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FINE COMPACTIFIED JACOBIANS OF REDUCED CURVES

MARGARIDA MELO, ANTONIO RAPAGNETTA, FILIPPO VIVIANI

Abstract. To every singular reduced projective curve X one can associate many fine compactified
Jacobians, depending on the choice of a polarization on X, each of which yields a modular compactifi-
cation of a disjoint union of a finite number of copies of the generalized Jacobian of X. We investigate

the geometric properties of fine compactified Jacobians focusing on curves having locally planar sin-
gularities. We give examples of nodal curves admitting non isomorphic (and even non homeomorphic
over the field of complex numbers) fine compactified Jacobians. We study universal fine compactified
Jacobians, which are relative fine compactified Jacobians over the semiuniversal deformation space of
the curve X. Finally, we investigate the existence of twisted Abel maps with values in suitable fine
compactified Jacobians.
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1. Introduction

Aim and motivation. The aim of this paper is to study fine compactified Jacobians of a reduced
projective connected curve X over an algebraically closed field k (of arbitrary characteristic), with
special emphasis in the case where X has locally planar singularities.

Recall that given such a curve X , the generalized Jacobian J(X) of X , defined to be the connected
component of the Picard variety of X containing the identity, parametrizes line bundles on X that have
multidegree zero, i.e. degree zero on each irreducible component of X . It turns out that J(X) is a
smooth irreducible algebraic group of dimension equal to the arithmetic genus pa(X) of X . However, if
X is a singular curve, the generalized Jacobian J(X) is rarely complete. The problem of compactifying
it, i.e. of constructing a projective variety (called a compactified Jacobian) containing J(X) as an open
subset, is very natural and it has attracted the attention of many mathematicians, starting from the
pioneering work of Mayer-Mumford and of Igusa in the 50’s, until the more recent works of D’Souza,
Oda-Seshadri, Altmann-Kleiman, Caporaso, Pandharipande, Simpson, Jarvis, Esteves, etc... (we refer
to the introduction of [Est01] for an account of the different approaches).

In each of the above constructions, compactified Jacobians parametrize (equivalence classes of) certain
rank-1, torsion free sheaves on X that are assumed to be semistable with respect to a certain polarization.
If the polarization is general (see below for the precise meaning of general), then all the semistable sheaves
will also be stable. In this case, the associated compactified Jacobians will carry a universal sheaf and
therefore we will speak of fine compactified Jacobians (see [Est01]).

The main motivation of this work, and of its sequels [MRV1] and [MRV2], comes from the Hitchin
fibration for the moduli space of Higgs vector bundles on a fixed smooth and projective curve C (see
[Hit86], [Nit91]), whose fibers are compactified Jacobians of certain singular covers of C, called spectral
curves (see [BNR89], [Sch98] and the Appendix of [MRV1]). The spectral curves have always locally
planar singularities (since they are contained in a smooth surface by construction), although they are not
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necessarily reduced nor irreducible. It is worth noticing that, in the case of reduced but not irreducible
spectral curves, the compactified Jacobians appearing as fibers of the Hitchin fibration turn out to
be fine compactified Jacobians under the assumption that the degree d and the rank r of the Higgs
bundles are coprime. However, in the general case, Chaudouard-Laumon in their work [CL10] and
[CL12] on the weighted fundamental Lemma (where they generalize the work of Ngo on the fundamental
Lemma, see [Ngo06] and [Ngo10]) have introduced a modified Hitchin fibration for which all fibers are
fine compactified Jacobians.

According to Donagi-Pantev [DP12], the conjectural geometric Langlands correspondence should in-
duce, by passing to the semiclassical limit and taking into account that the general linear group GLr
is equal to its Langlands dual group, an autoequivalence of the derived category of the moduli space
of Higgs bundles, which should intertwine the action of the classical limit tensorization functors with
the action of the classical limit Hecke functors (see [DP12, Conj. 2.5] for a precise formulation). In
particular, such an autoequivalence should preserve the Hitchin fibration, thus inducing fiberwise an
autoequivalence of the compactified Jacobians of the spectral curves. This conjecture is verified in loc.
cit. over the open locus of smooth spectral curves, where the desired fiberwise autoequivalence reduces
to the classical Fourier-Mukai autoequivalence for Jacobians of smooth curves, established by Mukai
in [Muk81]. This autoequivalence was extended by D. Arinkin to compactified Jacobians of integral
spectral curves in [Ari11] and [Ari13]. In the two sequels [MRV1] and [MRV2] to this work, which are
strongly based on the present manuscript, we will extend the Fourier-Mukai autoequivalence to any fine
compactified Jacobian of a reduced curve with locally planar singularities.

Our results. In order to state our main results, we need to review the definition of fine compactified
Jacobians of a reduced curve X , following the approach of Esteves [Est01] (referring the reader to §2 for
more details).

The starting point is a result of Altman-Kleiman [AK80] who showed that there is a scheme JX ,
locally of finite type over k, parametrizing simple, rank-1, torsion-free sheaves on X , which, moreover,
satisfies the existence part of the valuative criterion of properness (see Fact 2.2). Clearly, JX admits

a decomposition into a disjoint union JX =
∐
χ∈Z J

χ

X , where J
χ

X is the open and closed subset of JX
parametrizing sheaves I of Euler-Poincaré characteristic χ(I) := h0(X, I)−h1(X, I) equal to χ. As soon

as X is not irreducible, J
χ

X is not separated nor of finite type over k. Esteves [Est01] showed that each

J
χ

X can be covered by open and projective subschemes, the fine compactified Jacobians of X , depending
on the choice of a generic polarization in the following way.

A polarization on X is a collection of rational numbers q = {q
Ci
}, one for each irreducible component

Ci of X , such that |q| :=
∑
i qCi

∈ Z. A torsion-free rank-1 sheaf I on X of Euler characteristic χ(I)

equal to |q| is called q-semistable (resp. q-stable) if for every proper subcurve Y ⊂ X , we have that

χ(IY ) ≥ qY :=
∑

Ci⊆Y

q
Ci

(resp. >),

where IY is the biggest torsion-free quotient of the restriction I|Y of I to the subcurve Y . A polarization
q is called general if q

Y
6∈ Z for any proper subcurve Y ⊂ X such that Y and Y c are connected. If

q is general, there are no strictly q-semistable sheaves, i.e. if every q-semistable sheaf is also q-stable
(see Lemma 2.18); the converse being true for curves with locally planar singularities (see Lemma 5.15).
For every general polarization q, the subset JX(q) ⊆ JX parametrizing q-stable (or, equivalently, q-
semistable) sheaves is an open and projective subscheme (see Fact 2.19), that we call the fine compactified
Jacobian with respect to the polarization q. The name “fine” comes from the fact that there exists an

universal sheaf I on X × JX , unique up to tensor product with the pull-back of a line bundle from JX ,
which restricts to a universal sheaf on X × JX(q) (see Fact 2.2).

Our first main result concerns the properties of fine compactified Jacobians under the assumption
that X has locally planar singularities.

Theorem A. Let X be a reduced projective connected curve of arithmetic genus g and assume that
X has locally planar singularities. Then every fine compactified Jacobian JX(q) satisfies the following
properties:

(i) JX(q) is a reduced scheme with locally complete intersection singularities and embedded dimension
at most 2g at every point;

(ii) The smooth locus of JX(q) coincides with the open subset JX(q) ⊆ JX(q) parametrizing line bun-

dles; in particular JX(q) is dense in JX(q) and JX(q) is of pure dimension equal to pa(X);
2



(iii) JX(q) is connected;

(iv) JX(q) has trivial dualizing sheaf;

(v) JX(q) is the disjoint union of a number of copies of J(X) equal to the complexity c(X) of the

curve X (in the sense of Definition 5.12); in particular, JX(q) has c(X) irreducible components,
independently of the chosen polarization q (see Corollary 5.14).

Part (i) and part (ii) of the above Theorem are deduced in Corollary 2.20 from the analogous state-
ments about the scheme JX , which are in turn deduced, via the Abel map, from similar statements
on the Hilbert scheme Hilbn(X) of zero-dimensional subschemes of X of length n (see Theorem 2.3).
Part (iii) and part (iv) are proved in Section 5 (see Corollaries 5.6 and 5.7), where we used in a crucial
way the properties of the universal fine compactified Jacobians (see the discussion below). Finally, part
(v) is deduced in Corollary 5.14 from a result of J. L. Kass [Kas13] (generalizing previous results of
S. Busonero (unpublished) and Melo-Viviani [MV12] for nodal curves) that says that any relative fine
compactified Jacobian associated to a 1-parameter regular smoothing of X (in the sense of Definition 5.9)
is a compactification of the Néron model of the Jacobian of the generic fiber (see Fact 5.11), together
with a result of Raynaud [Ray70] that describes the connected component of the central fiber of the
above Néron model (see Fact 5.13). In the proof of all the statements of the above Theorem, we use in
an essential way the fact that the curve has locally planar singularities and indeed we expect that many
of the above properties are false without this assumption (see also Remark 2.7).

Notice that the above Theorem A implies that any two fine compactified Jacobians of a curve X with
locally planar singularities are birational (singular) Calabi-Yau varieties. However, for a reducible curve,
fine compactified Jacobians are not necessarily isomorphic (and not even homeomorphic if k = C).

Theorem B. Let X be a reduced projective connected curve.

(i) There is a finite number of isomorphism classes of fine compactified Jacobians of X.
(ii) The number of isomorphism classes of fine compactified Jacobians of a given curve X can be arbi-

trarily large as X varies, even among the class of nodal curves of genus 2.
(iii) If k = C then the number of homeomorphism classes of fine compactified Jacobians of a given curve

X can be arbitrarily large as X varies, even among the class of nodal curves of genus 2.

Part (i) of the above Theorem follows by Proposition 3.2, which says that there is a finite number of
fine compactified Jacobians of a given curveX from which all the others can be obtained via tensorization
with some line bundle. Parts (ii) and (iii) are proved by analyzing the poset of orbits for the natural
action of the generalized Jacobian on a given fine compactified Jacobian of a nodal curve. Proposition 3.4
says that the poset of orbits is an invariant of the fine compactified Jacobian (i.e. it does not depend on
the action of the generalized Jacobian) while Proposition 3.5 says that over k = C the poset of orbits is a
topological invariant. Moreover, from the work of Oda-Seshadri [OS79], it follows that the poset of orbits
of a fine compactified Jacobian of a nodal curve X is isomorphic to the poset of regions of a suitable
simple toric arrangement of hyperplanes (see Fact 3.8). In Example 3.11, we construct a family of nodal
curves of genus 2 for which the number of simple toric arrangements with pairwise non isomorphic poset
of regions grows to infinity, which concludes the proof of parts (ii) and (iii).

We mention that, even though if fine compactified Jacobians of a given curveX can be non isomorphic,
they nevertheless share many geometric properties. For example, the authors proved in [MRV2] that
any two fine compactified Jacobians of a reduced X with locally planar singularities are derived equiv-
alent under the Fourier-Mukai transform with kernel given by a natural Poincaré sheaf on the product.
This result seems to suggest an extension to (mildly) singular varieties of the conjecture of Kawamata
[Kaw02], which predicts that birational Calabi-Yau smooth projective varieties should be derived equiv-
alent. Moreover, the third author, together with L. Migliorini and V. Schende, proved in [MSV] that any
two fine compactified Jacobians of X (under the same assumptions on X) have the same Betti numbers
if k = C, which again seems to suggest an extension to (mildly) singular varieties of the result of Batyrev
[Bat99] which says that birational Calabi-Yau smooth projective varieties have the same Hodge numbers.

As briefly mentioned above, in the proof of parts (iii) and (iv) of Theorem A, an essential role is
played by the properties of the universal fine compactified Jacobians, which are defined as follows.
Consider the effective semiuniversal deformation π : X → Spec RX of X (see §4.3 for details). For any

(schematic) point s ∈ Spec RX , we denote by Xs := π−1(s) the fiber of π over s and by Xs := Xs×k(s)k(s)
the geometric fiber over s. By definition, X = Xo = Xo where o = [mX ] ∈ Spec RX is the unique closed
point o ∈ Spec RX corresponding to the maximal ideal mX of the complete local k-algebra RX . A
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polarization q on X induces in a natural way a polarization qs on Xs for every s ∈ Spec RX which,
moreover, will be general if we start from a general polarization q (see Lemma-Definition 5.3).

Theorem C. Let q be a general polarization on a reduced projective connected curve X. There exists

a scheme u : JX (q) → Spec RX parametrizing coherent sheaves I on X , flat over Spec RX , whose
geometric fiber Is over any s ∈ Spec RX is a qs-semistable (or, equivalently, qs-stable) sheaf on Xs. The

morphism u is projective and its geometric fiber over any point s ∈ Spec RX is isomorphic to JXs
(qs).

In particular, the fiber of JX (q)→ Spec RX over the closed point o = [mX ] ∈ Spec RX is isomorphic to

JX(q).
Moreover, if X has locally planar singularities then we have:

(i) The scheme JX (q) is regular and irreducible.

(ii) The map u : JX (q) → Spec RX is flat of relative dimension pa(X) and it has trivial relative
dualizing sheaf.

(iii) The smooth locus of u is the open subset JX (q) ⊆ JX (q) parametrizing line bundles on X .

The first statement of the above Theorem is obtained in Theorem 5.4 by applying to the family
π : X → Spec RX a result of Esteves [Est01] on the existence of relative fine compactified Jacobians.

In order to prove the second part of the above Theorem, the crucial step is to identify the completed
local ring of JX (q) at a point I of the central fiber u−1(o) = JX(q) with the semiuniversal deformation
ring for the deformation functor Def(X,I) of the pair (X, I) (see Theorem 4.5). Then, we deduce the

regularity of JX (q) from a result of Fantechi-Göttsche-van Straten [FGvS99] which says that, if X has
locally planar singularities, then the deformation functor Def(X,I) is smooth. The other properties stated
in the second part of Theorem C, which are proved in Theorem 5.5 and Corollary 5.7, follow from the
regularity of JX (q) together with the properties of the geometric fibers of the morphism u.

Our final result concerns the existence of (twisted) Abel maps of degree one into fine compactified
Jacobians, a topic which has been extensively studied (see e.g. [AK80], [EGK00], [EGK02], [EK05],
[CE07], [CCE08], [CP10]). To this aim, we restrict ourselves to connected and projective reduced curves
X satisfying the following

Condition (†) : Every separating point is a node,

where a separating point of X is a singular point p of X for which there exists a subcurve Z of X
such that p is the scheme-theoretic intersection of Z and its complementary subcurve Zc := X \ Z.
For example, every Gorenstein curve satisfies condition (†) by [Cat82, Prop. 1.10]. Fix now a curve
X satisfying condition (†) and let {n1, . . . , nr−1} be its separating points, which are nodes. Denote by

X̃ the partial normalization of X at the set {n1, . . . , nr−1}. Since each ni is a node, the curve X̃ is a
disjoint union of r connected reduced curves {Y1, . . . , Yr} such that each Yi does not have separating
points. We have a natural morphism

τ : X̃ =
∐

i

Yi → X.

We can naturally identify each Yi with a subcurve of X in such a way that their union is X and that
they do not have common irreducible components. We call the components Yi (or their image in X) the
separating blocks of X .

Theorem D. Let X be a reduced projective connected curve satisfying condition (†).

(i) The pull-back map

τ∗ : JX −→
r∏

i=1

JYi

I 7→ (I|Y1
, . . . , I|Yr

),

is an isomorphism. Moreover, given any fine compactified Jacobians JYi
(qi) on Yi, i = 1, . . . , r,

there exists a (uniquely determined) fine compactified Jacobian JX(q) on X such that

τ∗ : JX(q)
∼=
−→
∏

i

JYi
(qi),

and every fine compactified Jacobian on X is obtained in this way.
4



(ii) For every L ∈ Pic(X), there exists a unique morphism AL : X → J
χ(L)−1

X such that for every
1 ≤ i ≤ r and every p ∈ Yi it holds that

τ∗(AL(p)) = (M i
1, . . . ,M

i
i−1,mp ⊗ L|Yi

,M i
i+1, . . . ,M

i
r)

for some (uniquely determined) line bundle M i
j on Yj for any j 6= i, where mp is the ideal of the

point p in Yi.
(iii) If, moreover, X is Gorenstein, then there exists a general polarization q with |q| = χ(L) − 1 such

that ImAL ⊆ JX(q).
(iv) For every L ∈ Pic(X), the morphism AL is an embedding away from the rational separating blocks

(which are isomorphic to P1) while it contracts each rational separating block Yi ∼= P1 into a semi-
normal point of AL(X), i.e. an ordinary singularity with linearly independent tangent directions.

