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AUSONI-BÖKSTEDT DUALITY FOR TOPOLOGICAL HOCHSCHILD
HOMOLOGY

J.P.C.GREENLEES

Abstract. We consider the Gorenstein condition for topological Hochschild homology, and
show that it holds remarkably often. More precisely, if R is a commutative ring spectrum
and R −→ k is a map to a field of characteristic p then, provided k is small as an R-module,
THH(R; k) is Gorenstein in the sense of [11]. In particular, this holds if R is a (conventional)
regular local ring with residue field k of characteristic p.

Using only Bökstedt’s calculation of THH(k), this gives a non-calculational proof of
dualities observed by Bökstedt [9] and Ausoni [3], Lindenstrauss-Madsen [17], Angeltweit-
Rognes [4] and others.
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1. Introduction

The present work was stimulated by calculations of topological Hochschild homology by
Bökstedt [9] and Ausoni [3]. Given a map of commutative ring spectra R −→ k, we may
view k as an R-bimodule and hence define THH∗(R; k). Identifying conventional rings
with Eilenberg-MacLane ring spectra, we may take k to be a field, and the calculations
give striking examples where THH∗(R; k) is Gorenstein. These and other calculations are
summarized in Section 5, and the reader unfamiliar with them may wish to glance at them
before proceeding.

The purpose of the present paper is to give a non-calculational explanation of this duality.
Most are instances of the following result which covers many cases where there is currently
no complete calculation. The basic definitions of THH are described in Section 2 and the
Gorenstein apparatus is described in Section 4. The following theorem appears below as
Corollary 7.5.
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Theorem 1.1. If R is a connective commutative ring spectrum with a map R −→ k where
k is a field of characteristic p > 0 then provided (i) k is small as a R-module and (ii) R
is Gorenstein of shift a then THH(R; k) is Gorenstein of shift −a − 3 and has Noetherian
homotopy groups.

This should be contrasted with the algebraic case (i.e., working under k rather than under
the sphere spectrum). In this case, if R is a k-algebra, under the same hypotheses we expect
HH∗(R|k; k) to be Gorenstein a shift of −a (see Remark 7.6 and Appendix B).

It is essential to the argument that we are working in characteristic p, and the only
calculational input is Bökstedt’s result that THH∗(Fp) = Fp[µ2] (this is Gorenstein of shift
−3, which explains the −3 in the statement of the theorem). The two technical ingredients
are (A) a cofibre sequence conjectured to explain the Gorenstein calculations and proved by
Dundas and (B) an extension of the usual Gorenstein ascent theorem.

There is a strong precedent for calculations based on Gorenstein ascent. Indeed if S −→
R −→ Q is a cofibre sequence (i.e., Q ≃ R ⊗S k)1, the Gorenstein property often behaves
well in the sense that if S and Q are Gorenstein then so is R. To illustrate its use we
show how this, together with Morita invariance, lets us generate most Gorenstein rings from
from 0-dimensional ones. To start with, exterior algebras E are Poincaré duality algebras
(and hence 0-dimensional Gorenstein rings) and since any polynomial algebra P is Morita
equivalent to an exterior algebra E, polynomial algebras are Gorenstein. Next, by Noether
normalization any Noetherian k-algebra R is finitely generated as a module over a polynomial
subring P so that the cofibre Q = R⊗P k is finite dimensional. Since P is Gorenstein, R is
Gorenstein if and only if Q is a Poincaré duality algebra, so Gorenstein rings are constructed
from a polynomial algebra and a Poincaré duality algebra. Altogether, Gorenstein rings are
constructed from Poincaré duality algebras using Morita equivalences and cofibre sequences.

Duality phenomena are also ubiquitous in topology, starting with Poincaré duality and
moving on to coefficient rings of many equivariant cohomology theories [11]. Once again it
seems these all come from a rather small collection of basic examples, namely the chains on
a group or the cochains on a manifold. Using Morita equivalences and cofibre sequences one
can generate a wide variety of further examples, perhaps most notably C∗(BG) for compact
Lie groups G whose adjoint representation is orientable [11]. The present paper shows that
Bökstedt’s calculation provides a new source of Gorenstein examples.

The rest of the paper is organized as follows. Sections 2, 3 and 4 provide summaries of
relevant background. Section 5 gives summaries of various calculations from the literature.
Section 6 proves the Gorenstein Ascent result we need, and Section 7 proves the main result.
We finish in Section 8 by discussing the implications of the result for a number of examples.
There are two appendices which describe similar results. In Appendix A we consider THH
of Thom spectra via the work of Blumberg-Cohen-Schlichtkrull [8], and in Appendix B we
consider algebraic Hochschild homology (i.e., under k rather than under the sphere spectrum)
where a result of Dwyer-Miller gives analogous duality statements.

During the genesis of the paper, I have discussed my speculations with many people, and I
am grateful to V.Angeltveit, C.Ausoni, D.Benson, B.Dundas, W.G.Dwyer and A.Lindenstrauss

1These are often called fibre sequences in the algebra literature because of the fact that cochains on
topological fibre sequences give examples, but this would lead to confusion in the present context.

2



for their patience and sharing their ideas. I am particularly grateful to B.Dundas for provid-
ing a proof of the critical conjectured cofibration described in Lemma 7.1, and allowing me
to publish it here. I would like to thank the University of Lille for inviting me to give lectures
on duality in 2012, when these ideas started to make progress, and MSRI for providing an
excellent environment for completing this account.

2. Hochschild homology and cohomology

We suppose given maps S −→ R −→ k of ring spectra; as usual we include the case of
conventional rings through the use of Eilenberg-MacLane spectra. We write Re = Re

S =
R⊗S R, and we write P for an Re-module, which we refer to as an (R,R)-bimodule over S.
Thus we may talk of the Hochschild homology spectrum

HH•(R|S;P ) = R⊗Re P

and the Hochschild cohomology spectrum

HH•(R|S;P ) = HomRe(R,P ).

The Hochschild homology and cohomology groups are obtained by taking homotopy groups

HH∗(R|S;P ) = π∗HH•(R|S;P ) and HH∗(R|S;P ) = π∗HH•(R|S;P ).

If R and S are conventional rings, R is flat over S and P is a conventional module, this
agrees with the standard definitions in algebra.

In the examples of most concern to us here, S = S is the sphere spectrum, and we have
we have topological Hochschild homology THH(R;P ) := HH•(R|S;P ).

3. Two spectral sequences

We are going to be concerned with cofibre sequences of commutative ring spectra, S −→
R −→ Q, in the sense that Q ≃ R ⊗S k. In the topological context one is used to having
spectral sequences as basic calculational tools. It is convenient to have them available more
generally.

3.A. The connective case. This is the situation when the ring spectra S,R and Q are
all connective. The first example of this is analogous to what happens when we have a
short exact sequence of compact Lie groups 1 −→ N −→ G −→ G/N −→ 1. We take
S = C∗(N), R = C∗(G) and Q = C∗(G/N) and in this case we have the homological Serre
spectral sequence

E2
∗,∗ = H∗(G/N ;H∗(N))⇒ H∗(G)

of the fibration N −→ G −→ G/N .

