the first of (2.4)

d

dt

∑

i

ϕ
(
t, x

(N)
i

)
=

∑

i

∂tϕ
(
t, x

(N)
i

)
+∇xϕ

(
t, x

(N)
i

)
u
(N)
i =

∫

R6

(∂tϕ(t, x) +∇xϕ(t, x)v)M
(N)
t (dx, dv)

(3.21)

and by the second of (2.4)

d

dt

∑

i

ϕ
(
t, x

(N)
i

)
u
(N)
i =

∑

i

∂tϕ
(
t, x

(N)
i

)
u
(N)
i +∇xϕ

(
t, x

(N)
i

)
· u

(N)
i u

(N)
i + I

(N)
Φ (ϕ)

=

∫

R6

(∂tϕ(t, x)v +∇xϕ(t, x) · v v)M
(N)
t (dx, dv) + I

(N)
Φ (ϕ).

(3.22)
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Integrating over [0, T ], and since ϕ(t, x) has compact support, the left hand sides of these

equations integrate to 0. This gives the continuity and momentum equations for each N -

system:
∫

[0,T ]×R6

(∂tϕ(t, x) +∇xϕ(t, x)v)M
(N)(dt, dx, dv) = 0,

(3.23)

∫

[0,T ]×R6

(∂tϕ(t, x)v +∇xϕ(t, x) · vv)M
(N)(dt, dx, dv) + I

(N)
Φ (ϕ) = 0.

(3.24)

The first marginalM (N)(dt, dx, dv) is dt for allN . Therefore the first marginal ofM(dt, dx, dv),

and hence of µ(dt, dx), is also dt. By the weak convergence of M (N)(dt, dx, dv) and the def-

inition of µt
∫

[0,T ]×R6

∂tϕ(t, x)M
(N)(dt, dx, dv) →

∫

[0,T ]×R6

∂tϕ(t, x)M(dt, dx, dv)

=

∫

[0,T ]×R3

∂tϕ(t, x)

∫

R3

Mt,x(dv)µ(dt, dx)

=

∫

[0,T ]×R3

∂tϕ(t, x)µ(dt, dx)

=

∫ T

0

∫

R3

∂tϕ(t, x)µt(dx)dt.

(3.25)

In addition, from (3.18)

sup
N

∫

[0,T ]×R6

|∇xϕ(t, x) v|
2+εM (N)(dt, dx, dv) ≤ Cϕ sup

N

∫

[0,T ]×R6

|v|2+εM (N)(dt, dx, dv) <∞,

(3.26)

and similarly for integrals involving ∂tϕ instead of ∇xϕ. Then, using Lemma 3.2, definition

(3.12), and the definition of µt,

∫

[0,T ]×R6

∇xϕ(t, x)v M
(N)(dt, dx, dv) →

∫

[0,T ]×R6

∇xϕ(t, x)vM(dt, dx, dv)

=

∫ T

0

∫

R3

∇xϕ(t, x)u(t, x)µt(dx)dt,

(3.27)
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∫

[0,T ]×R6

∂tϕ(t, x)vM
(N)(dt, dx, dv) →

∫

[0,T ]×R6

∂tϕ(t, x)vM(dt, dx, dv)

=

∫ T

0

∫

R3

∂tϕ(t, x)u(t, x)µt(dx)dt,

(3.28)

∫

[0,T ]×R6

∇xϕ(t, x) · vvM
(N)(dt, dx, dv) →

∫

[0,T ]×R6

∇xϕ(t, x) · vvM(dt, dx, dv).
(3.29)

Adding and subtracting u(t, x), the last limit can be rewritten as

∫

[0,T ]×R6

∇xϕ(t, x) · vvM(dt, dx, dv)

=

∫

[0,T ]×R3

∇xϕ(t, x) ·

∫

R3

{(v − u(t, x))(v − u(t, x)) + u(t, x)u(t, x)

+ (v − u(t, x))u(t, x) + u(t, x)(v − u(t, x))}Mt,x(dv)µ(dt, dx),

(3.30)

where the last two terms in the Mt,x integrand integrate to zero. For the remaining terms,

notice that M(dt, dx, dv) has finite v-moment by (3.18), and therefore, according to the

remarks following (3.12), u(t, x) is measurable. In addition,

∫

[0,T ]×R3

|u(t, x)|2+ε µ(dt, dx) =

∫

[0,T ]×R3

∣∣∣∣
∫
vMt,x(dv)

∣∣∣∣
2+ε

µ(dt, dx)

≤

∫

[0,T ]×R3

∫
|v|2+εMt,x(dv)µ(dt, dx)