Some comments on the above Theorem are in order.
Part (i), which follows from Proposition 6.6, says that all fine compactified Jacobians of a curve

satisfying assumption (†) decompose uniquely as a product of fine compactified Jacobians of its separating
blocks. This allows one to reduce many properties of fine compactified Jacobians of X to properties of
the fine compactified Jacobians of its separating blocks Yi, which have the advantage of not having
separating points. Indeed, the first statement of part (i) is due to Esteves [Est09, Prop. 3.2].

The map AL of part (ii), which is constructed in Proposition 6.7, is called the L-twisted Abel map.
For a curve X without separating points, e.g. the separating blocks Yi, the map AL : X → JX is the
natural map sending p to mp⊗L. However, if X has a separating point p, the ideal sheaf mp is not simple
and therefore the above definition is ill-behaved. Part (ii) is saying that we can put together the natural
Abel maps AL|Yi

: Yi → JYi
on each separating block Yi in order to have a map AL whose restriction

to Yi has i-th component equal to AL|Yi
and it is constant on the j-th components with j 6= i. Note

that special cases of the Abel map AL (with L = OX or L = OX(p) for some smooth point p ∈ X) in
the presence of separating points have been considered before by Caporaso-Esteves in [CE07, Sec. 4 and
Sec. 5] for nodal curves, by Caporaso-Coelho-Esteves in [CCE08, Sec. 4 and 5] for Gorenstein curves
and by Coelho-Pacini in [CP10, Sec. 2] for curves of compact type.

Part (iii) says that if X is Gorenstein then the image of each twisted Abel map AL is contained in a
(non unique) fine compactified Jacobian. Any fine compactified Jacobian which contains the image of a
twisted Abel map is said to admit an Abel map. Therefore, part (iii) says that any Gorenstein curve has
some fine compactified Jacobian admitting an Abel map. However, we show that, in general, not every
fine compactified Jacobian admits an Abel map: see Propositions 7.4 and 7.5 for some examples.

Part (iv) is proved by Caporaso-Coelho-Esteves [CCE08, Thm. 6.3] for Gorenstein curves, but their
proof extends verbatim to our (more general) case.

Outline of the paper. The paper is organized as follows.
Section 2 is devoted to collecting several facts on fine compactified Jacobians of reduced curves: in

§2.1, we consider the scheme JX parametrizing all simple torsion-free rank-1 sheaves on a curve X (see
Fact 2.2) and we investigate its properties under the assumption that X has locally planar singularities
(see Theorem 2.3); in §2.2, we introduce fine compactified Jacobians of X (see Fact 2.19) and study them
under the assumption that X has locally planar singularities (see Corollary 2.20).

In Section 3 we prove that there is a finite number of isomorphism classes of fine compactified Jacobians
of a given curve (see Proposition 3.2) although this number can be arbitrarily large even for nodal curves
(see Corollary 3.10 and Example 3.11). In order to establish this second result, we study in detail in §3.1
the poset of orbits for fine compactified Jacobians of nodal curves.

Section 4 is devoted to recalling and proving some basic facts on deformation theory: we study the
deformation functor DefX of a curve X (see §4.1) and the deformation functor Def(X,I) of a pair (X, I)
consisting of a curve X together with a torsion-free, rank-1 sheaf I on X (see §4.2). Finally, in §4.3, we
study the semiuniversal deformation spaces for a curve X and for a pair (X, I) as above.

In Section 5, we introduce the universal fine compactified Jacobians relative to the semiuniversal
deformation of a curve X (see Theorem 5.4) and we study its properties under the assumption that
X has locally planar singularities (see Theorem 5.5). We then deduce some interesting consequences
of our results for fine compactified Jacobians (see Corollaries 5.6 and 5.7). In §5.1, we use a result
of J. L. Kass in order to prove that the pull-back of any universal fine compactified Jacobian under a
1-parameter regular smoothing of the curve (see Definition 5.9) is a compactification of the Néron model
of the Jacobian of the general fiber (see Fact 5.11). From this result we get a formula for the number of
irreducible components of a fine compactified Jacobian (see Corollary 5.14).
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In Section 6, we introduce Abel maps: first for curves that do not have separating points (see §6.1)
and then for curves all of whose separating points are nodes (see §6.2).

In Section 7, we illustrate the general theory developed so far with the study of fine compactified
Jacobians of Kodaira curves, i.e. curves of arithmetic genus one with locally planar singularities and
without separating points.

Notations. The following notations will be used throughout the paper.

1.1. k will denote an algebraically closed field (of arbitrary characteristic), unless otherwise stated. All
schemes are k-schemes, and all morphisms are implicitly assumed to respect the k-structure.

1.2. A curve is a reduced projective scheme over k of pure dimension 1.
Given a curve X , we denote by Xsm the smooth locus of X , by Xsing its singular locus and by

ν : Xν → X the normalization morphism. We denote by γ(X), or simply by γ where there is no danger
of confusion, the number of irreducible components of X .

We denote by pa(X) the arithmetic genus ofX , i.e. pa(X) := 1−χ(OX) = 1−h0(X,OX)+h1(X,OX).
We denote by gν(X) the geometric genus of X , i.e. the sum of the genera of the connected components
of the normalization Xν.

1.3. A subcurve Z of a curve X is a closed k-subscheme Z ⊆ X that is reduced and of pure dimension
1. We say that a subcurve Z ⊆ X is proper if Z 6= ∅, X .

Given two subcurves Z and W of X without common irreducible components, we denote by Z ∩W
the 0-dimensional subscheme of X that is obtained as the scheme-theoretic intersection of Z and W and
we denote by |Z ∩W | its length.

Given a subcurve Z ⊆ X , we denote by Zc := X \ Z the complementary subcurve of Z and we
set δZ = δZc := |Z ∩ Zc|.

1.4. A curve X is called Gorenstein if its dualizing sheaf ωX is a line bundle.

1.5. A curve X has locally complete intersection (l.c.i.) singularities at p ∈ X if the completion

ÔX,p of the local ring of X at p can be written as

ÔX,p = k[[x1, . . . , xr]]/(f1, . . . , fr−1),

for some r ≥ 2 and some fi ∈ k[[x1, . . . , xr]]. A curve X has locally complete intersection (l.c.i.)
singularities if X is l.c.i. at every p ∈ X . It is well know that a curve with l.c.i. singularities is
Gorenstein.

1.6. A curve X has locally planar singularities at p ∈ X if the completion ÔX,p of the local ring of
X at p has embedded dimension two, or equivalently if it can be written as

ÔX,p = k[[x, y]]/(f),

for a reduced series f = f(x, y) ∈ k[[x, y]]. A curve X has locally planar singularities if X has locally
planar singularities at every p ∈ X . Clearly, a curve with locally planar singularities has l.c.i. singular-
ities, hence it is Gorenstein. A (reduced) curve has locally planar singularities if and only if it can be
embedded in a smooth surface (see [AK79a]).

1.7. A curve X has a node at p ∈ X if the completion ÔX,p of the local ring of X at p is isomorphic to

ÔX,p = k[[x, y]]/(xy).

1.8. A separating point of a curve X is a geometric point n ∈ X for which there exists a subcurve
Z ⊂ X such that δZ = 1 and Z ∩Zc = {n}. If X is Gorenstein, then a separating point n of X is a node

of X , i.e. ÔX,n = k[[x, y]]/(xy) (see Fact 6.4). However this is false in general without the Gorenstein
assumption (see Example 6.5).

1.9. Given a curveX , the generalized Jacobian of X , denoted by J(X) or by Pic0(X), is the algebraic
group whose group of k-valued points is the group of line bundles onX of multidegree 0 (i.e. having degree
0 on each irreducible component of X) together with the multiplication given by the tensor product.
The generalized Jacobian of X is a connected commutative smooth algebraic group of dimension equal
to h1(X,OX).
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2. Fine Compactified Jacobians

The aim of this section is to collect several facts about compactified Jacobians of connected reduced
curves, with special emphasis on connected reduced curves with locally planar singularities. Many of
these facts are well-known to the experts but for many of them we could not find satisfactory references
in the existing literature, at least at the level of generality we need, e.g. for reducible curves. Throughout
this section, we fix a connected reduced curve X .

2.1. Simple rank-1 torsion-free sheaves. We start by defining the sheaves on the connected curve
X we will be working with.

Definition 2.1. A coherent sheaf I on a connected curve X is said to be:

(i) rank-1 if I has generic rank 1 on every irreducible component of X ;
(ii) torsion-free (or pure, or S1) if Supp(I) = X and every non-zero subsheaf J ⊆ I is such that

dimSupp(J) = 1;
(iii) simple if Endk(I) = k.

Note that any line bundle on X is a simple rank-1 torsion-free sheaf.
Consider the functor

(2.1) J
∗
X : {Schemes/k} → {Sets}

which associates to a k-scheme T the set of isomorphism classes of T -flat, coherent sheaves on X ×k T
whose fibers over T are simple rank-1 torsion-free sheaves (this definition agrees with the one in [AK80,

Def. 5.1] by virtue of [AK80, Cor. 5.3]). The functor J
∗
X contains the open subfunctor

(2.2) J∗X : {Schemes/k} → {Sets}

which associates to a k-scheme T the set of isomorphism classes of line bundles on X ×k T .

Fact 2.2 (Murre-Oort, Altman-Kleiman, Esteves). Let X be a connected reduced curve. Then

(i) The Zariski (equiv. étale, equiv. fppf) sheafification of J∗X is represented by a k-scheme Pic(X) =
JX, locally of finite type over k. Moreover, JX is formally smooth over k.

(ii) The Zariski (equiv. étale, equiv. fppf) sheafification of J
∗
X is represented by a k-scheme JX , locally of

finite type over k. Moreover, JX is an open subset of JX and JX satisfies the valuative criterion for
universally closedness or, equivalently, the existence part of the valuative criterion for properness1.

(iii) There exists a sheaf I on X × JX such that for every F ∈ J
∗
X(T ) there exists a unique map

αF : T → JX with the property that F = (idX ×αF)
∗(I) ⊗ π∗

2(N) for some N ∈ Pic(T ), where
π2 : X × T → T is the projection onto the second factor. The sheaf I is uniquely determined up to
tensor product with the pullback of an invertible sheaf on JX and it is called a universal sheaf.

Proof. Part (i): the representability of the fppf sheafification of J∗X follows from a result of Murre-Oort
(see [BLR90, Sec. 8.2, Thm. 3] and the references therein). However, since X admits a k-rational point
(because k is assumed to be algebraically closed), the fppf sheafification of J∗X coincides with its étale
(resp. Zariski) sheafification (see [FGA05, Thm. 9.2.5(2)]). The formal smoothness of JX follows from
[BLR90, Sec. 8.4, Prop. 2].

Part (ii): the representability of the étale sheafification (and hence of the fppf sheafification) of J
∗
X

by an algebraic space JX locally of finite type over k follows from a general result of Altmann-Kleiman
([AK80, Thm. 7.4]). Indeed, in [AK80, Thm. 7.4] the authors state the result for the moduli functor of
simple sheaves; however, since the condition of being torsion-free and rank-1 is an open condition (see

e.g. the proof of [AK80, Prop 5.12(ii)(a)]), we also get the representability of J
∗
X . The fact that JX is a

scheme follows from a general result of Esteves ([Est01, Thm. B]), using the fact that each irreducible
component of X has a k-point (recall that k is assumed to be algebraically closed). Moreover, since X

admits a smooth k-rational point, the étale sheafification of J
∗
X coincides with the Zariski sheafification

by [AK79b, Thm. 3.4(iii)]. Since J∗X is an open subfunctor of J
∗
X then JX is an open subscheme of JX .

Finally, the fact that JX satisfies the existence condition of the valuative criterion for properness follows
from [Est01, Thm. 32].

Part (iii) is an immediate consequence of the fact that JX represents the Zariski sheafification of J
∗
X

(see also [AK79b, Thm. 3.4]).
�

1Notice however that the scheme JX fails to be universally closed because it is not quasi-compact.
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Since the Euler-Poincaré characteristic χ(I) := h0(X, I)−h1(X, I) of a sheaf I on X is constant under
deformations, we get a decomposition

(2.3)





JX =
∐

χ∈Z

J
χ

X ,

JX =
∐

χ∈Z

JχX ,

where J
χ

X (resp. JχX) denotes the open and closed subscheme of JX (resp. JX) parametrizing simple
rank-1 torsion-free sheaves I (resp. line bundles L) such that χ(I) = χ (resp. χ(L) = χ).

If X has locally planar singularities, then JX has the following properties.

Theorem 2.3. Let X be a connected reduced curve with locally planar singularities. Then

(i) JX is a reduced scheme with locally complete intersection singularities and embedded dimension at
most 2pa(X) at every point.

(ii) JX is dense in JX .
(iii) JX is the smooth locus of JX .

The required properties of JX will be deduced from the analogous properties of the punctual Hilbert
scheme (i.e. the Hilbert scheme of 0-dimensional subschemes) of X via the Abel map.

Let us first review the needed properties of the punctual Hilbert scheme. Denote by Hilbd(X) the
Hilbert scheme parametrizing subschemes D of X of finite length d ≥ 0, or equivalently ideal sheaves
I ⊂ OX such that OX/I is a finite scheme of length d. Given D ∈ HilbdX , we will denote by ID its

ideal sheaf. We introduce the following subschemes of Hilbd(X):
{

Hilbd(X)s := {D ∈ Hilbd(X) : ID is simple},

Hilbd(X)l := {D ∈ Hilbd(X) : ID is a line bundle}.

By combining the results of [AK80, Prop. 5.2 and Prop 5.13(i)], we get that the natural inclusions

Hilbd(X)l ⊆ Hilbd(X)s ⊆ Hilbd(X)

are open inclusions.

Fact 2.4. If X is a reduced curve with locally planar singularities, then the Hilbert scheme Hilbd(X) has
the following properties:

(a) Hilbd(X) is reduced with locally complete intersection singularities and embedded dimension at most
2d at every point.

(b) Hilbd(X)l is dense in Hilbd(X).

(c) Hilbd(X)l is the smooth locus of Hilbd(X).

The above properties do hold true if Hilbd(X) is replaced by Hilbd(X)s.

Proof. Part (a) follows from [AIK76, Cor. 7] (see also [BGS81, Prop. 1.4]), part (b) follows from [AIK76,
Thm. 8] (see also [BGS81, Prop. 1.4]) and part (c) follows from [BGS81, Prop. 2.3].

The above properties do remain true for Hilbd(X)s since Hilbd(X)s is an open subset of Hilbd(X)

containing Hilbd(X)l. �

The punctual Hilbert scheme of X and the moduli space JX are related via the Abel map, which is
defined as follows. Given a line bundle M on X , we define the M -twisted Abel map of degree d by

(2.4)
AdM : sHilbdX −→ JX ,

D 7→ ID ⊗M.

Note that, by definition, it follows that

(2.5) (AdM )−1(JX) = Hilbd(X)l.

The following result (whose proof was kindly suggested to us by J.L. Kass) shows that, locally on the
codomain, the M -twisted Abel map of degree pa(X) is smooth and surjective (for a suitable choice of
M ∈ Pic(X)), at least if X is Gorenstein.

Proposition 2.5. Let X be a (connected and reduced) Gorenstein curve of arithmetic genus g := pa(X).
There exists a cover of JX by k-finite type open subsets {Uβ} such that, for each such Uβ, there exists

Mβ ∈ Pic(X) with the property that sHilbgX ⊇ Vβ := (AgMβ
)−1(Uβ)

Ag

Mβ
−→ Uβ is smooth and surjective.
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Proof. Observe that, given I ∈ J
χ

X and M ∈ Pic(X), we have:

(i) I belongs to the image of A
χ(M)−χ
M if (and only if) there exists an injective homomorphism I →M ;

(ii) A
χ(M)−χ
M is smooth along (A

χ(M)−χ
M )−1(I) provided that Ext1(I,M) = 0.

Indeed, if there exists an injective homomorphism I → M , then its cokernel is the structure sheaf of a
0-dimensional subscheme D ⊂ X of length equal to χ(M) − χ(I) = χ(M) − χ with the property that

ID = I ⊗M−1. Therefore A
χ(M)−χ
M (D) = ID ⊗M = (I ⊗M−1) ⊗M = I, which implies part (i). Part

(ii) follows from [AK80, Thm. 5.18(ii)]2.