Lemma 3.1. If S −→ R −→ Q is a cofibre sequence of connective commutative algebras
augmented over k and π0(S) = k, and R is upward finite type as an S module (for example
[11, 3.13] if πn(R) is finite dimensional for each n) then there is a multiplicative spectral
sequence

E2
s,t = πs(Q)⊗k πt(S)⇒ πs+t(R),

with differentials

dr : Er
s,t −→ Er

s−r,t+r−1.
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Proof: We construct a tower

S −→ · · · −→ S(n) −→ S(n−1) −→ · · · −→ S(1) −→ S(0) = k

of commutative rings by killing homotopy groups, where S −→ S(n) is an isomorphism of π≤n
and πi(S

(n)) = 0 for i > n. Taking R(n) = R⊗SS
(n) we obtain a corresponding multiplicative

filtration of R, and consider the resulting spectral sequence. In view of the cofibre sequence
ΣtπtS −→ S(t) −→ S(t−1) of S-modules it is easy to write down an exact couple, and we
grade it so that

D2
s,t = πs+t(R⊗S S(t)) and E2

s,t = πs+t(R⊗S Σtπt(S)).

Now the action of S on πtS factors through S(0) = k, and hence

R⊗S Σtπt(S)) ≃ Σtπt(S)⊗k Q.

The d2 differential is induced by

R⊗S Σtπt(S) −→ R ⊗S S(t) −→ R⊗S Σt+2πt+1(S).

The convergence of the spectral sequence is the statement that the natural map

κ : R = R⊗S S ≃ R ⊗S [holim
← n

S(n)] −→ holim
← n

[R ⊗S S(n)]

is an equivalence. Since the S(n) are uniformly bounded below (by −1) the result follows (as
summarized in Lemma 6.3 below). �

3.B. The coconnective case. This is the situation when the ring spectra S,R and Q are
all coconnective. This does not play a role in our main applications and is included for
comparison. Because free commutative algebras are not usually coconnective we will need
to add a significant hypothesis.

One example of this arises if we start from a fibration F −→ E −→ B with B simply
connected and take S = C∗(B), R = C∗(E) and Q = C∗(F ). This obviously satisfies the
stringent additional hypothesis identified below, so the construction generalizes the Serre
spectral sequence

E∗,∗2 = H∗(B;H∗(F ))⇒ H∗(E).

Lemma 3.2. Suppose S −→ R −→ Q is a cofibre sequence of coconnective commutative
algebras augmented over k and π0(S) = k and R is downward finite type as an S module
(for example [11, 3.14] if π∗(S) is simply coconnected (i.e., π0(S) = k and π−1(S) = 0) and
πn(R) is finite dimensional for each n). If in addition that there is a tower

S −→ · · · −→ S(n) −→ S(n−1) −→ · · · −→ S(1) −→ S(0) = k

of coconnective commutative rings with πi(S(n)) = 0 for i < n. then there is a multiplicative
spectral sequence

Es,t
2 = π−s(S)⊗k π−t(Q)⇒ π−s−t(R),

with differentials

dr : E
s,t
r −→ Es−r,t+r−1

r .
4



Proof: By hypothesis, there is a tower

S −→ · · · −→ S(n) −→ S(n−1) −→ · · · −→ S(1) −→ S(0) = k

of commutative rings. Thus the map S −→ S(n) is an isomorphism of π≥−n and we have
cofibre sequences of S-modules

Σ−sπ−sS −→ S(s) −→ S(s−1).

We then get a spectral sequence

Ds,t
2 = π−s−t(R⊗S S(s)) and Es,t

2 = π−s−t(R⊗S Σ−sπ−sS)

The differentials then take the familiar cohomological form

dr : E
s,t
r −→ Es+r,t−r+1

r .

The convergence of the spectral sequence is the statement that the natural map

R = R⊗S S ≃ R⊗S holim
← n

S(n) −→ holim
← n

R⊗S S(n)

is an equivalence, and by Lemma 6.3 below this holds if R is of downward finite type over
S. �

4. Gorenstein ring spectra

We are considering duality phenomena modelled on those in commutative algebra of Noe-
therian rings, namely those associated to Gorenstein local rings. For ring spectra there is a
corresponding development, starting by restricting the class of rings by a finiteness condi-
tion and then the core Gorenstein condition followed by a duality statement. We recall some
definitions from [11].

4.A. Finiteness conditions. In a triangulated category if N can be finitely built from M
using cofibre sequences, finite sums and retracts, we write M |= N ; if N can be built from
M using cofibre sequences and arbitrary sums we write M ⊢ N .

We consider a map R −→ k of rings. The terminology comes from the special case when R
is a commutative local ring with residue field k. The first requirement is a finiteness condition,
which plays the role of the Noetherian condition from classical commutative algebra. The
Auslander-Buchsbaum-Serre theorem in commutative algebra states that if R is a Noetherian
local ring, k is small if and only if R is regular. This is far too strong a condition for us to
assume, but there is a much weaker and more practical one in the same vein. Indeed, for
commutative Noetherian local rings, we can always form the Koszul complex K associated to
a finite set of generators of the maximal ideal; this has the properties (i) K is small (R |= K)
(ii) K is finitely built from k (k |= K) and (iii) k is built from K (K ⊢ k). In the context of
more general ring objects, we say R is proxy-regular if there is an R-module K so that (i),
(ii) and (iii) hold, and we think of this as a finiteness condition playing a similar role to that
of being Noetherian.
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4.B. The Gorenstein condition. We now say that S −→ k is Gorenstein of shift a (and
write shift(S) = shift(k|S) = a) if we have an equivalence

HomS(k, S) ≃ Σak

of R-modules. More generally, we say that S −→ R is relatively Gorenstein of shift a (and
write shift(R|S) = a) if

HomS(R, S) ≃ ΣaR.

Analogously to the classical case, we are interested in proxy-regular rings which satisfy
the Gorenstein condition.

4.C. Gorenstein duality. Although the Gorenstein condition itself is convenient to work
with, the real reason for considering it is the duality property that it implies.

In classical local commutative algebra the Gorenstein duality property is that all local
cohomology is in a single cohomological degree, where it is the injective hull I(k) of the
residue field. To give a formula, we write ΓmM for the m-power torsion in an R-module M ,
and H∗

m
(M) for the local cohomology of M , recalling Grothendieck’s theorem that if R is

Noetherian, H∗
m
(M) = R∗Γm(M). The Gorenstein duality statement for a local ring of Krull

dimension r therefore states

H∗
m
(R) = Hr

m
(R) = I(k).

If R is a k-algebra, I(k) = R∨ = ΓmHomk(R, k).
Turning to ring spectra, if R is a k-algebra we may again define R∨ = cellk(Homk(R, k))

and observe this has the Matlis lifting property

HomR(T,R
∨) ≃ Homk(T, k)

for any T built from k. The case when R is not a k-algebra is more complicated, but will
not be needed here.