=

∫

[0,T ]×R6

|v|2+εM(dt, dx, dv)

≤ lim inf
N

∫

[0,T ]×R6

|v|2+εM (N)(dt, dx, dv) <∞,

(3.31)

where in the last step we used the lower semicontinuity of weak convergence (valid for all

lower semicontinuous and bounded below functions). Therefore, u ∈ L2+ε([0, T ] × R
3, µ)

and ∇xϕ(t, x) ·(v−u(t, x))(v−u(t, x)) and ∇xϕ(t, x) ·u(t, x)u(t, x) are separately integrable
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with respect to M . We can then write

∫

[0,T ]×R6

∇xϕ(t, x) · vvM(dt, dx, dv)

=

∫ T

0

∫

R3

∇ϕ(t, x) · u(t, x)u(t, x)µt(dx)dt

+

∫ T

0

∫

R3

∇ϕ(t, x) ·

∫
(v − u(t, x))(v − u(t, x))Mt,x(dv) µt(dx)dt.

(3.32)

The existence of the two limits (3.28), (3.29) and equation (3.24) imply that I
(N)
Φ (ϕ) also

converges. �

Remark 2. It is standard that for u(t, x) ∈ L1
(
[0, T ]× R

3, µ
)
satisfying the continuity

equation (3.19) there is weakly continuous in t Borel family {µ̃t(dx)} such that µ̃t(dx) =

µt(dx) for almost all t, see [AGS], Lemma 8.1.4.

Example 3.7. The sequence of measures M (N)(dt, dx, dv) on [0, T ] × R
6 has weakly con-

vergent subsequence whenever there is finite constant B such that for almost all t

1

N

N∑

i=1

∣∣∣x(N)
i (t)

∣∣∣
2
< B,

1

N

N∑

i=1

∣∣∣u(N)
i (t)

∣∣∣
2
< B :(3.33)

by Chebyshev’s inequality,

∫∫

|(t,x,v)|>R

M
(N)
t (dx, dv)dt ≤

∫ T

0

∫

R6

t2 + |x|2 + |v|2

R2
M

(N)
t (dx, dv)dt

≤
1

R2

(
2BT +

T 3

3

)
.

(3.34)

The claim now follows from Prohorov’s criterion, see [GS], p. 362.

Conditions (3.33) are satisfied whenever the same inequalities hold at t = 0 and the

energies are uniformly bounded in N , see [M], Theorem 5.2. See also [D], Proposition 3.1.

The following shows that pointwise convergence and bounds give the same results as in

the previous theorem. This version is closer to the main result in [D].
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Whereas Theorem 3.6 is useful for describing the measurability of the u and its assump-

tions are weaker than those of Theorem 3.8 that follows, the pointwise convergence of

measures M
(N)
t (dx, dv) ⇒ M̂t(dx, dv) is perhaps of more interest for applications.

Theorem 3.8. Let T > 0 be any fixed finite time. Assume that there is subsequence of

positive integers, and some ǫ > 0 such that for all N ’s of that subsequence and for almost

all t in [0, T ] the following hold:

(1) M
(N)
t (dx, dv) ⇒ M̂t(dx, dv), N → ∞,

(2) sup
N

∫
|uN |2+ǫ(t, x)µ

(N)
t (dx) <∞.

Let µ̂t be the first marginal of M̂t and û(t, x) the corresponding barycentric projection.

Then

∫ ∫
|û|2+ǫ(t, x)µ̂t(dx)dt <∞ and the continuity equation (3.19) and the momentum

equation (3.20) hold for µ̂t and û(t, x).

Proof. Lemma 3.5 and the first assumption here imply

∫
M

(N)
t (dx, dv)dt ⇒

∫
M̂t(dx, dv)dt =:

M(dt, dx, dv). This is the first assumption of Theorem 3.6. Also the second assumption here

implies the second assumption of Theorem 3.6. Therefore the continuity and momentum

equations are satisfied for u and µt as defined in Theorem 3.6 for M .

By definition of Mt,x(dv) in Theorem 3.6, {Mt,x(dv)} is Borel measurable in (t, x), there-

fore for fixed t Borel measurable in x. ThenMt(dx, dv) :=

∫
Mt,x(dv)µt(dx) is well defined.

Next we show M̂t = Mt for all most t. Notice that for any B Borel in [0, T ] × R
6, by the

definitions of Mt,x(dv) and µt(dx)
∫
χBM(dt, dx, dv) =

∫ (∫
χBMt,x(dv)

)
µ(dt, dx)

=

∫ (∫ (∫
χBMt,x(dv)

)
µt(dx)

)
dt

=

∫ (∫
χBMt(dx, dv)

)
dt.