Fixing M ∈ Pic(X), the conditions (i) and (ii) are clearly open conditions on J
χ

X ; hence the proof of
the Proposition follows from the case n = g of the following

Claim: For any I ∈ J
χ

X and any n ≥ g, there exists Mn ∈ Pic(X) with χ(M) = n+ χ such that

(a) there exists an injective homomorphism I →Mn;
(b) Ext1(I,Mn) = 0.

First of all, observe that, for any I ∈ J
χ

X and any line bundle N , the local-to-global spectral sequence
Hp(X, Extq(I,N))⇒ Extp+q(I,N) gives that

H0(X,Hom(I,N)) = Ext0(I,N),

0→ H1(X,Hom(I,N))→ Ext1(I,N)→ H1(X, Ext1(I,N)).

Moreover, the sheaf Ext1(I,N) = Ext1(I,OX)⊗N vanishes by [Har94, Prop. 1.6], so that we get

(2.6) Exti(I,N) = Hi(X,Hom(I,N)) = Hi(X, I∗ ⊗N) for i = 0, 1

where I∗ := Hom(I,OX) ∈ JX . From (2.6) and Riemann-Roch, we get
(2.7)
dimExt0(I,N)−dimExt1(I,N) = χ(I∗⊗N) = degN+χ(I∗) = degN+2(1−g)−χ(I) = χ(N)−χ+1−g.

We will now prove the claim by decreasing induction on n. The claim is true (using (2.6)) if n ≫ 0
and Mn is chosen to be a sufficiently high power of a very ample line bundle on X . Suppose now that we
have a line bundle Mn+1 ∈ Picn+1(X) with χ(Mn+1) = n+1+χ (for a certain n ≥ g) which satisfies the
properties of the Claim. We are going to show that, for a generic smooth point p ∈ X , the line bundle
Mn :=Mn+1 ⊗OX(−p) ∈ Pic(X) also satisfies the properties of the Claim.

Using (2.7) and the properties of Mn+1, it is enough to show that Mn :=Mn+1⊗OX(−p), for p ∈ X
generic, satisfies

(*) dimHom(I,Mn) = dimHom(I,Mn+1)− 1,

(**) the generic element [I →Mn] ∈ Hom(I,Mn) is injective.

Tensoring the exact sequence

0→ OX(−p)→ OX → Op → 0

with I∗ ⊗Mn+1 and taking cohomology, we get the exact sequence

0→ Hom(I,Mn) = H0(X, I∗ ⊗Mn)→ Hom(I,Mn+1) = H0(X, I∗ ⊗Mn+1)
e
−→ kp,

where e is the evaluation of sections at p ∈ X . By the assumptions on Mn+1 and (2.7), we have that

dimHom(I,Mn+1) = χ(Mn+1)− χ+ 1− g = n+ 1 + 1− g ≥ 2,

and, moreover, that the generic element [I → Mn+1] ∈ Hom(I,Mn+1) is injective. By choosing a point
p ∈ X for which there exists a section s ∈ H0(X, I∗⊗Mn+1) which does not vanish in p, we get that (*)
and (**) holds true for Mn =Mn+1 ⊗OX(−p), q.e.d.

�

Remark 2.6. From the proof of the second statement of Theorem 2.3(i) and Remark 2.7(iii) below, it
will follow that the above Proposition is, in general, false if g is replaced by any smaller integer.

With the above preliminaries results, we can now give a proof of Theorem 2.3.

2Note that in loc.cit., this is stated under the assumption that X is integral. However, a close inspection of the proof
reveals that this continues to hold true under the assumption that X is only reduced. The irreducibility is only used in
part (i) of [AK80, Thm. 5.18].
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Proof of Theorem 2.3. Observe that each of the three statements of the theorem is local in JX , i.e. it is
sufficient to check it on an open cover of JX . Consider the open cover {Uβ} given by Proposition 2.5.

Part (i): from Fact 2.4(a), it follows that Vβ ⊂ sHilbgX is reduced with locally complete intersection
singularities and embedded dimension at most 2g = 2pa(X). Since (AgM )|Vβ

is smooth and surjective
into Uβ , also Uβ inherits the same properties.

Part (ii): from Fact 2.4(b), it follows that Hilbg(X)l ∩ Vβ is dense in Vβ . From the surjectivity of
(AgM )|Vβ

together with (2.5), it follows that AgM (Vβ ∩ Hilbg(X)l) = Uβ ∩ JX is dense in AgM (Vβ) = Uβ.

Part (iii): from Fact 2.4(c), it follows that Hilbg(X)l ∩Vβ is the smooth locus of Vβ . Since (A
g
M )|Vβ

is

smooth and surjective and (2.5) holds, we infer that AgM (Vβ ∩Hilb
g(X)l) = Uβ ∩ JX is the smooth locus

of AgM (Vβ) = Uβ.
�

Remark 2.7.

(i) Theorem 2.3 is well-known (except perhaps the statement about the embedded dimension) in the
case where X is irreducible (and hence integral): the first assertion in part (i) and part (ii) are due
to Altman-Iarrobino-Kleiman [AIK76, Thm. 9]; part (iii) is due to Kleppe [Kle81] (unpublished,
for a proof see [Kas09, Prop. 6.4]). Note that, for X irreducible, part (ii) is equivalent to the

irreducibility of J
d

X for a certain d ∈ Z (hence for all d ∈ Z).
(ii) The hypothesis that X has locally planar singularities is crucial in the above Theorem 2.3:

• Altman-Iarrobino-Kleiman constructed in [AIK76, Exa. (13)] an integral curve without locally

planar singularities (indeed, a curve which is a complete intersection in P3) for which J
d

X (for

any d ∈ Z) is not irreducible (equivalently, JdX is not dense in J
d

X). Later, Rego ([Reg80, Thm.

A]) and Kleppe-Kleiman ([KK81, Thm. 1]) showed that, for X irreducible, J
d

X is irreducible
if and only if X has locally planar singularities.
• Kass proved in [Kas12, Thm. 2.7] that if X is an integral curve with a unique non-Gorenstein

singularity, then its compactified Jacobian J
d

X (for any d ∈ Z) contains an irreducible compo-

nent Dd which does not meet the open subset JdX ⊂ J
d

X of line bundles and it is generically

smooth of dimension pa(X). In particular, the smooth locus of J
d

X is bigger then the locus JdX
of line bundles.
• Kass constructed in [Kas15] an integral rational space curve X of arithmetic genus 4 for which
JX is non-reduced.

(iii) The statement about the embedded dimension in Theorem 2.3 is sharp: if X is a rational nodal

curve with g nodes and I ∈ J
d

X is a sheaf that is not locally free at any of the g nodes (and any

J
d

X contains a sheaf with these properties), then it is proved in [CMK12, Prop. 2.7] that J
d

X is
isomorphic formal locally at I to the product of g nodes, hence it has embedded dimension at I
equal to 2g.

2.2. Fine compactified Jacobians. For any χ ∈ Z, the scheme J
χ

X is neither of finite type nor sepa-
rated over k (and similarly for JχX) if X is reducible. However, they can be covered by open subsets that
are proper (and even projective) over k: the fine compactified Jacobians of X . The fine compactified
Jacobians depend on the choice of a polarization, whose definition is as follows.

Definition 2.8. A polarization on a connected curve X is a tuple of rational numbers q = {q
Ci
}, one

for each irreducible component Ci of X , such that |q| :=
∑

i qCi
∈ Z. We call |q| the total degree of q.

Given any subcurve Y ⊆ X , we set q
Y

:=
∑

j qCj
where the sum runs over all the irreducible

components Cj of Y . Note that giving a polarization q is the same as giving an assignment (Y ⊆ X) 7→ q
Y

such that q
X
∈ Z and which is additive on Y , i.e. such that if Y1, Y2 ⊆ X are two subcurves of X without

common irreducible components, then q
Y1∪Y2

= q
Y1

+ q
Y2
.

Definition 2.9. A polarization q is called integral at a subcurve Y ⊆ X if q
Z
∈ Z for any connected

component Z of Y and of Y c.
A polarization is called general if it is not integral at any proper subcurve Y ⊂ X .

Remark 2.10. It is easily seen that q is general if and only if q
Y
6∈ Z for any proper subcurve Y ⊂ X

such that Y and Y c are connected.
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For each subcurve Y of X and each torsion-free sheaf I on X , the restriction I|Y of I to Y is not
necessarily a torsion-free sheaf on Y . However, I|Y contains a biggest subsheaf, call it temporarily J ,
whose support has dimension zero, or in other words such that J is a torsion sheaf. We denote by IY
the quotient of I|Y by J . It is easily seen that IY is torsion-free on Y and it is the biggest torsion-free
quotient of I|Y : it is actually the unique torsion-free quotient of I whose support is equal to Y . Moreover,
if I is torsion-free rank-1 then IY is torsion-free rank-1. We let degY (I) denote the degree of IY on Y ,
that is, degY (I) := χ(IY )− χ(OY ).

Definition 2.11. Let q be a polarization on X . Let I be a torsion-free rank-1 sheaf onX (not necessarily
simple) such that χ(I) = |q|.

(i) We say that I is semistable with respect to q (or q-semistable) if for every proper subcurve Y ⊂ X ,
we have that

(2.8) χ(IY ) ≥ qY .

(ii) We say that I is stable with respect to q (or q-stable) if it is semistable with respect to q and if the

inequality (2.8) is always strict.

Remark 2.12. It is easily seen that a torsion-free rank-1 sheaf I is q-semistable (resp. q-stable) if and

only if (2.8) is satisfied (resp. is satisfied with strict inequality) for any subcurve Y ⊂ X such that Y
and Y c are connected.

Remark 2.13. Let q be a polarization on X and let q′ be a general polarization on X that is obtained
by slightly perturbing q. Then, for a torsion-free rank-1 sheaf I on X , we have the following chain of
implications:

I is q-stable⇒ I is q′-stable⇒ I is q′-semistable⇒ I is q-semistable.

Remark 2.14. A line bundle L on X is q-semistable if and only if

(2.9) χ(L|Y ) ≤ qY + |Y ∩ Y c|

for any subcurve Y ⊆ X . Indeed, tensoring with L the exact sequence

0→ OX → OY ⊕OY c → OY ∩Y c → 0,

and taking Euler-Poincaré characteristics, we find that

χ(L|Y ) + χ(L|Y c) = χ(L) + |Y ∩ Y c|.

Using this equality, we get that

χ(L|Y c) ≥ q
Y c
⇐⇒ χ(L|Y ) = χ(L)− χ(L|Y c) + |Z ∩ Zc| ≤ |q| − q

Y c
+ |Z ∩ Zc| = q

Y
+ |Z ∩ Zc|,

which gives that (2.8) for Y c is equivalent to (2.9) for Y .

Remark 2.15. If X is Gorenstein, we can write the inequality (2.8) in terms of the degree of IY as follows

(2.10) degY (I) ≥ qY − χ(OY ) = q
Y
+

degY (ωX)

2
−
δY
2
,

where we used the adjunction formula (see [Cat82, Lemma 1.12])

degY (ωX) = 2pa(Y )− 2 + δY = −2χ(OY ) + δY .

The inequality (2.10) was used to define stable rank-1 torsion-free sheaves on nodal curves in [MV12]; in
particular, there is a change of notation between this paper where q-(semi)stability is defined by means
of the inequality (2.8) and the notation of loc. cit. where q-(semi)stability is defined by means of the

inequality (2.10).

Polarizations on X can be constructed from vector bundles on X , as we now indicate.

Remark 2.16. Given a vector bundle E on X , we define the polarization qE on X by setting

(2.11) qE
Y
:= −

deg(E|Y )

rk(E)
,

for each subcurve Y (or equivalently for each irreducible component Ci) of X . Then a torsion-free rank-1
sheaf I on X is stable (resp. semistable) with respect to qE in the sense of Definition 2.11 if and only if

χ(IY ) > (≥)qE
Y
= −

deg(E|Y )

rk(E)
,
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i.e. if I is stable (resp. semistable) with respect to E in the sense of [Est01, Sec. 1.2].
Moreover, every polarization q on X is of the form qE for some (non-unique) vector bundle E. Indeed,

take r > 0 a sufficiently divisible natural number such that rq
Y
∈ Z for every subcurve Y ⊆ X . Consider

a vector bundle E on X of rank r such that, for every subcurve Y ⊆ X (or equivalently for every
irreducible component Ci of X), the degree of E restricted to Y is equal to

(2.12) − deg(E|Y ) = rq
Y
.

Then, comparing (2.11) and (2.12), we deduce that qE = q.

Finally, for completeness, we mention that the usual slope (semi)stability with respect to some ample
line bundle on X is a special case of the above (semi)stability.

Remark 2.17. Given an ample line bundle L on X and an integer χ ∈ Z, the slope (semi)stability
for rank-1 torsion-free sheaves on X of Euler-Poincaré characteristic equal to χ is equal to the above
(semi)stability with respect to the polarization Lq defined by setting

(2.13) Lq
Y
:=

deg(L|Y )

degL
χ,

for any subcurve Y of X . The proof of the above equivalence in the nodal case can be found in [Ale04,
Sec. 1] (see also [CMKV15, Fact 2.8]); the same proof extends verbatim to arbitrary reduced curves.
Notice that, as observed already in [MV12, Rmk. 2.12(iv)], slope semistability with respect to some
ample line bundle L is much more restrictive than q-semistability: the extreme case being when χ = 0,
in which case there is a unique slope semistability (independent on the chosen line bundle L) while there
are plenty of q-semistability conditions!

The geometric implications of having a general polarization are clarified by the following result.

Lemma 2.18. Let I be a rank-1 torsion-free sheaf on X which is semistable with respect to a polarization
q on X.

(i) If q is general then I is also q-stable.
(ii) If I is q-stable, then I is simple.

Proof. Let us first prove (i). Since q is general, from Remark 2.10 it follows that if Y ⊂ X is a subcurve
of X such that Y and Y c are connected then q

Y
6∈ Z. Therefore, the right hand side of (2.8) is not an

integer for such subcurves, hence the inequality is a fortiori always strict. This is enough to guarantee
that a torsion-free rank-1 sheaf that is q-semistable is also q-stable, by Remark 2.12.

Let us now prove part (ii). By contradiction, suppose that I is q-stable and not simple. Since I is not

simple, we can find, according to [Est01, Prop. 1], a proper subcurve Y ⊂ X such that the natural map
I → IY ⊕ IY c is an isomorphism, which implies that χ(I) = χ(IY ) + χ(IY c). Since I is q-stable, we get
from (2.8) the two inequalities {

χ(IY ) > q
Y
,

χ(IY c) > q
Y c
.

Summing up the above inequalities, we get χ(I) = χ(IY ) + χ(IY c) > q
Y

+ q
Y c

= |q|, which is a

contradiction since χ(I) = |q| by definition of q-stability. �

Later on (see Lemma 5.15), we will see that the property stated in Lemma 2.18(i) characterizes the
polarizations that are general, at least for curves with locally planar singularities.

For a polarization q on X , we will denote by J
ss

X (q) (resp. J
s

X(q)) the subscheme of JX parametrizing

simple rank-1 torsion-free sheaves I on X which are q-semistable (resp. q-stable). If q = qE for some

vector bundle E on X , then it follows from Remark 2.16 that the subscheme JsX(qE) (resp. JssX (qE))
coincides with the subscheme JsE (resp. JssE ) in Esteves’s notation (see [Est01, Sec. 4]). By [Est01, Prop.
34], the inclusions

J
s

X(q) ⊆ J
ss

X (q) ⊂ JX
are open.

Fact 2.19 (Esteves). Let X be a connected curve.

(i) J
s

X(q) is a quasi-projective scheme over k (not necessarily reduced). In particular, J
s

X(q) is a
scheme of finite type and separated over k.

(ii) J
ss

X (q) is a k-scheme of finite type and universally closed over k.
12



(iii) If q is general then J
ss

X (q) = J
s

X(q) is a projective scheme over k (not necessarily reduced).

(iv) JX =
⋃

q general

J
s

X(q).

Proof. Part (i) follows from [Est01, Thm. A(1) and Thm. C(4)].
Part (ii) follows from [Est01, Thm. A(1)].

Part (iii): the fact that J
ss

X (q) = J
s

X(q) follows from Lemma 2.18. Its projectivity follows from (i) and

(ii) since a quasi-projective scheme over k which is universally closed over k must be projective over k.
Part (iv) follows from [Est01, Cor. 15], which asserts that a simple torsion-free rank-1 sheaf is stable

with respect to a certain polarization, together with Remark 2.13, which asserts that it is enough to
consider general polarizations.