In particular, if R is Gorenstein of shift a we have equivalences of R-modules

HomR(k, cellkR) ≃ HomR(k, R)
(g)
≃ Σak

(m)
≃ HomR(k,Σ

aR∨),

where the equivalence (g) is the Gorenstein property and the equivalence (m) is the Matlis
lifting property. We would like to remove the HomR(k, ·) to deduce

cellkR ≃ ΣaR∨.

Such an equivalence is known as Gorenstein duality, since cellk(R) is a covariant functor of
R and R∨ is a contravariant functor of R.

Morita theory [11] says that if R is proxy-regular we may make this deduction provided R
is orientably Gorenstein in the sense that the right actions of E = HomR(k, k) on Σak implied
by the two equivalences (g) and (m) agree. This is automatic when the ring spectrum is
both a k-algebra and connected.

Proposition 4.1. Suppose R is a proxy-regular, connected k-algebra and π∗(R) is Noetherian
with π0(R) = k and maximal ideal m of positive degree elements. If R is Gorenstein of shift
a, then R it is automatically orientable and so has Gorenstein duality. Accordingly there is
a local cohomology spectral sequence

H∗
m
(R∗)⇒ ΣaR∨∗ .
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Proof: First we argue that if R is Gorenstein, it is automatically orientable. Indeed, we
show that E has a unique action on k. Since R is a k-algebra, the action of E on k factors
through

E = HomR(k, k) −→ Homk(k, k) = k,

so since k is an Eilenberg-MacLane spectrum, the action is through π0(E). Now we observe
that since R is connected, ExtsR∗

(k, k) is in degrees ≤ −s, so that the spectral sequence for
calculating π∗(HomR(k, k)) shows E is coconnective with π0(E) = k which must act trivially
on k. �

We note that if the coefficient ring π∗(R) is Gorenstein and R is connective then R is
Gorenstein. Indeed, the spectral sequence

Ext∗,∗R∗

(k, R∗)⇒ π∗(HomR(k, R))

collapses, to show π∗(HomR(k, R)) = Σak for some a. The R-module k is characterised by
its homotopy, so HomR(k, R) ≃ Σak. Conversely, if R is Gorenstein, this shows that the ring
π∗(R) has very special properties (even if it falls short of being Gorenstein). The following
statement corrects a typographical error in [12, 6.2].

Corollary 4.2. [12] Suppose R has Gorenstein duality of shift a, that π∗(R) is Noetherian
of Krull dimension r and Hilbert series p(t) =

∑
s dimk(Rs)t

s.

(1) If π∗(R) is Cohen-Macaulay it is also Gorenstein, and the Hilbert series satisfies

p(1/t) = (−1)rtr−ap(t).

(2) If π∗(R) is almost Cohen-Macaulay it is also almost Gorenstein, and the Hilbert series
satisfies

p(1/t)− (−1)rtr−ap(t) = (−1)r−1(1 + t)q(t) and q(1/t) = (−1)r−1ta−r+1q(t).

In any case π∗(R) is Gorenstein in codimension 0 and almost Gorenstein in codi-
mension 1.

4.D. The relatively Gorenstein case. We make the elementary observation that for any
ring map θ : S −→ R

HomR(k,HomS(R, S)) ≃ HomS(k, S).

Thus we conclude that if S −→ R is relatively Gorenstein then R is Gorenstein if and only
if S is Gorenstein, and in that case

shift(k|S) = shift(k|R) + shift(R|S).

Example 4.3. The ring map S = ko −→ ku = R is relatively Gorenstein of shift 2.
Indeed, the connective version of Wood’s theorem states that there is an equivalence ku ≃
ko ∧ (S0 ∪η e

2) of ko-modules, so that

Homko(ku, ko) ≃ Σ−2ku.

Since ku∗ = Z[v] we see that ku is Gorenstein of shift −4 over F2, and it follows that ko is
Gorenstein of shift −6 over F2.

7



Example 4.4. Precisely similar statements hold for tmf . This is based on results of
Hopkins-Mahowald [14], with an improved formal context of Hill-Lawson [13] giving maps
in the category of commutative tmf algebras. The results about finite cell complexes are
proved by Mathew [21].

As background we note that at primes p ≥ 5, we have tmf∗ = Z(p)[c4, c6] with c4 of degree
8 and c6 of degree 12. It is therefore immediate from the coefficients that tmf is Gorenstein
of shift −23 over Fp. The primes 3 and 2 are more interesting.

(i) At the prime 3, we consider the map tmf −→ tmf1(2) of commutative tmf -algebras
[13, Theorem 6.1]. There is an equivalence of tmf -modules

tmf1(2) ≃ tmf ∧ (S0 ∪α1
e4 ∪α1

e8)

([21, Theorem 7.7] gives an equivalence of spectra. Writing T = S0 ∪α1
e4 ∪α1

e8, a map
f : T −→ tmf1(3) determines a map tmf ∧ T −→ tmf1(3) of tmf -modules. To see that
the map is an equivalence we may check it is an isomorphism in mod 3 cohomology, and
for this we only need to check it is an epimorphism in mod 3 cohomology. Since tmf1(3) ≃
BP 〈2〉∨Σ8BP 〈2〉 only two generators are required over the Steenrod algebra, and it suffices
to choose f so that generators in degrees 0 and 8 are in the image). It follows that

Homtmf (tmf1(2), tmf) ≃ Σ−8tmf1(2).

Since tmf1(2)∗ = Z(3)[c2, c4] (where |ci| = 2i) we see that tmf1(2) is Gorenstein of shift −15.
Hence we deduce by Gorenstein descent that tmf −→ F3 is Gorenstein of shift −23.

(ii) At the prime 2, we consider the map tmf −→ tmf1(3) [13, Theorem 6.1] of commu-
tative tmf -algebras. Here tmf1(3) is a form of BP 〈2〉 (previously proved to have a com-
mutative model by Lawson-Naumann [15, 16]) and there is an equivalence of tmf -module
spectra

tmf1(3) ≃ tmf ∧DA(1)

(again, the equivalence of spectra is given in [21, Theorem 6.6]. A map DA(1) −→ tmf1(3)
determines a map of tmf -modules, and as above it suffices to show the resulting tmf -module
map tmf ∧ DA(1) −→ tmf1(3) is an epimorphism in mod 2 cohomology. Since the mod 2
cohomology is generated in degree 0 over the Steenrod algebra, this is easily arranged). It
follows that

Homtmf (tmf1(3), tmf) ≃ Σ−12tmf1(3).

Since tmf1(3)∗ = Z(2)[α1, α3] (where |αi| = 2i) we see that tmf1(3) is Gorenstein of shift
−11. Hence we deduce by Gorenstein descent that tmf −→ F2 is Gorenstein of shift −23.

In general, it can be difficult to decide if S −→ R is relatively Gorenstein, and we prefer
to give conditions depending on Q.

4.E. Gorenstein Ascent. In effect the Gorenstein Ascent theorem will state that under
suitable hypotheses (see Section 6) there is an equivalence

HomR(k, R) ≃ HomQ(k,HomS(k, S)⊗k Q).