(3.35)

Therefore M(dt, dx, dv) =

∫
Mt(dx, dv)dt. The uniqueness of the disintegration of M with

respect to dt gives M̂t(dx, dv) = Mt(dx, dv) for almost all t, therefore µ̂t(dx) = µt(dx)

for almost all t. Now the uniqueness of the disintegration of M̂t(dx, dv) with respect to
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µ̂t(dx) gives Mt,x(dv) = M̂t,x(dv) for dt-almost all t and µ̂t-almost all x. This implies that

û(t, x) = u(t, x) for dt-almost all t and µ̂t-almost all x. Then the assertions of the Theorem

follow from their counterparts in Theorem 3.6 for u(t, x) and µt(dx). �

3.5. Subsequences for bounded velocities and bounded accelerations. The second

assumption of Theorem 3.8 clearly holds whenever velocities are uniformly bounded in N

for all t in [0, T ] since µ
(N)
t are probability measures for all N and t. We now show that

if the solutions of the N -Hamiltonian systems have velocities and accelerations uniformly

bounded in N for all t ∈ [0, T ] then the first assumption of Theorem 3.8 also holds. The

main tool for this is the use of characteristic functions rather than the Prohorov’s criterion,

cf. [M], p. 291. We then use Lévy continuity, which holds without passing to subsequences,

for the convergence of measures.

Proposition 3.9. Assume uniformly bounded in N accelerations (and therefore velocities

and positions):

∣∣∣x(N)
i (t)

∣∣∣ ,
∣∣∣u(N)

i (t)
∣∣∣ ,
∣∣∣∣
d

dt
u
(N)
i (t)

∣∣∣∣ ≤ BT , t ∈ [0, T ], i = 1, . . . , N, N ∈ N.(3.36)

Then there is a subsequence Ni of N ’s, independent of t, such that for all t in [0, T ],

M
(Ni)
t (dx, dv) ⇒Mt(dx, dv).(3.37)

Proof. The characteristic of M
(N)
t is

ψN (t, y, w) =

∫
ei(y · x+ w · v)M

(N)
t (dx, dv)

=
1

N

N∑

j=1

e
i ( y · x

(N)
j (t) + w · u

(N)
j (t) )

.

(3.38)
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Therefore

∂tψN (t, y, w) = i
1

N

N∑

j=1

e
i
(
y · x

(N)
j (t) + w · u

(N)
j (t)

) (
y · u

(N)
j (t) + w ·

(
u
(N)
j

)′
(t)

)
,

∇yψN (t, y, w) = i
1

N

N∑

j=1

e
i
(
y · x

(N)
j (t) + w · u

(N)
j (t)

)
x
(N)
j (t),

∇wψN (t, y, w) = i
1

N

N∑

j=1

e
i
(
y · x

(N)
j (t) + w · u

(N)
j (t)

)
u
(N)
j (t),

(3.39)

are all bounded. In particular, for each fixed T and k ∈ N, there is uniformly convergent

subsequence of ψN (t, y) on [0, T ]×Bk(0) by Arzela-Ascoli. Therefore, by taking k → ∞ and

diagonalizing, there is subsequence ψNi
which converges for all t and y in [0, T ] × R

3 (and

which still converges uniformly on any [0, T ] × compact). The limit is, of course, continuous

in t, y, and w as the uniform limit of continuous functions. Apply now the Lévy continuity

theorem [JP], p. 167, for any fixed t on this subsequence to find that, without resorting to

any further subsequence, MNi

t (dx, dv) converges weakly for all t. �

4. Solutions with bounds uniform in N .

For each fixed N the solutions of the N -system stay of course bounded on finite time

intervals, by continuity. Given uniform bounds on the energy and the initial conditions,

the averages
1

N

∑∣∣∣x(N)
i (t)

∣∣∣
2
,
1

N

∑∣∣∣u(N)
i (t)

∣∣∣
2
stay uniformly bounded in N on finite time

intervals, cf. [M], Theorem 5.2. Here we show that there exists a class of examples where

the solutions themselves stay bounded uniformly in N on any finite interval. This class

then satisfies all assumptions of Theorem 3.8.
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We are interested then in uniform in N estimates for the system of ODEs (where the

solutions now show their dependence on N):

dx
(N)
i

dt
= u

(N)
i ,

du
(N)
i

dt
= −

N∑

j=1
j 6=i

1

σN
Φ′




∣∣∣x(N)
i (t)− x

(N)
j (t)

∣∣∣
σN


 x

(N)
i (t)− x

(N)
j (t)∣∣∣x(N)

i (t)− x
(N)
j (t)

∣∣∣
, 1 ≤ i ≤ N,

(4.1)

with σN → 0.