�

If q is general, we set JX(q) := J
ss

X (q) = J
s

X(q) and we call it the fine compactified Jacobian with

respect to the polarization q. We denote by JX(q) the open subset of JX(q) parametrizing line bundles
on X . Note that JX(q) is isomorphic to the disjoint union of a certain number of copies of the generalized

Jacobian J(X) = Pic0(X) of X .
Since, for q general, JX(q) is an open subset of JX , the above Theorem 2.3 immediately yields the

following properties for fine compactified Jacobians of curves with locally planar singularities.

Corollary 2.20. Let X be a connected curve with locally planar singularities and q a general polarization
on X. Then

(i) JX(q) is a reduced scheme with locally complete intersection singularities and embedded dimension

at most 2pa(X) at every point.
(ii) JX(q) is dense in JX(q). In particular, JX(q) has pure dimension equal to the arithmetic genus

pa(X) of X.
(iii) JX(q) is the smooth locus of JX(q).

Later, we will prove that JX(q) is connected (see Corollary 5.6) and we will give a formula for the
number of its irreducible components in terms solely of the combinatorics of the curve X (see Corollary
5.14).

Remark 2.21. If q is not general, it may happen that J
ss

X (q) is not separated. However, it follows from

[Ses82, Thm. 15, p. 155] that J
ss

X (q) admits a morphism φ : J
ss

X (q) → UX(q) onto a projective variety
that is universal with respect to maps into separated varieties; in other words, UX(q) is the biggest

separated quotient of J
ss

X (q). We call the projective variety UX(q) a coarse compactified Jacobian. The
fibers of φ are S-equivalence classes of sheaves, and in particular φ is an isomorphism on the open subset
J
s

X(q) (see loc. cit. for details). Coarse compactified Jacobians can also be constructed as a special case
of moduli spaces of semistable pure sheaves, constructed by Simpson in [Sim94].

Coarse compactified Jacobians behave quite differently from fine compactified Jacobians, even for a
nodal curve X ; for example

(i) they can have (and typically they do have) fewer irreducible components than the number c(X) of
irreducible components of fine compactified Jacobians, see [MV12, Thm. 7.1];

(ii) their smooth locus can be bigger than the locus of line bundles, see [CMKV15, Thm. B(ii)].
(iii) their embedded dimension at some point can be bigger than 2pa(X), see [CMKV15, Ex. 7.2].

3. Varying the polarization

Fine compactified Jacobians of a connected curve X depend on the choice of a general polarization q.
The goal of this section is to study the dependence of fine compactified Jacobians upon the choice of the
polarization. In particular, we will prove Theorem B, which says that there is always a finite number of
isomorphism classes (resp. homeomorphism classes if k = C) of fine compactified Jacobians of a reduced
curve X even though this number can be arbitrarily large even for nodal curves.

To this aim, consider the space of polarizations on X

(3.1) PX := {q ∈ Qγ(X) : |q| ∈ Z} ⊂ Rγ(X),
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where γ(X) is the number of irreducible components of X . Define the arrangement of hyperplanes in
Rγ(X)

(3.2) AX :=




∑

Ci⊆Y

xi = n




Y⊆X,n∈Z

where Y varies among all the subcurves of X such that Y and Y c are connected. By Remark 2.10, a
polarization q ∈ PX is general if and only if q does not belong to AX. Moreover, the arrangement of
hyperplanes AX subdivides PX into chambers with the following property: if two general polarizations
q and q′ belong to the same chamber then ⌈q

Y
⌉ = ⌈q′

Y
⌉ for any subcurve Y ⊆ X such that Y and Y c

are connected, hence JX(q) = JX(q′) by Remark 2.12. Therefore, fine compactified Jacobians of X
correspond bijectively to the chambers of PX cut out by the hyperplane arrangement AX.

Obviously, there are infinitely many chambers and therefore infinitely many different fine compactified
Jacobians. However, we are now going to show that there are finitely many isomorphism classes of fine
compactified Jacobians. The simplest way to show that two fine compactified Jacobians are isomorphic
is to show that there is a translation that sends one into the other.

Definition 3.1. Let X be a connected curve. We say that two compactified Jacobians JX(q) and JX(q′)
are equivalent by translation if there exists a line bundle L on X inducing an isomorphism

JX(q)
∼=
−→ JX(q′),

I 7→ I ⊗ L.

Note however that, in general, there could be fine compactified Jacobians that are isomorphic without
being equivalent by translation, see Section 7 for some explicit examples.

Proposition 3.2. Let X be a connected curve. There is a finite number of fine compactified Jacobians
up to equivalence by translation. In particular, there is a finite number of isomorphism classes of fine
compactified Jacobians of X.

Proof. If two generic polarizations q and q′ are such that q − q′ ∈ Zγ(X), then the multiplication by a

line bundle of multidegree q − q′ gives an isomorphism between JX(q′) and JX(q). Therefore, any fine

compactified Jacobian of X is equivalent by translation to a fine compactified Jacobian JX(q) such that
0 ≤ q

Ci
< 1 for any irreducible component Ci of X . We conclude by noticing that the arrangement of

hyperplanes AX of (3.2) subdivides the unitary cube [0, 1)γ(X) ⊂ Rγ(X) into finitely many chambers. �

3.1. Nodal curves. In this subsection, we study how fine compactified Jacobians vary for a nodal curve.
Recall that the generalized Jacobian J(X) of a reduced curve X acts, via tensor product, on any

fine compactified Jacobian JX(q) and the orbits of this action form a stratification of JX(q) into locally
closed subsets. This stratification was studied in the case of nodal curves by the first and third authors
in [MV12]. In order to recall these results, let us introduce some notation. Let Xsing be the set of nodes
of X and for every subset S ⊆ Xsing denote by νS : XS → X the partial normalization of X at the nodes

belonging to S. For any subcurve Y of X , set YS := ν−1
S (Y ). Note that YS is the partial normalization of

Y at the nodes S ∩ Ysing and that every subcurve of XS is of the form YS for some uniquely determined
subcurve Y ⊆ X . Given a polarization q on X , define a polarization qS on XS by setting qS

YS
:= q

Y
for

any subcurve Y of X . Clearly, if q is a general polarization on X then qS is a general polarization on
XS . Moreover, consider the following subset of integral multidegrees on XS :

BS(q) := {χ ∈ Zγ(XS) : |χ| = |qS |, χ
YS
≥ q

YS
for any subcurve Y ⊆ X},

and for every χ ∈ BS(q) denote by J
χ

XS
the J(XS)-torsor consisting of all the line bundles L on XS

whose multi-Euler characteristic is equal to χ, i.e. χ(L|YS
) = χ

YS
for every subcurve YS ⊆ XS .

Fact 3.3. Let X be a connected nodal curve of arithmetic genus pa(X) = g and let JX(q) be a fine
compactified Jacobian of X.

(i) For every S ⊆ Xsing, denote by JX,S(q) the locally closed subset (with reduced scheme structure) of

JX(q) consisting of all the sheaves I ∈ JX(q) such that I is not locally free exactly at the nodes of
S. Then
(a) JX,S(q) 6= ∅ if and only if XS is connected;

(b) JX,S(q) =
∐
S⊆S′ JX,S′(q).
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(ii) The pushforward νS∗ along the normalization morphism νS : XS → X gives isomorphisms




JX,S(q) ∼=JXS
(qS) =

∐

χ∈BS(q)

J
χ

XS
,

JX,S(q) ∼=JXS
(qS).

(iii) The decomposition of JX(q) into orbits for the action of the generalized Jacobian J(X) is equal to

JX(q) =
∐

S⊆Xsing

χ∈BS(q)

J
χ

XS
,

where the disjoint union runs over the subsets S ⊆ Xsing such that XS is connected.
(iv) For every I ∈ JX,S(q), the completion of the local ring OJX (q),I of the fine compactified Jacobian

JX(q) at I is given by

ÔJX(q),I = k[[Z1, . . . , Zg−|S|]]
⊗̂

1≤i≤|S|

k[[Xi, Yi]]

(XiYi)
.

Proof. Parts (i), (ii) and (iii) follow from [MV12, Thm. 5.1] keeping in mind the change of notation of
this paper (where we use the Euler characteristic) with respect to the notation of [MV12] (where the
degree is used), see Remark 2.15.

Part (iv) is a special case of [CMKV15, Thm. A] (see in particular [CMKV15, Example 7.1]), where
the local structure of (possibly non fine) compactified Jacobians of nodal curves is described. �

The set of J(X)-orbits O(JX(q)) := {J
χ

XS
} on JX(q) forms naturally a poset (called the poset of

orbits of JX(q)) by declaring that J
χ

XS
≥ J

χ′

XS′
if and only if J

χ

XS
⊇ J

χ′

XS′
. Observe that the generalized

Jacobian J(X) acts via tensor product on any coarse compactified Jacobian UX(q) (defined as in Remark
2.21) and hence we can define the poset of orbits of UX(q). However, the explicit description of Fact 3.3
fails for non fine compactified Jacobians.

Clearly, the poset of orbits is an invariant of the fine compactified Jacobian endowed with the action of
the generalized Jacobian. We will now give another description of the poset of orbits of JX(q) in terms

solely of the singularities of the variety JX(q) without any reference to the action of the generalized
Jacobian. With this in mind, consider a k-variety V , i.e. a reduced scheme of finite type over k. Define
inductively a finite chain of closed subsets ∅ = V r+1 ⊂ V r ⊂ . . . ⊂ V 1 ⊂ V 0 = V by setting V i equal
to the singular locus of V i−1 endowed with the reduced scheme structure. The loci V ireg := V i \ V i+1,

consisting of smooth points of V i, form a partition of V into locally closed subsets. We define the singular
poset of V , denoted by Σ(V ), as the set of irreducible components of V ireg for 0 ≤ i ≤ r, endowed with

the poset structure defined by setting C1 ≥ C2 if and only if C1 ⊇ C2.

Proposition 3.4. Let X be a connected nodal curve and let q be a general polarization on X. Then the

poset of orbits O(JX(q)) is isomorphic to the singular poset Σ(JX(q)).

In particular, if JX(q) ∼= JX(q′) for two general polarizations q, q′ on X then O(JX(q)) ∼= O(JX(q′)).

Proof. According to Corollary 2.20(iii), the smooth locus of JX(q) is the locus JX(q) of line bundles;

therefore, using Fact 3.3, the singular locus of JX(q) is equal to

JX(q)1 =
∐

∅6=S⊆Xsing

JX,S(q) =
⋃

|S|=1

JX,S(q) ∼=
⋃

|S|=1

JXS
(qS).

Applying again Corollary 2.20(iii) and Fact 3.3 and proceeding inductively, we get that

JX(q)i =
∐

|S|≥i

JX,S(q) =
⋃

|S|=i

JX,S(q) ∼=
⋃

|S|=i

JXS
(qS).

Therefore the smooth locus of JX(q)i is equal to

JX(q)ireg = JX(q)i \ JX(q)i+1 =
∐

|S|=i

JX,S(q) =
∐

|S|=i

χ∈BS(q)

J
χ

XS
.

Since each subset J
χ

XS
is irreducible, being a J(XS)-torsor, we deduce that the singular poset of JX(q)

is equal to its poset of orbits, q.e.d. �
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Moreover, as we will show in the next proposition, if our base field k is the field C of complex numbers,
then the poset of orbits of a fine compactified Jacobian JX(q) is a topological invariant of the analytic

space JX(q)an associated to JX(q), endowed with the Euclidean topology.

Proposition 3.5. Let X be a connected nodal curve of arithmetic genus g = pa(X) and let q, q′ be two

general polarizations on X. If JX(q)an and JX(q′)an are homeomorphic then O(JX(q)) ∼= O(JX(q′)).

Proof. Let ψ : JX(q)an
∼=
−→ JX(q′)an be a homeomorphism. Consider a sheaf I ∈ JX,S(q)

an for some
S ⊆ Xsing and denote by S′ the unique subset of Xsing such that ψ(I) ∈ JX,S′(q′)an. Fact 3.3(iv)

implies that JX(q)an (resp. JX(q′)an) is locally (analytically) isomorphic at I (resp. at ψ(I)) to the

complex analytic space given by the product of |S| (resp. |S′|) nodes with a smooth variety of dimension
g − |S|excision (resp. g − |S′|). Using excision and Lemma 3.6, we get that

{
dimQH

2g(JX(q)an, JX(q)an \ {I},Q) = 2|S|,

dimQH
2g(JX(q′)an, JX(q′)an \ {ψ(I)},Q) = 2|S

′|.

Since ψ is a homeomorphism, we conclude that |S| = |S′|, or in other words that

I ∈
∐

|S|=i

JX,S(q)
an for some i ≥ 0⇒ ψ(I) ∈

∐

|S|=i

JX,S(q
′)an.

Therefore, the map ψ induces a homeomorphism between
∐

|S|=i

JX,S(q)
an ⊆ JX(q) and

∐

|S|=i

JX,S(q
′)an ⊆

JX(q′) for any i ≥ 0. Fact 3.3(ii) implies that we have the following decompositions into connected
components

∐

|S|=i

JX,S(q)
an =

∐

|S|=i

χ∈BS(q)

(J
χ

XS
)an and

∐

|S|=i

JX,S(q
′)an =

∐

|S|=i

χ∈BS(q′)

(J
χ

XS
)an.

Hence, ψ induces a bijection ψ∗ : O(JX(q))
∼=
−→ O(JX(q′)) between the strata of JX(q) and the strata of

JX(q′) with the property that each stratum (J
χ

XS
)an of JX(q)an is sent homeomorphically by ψ onto the

stratum ψ∗(J
χ

XS
)an of JX(q′)an. Therefore, the bijection ψ∗ is also an isomorphism of posets, q.e.d. �

Lemma 3.6. Let V be the complex subvariety of C2k+n−k of equations x1x2 = x3x4 = . . . = x2k−1x2k =
0, for some 0 ≤ k ≤ n. Then dimQH

2n(V, V \ {0},Q) = 2k.

Proof. Since V is contractible, by homotopical invariance of the cohomology of groups we have that

(3.3) H2n(V, V \ {0},Q) = H2n−1(L,Q) = H2n−1(L,Q)∨,

where L is the link of the origin 0 in V , i.e. the intersection of V with a small sphere of C2k+n−k centered
at 0. Observe that V is the union of 2k vector subspaces of C2k+n−k of dimension n:

Vǫ• = 〈e1+ǫ1 , e3+ǫ2 , . . . , e2k−1+ǫk , e2k+1, . . . , e2k+n−k〉 where ǫ• = (ǫ1, . . . , ǫk) ∈ {0, 1}
k,

which intersect along vector subspaces of dimension less than or equal to n− 1. It follows that L is the
union of 2k spheres {S1, . . . , S2k} of dimension 2n − 1 which intersect along spheres of dimension less
than or equal to 2n− 3. Fix a triangulation of L that induces a triangulation of each sphere Si and of
their pairwise intersections. Consider the natural map

η : Q2k ∼= ⊕2k

i=1H2n−1(Si,Q) −→ H2n−1(L,Q).

Since there are no simplices in L of dimension greater than 2n − 1, the map η is injective. Moreover,
using the fact that the spheres Si only intersect along spheres of dimension less that or equal to 2n− 3,
we can prove that η is surjective. Indeed, let C ∈ Z2n−1(L,Q) be a cycle in L of dimension 2n− 1, i.e.
a simplicial (2n − 1)-chain whose boundary ∂(C) vanishes. For every 1 ≤ i ≤ 2k, let Ci be the chain
obtained from C by erasing all the simplices that are not contained in the sphere Si. By construction,

we have that C =
∑2k

i=1 Ci. Therefore, using that C is a cycle, we get that (for every i)

∂(Ci) = −
∑

j 6=i

∂(Cj).

Observe now that ∂(Ci) is a (2n−2)-chain contained in Si while
∑
j 6=i ∂(Cj) is a (2n−2)-chain contained

in
⋃
j 6=i Sj . Since Si intersects each Sj with j 6= i in spheres of dimension less than or equal to (2n −
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3), we conclude that ∂(Ci) = 0, or in other words that Ci ∈ Z2n−1(Si,Q). Therefore, we get that

η
(∑2k

i=1[Ci]
)
= [C], which shows that η is surjective.

The assertion now follows from the equality (3.3) together with the fact that η is an isomorphism. �

Remark 3.7. We do not know of any example of two non isomorphic (or non homeomorphic if k = C)
fine compactified Jacobians having isomorphic posets of orbits; therefore, we wonder if the converse of
the second assertion of Proposition 3.4 or the converse of Proposition 3.5 might hold true.