When this holds, it follows that if S and Q are Gorenstein, so is R and

shift(R) = shift(S) + shift(Q).
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4.F. Arithmetic of shifts. We summarize the behaviour of Gorenstein shifts in the ideal
situation when ascent and descent both hold. If all rings and maps are Gorenstein of the
indicated shifts

a

S
λ
−→

b

R
µ
−→

c

Q

then b = a+ c, λ = −c and µ = a

5. Some known calculations

The paper is motivated by several calculations when S = S is the sphere spectrum.

Example 5.1. (The map R = Fp −→ Fp = k.) We consider the homotopy of THH(Fp).
Bökstedt [9] has calculated THH∗(Fp) = Fp[µ2]. The ring THH∗(Fp) is Gorenstein of shift
−3.

Example 5.2. (The map R = Z −→ Fp = k.) We consider the mod p homotopy of
THH(Z). Bökstedt [9] has calculated THH∗(Z;Fp) = Fp[µ2p] ⊗ ΛFp

(λ2p−1). The ring
THH∗(Z;Fp) is Gorenstein of shift (−2p − 1) + (2p − 1) = −2 (Bökstedt Duality). The
ring but not the shift depends on p.

The calculations of Lindenstrauss and Madsen [17, 4.4] have a similar pattern. Indeed,
if O is a ring of integers in a number field, which is either unramified or wildly ramified,
THH∗(O,O/p) is polynomial tensor exterior (over O/p) on generators differing in degree by
1. In the tamely ramified case the ring THH∗(O,O/p) is more complicated, but it is still
Gorenstein of shift −2.

Example 5.3. (The map R = lu −→ Fp = k.) We consider mod v1, p homotopy of
THH(lu) where lu is the Adams summand of p-local connective K-theory with coeffi-
cients lu∗ = Z(p)[v1]. McClure-Staffeldt [19] (see also Ausoni-Rognes [4]) have calculated
THH∗(lu;Fp) = Fp[µ2p2 ]⊗ ΛFp

(λ2p−1, λ2p2−1). The ring THH∗(lu;Fp) is Gorenstein of shift
(−2p2 − 1) + (2p− 1 + 2p2 − 1) = 2p− 3.

Example 5.4. (The map R = ku −→ ku/(p, v1) = k.) For primes p > 2, Ausoni
calculates the mod p, v1 homotopy of THH(ku) and shows that THH∗(ku; ku/(p, v1)) =
Λ(λ2p−1) ⊗ Fp[µ2p2] ⊗ Q, where Q is Poincaré duality algebra of formal dimension 2p2 − 1
[3, 9.15]. Although π∗(ku/(p, v1)) = Fp[v]/(v

p−1) is not a field, we may make still consider
duality properties over Fp. The ring THH∗(ku; ku/(p, v1)) has Gorenstein duality over Fp

with shift (−2p2−1)+(2p−1)+(2p2−1) = 2p−3 (Ausoni Duality). This striking example
stimulated the author to investigate Gorenstein duality for THH .

Example 5.5. (The map R = ko −→ HF2 = k.) Angeltveit and Rognes [4] show that
THH∗(ko;F2) = Λ(λ5, λ7) ⊗ F2[µ8]. The ring THH∗(ko;F2) is Gorenstein of shift 5 + 7 −
8− 1 = 3.

Example 5.6. (The map R = tmf −→ HF2 = k.) It is easily deduced from the calcula-
tions of Angeltveit and Rognes [4] that THH∗(tmf ;F2) = Λ(λ9, λ13, λ15)⊗F2[µ16]. The ring
THH∗(tmf ;F2) is Gorenstein of shift 9 + 13 + 15− 16− 1 = 20.
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6. Gorenstein ascent

We have begun to see the value of understanding the behaviour of the Gorenstein condition
in cofibre sequences, and we turn to a more systematic discussion.

We suppose that S −→ R −→ Q is a cofibre sequence of commutative algebras with a
map to k, and we now consider the Gorenstein ascent question. When does the fact that S
is Gorenstein imply that R is Gorenstein? It is natural to assume that Q is Gorenstein, but
it is known this is not generally sufficient. We identify a number of circumstances in which
it is sufficient, and in characteristic p we give a useful general result. Before we do this, we
look at the finiteness conditions.

6.A. Proxy-regularity. We provide a tool for proxy-regular ascent. It seems that some
hypothesis is necessary and we give one in a form applying to cases of interest here.

First, we should introduce notation for the standard Koszul complex associated to a se-
quence r1, r2, . . . , rn of elements of elements of π∗R. For x ∈ π∗(R) we define K(R; x) by the
cofibre sequence

R
x
−→ R −→ K(R; x),

and now we take

K(R; r1, . . . , rn) = K(R; r1)⊗R · · · ⊗R K(R; rn).

In the usual way, a concrete realization requires the choice of specific cocycle representatives,
but the homotopy type does not depend on these choices. If R is a classical ring, this gives
the standard construction K(R; x) = [R

x
−→ R] with the copies of R in degrees 0 and 1.

Lemma 6.1. Suppose that S is proxy-regular with Koszul complex KS and that Q has a
Koszul complex of the special form KQ = K(Q; q1, . . . , qn) where qi ∈ π∗(Q) lifts to ri ∈ π∗(R)
for i = 1, . . . , n. Then R is proxy-regular with Koszul complex KR := KS⊗SK(R; r1, . . . , rn).

Proof: There are three things to prove.
Since S |= KS and R |= K(R; r1, . . . , rn), it follows that

R = S ⊗S R |= KS ⊗S K(R; r1, . . . , rn) = KR.

Since Q ≃ k ⊗S R, we find firstly

k |= KQ = k ⊗S K(R; r1, . . . , rn) |= KS ⊗S K(R; r1, . . . , rn) = KR

and secondly

KR = KS ⊗S K(R; r1, . . . , rn) ⊢ k ⊗S K(R; r1, . . . , rn) = KQ ⊢ k.

This completes the proof. �

6.B. Good approximation implies ascent. The core of our results about ascent come
from [11]. Indeed, the proof of [11, 8.6] gives a sufficient condition for Gorenstein ascent in
the commutative context.

Lemma 6.2. If S and R are commutative and the natural map ν : HomS(k, S) ⊗S R −→
HomS(k, R) is an equivalence then

HomR(k, R) ≃ HomQ(k,HomS(k, S)⊗k Q).
10



In this case, if S and Q are Gorenstein, so is R, and the shifts add up: shift(R) =
shift(S) + shift(Q). �

Now that we have a sufficient condition for Gorenstein ascent, we want to identify cases in
which ν is an equivalence. The most familiar case is when R is small over S (or equivalently,
when Q is finitely built from k). We emphasize that the hypothesis on ν in Lemma 6.2 only
depends on R as amodule over S, and we will obtain a useful generalization by approximating
R by S-modules for which ν is an equivalence. The approximation will be as an inverse limit,
and to see the approximation is accurate we need to impose hypotheses to ensure inverse
limits and tensor products commute.

Lemma 6.3. Suppose M and N are S-modules and N ≃ holim
← n

Nn, and consider the natural

map
κ : M ⊗S [holim

← n
Nn] −→ holim

← n
[M ⊗S Nn].