Theorem 4.1. Assume Φ′ decreasing on (0,∞), {xi(0), ui(0)}i∈N satisfying

|xi(0)| ≤ X, |ui(0)| ≤ U, for all i ∈ N,(4.2)

BN such that for Xij := xi(0)− xj(0) and Uij := ui(0) − uj(0)

Xij · Uij − 2T |Xij|BN − 3T 2 |Uij |BN − 2T 3B2
N ≥ 0,(4.3)

and σN such that

−
1

σN

N∑

j=1
j 6=i

Φ′

(
|Xij |

σN

)
< BN , for all i = 1, . . . , N.(4.4)

Then the solutions of (4.1) with initial conditions {xi(0), ui(0)}i=1,...,N satisfy

∣∣∣x(N)
i (t)− x

(N)
j (t)

∣∣∣
x in t ∈ [0, T ],

∣∣∣∣
d

dt
u
(N)
i (t)

∣∣∣∣ ≤ BN , t ∈ [0, T ],
(4.5)

(and, therefore
∣∣∣x(N)

i (t)
∣∣∣ ≤ X + UT +BNT

2,
∣∣∣u(N)

i (t)
∣∣∣ ≤ U +BNT , t ∈ [0, T ]).

Remark 3. It is necessary, from (4.3) that the increments of positions and velocities are

“alligned” in the sense that

Xij · Uij = (xi(0)− xj(0)) · (ui(0)− uj(0)) > 0.(4.6)
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Proof of Theorem 4.1. Let

A
(N)
i (t) = −

N∑

j=1
j 6=i

1

σN
Φ′




∣∣∣x(N)
i (t)− x

(N)
j (t)

∣∣∣
σN


 x

(N)
i (t)− x

(N)
j (t)∣∣∣x(N)

i (t)− x
(N)
j (t)

∣∣∣
,(4.7)

and

F
(N)
i (t) = −

N∑

j=1
j 6=i

1

σN
Φ′




∣∣∣x(N)
i (t)− x

(N)
j (t)

∣∣∣
σN


 .(4.8)

Then

∣∣∣A(N)
i (t)

∣∣∣ ≤ F
(N)
i (t).(4.9)

Suppose t = tN is the first time such that F
(N)
i (tN ) = BN . By continuity, tN > 0. Then

for 0 ≤ t ≤ tN ,

∣∣∣A(N)
i (t)

∣∣∣ ≤ BN ,(4.10)

and

1

2

d

dt

∣∣∣x(N)
i (t)− x

(N)
j (t)

∣∣∣
2
=

(
x
(N)
i (t)− x

(N)
j (t)

)
·
(
u
(N)
i (t)− u

(N)
j (t)

)

=

(
Xij +

∫ t

0

(∫ s

0

(
A

(N)
i (q)−A

(N)
j (q)

)
dq + Uij

)
ds

)
·

(
Uij +

∫ t

0

(
A

(N)
i (s)−A

(N)
j (s)

)
ds

)
,

(4.11)

after using the equations of motion. Expanding and using (4.10), this is estimated from

below by

Xij · Uij − |Uij |

∫ t

0

∫ s

0
2BNdqds− |Xij |

∫ t

0
2BNds− t |Uij |

∫ t

0
2BNds −

∫ t

0
2BNds

∫ t

0

∫ s

0
2BNdqds

≥ Xij · Uij − 2T |Xij |BN − 3T 2 |Uij|BN − 2T 3B2
N ,

(4.12)

which, by (4.3), is positive. Then |xi(t) − xj(t)| is increasing on 0 ≤ t ≤ tN . By the

monotonicity of Φ′,

F
(N)
i (tN ) ≤ F

(N)
i (0) < BN ,(4.13)
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which contradicts our assumption that F
(N)
i (tN ) = BN . Therefore for all 0 ≤ t ≤ T ,

∣∣∣∣
d

dt
u
(N)
i (t)

∣∣∣∣ =
∣∣∣A(N)

i (t)
∣∣∣ ≤ BN ,

∣∣∣u(N)
i (t)

∣∣∣ =
∣∣∣∣ui(0) +

∫ t

0
A

(N)
i (s)ds

∣∣∣∣ ≤ U +BNT,

∣∣∣x(N)
i (t)

∣∣∣ =
∣∣∣∣xi(0) +

∫ t

0
u
(N)
i (s)ds

∣∣∣∣ ≤ X + UT +BNT
2,

(4.14)

and
∣∣∣x(N)

i (t)− x
(N)
i (t)

∣∣∣ increases on [0, T ]. �

Note that boundedness of positions implies

inf
i,j∈N
i 6=j

|xi(0) − xj(0)| = 0.(4.15)

Then (4.3) gives

B2
N ≤

min
1≤i 6=j≤N

Xij · Uij

2T 3
≤ 2U

min
1≤i 6=j≤N

|Xij |

2T 3
→ 0.(4.16)

Example 4.2. The alignment condition (4.6) is easily satisfied as the following examples

show:

(1) ui(0) = λxi(0), 0 < λ (bursts).