The poset of orbits of a fine compactified Jacobian JX(q) (or more generally of any coarse compactified

Jacobian UX(q)) is isomorphic to the poset of regions of a certain toric arrangement of hyperplanes, as we
now explain. Let ΓX be the (connected) dual graph of the nodal curve X , i.e. the graph whose vertices
V (ΓX) correspond to irreducible components of X and whose edges E(ΓX) correspond to nodes of X :
an edge being incident to a vertex if the node corresponding to the former belongs to the irreducible
component corresponding to the latter. We fix an orientation of ΓX , i.e. we specify the source and target
s, t : E(ΓX) → V (ΓX) of each edge of ΓX . The first homology group H1(ΓX , A) of the graph ΓX with
coefficients in a commutative ring with unit A (e.g. A = Z,Q,R) is the kernel of the boundary morphism

(3.4)

∂ : C1(ΓX , A) =
⊕

e∈E(ΓX )

A · e −→ C0(ΓX , A) =
⊕

v∈V (ΓX )

A · v,

e 7→ t(e)− s(e).

The map ∂ depends upon the choice of the orientation of ΓX ; however, H1(ΓX , A) does not depend
upon the chosen orientation. Since the graph ΓX is connected, the image of the boundary map ∂ is the
subgroup

C0(ΓX , A)0 :=





∑

v∈V (ΓX)

av · v :
∑

v∈V (ΓX )

av = 0



 ⊂ C0(ΓX , A).

When A = Q or R, we can endow the vector space C1(ΓX , A) with a non-degenerate bilinear form (, )
defined by requiring that

(e, f) =

{
0 if e 6= f,

1 if e = f,

for any e, f ∈ E(ΓX). Denoting by H1(ΓX , A)
⊥ the subspace of C1(ΓX , A) perpendicular to H1(ΓX , A),

we have that the boundary map induces an isomorphism of vector spaces

(3.5) ∂ : H1(ΓX , A)
⊥ ∼=
−→ C0(ΓX , A)0.

Let now q be a polarization of total degree |q| = 1− pa(X) = 1− g and consider the element

φ :=
∑

v∈V (ΓX)

φv · v =
∑

v∈V (ΓX )

(
q
Yv

+
degYv

(ωX)

2

)
· v ∈ C0(ΓX ,Q)0,

where Yv is the irreducible component of X corresponding to the vertex v ∈ V (ΓX). Using the isomor-
phism (3.5), we can find a unique element ψ =

∑
e∈E(ΓX ) ψe · e ∈ H1(ΓX ,Q)⊥ such that ∂(ψ) = φ.

Consider now the arrangement of affine hyperplanes in H1(Γ,R) given by

(3.6) Vq :=

{
e∗ = n+

1

2
− ψe

}

n∈Z,e∈E(ΓX)

where e∗ is the functional on C1(Γ,R) (hence on H1(ΓX ,R) by restriction) given by e∗ = (e,−). The
arrangement of hyperplanes Vq is periodic with respect to the action of H1(ΓX ,Z) on H1(Γ,R); hence,

it induces an arrangement of hyperplanes in the real torus
H1(ΓX ,R)

H1(ΓX ,Z)
, which we will still denote by

Vq and we will call the toric arrangement of hyperplanes associated to q. The toric arrangement Vq

of hyperplanes subdivides the real torus
H1(ΓX ,R)

H1(ΓX ,Z)
into finitely many regions, which form naturally a

partially ordered set (poset for short) under the natural containment relation. This poset is related to
the coarse compactified Jacobian UX(q) as follows.

Fact 3.8 (Oda-Seshadri). Let q be a polarization of total degree |q| = 1− pa(X) = 1− g on a connected
nodal curve X. The poset of regions cut out by the toric arrangement of hyperplanes Vq is isomorphic

to the poset O(JX(q)) of J(X)-orbits on UX(q).
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Proof. See [OS79] or [Ale04, Thm. 2.9]. �

The arrangement of hyperplanes Vq determines wether the polarization q on X is generic or not, at

least if X does not have separating nodes, i.e. nodes whose removal disconnects the curve. Recall that a
toric arrangement of hyperplanes is said to be simple if the intersection of r non-trivial hyperplanes in
the given arrangement has codimension at least r. Moreover, following [MV12, Def. 2.8], we say that a
polarization q is non-degenerate if and only if q is not integral at any proper subcurve Y ⊂ X such that
Y intersects Y c in at least one non-separating node. Note that a general polarization on a nodal curve
X is non-degenerate and that the converse is true if X does not have separating nodes.

Lemma 3.9. Let q be a polarization of total degree |q| = 1− pa(X) = 1− g on a connected nodal curve
X.

(i) Vq is simple if and only if q is non-degenerate. In particular, if q is general then Vq is simple, and
the converse is true if X does not have separating nodes.

(ii) If Vq is simple then we can find a general polarization q′ such that Vq and Vq′ have isomorphic

poset of regions.

Proof. By [MV12, Thm. 7.1], q is non-degenerate if and only if the number of irreducible components of
the compactified Jacobian UX(q) is the maximum possible which is indeed equal to the complexity c(X)
of the curve X , i.e. the number of spanning trees of the dual graph ΓX of X . By Fact 3.8, this happens
if and only if the number of full-dimensional regions cut out by the toric arrangement Vq is as big as

possible. This is equivalent, in turn, to the fact that Vq is simple, which concludes the proof of (i).
Now suppose that Vq is simple. Then there exists a small Eucliden open neighborhood U of q in the

space PX of polarizations (see (3.1)) such that for every q′ ∈ U the toric arrangement Vq′ of hyperplanes
has its poset of regions isomorphic to the poset of regions of Vq. Clearly, such an open subset U will

contain a point q′ not belonging to the arrangement of hyperplanes AX defined in (3.2); any such point

q′ will satisfy the conclusions of part (ii). �

Although Fact 3.8 and Lemma 3.9 are only stated for (fine) compactified Jacobians of total degree
1−pa(X), they can be easily extended to any compactified Jacobian since any (fine) compactified Jacobian
of a curve X is equivalent by translation to a (fine) compactified Jacobian of total degree 1 − pa(X)
(although not to a unique one). In particular, combining Propositions 3.4 and 3.5, Fact 3.8 and Lemma
3.9, we get the following lower bound for the number of non isomorphic (resp. non homeomorphic if
k = C) fine compactified Jacobians of a nodal curve X .

Corollary 3.10. Let X be a connected nodal curve. Then the number of non isomorphic (resp. non
homeomorphic if k = C) fine compactified Jacobians of X is bounded from below by the number of simple
toric arrangement of hyperplanes of the form Vq whose posets of regions are pairwise non isomorphic.

We end this section by giving a sequence of nodal curves {Xn}n∈N of genus two such that the number
of simple toric arrangements of hyperplanes {Vq}q∈PX

having pairwise non isomorphic posets of regions

becomes arbitrarily large as n goes to infinity; this implies, by Corollary 3.10, that the number of non
isomorphic (resp. non homeomorphic if k = C) fine compactified Jacobians can be arbitrarily large even
for nodal curves, thus completing the proof of Theorem B from the introduction.

Example 3.11. Consider a genus-2 curve X = X1 obtained from a dollar sign curve blowing up two of
its 3 nodes. Then the dual graph ΓX of X is as follows:

✸ s
✛

s ✸

s

s

s s

e11 e21

e12 e22

e3

Using the orientation depicted in the above Figure, a basis for H1(ΓX ,Z) ∼= Z2 is given by x :=
e11 + e21 + e3 and y := e12 + e22+ e3. Therefore, the functionals on H1(ΓX ,R) ∼= R2 associated to the edges
of ΓX are given, in the above basis, by

(e11)
∗ = (e21)

∗ = x∗ (e12)
∗ = (e22)

∗ = y∗ e∗3 = x∗ + y∗.
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Then each polarization q on X of total degree |q| = 1− pa(X) = −1 gives rise to a toric arrangement Vq

of 5 lines in
H1(ΓX ,R)

H1(ΓX ,Z)
∼=

R2

Z2
of the form

Vη• =
{
x = ηe11 , x = ηe21 , y = ηe12 , y = ηe22 , x+ y = ηe3

}

for some rational numbers η• which are determined by the polarization q, as explained in (3.6) above.

Conversely, given such a toric arrangement Vη• of 5 lines in R2/Z2, there is a polarization q on X of total

degree |q| = 1 − pa(X) = −1 such that Vq = Vη• . Moreover, according to Lemma 3.9, the polarization
q is general in X if and only if the arrangement Vq = Vη• is simple. Consider the following two simple

toric arrangements of 5 lines that are drawn on the unit square of R2 (two of the lines correspond to the
edges of the unit square):

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅❅

❅
❅
❅
❅

❅
❅

❅
❅

❅
❅❅

❅
❅
❅
❅
❅
❅
❅
❅
❅❅

Then it is easy to check that the poset of regions of the two toric arrangements are not isomorphic:
it suffices to note that on the one on the left there are 2 triangular two dimensional regions while on
the one on the right there are 4 triangular two dimensional regions. According to Corollary 3.10, this
implies that there are at least two generic polarizations on X , q and q′, such that JX(q) and JX(q′) are
not isomorphic.

More generally, blow up X further in order to obtain a genus-2 curve Xn whose dual graph ΓXn
is as

follows:
s

s

s

s

s
s . . .

en+1
1s

s s

e11
s

s
s
s

s

e12 en+1
2

e3

. . .

In words, Xn is obtained from the dollar sign curve by blowing up two of its nodes n times. Arguing as
above, the (simple) toric arrangements associated to the (general) polarizations q on Xn of total degree

|q| = 1− pa(Xn) = −1 will be formed by 2n+ 3 lines in R2/Z2 of the form

Vη• =
{
x = ηei1 , y = ηej2

, x+ y = ηe3

}
1≤i,j≤n+1

for some rational numbers η• which depend on q. For every n
2 < i ≤ n, consider two simple toric

arrangements of hyperplanes of R2/Z2

V+
i :=

{
x =

h

3n
, y =

k

3n
, x+ y =

2i

3n
+ ǫ

}

0≤h,k≤n

V−
i :=

{
x =

h

3n
, y =

k

3n
, x+ y =

2i

3n
− ǫ

}

0≤h,k≤n

where ǫ is a sufficiently small rational number (the poset of regions of the above toric hyperplane arrange-
ments do not actually depend on the chosen small value of ǫ). In the next figure we have represented on
the unit square in R2 the toric arrangement V+i on the left and the toric arrangement V−i on the right.
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❅
❅

❅
❅

❅
❅

❅

❅
❅
❅
❅
❅
❅
❅
❅
❅

i
3n

i
3n

0 1
3

2i
3n + ǫ

❅
❅

❅
❅

❅
❅❅

❅
❅
❅
❅
❅
❅
❅
❅
❅❅

i
3n

i
3n

0 1
3

2i
3n − ǫ

It is easy to see that the the number of triangular regions cut out on R2/Z2 by V+
i (resp. V−

i ) is
4(n−i)+2 (resp. 4(n−i)+4). This implies that the toric arrangements of hyperplanes {V+i ,V

−
i }n/2<i≤n

have pairwise non isomorphic posets of regions. According to Corollary 3.10, we conclude that there are
at least n if n is even (resp. n+1 if n is odd) different generic polarizations on Xn giving rise to pairwise
non isomorphic (resp. non homeomorphic if k = C) fine compactified Jacobians.

4. Deformation theory

The aim of this section is to study the deformation theory and the semiuniversal deformation space
of a pair (X, I) where X is a (reduced) connected curve and I is rank-1 torsion-free simple sheaf on X .
For basic facts on deformation theory, we refer to the book of Sernesi [Ser06].

4.1. Deformation theory of X. The aim of this subsection is to recall some well-known facts about
the deformation theory of a (reduced) curve X .

Let DefX (resp. Def ′X) be the local moduli functor of X (resp. the locally trivial moduli functor) of
X in the sense of [Ser06, Sec. 2.4.1]. Moreover, for any p ∈ Xsing, we denote by DefX,p the deformation

functor of the complete local k-algebra ÔX,p in the sense of [Ser06, Sec. 1.2.2]. The above deformation
functors are related by the following natural morphisms:

(4.1) Def ′X → DefX → Def locX :=
∏

p∈Xsing

DefX,p .

Since X is reduced, the tangent spaces to Def ′X , DefX and DefX,p where p ∈ Xsing are isomorphic to
(see [Ser06, Cor. 1.1.11, Thm. 2.4.1])

(4.2)

T Def ′X := Def ′X(k[ǫ]) = H1(X,TX),

T DefX := DefX(k[ǫ]) = Ext1(Ω1
X ,OX),

T Def(X,p) := Def(X,p)(k[ǫ]) = (T 1
X)p,

where Ω1
X is the sheaf of Kähler differentials on X , TX := Hom(Ω1

X ,OX) is the tangent sheaf of X and

T 1
X = Ext1(Ω1

X ,OX) is the first cotangent sheaf of X , which is a sheaf supported on Xsing by [Ser06,
Prop. 1.1.9(ii)].

The usual local-to-global spectral sequence gives a short exact sequence

(4.3)

0→ H1(X,TX) = T Def ′X → Ext1(Ω1
X ,OX) = T DefX →

→ H0(X, Ext1(Ω1
X ,OX)) =

⊕

p∈Xsing

Ext1(Ω1
X ,OX)p = T Def locX → H2(X,TX) = 0,

which coincides with the exact sequence on the tangent spaces induced by (4.1).
By looking at the obstruction spaces of the above functors, one can give criteria under which the

above deformation functors are smooth (in the sense of [Ser06, Def. 2.2.4]).

Fact 4.1.

(i) Def ′X is smooth;
(ii) If X has l.c.i. singularities at p ∈ Xsing then DefX,p is smooth;

(iii) If X has l.c.i. singularities, then DefX is smooth and the morphism DefX → Def locX is smooth.
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Proof. Part (i): an obstruction space for Def ′X is H2(X,TX) by [Ser06, Prop. 2.4.6] and H2(X,TX) = 0
because dimX = 1. Therefore, Def ′X is smooth.

Part (ii) follows from [Ser06, Cor. 3.1.13(ii)].
Part (iii): by [Ser06, Prop. 2.4.8]3, an obstruction space for DefX is Ext2(Ω1

X ,OX), which is zero by
[Ser06, Example 2.4.9]. Therefore we get that DefX is smooth.

Since Def locX is smooth by part (ii) and the map of tangent spaces T DefX → T Def locX is surjective by

(4.3), the smoothness of the morphism DefX → Def locX follows from the criterion [Ser06, Prop. 2.3.6].
�

4.2. Deformation theory of the pair (X, I). The aim of this subsection is to review some fundamental
results due to Fantechi-Göttsche-vanStraten [FGvS99] on the deformation theory of a pair (X, I), where
X is a (reduced) curve and I is a rank-1 torsion-free sheaf on X (not necessarily simple).

Let Def(X,I) be the deformation functor of the pair (X, I) and, for any p ∈ Xsing, we denote by

Def(X,I),p the deformation functor of the pair (ÔX,p, Ip). We have a natural commutative diagram

(4.4) Def(X,I) //

��

Def loc(X,I) :=
∏
p∈Xsing

Def(X,I),p

��

DefX // Def locX :=
∏
p∈Xsing

DefX,p .

Under suitable hypothesis, the deformation functors appearing in the above diagram (4.4) are smooth
and the horizontal morphisms are smooth as well.

Fact 4.2 (Fantechi-Göttsche-vanStraten).

(i) The natural morphism

Def(X,I) → Def loc(X,I)×Defloc
X

DefX

is smooth. In particular, if X has l.c.i. singularities then the morphism Def(X,I) → Def loc(X,I) is
smooth.

(ii) If X has locally planar singularities at p ∈ Xsing then Def(X,I),p is smooth. In particular, if X has

locally planar singularities then Def loc(X,I) and Def(X,I) are smooth.

Proof. Part (i): the first assertion follows from [FGvS99, Prop. A.1]4. The second assertion follows from

the first one together with Fact 4.1(iii) which implies that the morphism Def loc(X,I)×Defloc
X

DefX → Def loc(X,I)

is smooth.
Part (ii): the first assertion follows from [FGvS99, Prop. A.3]5. The second assertion follows from the

first together with part (i).
�

4.3. Semiuniversal deformation space. The aim of this subsection is to describe and study the
semiuniversal deformation spaces for the deformation functors DefX and Def(X,I).

According to [Ser06, Cor. 2.4.2], the functor DefX admits a semiuniversal 6 formal couple (RX ,X ),
where RX is a Noetherian complete local k-algebra with maximal ideal mX and residue field k and

X ∈ D̂efX(RX) := lim
←−

DefX

(
RX
m
n
X

)

is a formal deformation of X over RX . Recall that this means that the morphism of functors

(4.5) hRX
:= Hom(RX ,−) −→ DefX

determined by X is smooth and induces an isomorphism of tangent spaces TRX := (mX/m
2
X)

∨
∼=
→ T DefX

(see [Ser06, Sec. 2.2]). The formal couple (RX ,X ) can be also viewed as a flat morphism of formal

3In loc. cit., it is assumed that the characteristic of the base field is 0. However, the statement is true in any
characteristics, see [Vis, Thm. (4.4)].