The map κ is an equivalence in either of the following circumstances

• S is connective, M is of upward finite type and the modules Nn are uniformly bounded
below. The hypothesis on M holds if π0(S) = k, π∗(M) is bounded below and πn(M)
is finite dimensional over k for all n.
• S is coconnective, M is of downward finite type and the modules Nn are uniformly
bounded above. The hypothesis on M holds if S is simply coconnected, π∗(M) is
bounded above and πn(M) is finite dimensional over k for all n.

Proof: In the first part the fact that M is of upward finite type and the Nn are uniformly
bounded below is enough to see that the limit is achieved in each degree. It is proved as [11,
3.13] that the homotopy level condition ensures M is of upward finite type.

The proof of the second part is precisely similar, with a reference to [11, 3.14]. �

Lemma 6.4. Suppose that π∗(S) is Noetherian and that π∗(HomS(k, S)) is a finitely gen-
erated module over π∗(S) and that R ≃ lim

← n
Rn for small S-modules Rn. The hypothesis of

Lemma 6.2 applies in either of the following circumstances

• S is connected and the Rn are uniformly bounded below
• S is simply coconnected and the Rn are uniformly bounded above

In this case,
HomR(k, R) ≃ HomQ(k,HomS(k, S)⊗k Q)

and Gorenstein ascent holds for the cofibre sequence S −→ R −→ Q.

Proof: First,

HomS(k, R) ≃ HomS(k, holim
← n

Rn) ≃ holim
← n

HomS(k, Rn).

Now, since Rn is a small S-module, HomS(k, Rn) ≃ HomS(k, S)⊗S Rn.
It therefore remains to show that the natural map

κ : M ⊗S [holim
← n

Rn] −→ holim
← n

[M ⊗S Rn]

is an equivalence when M = HomS(k, S) so the conclusion follows from Lemma 6.3. �
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6.C. Building good approximations. We give criteria under which R may be approxi-
mated in this way. First, we assume that R is a k-algebra, and it is convenient to introduce
some further terminology.

Definition 6.5. We say that a map R −→ Q is π∗-finite if π∗(Q) is finitely generated as a
module over k[x1, . . . , xn] for some finite set of elements x1, . . . , xn of π∗(R). A cofibration
sequence S −→ R −→ Q is π∗-finite if the map R −→ Q is π∗-finite.

Remark 6.6. If π∗(R) is Noetherian, it is equivalent to ask that π∗(Q) is finitely generated
over π∗(R).

Proposition 6.7. Suppose that π∗(S) is Noetherian, π∗(R) and π∗(HomS(k, S)) are finitely
generated π∗(S)-modules, R is a k-algebra and the cofibration is π∗-finite, and suppose that
either (i) S,R and Q are all connected or (ii) that S,R and Q are all coconnected and S is
simply coconnected. Under these conditions,

HomR(k, R) ≃ HomQ(k,HomS(k, S)⊗k Q)

and Gorenstein ascent holds for the cofibre sequence S −→ R −→ Q.

Proof : From the π∗-finite hypothesis, by the Noether normalization argument, there is
a polynomial subring R(1)∗ of π∗(R) over which π∗(Q) is finitely generated. Now let
R(2)∗, R(3)∗, . . . be the subrings generated by the 2nd, 4th, 8th .... powers of generators
of R(1)∗.

Next we construct (non-commutative) k-algebra spectra R(n) with π∗R(n) = R(n)∗. For
a polynomial ring on a single generator of degree d, we can consider the James construction
Jk(S

d) on a sphere over k. This is the free associative k-algebra spectrum on the d-sphere
and has homotopy k[Xd]. If R(n)∗ = k[x1, · · · , xs], we form

Jk(S
d1)⊗k · · · ⊗k Jk(S

ds)

where xi is of degree di. If A is a commutative k-algebra then we may construct a ring map
taking Xi to xi as the composite

Jk(S
d1)⊗k · · · ⊗k Jk(S

ds) −→ A⊗k · · · ⊗k A −→ A.

The first map takes Xi to xi in the ith factor, and is a map of associative rings. The second
map is multiplication in A, and this is a ring map since A is commutative.

Using these ring spectra R(n), using tensor products of the single variable case as above,
we may construct maps

. . . // R(2) // R(1) // R // Q

realizing the algebras we took in homotopy. Now by construction Qn = Q⊗R(n) k is finitely
built from k since its homotopy is a finite dimensional k-vector space. Since the polynomial
generators were in increasingly large degrees, Q = holim

← n
Qn. Similarly, if we write Rn =

R ⊗R(n) k we have R ≃ holim
← n

Rn, and k ⊗S Rn ≃ k ⊗S R⊗R(n) k ≃ Q⊗R(n) k = Qn. Thus

we have sequences S −→ Rn −→ Qn and Rn is small as an S-module.
The result now follows from Lemma 6.4. �
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To apply this, we first note that in characteristic p the π∗-finite condition is automatic
when π∗(S) is in a finite range of degrees.

Lemma 6.8. Suppose S −→ R −→ Q is a cofibre sequence, either connected and satisfying
the hypotheses of Lemma 3.1 or coconnected and satisfying the hypotheses of Lemma 3.2.
Suppose in addition that the cofibre sequence is one of k-algebras, where k is a field of
characteristic p > 0 and π∗(S) is Noetherian and in a finite range of degrees, then the cofibre
sequence is π∗-finite.

Proof: Using the spectral sequence of Lemma 3.1 or Lemma 3.2 as appropriate we see that
if x ∈ π∗(Q) survives to the rth page then dr(x

p) = 0, so that xp survives to the (r + 1)st
page. If π∗(S) is in a finite range of degrees, the spectral sequence collapses at the Nth stage
for some N and the pN−1th powers of all elements survive, and therefore lie in the image of
π∗(R) −→ π∗(Q) so that the cofibration is π∗-finite. �

We may now apply Proposition 6.7 to give a useful characteristic p Gorenstein ascent
theorem.

Corollary 6.9. Consider a cofibre sequence S −→ R −→ Q of k-algebras as in Lemma 6.8.
Suppose that π∗(S) Noetherian and either connected or simply coconnected and k is a field of
of characteristic p > 0. If π∗(R) and π∗(HomS(k, S)) are finitely generated π∗(S)-modules,
and π∗(S) is concentrated in a finite range of degrees then

HomR(k, R) ≃ HomQ(k,HomS(k, S)⊗k Q)

and Gorenstein ascent holds for the cofibre sequence.

7. Ausoni-Bökstedt duality.

We now have the necessary ingredients to state and prove our duality result. The idea
is that if we are given maps C −→ B −→ k of commutative ring spectra with the cofibre
ring spectrum A = B ⊗C k Gorenstein then (at least under some hypotheses on k and A)
if TB = THH(B; k) is Gorenstein then TC = THH(C; k) is also Gorenstein. Since we are
deducing the domain TC is Gorenstein from the fact that TB is Gorenstein, we think of
this as a descent theorem, even though the principal ingredient is an ascent theorem for a
suitable cofibration.

7.A. Gorenstein descent for THH. The key to method is the existence of a suitable
cofibration sequence conjectured on the basis of the examples and proved by Dundas.