(2) All xi(0)’s are on the (x, y) plane and all ui(0)’s are of the form ui(0) = (α, β,±γ)

for some fixed α, β, γ.

(3) All xi(0)’s are of the form xi(0) = (ai, bi, 0) and the ui(0)’s are ui(0) = (ai, bi, ci).

Example 4.3. For −Φ′(r) = r−p, p > 1, (4.4) becomes

σp−1
N

N∑

j=1
j 6=i

1

|Xij |
p ≤ BN .(4.17)

Then it is enough to set

σN =

(
BN

N

)1/(p−1)

min
1≤i,j≤N

i 6=j

|Xij |
p/(p−1).(4.18)
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In addition, in the “burst” case, i.e. ui(0) = λxi(0), (4.3) is satisfied if we set

BN =

min
1≤i 6=j≤N

Xij · Uij

4XT + 6UT 2 + 2T 3
=

min
1≤i 6=j≤N

λ |Xij |
2

4XT + 6UT 2 + 2T 3
.(4.19)

Since we are adding molecules in a bounded domain, a reasonable case is

min
1≤i 6=j≤N

|Xij | = αN−1/3.(4.20)

With this choice,

BN =
λα2

4XT + 6UT 2 + 2T 3
N−2/3 = βN−2/3(4.21)

Then (4.18) becomes

σN = β1/(p−1)αp/(p−1)N−(5+p)/3(p−1) → αN−1/3, p→ ∞.(4.22)

Corollary 4.4. There are σN ’s such that the uniform estimates are always satisfied for

Maxwellian −Φ′(r) = r−p, p > 1 and bounded and aligned initial conditions.

Under the same initial conditions and choice of σN as in Theorem 4.1, and after iterating

the proof of the Theorem, the standard Picard iteration converges for all t in [0, T ]. Details

appeared in the second author’s thesis [J].

Theorem 4.5. Assume Φ, {xi(0), ui(0)}i∈N, and σN as in the statement of Theorem 4.1.

Then all conditions of Theorem 3.8 are satisfied, and IΦ now vanishes. In particular, the

momentum equation is

∫ T

0

∫

R3

∂ϕ

∂t
(t, x)u(t, x)µt(dx)dt+

∫ T

0

∫

R3

∇ϕ(t, x) · u(t, x)u(t, x)µt(dx)dt

= −

∫ T

0

∫

R3

∇ϕ(t, x) ·

∫
(v − u(t, x))(v − u(t, x))Mt,x(dv) µt(dx)dt.

(4.23)

Proof. That bounded velocities and accelerations imply that the condition of Theorem

3.8 are satisfied was established in section 3.5. Therefore the continuity and momentum

equations are both satisfied.
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For the IΦ term first note that as

∣∣∣∣
d

dt
u
(N)
i (t)

∣∣∣∣ ≤ BN ,

∣∣∣I(N)
Φ (t, φ)

∣∣∣ =
∣∣∣∣∣−

1

N

∑

i

φ(t, x
(N)
i (t))

d

dt
u
(N)
i (t)

∣∣∣∣∣

≤ CφBN .

(4.24)

Therefore, after using (4.16), obtain
∣∣∣I(N)

Φ (t, φ)
∣∣∣ → 0, as N → ∞, for any φ. �

Equation (4.23) is identical to Maxwell’s equation (76) in [Max], with u and all averages

now rigorously defined, when there are no external forces and all molecules are identical.

Maxwell obtains his equation assuming: i) elastic, binary collisions, ii) −Φ′(r) = r−5, iii)

molecular chaos, and iv) negligible interaction between molecules “not in the same volume

element,” see [Max] p. 70. We have deduced the same equation here rigorously assuming

Hamiltonian dynamics. Maxwell’s assumption on negligible interactions is here reflected by

rescaling Φ by σN satisfying (4.4).

We recall here that Maxwell also argues on how to approximate the hydrodynamic equa-

tion (4.23) up to certain order so that it becomes the compressible Navier-Stokes in the case

of laminar flows. In particular, (4.23) contains information on the transport coefficients of

the macroscopic system. This will be presented elsewhere.
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