4In loc. cit., it is assumed that the base field is the field of complex numbers. However, a direct inspection reveals that
the same argument works over any (algebraically closed) base field.

5As before, the argument of loc. cit. works over any (algebraically closed) base field.
6Some authors use the word miniversal instead of semiuniversal. We prefer to use the word semiuniversal in order to

be coherent with the terminology of the book of Sernesi [Ser06].
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schemes

(4.6) π : X → Spf RX ,

where Spf denotes the formal spectrum, such that the reduced scheme X red underlying X (see [EGAI,
Prop. 10.5.4]) is isomorphic to X (see [Ser06, p. 77]). Note that the semiuniversal formal couple (RX ,X )
is unique by [Ser06, Prop. 2.2.7].

SinceX is projective andH2(X,OX) = 0, Grothendieck’s existence theorem (see [Ser06, Thm. 2.5.13])
gives that the formal deformation (4.6) is effective, i.e. there exists a deformation π : X → Spec RX
of X over Spec RX whose completion along X = π−1([mX ]) is isomorphic to (4.6). In other words, we
have a Cartesian diagram

(4.7) X

��

� � //

�

X //

π

��
�

X

π

��
Spec k ∼= [mX ] �

�
// Spf RX // Spec RX .

Note also that the deformation π is unique by [Ser06, Thm. 2.5.11].
Later on, we will need the following result on the effective semiuniversal deformation of a curve X

with locally planar singularities.

Lemma 4.3. Assume that X has locally planar singularities. Let U be the open subset of Spec RX
consisting of all the (schematic) points s ∈ Spec RX such that the geometric fiber Xs of the universal
family π : X → Spec RX is smooth or has a unique singular point which is a node. Then the codimension
of the complement of U inside Spec RX is at least two.

Proof. Since the natural morphism (see (4.1))

DefX → Def locX :=
∏

p∈Xsing

DefX,p

is smooth by Fact 4.1(iii), it is enough to show that if DefX,p has dimension at most one then p ∈ Xsing is
either a smooth point or a node of X . This is stated in [Ser06, Prop. 3.1.5.] under the assumption that
char(k) = 0. However, a slight modification of the argument of loc. cit. works in arbitrary characteristic,
as we are now going to show.

First, since X has locally planar singularities at p, we can write ÔX,p =
k[[x,y]]
f , for some power series

f = f(x, y) ∈ k[[x, y]]. By [Ser06, p. 124], the tangent space to Def(X,p) is equal to

T 1 := T 1
ÔX,p

=
k[[x, y]]

(f, ∂xf, ∂yf)
.

Since DefX,p is smooth by Fact 4.1(ii), then the dimension of DefX,p is equal to dimk T
1.

From the above description, it is clear that dimk T
1 = 0 if and only if f contains some linear term,

which happens if and only if p is a smooth point of X .
Therefore, we are left with showing that p is a node of X (i.e. f can be taken to be equal to xy) if

and only if dimk T
1 = 1, which is equivalent to (x, y) = (f, ∂xf, ∂yf). Clearly, if f = xy then ∂xf = y

and ∂yf = x so that (x, y) = (f, ∂xf, ∂yf) = (xy, y, x). Conversely, assume that (x, y) = (f, ∂xf, ∂yf).
Then clearly f cannot have a linear term. Consider the degree two part f2 = Ax2 +Bxy+Cy2 of f . By
computing the partial derivatives and imposing that x, y ∈ (f, ∂xf, ∂yf), we get that the discriminant
∆ = B2−4AC of f2 is different from 0. Then, acting with a linear change of coordinates, we can assume
that f2 = xy. Now, it is easily checked that via a change of coordinates of the form x 7→ x+ g(x, y) and
y 7→ y + h(x) with g(x, y) ∈ (x, y)2 and h(x) ∈ (x)2, we can transform f into xy, and we are done.

�

Consider now the functor

J
∗
X : {Spec RX − schemes} −→ {Sets}

which sends a scheme T → Spec RX to the set of isomorphism classes of T -flat, coherent sheaves on

XT := T ×Spec RX
X whose fibers over T are simple rank-1 torsion-free sheaves. The functor J

∗
X contains

the open subfunctor

J∗X : {Spec RX − schemes} −→ {Sets}

which sends a scheme T → Spec RX to the set of isomorphism classes of line bundles on XT .
Analogously to Fact 2.2, we have the following
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Fact 4.4 (Altman-Kleiman, Esteves).

(i) The Zariski (equiv. étale, equiv. fppf) sheafification of J
∗
X is represented by a scheme JX endowed

with a morphism u : JX → Spec RX , which is locally of finite type and satisfies the existence part of
the valuative criterion for properness. The scheme JX contains an open subset JX which represents
the Zariski (equiv. étale, equiv. fppf) sheafification of J∗X and the restriction u : JX → Spec RX is
smooth.
Moreover, the fiber of JX (resp. of JX ) over the closed point [mX ] ∈ Spec RX is isomorphic to JX
(resp. JX).

(ii) There exists a sheaf Î on X ×Spec RX
JX such for every F ∈ J

∗
X (T ) there exists a unique Spec RX-

map αF : T → JX with the property that F = (idX ×αF)
∗(Î)⊗ π∗

2(N) for some N ∈ Pic(T ), where

π2 : X ×Spec RX
T → T is the projection onto the second factor. The sheaf Î is uniquely determined

up to tensor product with the pullback of an invertible sheaf on JX and it is called a universal sheaf
on JX .

Moreover, the restriction of Î to X × JX is equal to a universal sheaf as in Fact 2.2(iii).

Proof. Part (i): the representability of the étale sheafification (and hence of the fppf sheafification) of

J
∗
X by an algebraic space JX locally of finite type over Spec RX follows from [AK80, Thm. 7.4], where it

is proved for the moduli functor of simple sheaves, along with the fact that being torsion free and rank-1
is an open condition. From [Est01, Cor. 52], it follows that JX becomes a scheme after an étale cover of
Spec RX . However, since RX is strictly henselian (being a complete local ring with algebraically closed
residue field), then Spec RX does not admit non trivial connected étale covers (see [BLR90, Sec. 2.3]);
hence JX is a scheme. The scheme JX satisfies the existence part of the valuative criterion for properness
by [Est01, Thm. 32].

The fact that JX represents also the Zariski sheafification of J
∗
X follows from [AK79b, Thm. 3.4]7 once

we prove that the morphism π : X → Spec RX admits a section through its smooth locus. Indeed, let
U be the smooth locus of the morphism π and denote by π′ : U → Spec RX the restriction of π to U .
Since X is assumed to be reduced, all the geometric fibers of π are reduced by [EGAIV3, Thm. 12.2.4];
hence, we deduce that for every s ∈ Spec RX the open subset π′−1(s) is dense in π−1(s). Now, since RX
is a strictly henselian ring, given any point p ∈ π′−1([mX ]), we can find a section of π′ : U → Spec RX
passing through p (see [BLR90, Sec. 2.3, Prop. 5]), as required.

Since J∗X is an open subfunctor of J
∗
X , it follows that JX contains an open subscheme JX which

represents the étale sheafification of J∗X . The smoothness of JX over Spec RX follows from [BLR90, Sec.
8.4, Prop. 2]. The last assertion of part (i) is obvious.

Part (ii) is an immediate consequence of the fact that JX represents the Zariski sheafification of J
∗
X

(see also [AK79b, Thm. 3.4]). The last assertion of part (ii) is obvious.
�

Let now I be a simple rank-1 torsion-free sheaf I on X , i.e. I ∈ JX ⊂ JX . If we denote by

R(X,I) := ÔJX ,I
the completion of the local ring of JX at I and by m(X,I) its maximal ideal, then there

is a natural map j : Spec R(X,I) → JX which fits into the following Cartesian diagram

(4.8) (id×j)∗(Î) Î

X ×Spec RX
Spec R(X,I)

id×j //

π×id

��
�

X ×Spec RX
JX

��

//

�

X

π

��
Spec R(X,I)

j // JX
u // Spec RX .

Since I ∈ JX ⊂ JX , the map u ◦ j sends the closed point [mX,I ] ∈ Spec Ô
JX ,I

into the closed point

[mX ] ∈ Spec RX . In particular, we have that (π × id)−1(m(X,I)) = π−1(mX) = X and the restriction

of (id×j)∗(Î) to (π × id)−1(m(X,I)) = X is isomorphic to I by the universal property in Fact 4.4(ii).

7This result is stated in loc. cit. only for flat and proper morphisms with integral geometric fibers; however, the same
proof works assuming only reduced geometric fibers.
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The above diagram gives rise to a deformation of the pair (X, I) above Spec R(X,I), which induces a
morphism of deformation functors

(4.9) hR(X,I)
:= Hom(R(X,I),−) −→ Def(X,I) .

We can now prove the main result of this section.

Theorem 4.5. Let X be a (reduced) curve and I a rank-1 torsion-free simple sheaf on X.

(i) There exists a Cartesian diagram of deformation functors

(4.10) hR(X,I)
//

��
�

Def(X,I)

��
hRX

// DefX ,

where the horizontal arrows realize R(X,I) and RX as the semiuniversal deformation rings for
Def(X,I) and DefX , respectively.

(ii) If X has l.c.i. singularities then RX is regular (i.e. it is a power series ring over k).
(iii) If X has locally planar singularities then R(X,I) is regular. In particular, the scheme JX is regular.

Proof. Part (i): the fact that the diagram (4.10) is commutative follows from the definition of the map
(4.9) and the commutativity of the diagram (4.8).

Let us check that the above diagram (4.10) is Cartesian. Let A be an Artinian local k-algebra with

maximal ideal mA. Suppose that there exists a deformation (X̃, Ĩ) ∈ Def(X,I)(A) of (X, I) over A
and a homomorphism φ ∈ Hom(RX , A) = hRX

(A) that have the same image in DefX(A). We have

to find a homomorphism η ∈ Hom(R(X,I), A) = hR(X,I)
(A) that maps into φ ∈ hRX

(A) and (X̃, Ĩ) ∈

Def(X,I)(A) via the maps of diagram (4.10). The assumption that the elements (X̃, Ĩ) ∈ Def(X,I)(A)

and φ ∈ hRX
(A) have the same image in DefX(A) is equivalent to the fact that X̃ is isomorphic

to XA := X ×Spec RX
Spec A with respect to the natural morphism Spec A → Spec RX induced by φ.

Therefore the sheaf Ĩ can be seen as an element of J
∗
X (Spec A). Fact 4.4(ii) gives a map αĨ : Spec A→ JX

such that Ĩ = (idX ×αĨ)
∗(Î), because Pic(Spec A) = 0. Clearly the map αĨ sends [mA] into I ∈ JX ⊂ JX

and therefore it factors through a map β : Spec A → Spec R(X,I) followed by the map j of (4.8). The
morphism β determines the element η ∈ Hom(R(X,I), A) = hR(X,I)

(A) we were looking for.
Finally, the bottom horizontal morphism realizes the ring RX as the semiuniversal deformation ring

for DefX by the very definition of RX . Since the diagram (4.10) is Cartesian, the same is true for the
top horizontal arrow.

Part (ii): RX is regular since the morphism hRX
→ DefX is smooth and DefX is smooth by Fact

4.1(iii).
Part (iii): R(X,I) is regular since the morphism hR(X,I)

→ Def(X,I) is smooth and Def(X,I) is smooth

by Fact 4.2(ii). We deduce that the open subset U of regular points of JX contains the central fiber
u−1([mX ]) = JX , which implies that U = JX because u−1([mX ]) contains all the closed points of JX ;
hence JX is regular.

�

5. Universal fine compactified Jacobians

The aim of this section is to introduce and study the universal fine compactified Jacobians relative to
the semiuniversal deformation π : X → Spec RX introduced in §4.3.

The universal fine compactified Jacobian will depend on a general polarization q on X as in Definition
2.9. Indeed, we are going to show that the polarization q induces a polarization on each fiber of the
effective semiuniversal deformation family π : X → Spec RX .

With this aim, we will first show that the irreducible components of the fibers of the morphism
π : X → Spec RX are geometrically irreducible. For any (schematic) point s ∈ Spec RX , we denote by

Xs := π−1(s) the fiber of π over s, by Xs := Xs×k(s) k(s) the geometric fiber over s and by ψs : Xs → Xs
the natural morphism.

Lemma 5.1. The irreducible components of Xs are geometrically irreducible. Therefore we get a bijection

(ψs)∗ : {Subcurves of Xs}
∼=
−→ {Subcurves of Xs}

Z ⊆ Xs 7→ ψs(Z) ⊆ Xs.
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Proof. Let V ⊆ X be the biggest open subset where the restriction of the morphism π : X → Spec RX
is smooth. Since π is flat, the fiber Vs of V over a point s ∈ Spec RX is the smooth locus of the curve
Xs = π−1(s), which is geometrically reduced because the central curve X = π−1([mX ]) is reduced. In

particular, Vs ⊆ Xs and Vs := Vs ×k(s) k(s) ⊆ Xs are dense open subsets. Therefore, the irreducible
components of Xs (resp. of Xs) are equal to the irreducible components of Vs (resp. of Vs). However, since
Vs is smooth over k(s) by construction, the irreducible components of Vs coincide with the connected
components of Vs and similarly for Vs. In conclusion, we have to show that the connected components
of Vs are geometrically connected for any point s ∈ Spec RX .

We will need the following preliminary result.
Claim: For any point s ∈ Spec RX , the irreducible components of V{s} := V ∩ π−1({s}) do not

meet on the central fiber Vo := π−1([mX ]) ∩ V and each of them is the closure of a unique irreducible
component of Vs.

Indeed, observe that {s} is a closed integral subscheme of Spec RX , so that {s} = Spec T where T
is a Noetherian complete local domain quotient of RX with residue field k = k; hence, T is a strictly
Henselian local domain. This implies that Spec T is geometrically unibranch at its unique closed point
o = [mx] (see [Stacks, Tag 06DM]). Since the morphism V{s} → {s} = Spec T is smooth, we infer that

V{s} is geometrically unibranch along the central fiber Vo (see [EGAIV2, Prop. 6.15.10]). This implies

that two distinct irreducible components of V{s} do not meet along the central fiber Vo, and the first

assertion of the Claim follows. The second assertion follows from the fact that, since V
{s}
→ {s} is flat,

each generic point of V{s} maps to the generic point s of {s}, q.e.d.

Let now C be a connected component of Vs, for some point s ∈ Spec RX . The closure C of C inside X
will contain some irreducible component of the central fiber Xo = X[mX ] by the upper semicontinuity of
the dimension of the fibers (see [EGAIV3, Lemma 13.1.1]) applied to the projective surjective morphism

C̃ → {s}. Hence, C ∩ V will contain some (not necessarily unique) connected component Co of the
central fiber Vo = V[mX ]. Since RX is a strictly henselian ring and V → Spec RX is smooth, given any
point p ∈ Co ⊆ Vo, we can find a section σ of V → Spec RX passing through p (see [BLR90, Sec. 2.3,
Prop. 5]). By the Claim, C ∩ V is the unique irreducible component of V{s} containing the point p.

Therefore, the restriction of σ at {s} must take values in C ∩ V . In particular, σ(s) is a k(s)-rational
point of C. Now we conclude that C is geometrically connected by [EGAIV2, Cor. 4.5.14]. �

Consider now the set-theoretic map

(5.1)
Σs : {Subcurves of Xs} −→ {Subcurves of X}

Xs ⊇ Z 7→ ψs(Z) ∩X ⊆ X,

where ψs(Z) is the Zariski closure inside X of the subcurve ψs(Z) ⊆ Xs and the intersection ψs(Z) ∩X

is endowed with the reduced scheme structure. Note that ψs(Z) ∩X has pure dimension one (in other
words, it does not contain isolated points), hence it is a subcurve of X , by the upper semicontinuity of

the local dimension of the fibers (see [EGAIV3, Thm. 13.1.3]) applied to the morphism ψs(Z) → {s}
and using the fact that ψs(Z) has pure dimension one in Xs.

The map Σs satisfies two important properties that we collect in the following

Lemma 5.2.

(i) If Z1, Z2 ⊆ Xs do not have common irreducible components then Σs(Z1),Σs(Z2) ⊆ X do not have
common irreducible components. In particular, Σs(Z

c) = Σs(Z)
c.