Lemma 7.1. (Dundas) Given a cofibre sequence C −→ B −→ A of commutative ring spectra
over k (i.e., B has a map to k and A = B ⊗C k) there is a cofibre sequence of commutative
k-algebra spectra

A −→ TC −→ TB

where TC = C ⊗Ce k = THH(C; k) and TB = B ⊗Be k = THH(B; k).

Remark 7.2. Dundas’s lemma makes THH(·; k) remarkably computable. For example,
Lindenstrauss points out that if R is k-algebra, we may apply the Dundas Lemma to the
cofibre sequence k −→ R −→ R to deduce

THH∗(R; k) ∼= THH∗(k)⊗ TorR∗ (k, k).
13



In particular, this allows one to deduce from Bökstedt’s calculation that THH∗(k) = k[µ2]
for any field k of characteristic p.

Remark 7.3. Dundas’s lemma applies also to HH•(·|S; k) when S is less complicated than
the sphere spectrum. For example we may take S = C∗(Z) for a space Z, and suppse given
a map Y ←− X of simply connected spaces over Z with fibre F , giving

(C −→ B −→ A) = (C∗(Y ) −→ C∗(X) −→ C∗(F )) .

We see
HH•(C

∗(Y )|C∗(Z); k) = C∗(fibre(Y −→ Y ×Z Y ))

provided Y ×ZY is simply connected, so that if X also satisfies the corresponding hypothesis,
Dundas’s lemma gives a cofibre sequence

C∗(F ) −→ C∗(fibre(Y −→ Y ×Z Y )) −→ C∗(fibre(X −→ X ×Z X)).

If Z = ∗ this comes from the fibre sequence

F ←− ΩY ←− ΩX

obtained from the Puppe sequence generated by Y ←− X .

Proof: For a C bimodule M , according to the original definition, the topological Hochschild
homology THH(C;M) is a realization of the Hochschild simplicial spectrum with nth term
M⊗SC

⊗n, where the tensor power is for⊗S; this is natural for maps of rings and of bimodules.
In particular, the map C −→ B of ring spectra vertically and the map B ⊗S k −→ k of B-
bimodules horizontally give a commutative square

B ⊗S k ⊗S C
⊗n → k ⊗S C

⊗n

↓ ↓
B ⊗S k ⊗S B

⊗n → k ⊗S B
⊗n

which is evidently a pushout square of commutative ring spectra. Taking geometric realiza-
tions we obtain the pushout square

THH(C;B ⊗S k) → THH(C; k)
↓ ↓

THH(B;B ⊗S k) → THH(B; k).

Now we use the fact that THH with coefficients in a bimodule of the form M = X ⊗S Y
simplifies:

THH(C;X ⊗S Y ) = Y ⊗C X.

The pushout square now gives the required result. �

We now want to take the cofibre sequence A −→ TC −→ TB and deduce that when A
and TB are Gorenstein, so is TC. We need only verify that the hypotheses of Lemma 6.1
and Corollary 6.9 are satisfied.

Theorem 7.4. (Gorenstein descent for THH) Suppose C −→ B −→ A is a cofibre sequence
of connective commutative ring spectra with maps to k and that

(1) A and TB are proxy-regular and Gorenstein
(2) π∗(A) and π∗(TB) are Noetherian
(3) the map TC −→ TB is π∗-finite
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then TC is proxy-regular and Gorenstein with

shift(TC) = shift(TB) + shift(A).

Proof: We consider the cofibration A −→ TC −→ TB of Lemma 7.1.
By the π∗-finite hypothesis we may choose a finite number of elements of π∗(TC) so that

π∗(TB) is finitely generated over the k-algebra they generate, and we may form a Koszul
complex by using these generators. This verifies the hypotheses necessary to see that TC is
proxy-regular by Lemma 6.1.

The hypotheses for Gorenstein ascent from A to TC are stated explicitly. �

Corollary 7.5. If C is Gorenstein of shift a and augmented over a field k of characteristic
p and if C is regular then THH(C; k) −→ k is Gorenstein of shift −a− 3.

Proof: We apply the theorem to the cofibre sequence C −→ k −→ A. Since C is regular, π∗A
is finite dimensional and hence Noetherian. Now note that k is Gorenstein of shift 0, so by
Gorenstein Ascent for C −→ k −→ A, the ring A is Gorenstein and we have shift(A) = −a.

From Bökstedt’s calculation TB = THH(k) has Noetherian homotopy k[µ2], so it is
Gorenstein of shift −3. Now observe that by Lemma 6.8, the cofibration A −→ TC −→ TB
is π∗-finite. Thus the hypotheses of Theorem 7.4 are satisfied, and we may apply Gorenstein
Ascent to the cofibration A −→ TC −→ TB to obtain the conclusion.

�

Remark 7.6. As in Remark 7.3, the same argument applies if S less complicated than the
sphere spectrum. In particular if we have a map C −→ B of augmented k-algebras, Dundas’s
Lemma supplies a cofibre sequence

A −→ HH•(C|k; k) −→ HH•(B|k; k).

If B = k we find
k ⊗C k ≃ HH•(C|k; k).

For instance if C = C∗(X) this corresponds to the fact that ΩX is the fibre of the diagonal
X −→ X ×X .

8. Examples

We observe that Theorem 7.4 gives a non-calculational proof of several of the dualities
we observed in Section 5 above, as well as giving many new examples where the coefficient
rings are not known. In each case we specify C −→ B and k and then discuss the resulting
cofibre sequence A −→ THH(C; k) −→ THH(B; k).

8.A. Known examples revisited. We do not add to the explicit calculations described in
Section 5 above, but we emphasize that the only calculational input is Bökstedt’s theorem.
Interesting structural relationships are highlighted by this approach.

Example 8.1. (Example 5.1 revisited: Fp.) If we take C −→ B to be Fp −→ Fp and k = Fp,
we find A = Fp. It is immediate that Fp is small over Fp and Fp −→ Fp is Gorenstein of shift
0. Corollary 7.5 shows THH(Fp) is Gorenstein of shift −0− 3 = −3.
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Example 8.2. (Example 5.2 revisited: Z) If we take C −→ B to be Z −→ Fp and k = Fp, we
find A ∼ C∗(S

1) (where ∼ means that the coefficient rings are isomorphic). It is immediate
that Fp is small over Z and easy to check that Z −→ Fp is Gorenstein of shift −1. Corollary
7.5 shows that THH(Z;Fp) is Gorenstein of shift 1 + (−3) = −2.

The spectral sequence of Lemma 3.1 gives an alternative approach to the calculational
proof. The only necessary input would be to know that the differential d2(µ2) 6= 0. This
then shows that d2(µ

n
2 ) 6= 0 unless n is a multiple of p, so that the E3 = E∞ term is generated

by µp
2 (giving µ2p) and µp−1

2 τ (giving λ2p−1).
The Lindenstrauss-Madsen example in the unramified case can be treated in the same way,

since O/p = k. However, the ramified case is not covered by our analysis since THH∗(O/p)
is not Noetherian.