(ii) If Z ⊆ Xs is connected then Σs(Z) ⊆ X is connected.

Proof. Let us first prove (i). Since Z1, Z2 are two subcurves of Xs without common irreducible com-
ponents then the subcurves ψs(Z1) and ψs(Z2) of Xs do not have common irreducible components by
Lemma 5.1. As in the proof of Lemma 5.1, denote by V the biggest open subset of X on which the
restriction of the morphism π is smooth. Then, since Vs := V ∩ Xs is the smooth locus of Xs, we
deduce that ψs(Z1) ∩ V and ψs(Z2) ∩ V are disjoint subsets of Xs ∩ V each of which is a union of

connected components of Xs ∩ V . By the Claim in the proof of Lemma 5.1, the closures ψs(Z1)∩ V and

ψs(Z2) ∩ V do not intersect in the central fiber Vo, or in other words Σs(Z1)∩ V = ψs(Z1) ∩ V ∩X and

Σs(Z2) ∩ V = ψs(Z2) ∩ V ∩ X are disjoint. This implies that Σs(Z1) and Σs(Z2) intersect only in the
singular locus of X , and in particular they do not share any irreducible component of X .
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Let us now prove (ii). Consider the closed subscheme (with reduced scheme structure) ψs(Z) ⊆ X and

the projective and surjective morphism σ := π|ψs(Z) : ψs(Z)→ {s}, where {s} ⊆ Spec RX is the closure

(with reduced structure) of the schematic point s inside the scheme Spec RX . Note that Σs(Z) is, by

definition, the reduced scheme associated to the central fiber ψs(Z)o := σ−1([mX ]) of σ. By Lemma 5.1,

the geometric generic fiber of σ is equal to ψs(Z) ×k(s) k(s) = Z, hence it is connected by assumption.

Therefore, there is an open subset W ⊆ {s} such that σ−1(W )→W has geometrically connected fibers
(see [Stacks, Tag 055G]).

Choose now a complete discrete valuation ring R, with residue field k, endowed with a morphism
f : Spec R → {s} that maps the generic point η of Spec R to a certain point t ∈ W and the special
point 0 of Spec R to [mX ] in such a way that the induced morphism Spec k(0) → Spec k([mx]) is an

isomorphism. Consider the pull-back τ : Y → Spec R of the family σ : ψs(Z)→ {s} via the morphism f .

By construction, the special fiber Y0 =: τ−1(0) of τ is equal to ψs(Z)o and the generic fiber Yη := τ−1(η)
of τ is equal to the fiber product σ−1(t) ×Spec k(t) Spec k(η). In particular, the generic fiber Yη is
geometrically connected.

Next, consider the closure Z := Yη of the generic fiber Yη inside Y, i.e. the unique closed subscheme Z
of Y which is flat over Spec R and such that its generic fiber Zη is equal to Yη (see [EGAIV2, Prop. 2.8.5]).

The special fiber Z0 of Z is a closed subscheme of Y0 = ψs(Z)o which must contain the dense open subset
Xsm ∩ Σs(Z) ⊆ Σs(Z), where Xsm is the smooth locus of X . Indeed, arguing as in the proof of Lemma
5.1, through any point p of Xsm ∩ Σs(Z) there is a section of X ×Spec RX

Spec R → Spec R entirely
contained in Y, which shows that p must lie in the closure of Yη inside Y, i.e. in Z. Therefore, Σs(Z) is
also the reduced scheme associated to the central fiber Z0. Finally, since the morphism Z → Spec R is
flat and projective by construction and the generic fiber Zη = Yη is geometrically connected, we deduce
that Z0, and hence Σs(Z), is (geometrically) connected by applying [EGAIV3, Prop. (15.5.9)] (which
says that the number of geometrically connected components of the fibers of a flat and proper is lower
semicontinuous).

�

We are now ready to show that a (general) polarization on X induces, in a canonical way, a (general)
polarization on each geometric fiber of its semiuniversal deformation π : X → Spec RX .

Lemma-Definition 5.3. Let s ∈ Spec RX and let q be a polarization on X. The polarization qs induced
by q on the geometric fiber Xs is defined by

qs
Z
:= q

Σs(Z)
∈ Q

for every subcurve Z ⊆ Xs. If q is general then qs is general.

Proof. Let us first check that qs is well-defined. i.e. that |qs| ∈ Z and that (Z ⊆ Xs) 7→ qs
Z
is additive

(see the discussion after Definition 2.8). Since Σs(Xs) = X , we have that |qs| = qs
Xs

= q
X

= |q| ∈ Z.

Moreover, the additivity of qs follows from the additivity of q using Lemma 5.2(i).
The last assertion follows immediately from Remark 2.10 and Lemma 5.2.

�

Given a general polarization q on X , we are going to construct an open subset of JX , proper over
Spec RX , whose geometric fibers are fine compactified Jacobians with respect to the general polarizations
constructed in the above Lemma-Definition 5.3.

Theorem 5.4. Let q be a general polarization on X. Then there exists an open subscheme JX (q) ⊆ JX
which is projective over Spec RX and such that the geometric fiber of u : JX (q)→ Spec RX over a point

s ∈ Spec RX is isomorphic to JXs
(qs). In particular, the fiber of JX (q) → Spec RX over the closed

point [mX ] ∈ Spec RX is isomorphic to JX(q).

We call the scheme JX (q) the universal fine compactified Jacobian ofX with respect to the polarization

q. We denote by JX (q) the open subset of JX (q) parametrizing line bundles, i.e. JX (q) = JX (q)∩ JX ⊆

JX .

Proof. This statement follows by applying to the effective semiuniversal family X → Spec RX a general
result of Esteves ([Est01, Thm. A]). In order to connect our notations with the notations of loc. cit.,
choose a vector bundle E on X such that qE = q (see Remark 2.16), so that our fine compactified

Jacobian JX(q) coincides with the variety JsE = JssE in [Est01, Sec. 4].
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Since an obstruction space for the functor of deformations of E is H2(X,E ⊗ E∨) (see e.g. [FGA05,
Thm. 8.5.3(b)]) and since this latter group is zero becauseX is a curve, we get that E can be extended to a
vector bundle E on the formal semiuniversal deformation X → Spf RX ofX . However, by Grothendieck’s
algebraization theorem for coherent sheaves (see [FGA05, Thm. 8.4.2]), the vector bundle E is the
completion of a vector bundle E on the effective semiuniversal deformation family π : X → Spec RX of
X . Note that the restriction of E to the central fiber of π is isomorphic to the vector bundle E on X .
Denote by Es (resp. Es) the restriction of E to the fiber Xs (resp. the geometric fiber Xs).

Claim: For any s ∈ Spec RX and any subcurve Z ⊆ Xs, we have that

degZ(Es) = degψs(Z)(Es) = degΣs(Z)(E).

Indeed, the first equality follows from the fact that Z is the pull-back of ψs(Z) via the map Spec k(s)→
Spec k(s) because of Lemma 5.1. In order to prove the second equality, consider the closed subscheme

(with reduced scheme structure) ψs(Z) ⊆ X and the projective and surjective morphism8 σ := π|ψs(Z) :

ψs(Z)→ {s}, where {s} ⊆ Spec RX is the closure of the schematic point s inside the scheme Spec RX .

Note that the central fiber σ−1([mx]) := ψs(Z)o of σ is a one-dimensional subscheme of X , which is
generically reduced (because X is reduced) and whose underlying reduced curve is Σs(Z) by definition.

In particular, the 1-cycle associated to ψs(Z)o coincides with the 1-cycle associated to Σs(Z). Therefore,
since the degree of a vector bundle on a subscheme depends only on the associated cycle, we have that

(5.2) degΣs(Z)(E) = degψs(Z)o
(E).

Observe that there exists an open subset U ⊆ {s} such that σ|σ−1(U) : σ−1(U) → U is flat (by the
Theorem of generic flatness, see [Mum66, Lecture 8]). Since the degree of a vector bundle is preserved
along the fibers of a flat morphism and clearly s ∈ U , we get that

(5.3) degψs(Z)(Es) = degψs(Z)(E) = degψs(Z)t
(E) for any t ∈ U,

where we set ψs(Z)t := σ−1(t).
Choose now a complete discrete valuation ring R, with residue field k, endowed with a morphism

f : Spec R → {s} that maps the generic point η of Spec R to a certain point t ∈ U and the special
point 0 of Spec R to [mX ] in such a way that the induced morphism Spec k(0) → Spec k([mx]) is an

isomorphism. Consider the pull-back τ : Y → Spec R of the family σ : ψs(Z)→ {s} via the morphism f

and denote by F the pull-back to Y of the restriction of the vector bundle E to ψs(Z). By construction,

the special fiber Y0 =: τ−1(0) of τ is equal to ψs(Z)o and the generic fiber Yη := τ−1(η) of τ is equal to

the fiber product ψs(Z)t ×Spec k(t) Spec k(η). Therefore, we have that

(5.4) degY0
(F) = degψs(Z)o

(E) = degψs(Z)o
(E) and degYη

(F) = degψs(Z)t
(E).

Next, consider the closure Z := Yη of the generic fiber Yη inside Y, i.e. the unique closed subscheme
Z of Y which is flat over Spec R and such that its generic fiber Zη is equal to Yη (see [EGAIV2, Prop.

2.8.5]). The special fiber Z0 of Z is a closed subscheme of Y0 = ψs(Z)o which must contain the dense
open subset Xsm∩Σs(Z) ⊆ Σs(Z), where Xsm is the smooth locus of X . Indeed, arguing as in the proof
of Lemma 5.1, through any point p of Xsm ∩ Σs(Z) there is a section of X ×Spec RX

Spec R → Spec R
entirely contained in Y, which shows that p must lie in the closure of Yη inside Y, i.e. in Z. Therefore,
the 1-cycle associated to Z0 coincides with the 1-cycle associated to Σs(Z), from which we deduce that

(5.5) degΣs(Z)(E) = degZ0
(F).

Finally, since the morphism Z → Spec R is flat, we have that

(5.6) degZ0
(F) = degZη

(F) = degYη
(F).

By combining (5.2), (5.3), (5.4), (5.5) and (5.6), the Claim follows.

The above Claim, together with Remark 2.16, implies that qEs = qs. Therefore, exactly as before,
we get that a torsion-free rank-1 sheaf I on X , flat on Spec RX , is (semi)stable with respect to E in
the sense of [Est01, Sec. 1.4] if and only if for every s ∈ Spec RX the restriction Is of I to Xs is
(semi)stable with respect to qs in the sense of Definition 2.11. Since all the polarizations qs are general

by Lemma-Definition 5.3, we get that the open subscheme JX (q) := J s
E = J ss

E ⊂ JX parametrizing

sheaves I ∈ JX whose restriction to Xs is qs-semistable (or equivalently qs-stable) is a proper scheme

8We do not know if σ is flat, a property that would considerably simplify the proof of Claim.
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over Spec RX by [Est01, Thm. A]. Moreover, J s
E is quasi-projective over Spec RX by [Est01, Thm. C];

hence it is projective over Spec RX . The description of the fibers of JX (q)→ Spec RX is now clear from

the definition of JX (q).
�

If the curve X has locally planar singularities, then the universal fine compactified Jacobians of X
have several nice properties that we collect in the following statement.

Theorem 5.5. Assume that X has locally planar singularities and let q be a general polarization on X.
Then we have:

(i) The scheme JX (q) is regular and irreducible.

(ii) The surjective map u : JX (q)→ Spec RX is projective and flat of relative dimension pa(X).
(iii) The smooth locus of u is JX (q).

Proof. The regularity of JX (q) follows from Theorem 4.5(iii). Therefore, in order to show that JX (q) is
irreducible, it is enough to show that it is connected. Since the open subset JX (q) is dense by Corollary
2.20, it is enough to prove that JX (q) is connected. However, this follows easily from the fact that JX (q)

is smooth over Spec RX and its generic fiber is the Jacobian of degree |q| of a smooth curve, hence it is
connected.

Since also Spec RX is regular by Theorem 4.5(ii), the flatness of the map u : JX (q)→ Spec RX will
follow if we show that all the geometric fibers are equi-dimensional of the same dimension (see [Mat89,
Cor. of Thm 23.1, p. 179]). By Theorem 5.4, the geometric fiber of u over s ∈ Spec RX is isomorphic
to JXs

(qs) which has pure dimension equal to h1(Xs,OXs
) = h1(X,OX) = pa(X) by Corollary 2.20.

The map u is projective by Theorem 5.4 and the fact that its smooth locus is equal to JX (q) follows
from Corollary 2.20.

�

The above result on the universal fine compactified Jacobians of X has also some very important
consequences for the fine compactified Jacobians of X , that we collect in the following two corollaries.

Corollary 5.6. Assume that X has locally planar singularities and let q be a general polarization on X.

Then JX(q) is connected.

Proof. Consider the universal fine compactified Jacobian JX (q) and the natural surjective morphism

u : JX (q) → Spec RX . According to Theorem 5.5(ii), u is flat and projective. Therefore, we can apply

[EGAIV3, Prop. (15.5.9)] which says that the number of connected components of the geometric fibers
of u is lower semicontinuous. Since the generic geometric fiber of u is the Jacobian of a smooth curve
(by Theorem 5.4), hence connected, we deduce that also the fiber over the closed point [mX ] ∈ Spec RX ,
which is JX(q) by Theorem 5.4, is connected, q.e.d. �

Corollary 5.7. Assume that X has locally planar singularities and let q be a general polarization on X.

Then the universal fine compactified Jacobian u : JX (q)→ Spec RX (with respect to the polarization q)

has trivial relative dualizing sheaf. In particular, JX(q) has trivial dualizing sheaf.

Proof. Observe that the relative dualizing sheaf, call it ωu, of the universal fine compactified Jacobian
u : JX (q) → Spec RX is a line bundle because the fibers of u have l.c.i. singularities by Theorem 5.4
and Corollary 2.20.

Consider now the open subset U ⊆ Spec RX consisting of those points s ∈ Spec RX such that the
geometric fiber Xs over s has at most a unique singular point which is a node (as in Lemma 4.3).

CLAIM: (ωu)|u−1(U) = Ou−1(U).

Indeed, Theorem 5.4 implies that the geometric fiber of JX (q)→ Spec RX over a point s is isomorphic

to JXs
(qs). If Xs is smooth or if it has a separating node, then JXs

(qs) is an abelian variety, hence it has

trivial dualizing sheaf. If Xs is irreducible with a node then JXs
(qs) has trivial dualizing sheaf by [Ari11,

Cor. 9]. Therefore, the fibers of the proper map u−1(U)→ U have trivial canonical sheaf. It follows that
u∗(ωu)|U is a line bundle on U and that the natural evaluation morphism u∗u∗(ωu)|u−1(U) → (ωu)|u−1(U)

is an isomorphism. Since Pic(U) = 0, the line bundle u∗(ωu)|U is trivial, hence also (ωu)|u−1(U) is trivial,
q.e.d.
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The above Claim implies that ωu and OJX (q) agree on an open subset u−1(U) ⊂ JX (q) whose com-

plement has codimension at least two by Lemma 4.3. Since JX (q) is regular (hence S2) by Theorem 5.5,
this implies that ωu = OJX (q).

The second assertion follows now by restricting the equality ωu = OJX (q) to the fiber JX(q) of u over

the closed point [mX ] ∈ Spec RX . �

Note that a statement similar to Corollary 5.7 was proved by Arinkin in [Ari11, Cor. 9] for the
universal compactified Jacobian over the moduli stack of integral curves with locally planar singularities.

Finally, note that the universal fine compactified Jacobians are acted upon by the universal generalized
Jacobian, whose properties are collected into the following

Fact 5.8 (Bosch-Lütkebohmert-Raynaud). There is an open subset of JX , called the universal generalized
Jacobian of π : X → Spec RX and denoted by v : J(X ) → Spec RX , whose geometric fiber over any
point s ∈ Spec RX is the generalized Jacobian J(Xs) of the geometric fiber Xs of π over s.

The morphism v makes J(X ) into a smooth and separated group scheme of finite type over Spec RX .

Proof. The existence of a group scheme v : J(X )→ Spec RX whose fibers are the generalized Jacobians
of the fibers of π : X → Spec RX follows by [BLR90, Sec. 9.3, Thm. 7], which can be applied since
Spec RX is a strictly henselian local scheme (because RX is a complete local ring) and the geometric
fibers of π : X → Spec RX are reduced and connected since X is assumed to be so. The result of loc.
cit. gives also that the map v is smooth, separated and of finite type. �

5.1. 1-parameter regular smoothings of X. The aim of this subsection is to study relative fine
compactified Jacobians associated to a 1-parameter smoothing of a curve X and their relationship with
the Néron models of the Jacobians of the generic fiber. As a corollary, we will get a combinatorial formula
for the number of irreducible components of a fine compactified Jacobian of a curve with locally planar
singularities.