Example 8.3. (Example 5.3 revisited: lu) If we take C −→ B to be lu −→ Z and k = Fp,
we find A ∼ C∗(S

2p−1). It is easy to check that Fp is small over lu and that lu −→ Fp

is Gorenstein of shift −(2p − 2) − 1 − 1 = −2p. From Bökstedt duality for THH(Z;Fp),
Theorem 7.4 shows THH(lu;Fp) is Gorenstein of shift (2p− 1) + (−2) = 2p− 3.

The spectral sequence of Lemma 3.1 gives an alternative approach to the proof. The only
necessary input would be to know that the differential d2p(µ2p) 6= 0. This then shows that
d2p(µ

n
2p) 6= 0 unless n is a multiple of p, so that the E2p+1 = E∞ term is generated by µp

2p

(giving µ2p2), µ
p−1
2p τ2p−1 (giving λ2p2−1) and λ2p−1 (which survives as it is).

Of course we get the same conclusion by taking C −→ B to be lu −→ Fp and k = Fp. In
that case we find A ∼ C∗(S

1 × S2p−1) so that by Corollary 7.5 THH(lu;Fp) is Gorenstein
of shift [(2p− 1) + 1]− 3 = 2p− 3.

Example 8.4. (Example 5.4 revisited: ku) If we take C −→ B to be ku −→ ku/(p, v1) and
k = ku/(p, v1), we find A ∼ C∗(S

1 × S2p−1; ku/(p, v1)) (a Poincaré duality algebra of formal
dimension 4p− 4). It is easy to see that ku/(p, v1) is small over ku and ku −→ ku/(p, v1) is
Gorenstein of shift −2p.

In order to proceed we would need to know that ku/(p, v1) has a commutative ring model
and that THH(ku/(p, v1)) is Gorenstein of shift x. We would then deduce THH(ku; ku/(p, v1))
is Gorenstein of shift 4p− 4 + x.

Example 8.5. (Example 5.5 revisited: ko)We take C −→ B to be ko −→ ku and k = F2. As
in the discussion of the relatively Gorenstein condition (Example 4.3) Wood’s Theorem gives

the cofibre sequence Σko
η
−→ ko −→ ku, showing that ku is small over ko and A ∼ C∗(S

2).
Since THH(ku;F2) is Gorenstein of shift 1 by Example 8.8, and the complex in Wood’s

Theorem is self dual of dimension 2, Theorem 7.4 shows THH(ko;F2) is Gorensten of shift
1 + 2 = 3.

More directly, using Example 4.3 we could take C −→ F2 to be ko −→ F2, and apply
Corollary 7.5 to conclude that THH(ko;F2) is Gorenstein of shift −(−6)− 3 = 3

Example 8.6. (Example 5.6 revisited at p = 3: tmf localized at 3) We take C −→ B to
be tmf −→ tmf1(2) at the prime 3 and k = F3. As in the discussion of the relatively
Gorenstein condition (Example 4.4(i)) the tmf -module tmf1(2) is tmf extended by a three
cell complex, so it is small. We have also seen tmf1(2) is Gorenstein of shift −15, so that
by Theorem 7.4 the ring THH(tmf1(2);F3) is Gorenstein of shift 12. Since the three cell
complex is self-dual of dimension 8, Theorem 7.4 shows that THH(tmf ;F3)) is Gorenstein
of shift 20.
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More directly, using Example 4.4 (i) we observe that since tmf1(2) is small over tmf and
F3 is small over tmf1(2) then F3 is small over tmf . Since tmf is Gorenstein of shift −23 we
may apply Corollary 7.5 to deduce THH(tmf ;F3)) is Gorenstein of shift 20.

Example 8.7. (Example 5.6 revisited at p = 2: tmf localized at 2) We take C −→ B to
be tmf −→ tmf1(3) at the prime 2 and k = F2. As in the discussion of the relatively
Gorenstein condition (Example 4.4(ii)) tmf1(3) is tmf extended by a finite complex, it is
small. We have also seen tmf1(3) is Gorenstein of shift −11, so that by Theorem 7.4, the
ring THH(tmf1(3);F2) is Gorenstein of shift 8. Since the complex is self-dual of dimension
12, Theorem 7.4 shows that THH(tmf ;F2)) is Gorenstein of shift 20.

More directly, using Example 4.4 (ii) we observe that since tmf1(3) is small over tmf and
F2 is small over tmf1(3) then F2 is small over tmf . Since tmf1(3) is Gorenstein of shift −23
we may apply Corollary 7.5 to deduce THH(tmf ;F2)) is Gorenstein of shift 20.

8.B. New examples. The possibilities are innumerable, but we select three for illustration.

Example 8.8. (Example 5.4 revisited again: ku) If we take C −→ B to be ku −→ Z and
k = Fp, we find A ∼ C∗(S

3), and from the fact that THH(Z;Fp) is Gorenstein of shift −2
we deduce from Theorem 7.4 that the ring THH(ku;Fp) is Gorenstein of shift 3+ (−2) = 1.

The spectral sequence of Lemma 3.1 gives a calculation. If p is odd, there can be no
differentials and THH(ku;Fp) = Fp[µ2p]⊗ Λ(λ2p−1, λ3).

If p = 2 the only necessary input would be to know whether the differential d4(µ4) is
zero or not. If it is zero then THH∗(ku;F2) = F2[µ4] ⊗ Λ(λ3, λ

′
3). If it is non-zero then

THH∗(ku;F2) = F2[µ8] ⊗ Λ(λ3, λ7). The second of these is what actually happens, as one
may see from Dundas’s Lemma applied to ko −→ ku together with the result for ko described
in Example 8.5.

Of course we get the same conclusion by working with C −→ B to be ku −→ Fp and k = Fp

we find A ∼ C∗(S
1 × S3) so that by Corollary 7.5 the ring THH(ku;Fp) is Gorenstein of

shift [3 + 1]− 3 = 1.

Example 8.9. We take C −→ B to be en −→ Fp, where en is the connective Lubin-Tate
commutative ring spectrum with homotopy W (Fpn)[[u1, . . . , un−1]][u]. From its homotopy
we see that it is Gorenstein of shift −n − 3. From Corollary 7.5 we conclude THH(en;Fp)
is Gorenstein of shift n.

These examples are iterable.

Example 8.10. Veen’s calculation [22] of the homotopy ring of the double THH of k, as
k[µ′2, µ

′′
2]⊗Λ(λ3) gives an example whose coefficient ring is Noetherian and of Krull dimension

2.
If we are given map R −→ k we may take C −→ B to be THH(R; k) −→ THH(k), and

take A to be its cofibre. Now apply Dundas’s Lemma to obtain a cofibre sequence

A −→ THH(THH(R; k);THH(k))−→ THH(THH(k)).

Unfortunately there seems to be no obvious example for which A is finite dimensional, or
even Noetherian. For example, if we take R = Z it seems π∗A = Fp[µ2]/(µ

p
2)⊗ Γ(γ2p).

8.C. Discussion. The main obstacle to finding more examples is the need to ensure that
the coefficient rings should be Noetherian, which seems rather rare for THH . In the cases
with complete calculations and Noetherian rings, the coefficient rings are all themselves
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Gorenstein. We have not yet found an example where the ring spectrum is proxy regular
and Gorenstein except when the coefficients are already Gorenstein.

Our analysis is based on the cofibre sequence A −→ TC −→ TB and requires that it is
π∗-finite. We have relied on the fact that if A is finite dimensional and k is of characteristic
p, the cofibre sequence is π∗-finite. In this case TC will have the same Krull dimension as
TB.

Appendices
We end with two appendices describing closely related phenomena. They do not form part
of the argument, and are included for comparison.

Appendix A. Thom spectra

Given a 3-fold loop map f : X −→ BF , Blumberg-Cohen-Schlichtkrull [8] prove

THH(Mf) ≃Mf ∧ BX+.

Since f is a 3-fold loop map, X is a 3-fold loop space and BX ≃ ΩBBX . We expect that
THH(Mf) = C∗(BX ;Mf) being Gorenstein over Mf will be related to C∗(BBX ;Mf) =
F (BBX+,Mf) being Gorenstein over Mf .

Example A.1. (Fp revisited.) This example is closely related to the fact that THH(Fp) is
Gorenstein of shift −3.

Mahowald [18] showed that the Eilenberg-MacLane spectrum Fp is the Thom spectrum of
a map Ω2S3 −→ BF . Although this is only a double loop space map, it is shown in [8, 1.3]
that

THH(Fp) ≃ Fp ∧ ΩS3
+ =: C∗(ΩS

3),

but this is not an equivalence of ring spectra, since the ring structures in homotopy groups
are different.

Since S3 is a 3-manifold, C∗(S3) is Gorenstein of shift −3, and by Morita invariance of the
Gorenstein condition [11], we conclude that C∗(ΩS

3) is Gorenstein of shift −3. Although it
is precisely parallel, this doesn’t directly imply anything about THH(Fp).

Example A.2. (Z revisited.) This is closely related to the fact that THH(Z;Z/p) is Goren-
stein of shift −2.

Mahowald [18] proved that the Eilenberg-MacLane spectrum Z is the Thom spectrum of
a map Ω2S3〈3〉 −→ BF . Although it is only a double loop map it is shown as [8, 1.4] that
THH(Z) ≃ Z ∧ ΩS3〈3〉+, and that

THH(Z;Z/p) ≃ Fp ∧ ΩS3〈3〉+ = C∗(ΩS
3〈3〉).

Applying cochains to the fibration

K(Z, 2) −→ S3〈3〉 −→ S3

we get a cofibre sequence of ring spectra, and a standard calculation shows this is π∗-finite.
By Corollary 6.9, the cochains on the total space is Gorenstein if the cochains on the base
and the cochains on the fibre are, and that the shifts add. Since S3 is a 3-manifold, C∗(S3)
is Gorenstein of shift −3. On the other hand C∗(ΩBU(1)) = C∗(U(1)) is Gorenstein of shift
1 since U(1) is a 1-dimensional compact Lie group, and hence by Morita invariance of the
Gorenstein condition [11], we find C∗(BU(1)) is Gorenstein of shift 1. By Gorenstein ascent,
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we deduce that C∗(S3〈3〉) is Gorenstein of shift −2 = −3 + 1. By Morita invariance of the
Gorenstein condition [11] we conclude that C∗(ΩS

3〈3〉) is Gorenstein of shift −2.

Appendix B. Dwyer-Miller and Kontsevich duality

This section describes some known dualities for Hochschild homology and cohomology
with a similar flavour. The analogue to bear in mind is the case R = k[x] on a polynomial
generator of even degree d. This is Gorenstein of shift −d− 1. Now we calculate HH∗(R) =
k[x, α] where α is of degree −d−1, and HH∗(R) = k[x, β] with β of degree d+1, so we have
HH∗(R) = Σ−d−1HH∗(R).

In this section we work under k rather than under the sphere spectrum S. In particular, we
assume that our rings are k-algebras so the situation is very different to the one considered
in the body of the paper. The discussion developed from the work of Cohen-Jones [10].

The following assumption is more often satisfied by objects like group rings than the
commutative rings we have been concerned with in the body of the paper.

Assumption B.1. We assume that S = k, so that Re = R ⊗k R and that there is a ring
map R −→ Re of Re-modules. Finally, we assume that the bimodule R is induced from an
R-module: R = Re ⊗R k.

Proposition B.2. (Dwyer-Miller) If Assumption B.1 holds, k is small over R and R −→ k
is Gorenstein of shift a then

HH∗(R;P ) ∼= ΣaHH∗(R;P )

for all bimodules P .

Remark B.3. There seems no prospect of a result like this for THH since (as in the case
with P = k for instance, THH•(k) (for example) is not bounded below.

Proof: We argue as follows, where the third equivalence requires k to be small, and where
P ad is the restriction of P along the map R −→ Re.

HH∗(R;P ) = HomRe(R,P )
= HomR(k, P

ad)
≃ HomR(k, R)⊗R P ad

= Σak ⊗R P ad

= ΣaR⊗Re P
= ΣaHH∗(R;P )

�

Remark B.4. Take R = C∗(ΩX) for a simply connected d-manifold X . Since X can be
given the structure of a finite CW complex, C∗(X) is finitely built from k, and applying
HomC∗(X)(·, k) we see that k is small over C∗(ΩX) and the hypotheses of Proposition B.2
hold.

By the Morita invariance of the Gorenstein condition [11, Proposition 8.5] this is Goren-
stein of shift a = −d. Finally, note that HH∗(R) = H∗(ΛX), so taking P = R, we see
ΣdH∗(ΛX) = HH∗(R), showing that the shifted homology of the free loop space has a ring
structure; Malm [20] shows this corresponds to the Chas-Sullivan product.
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Corollary B.5. (Kontsevich duality) If Assumption B.1 holds, k is small over R and R −→
k is Gorenstein with shift a then Re −→ R is relatively Gorenstein with shift a.

Remark B.6. The connection between the Gorenstein conditions on R and Re in commu-
tative algebra is of great interest [5, 6].

Proof: Taking P = Re in the Proposition B.2 we find

HomRe(R,Re) = HH∗(R|S;Re) = ΣaHH∗(R|S;R
e) = ΣaR ⊗Re Re = ΣaR.

�

Now consider the (R|S)-bimodule P = k, and note that if R and k are commutative rings,
then so is

HH∗(R|S; k) = R ⊗Re k.

Furthermore Re is an R-algebra, so we have an algebra map

R⊗Re k −→ Re ⊗Re k
≃
−→ k

Corollary B.7. (Algebraic Ausoni-Bökstedt duality) If Assumption B.1 holds, k is small
over R and R −→ k is Gorenstein with shift a then HH∗(R|S; k) −→ k is Gorenstein with
shift −a.

Proof: Taking P = k in the above we find

HH•(R|S; k) = ΣaHH•(R|S; k).

Now we calculate

HomHH•(R|S;k)(k,HH•(R|S; k)) = Σ−aHomHH•(R|S;k)(k,HH•(R|S; k))
= Σ−aHomHH•(R|S;k)(k,HomRe(R, k))
= Σ−aHomHH•(R|S;k)(R⊗Re k, k)
= Σ−ak

�
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