Let us start with the definition of 1-parameter regular smoothings of a curve X .

Definition 5.9. A 1-parameter regular smoothing of X is a proper and flat morphism f : S → B =
Spec R where R is a complete discrete valuation domain (DVR for short) with residue field k and quotient
field K and S is a regular scheme of dimension two, i.e. a regular surface, and such that the special fiber
Sk is isomorphic to X and the generic fiber SK is a K-smooth curve.

The natural question one may ask is the following: which (reduced) curves X admit a 1-parameter
regular smoothing? Of course, if X admits a 1-parameter regular smoothing f : S → Spec R, then X
is a divisor inside a regular surface S, which implies that X has locally planar singularities. Indeed, it
is well known to the experts that this necessary condition turns out to be also sufficient. We include a
proof here since we couldn’t find a suitable reference.

Proposition 5.10. A (reduced) curve X admits a 1-parameter regular smoothing if and only if X
has locally planar singularities. More precisely, if X has locally planar singularities then there exists a
complete discrete valuation domain R (and indeed we can take R = k[[t]]) and a morphism α : Spec R→
Spec RX such that the pull-back

(5.7) S //

f

��
�

X

π

��
Spec R

α // Spec RX

is a 1-parameter regular smoothing of X.

Proof. We have already observed that the only if condition is trivially satisfied. Conversely, assume that
X has locally planar singularities, and let us prove that X admits a 1-parameter regular smoothing.

Consider the natural morphisms of deformation functors

F : hRX
→ DefX → Def locX =

∏

p∈Xsing

DefX,p =
∏

p∈X

DefX,p,

obtained by composing the morphism (4.1) with the morphism (4.5) and using the fact if p is a smooth
point of X then DefX,p is the trivial deformation functor (see [Ser06, Thm. 1.2.4]). Observe that F is
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smooth because the first morphism is smooth since RX is a semiuniversal deformation ring for DefX and
the second morphism is smooth by Fact 4.1(iii).

Given an element α ∈ hRX
(R) = Hom(Spec R, Spec RX) associated to a Cartesian diagram like in

(5.7), the image of α into DefX,p(R) corresponds to the formal deformation of ÔX,p given by the right
square of the following diagram

Spec ÔX,p //

��
�

Spf ÔS,p

��

//

��
�

Spec ÔS,p

��
Spec k // Spf R // Spec R.

Claim 1: The morphism f : S → Spec R is a 1-parameter regular smoothing of X if and only if, for
any p ∈ X , we have that

(i) ÔS,p is regular;

(ii) ÔS,p ⊗R K is geometrically regular over K (i.e. ÔS,p ⊗R K ′ is regular for any field extension
K ⊆ K ′).

Indeed, by definition, the surface S is regular if and only if the local ring OS,q is regular for any
schematic point q ∈ S or, equivalently (see [Mat89, Thm. 19.3]), for any closed point q ∈ S. Clearly, the
closed points of S are exactly the closed points of its special fiber Sk = X . Moreover the local ring OS,q
is regular if and only if its completion ÔS,q is regular (see [Mat89, Thm. 21.1(i)]). Putting everything
together, we deduce that S is regular if and only if (i) is satisfied.

Consider now the Spec R-morphism µ :
∐
p∈X Spec ÔS,p

µ′′

−→
∐
p∈X Spec OS,p

µ′

−→ S. The morphism

µ is flat since any localization is flat (see [Mat89, Thm. 4.5]) and any completion is flat (see [Mat89, Thm.
8.8]). Moreover, the image of µ is open because µ is flat and it contains the special fiber Sk = X ⊂ S
which contains all the closed points of S; therefore, µ must be surjective, which implies that µ is
faithfully flat. Finally, µ has geometrically regular fibers (hence it is regular, i.e. flat with geometrically
regular fibers, see [Mat80, (33.A)]): this is obvious for µ′ (because it is the disjoint union of localization
morphisms), it is true for µ′′ because each local ring OS,p is a G-ring (in the sense of [Mat80, §33])
being the localization of a scheme of finite type over a complete local ring (as it follows from [Mat80,
Thm. 68, Thm. 77]) and the composition of regular morphisms is regular (see [Mat80, (33.B), Lemma
1(i)]). By base changing the morphism µ to the generic point Spec K of Spec R, we get a morphism

µK :
∐
p∈X Spec (ÔS,p ⊗R K) → SK which is also faithfully flat and regular, because both properties

are stable under base change. Therefore, by applying [Mat80, (33.B), Lemma 1], we deduce that SK is

geometrically regular over K if and only if ÔS,p ⊗R K is geometrically regular over K for any p ∈ X .
Hence, SK is K-smooth (which is equivalent to the fact that SK is geometrically regular over K, because
SK is of finite type over K by assumption) if and only if (ii) is satisfied, q.e.d.

Suppose now that for any p ∈ X we can find an element of DefX,p(R) corresponding to a formal
deformation

(5.8) Spec ÔX,p //

��
�

Spf A

��

//

�

Spec A

��
Spec k // Spf R // Spec R

such that A is a regular complete local ring, R→ A is a local flat morphism and A⊗RK is K-formally
smooth. Then, using the smoothness of F , we can lift this element to an element α ∈ hRX

(R) whose
associated Cartesian diagram (5.7) gives rise to a 1-parameter regular smoothing of X by the above
Claim.

Let us now check this local statement. Since X has locally planar (isolated) singularities, we can write

ÔX,p =
k[[x, y]]

(f)
,

for some reduced element 0 6= f = f(x, y) ∈ (x, y) ⊂ k[[x, y]].
Claim 2: Up to replacing f with fH for some invertible element H ∈ k[[x, y]], we can assume that

(5.9) ∂xf and ∂yf do not have common irreducible factors,

where ∂x is the formal partial derivative with respect to x and similarly for ∂y.
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More precisely, we will show that there exists a, b ∈ k with the property that f̃ := (1 + ax + by)f

satisfies the conclusion of the Claim, i.e. ∂xf̃ and ∂y f̃ do not have common irreducible factors; it will
then follow that the same is true for a generic point (a, b) ∈ A2(k). By contradiction, assume that

(*) (1+ax+by)∂xf+af and (1+ax+by)∂yf+bf have a common irreducible factor for every a, b ∈ k.

Observe that (∂xf, ∂yf) 6= (0, 0), for otherwise f would be a p-power in k[[x, y]] with p = char(k) > 0,
which contradicts the fact that f is reduced. So we can assume, without loss of generality that ∂yf 6= 0.
We now specialize condition (*) by putting b = 0 and using that 1 + ax is invertible in k[[x, y]], in order
to get that

(**) (1 + ax)∂xf + af and ∂yf have a common irreducible factor for every a ∈ k.

Since k is an infinite field (being algebraically closed) and 0 6= ∂yf has, of course, a finite number of
irreducible factors, we infer from (**) that there exists an irreducible factor q ∈ k[[x, y]] of ∂yf such that
q is also an irreducible factor of (1 + ax)∂xf + af = ∂xf + a(x∂xf + f) for infinitely many a ∈ k. This
however can happen (if and) only if q divides f and ∂xf . This implies that the hypersurface {f = 0} is
singular along the entire irreducible component {q = 0}, which contradicts the hypothesis that {f = 0}
has an isolated singularities in (0, 0), q.e.d.

From now on, we will assume that f satisfies the conditions of (5.9). Let R := k[[t]] and consider the
local complete k[[t]]-algebra

A :=
k[[x, y, t]]

(f − t)
.

The k[[x, y]]-algebra homomorphism (well-defined since f ∈ (x, y))

(5.10)
A =

k[[x, y, t]]

(f − t)
−→ k[[x, y]]

t 7→ f

is clearly an isomorphism. Therefore, A is a regular local ring. Moreover, since f is not a zero-divisor
in k[[x, y]], the algebra A is flat over k[[t]]. From now on, we will use the isomorphism (5.10) to freely
identify A with k[[x, y]] seen as a k[[t]]-algebra via the map sending t into f .

It remains to show that A⊗k[[t]] k((t)) is geometrically regular over k((t)). Since A⊗k[[t]] k((t)) is the
localization of A at the multiplicative system generated by (t), we have to check (by [Mat80, Def. in
(33.A) and Prop. in (28.N)])) that, for any ideal m in the fiber of A over the generic point of k[[t]] (i.e.
such that m∩k[[t]] = (0)), the local ring Am is formally smooth over k((t)) for the m-adic topology on Am
and the discrete topology on k((t)) (see [Mat80, (28.C)] for the definition of formal smoothness). Since
formal smoothness is preserved under localization (as it follows easily from [Mat80, (28.E) and (28.F)]),
it is enough to prove that Am is formally smooth over k((t)) for any closed point m of A ⊗k[[t]] k((t)).
The closed points of A⊗k[[t]] k((t)) correspond exactly to those prime ideals of A ∼= k[[x, y]] of the form
m = (g) for some irreducible element g ∈ k[[x, y]] that is not a factor of f . Indeed, any such ideal m of
k[[x, y]] must be of height one and hence it must be principal (since k[[x, y]] is regular, see [Mat89, Thm.
20.1, Thm. 20.3]), i.e. m = (g) for some g irreducible element of k[[x, y]]. Furthermore, the condition
(g) ∩ k[[t]] = (0) is satisfied if and only if g is not an irreducible factor of f . Therefore, we are left with
proving the following

Claim 3: k[[x, y]](g) is formally smooth over k((t)) for any irreducible g ∈ k[[x, y]] that is not an
irreducible factor of f .

Observe first of all that k[[x, y]](g) is formally smooth over k because k[[x, y]] is formally smooth over k
(see [Mat80, (28.D), Example 3]) and formal smoothness is preserved by localization as observed before.
Therefore, k[[x, y]](g) is regular (see [Mat80, Thm. 61]).

Consider now the residue field L = k[[x, y]](g)/(g) of the local ring k[[x, y]](g), which is a field extension
of k((t)). If L is a separable extension of k((t)) (which is always the case if char(k) = 0) then k[[x, y]](g)
is formally smooth over k((t)) by [Mat80, (28.M)]. In the general case, using [Mat89, Thm. 66], the
Claim is equivalent to the injectivity of the natural L-linear map

(5.11) α : Ω1
k((t))/k ⊗k((t)) L→ Ω1

k[[x,y]](g)/k
⊗k[[x,y]](g) L = Ω1

k[[x,y]]/k ⊗k[[x,y]] L,

where in the second equality we have used that the Kähler differentials commute with the localization
together with the base change for the tensor product. Therefore, to conclude the proof of the Claim,
it is enough to prove the injectivity of the map (5.11) if char(k) = p > 0. Under this assumption (and
recalling that k is assumed to be algebraically closed), we have clearly that k((t))p = k((tp)) ⊂ k((t)),
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from which it follows that t is a p-basis of k((t))/k in the sense of [Mat89, §26]. Therefore, using
[Mat89, Thm. 26.5], we deduce that Ω1

k((t))/k is the k((t))-vector space of dimension one generated by

dt. Hence, the injectivity of the above L-linear map α translates into α(dt ⊗ 1) 6= 0. Since the natural
map k[[t]]→ k[[x, y]] sends t into f , we can compute

(5.12) α(dt⊗ 1) = d(f)⊗ 1 = (∂xfdx+ ∂yfdy)⊗ 1 ∈ Ω1
k[[x,y]]/k ⊗k[[x,y]] L.

Now observe that the map k[[x, y]] → k[[x, y]](g) → L = k[[x, y]](g)/(g) is also equal to the composition
k[[x, y]] → k[[x, y]]/(g) → Quot(k[[x, y]]/(g)) ∼= L, where Quot denotes the quotient field. Moreover,
since dx and dy generate a free rank-2 submodule of the k[[x, y]]-module Ω1

k[[x,y]], the right hand side of

(5.12) is zero if and only if g divides both ∂xf and ∂yf . Since this does not happen for our choice of f
(see Claim 1), the proof is complete.

�

From now till the end of this subsection, we fix a 1-parameter regular smoothing f : S → B = Spec R
of X as in Proposition 5.10. Let Picf denote the relative Picard functor of f (often denoted PicS/B in

the literature, see [BLR90, Chap. 8] for the general theory) and let Picdf be the subfunctor parametrizing

line bundles of relative degree d ∈ Z. The functor Picf (resp. Picdf ) is represented by a scheme Picf

(resp. Picdf ) locally of finite presentation over B (see [BLR90, Sec. 8.2, Thm. 2]) and formally smooth

over B (by [BLR90, Sec. 8.4, Prop. 2]). The generic fiber of Picf (resp. Picdf ) is isomorphic to Pic(SK)

(resp. Picd(SK)).

Note that Picdf is not separated over B whenever X is reducible. The biggest separated quotient of

Picdf coincides with the Néron model N(Picd SK) of Picd(SK), as proved by Raynaud in [Ray70, Sec.

8] (see also [BLR90, Sec. 9.5, Thm. 4]). Recall that N(Picd SK) is smooth and separated over B,

the generic fiber N(Picd SK)K is isomorphic to Picd SK and N(Picd SK) is uniquely characterized by
the following universal property (the Néron mapping property, cf. [BLR90, Sec. 1.2, Def. 1]): every

K-morphism qK : ZK → N(Picd SK)K = Picd SK defined on the generic fiber of some scheme Z smooth

over B admits a unique extension to a B-morphism q : Z → N(Picd SK). Moreover, N(Pic0 SK) is a

B-group scheme while, for every d ∈ Z, N(Picd SK) is a torsor under N(Pic0 SK).
Fix now a general polarization q on X and consider the Cartesian diagram

(5.13) Jf (q) //

��
�

JX (q)

u

��
B = Spec R

α // Spec RX

We call the scheme Jf (q) the f -relative fine compactified Jacobian with respect to the polarization q.

Similarly, by replacing JX (q) with JX (q) in the above diagram, we define the open subset Jf (q) ⊂ Jf (q).

Note that the generic fibers of Jf (q) and Jf (q) coincide and are equal to Jf (q)K = Jf (q)K = Picd(SK)

with d := |q| + pa(X) − 1, while their special fibers are equal to Jf (q)k = JX(q) and Jf (q)k = JX(q),

respectively. From Theorem 5.5, we get that the morphism Jf (q) → B is flat and its smooth locus is

Jf (q). Therefore, the universal property of the Néron model N(Picd SK) gives a unique B-morphism

qf : Jf (q)→ N(Picd SK) which is the identity on the generic fiber. Indeed, J. L. Kass proved in [Kas09,
Thm. A] that the above map is an isomorphism.

Fact 5.11 (Kass). For a 1-paramater regular smoothing f : X → B = Spec R as above and any general
polarization q on X, the natural B-morphism

qf : Jf (q)→ N(Pic|q|+pa(X)−1 SK)

is an isomorphism.

From the above isomorphism, we can deduce a formula for the number of irreducible components of
JX(q). We first need to recall the description due to Raynaud of the group of connected components of

the Néron model N(Pic0(SK)) (see [BLR90, Sec. 9.6] for a detailed exposition).
Denote by C1, . . . , Cγ the irreducible components of X . A multidegree on X is an ordered γ-tuple of

integers

d = (dC1
, . . . , dCγ

) ∈ Zγ .
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We denote by |d| =
∑γ

i=1 dCi
the total degree of d. We now define an equivalence relation on the

set of multidegrees on X . For every irreducible component Ci of X , consider the multidegree Ci =
((Ci)1, . . . , (Ci)γ) of total degree 0 defined by

(Ci)j =





|Ci ∩ Cj | if i 6= j,

−
∑

k 6=i

|Ci ∩ Ck| if i = j,

where |Ci ∩Cj | denotes the length of the scheme-theoretic intersection of Ci and Cj . Clearly, if we take
a 1-parameter regular smoothing f : S → B of X as in Proposition 5.10, then |Ci ∩ Cj | is also equal to
the intersection product of the two divisors Ci and Cj inside the regular surface S.

Denote by ΛX ⊆ Zγ the subgroup of Zγ generated by the multidegrees Ci for i = 1, . . . , γ. It is easy
to see that

∑
i Ci = 0 and this is the only relation among the multidegrees Ci. Therefore, ΛX is a free

abelian group of rank γ − 1.

Definition 5.12. Two multidegrees d and d′ are said to be equivalent, and we write d ≡ d′, if d−d′ ∈ ΛX .
In particular, if d ≡ d′ then |d| = |d′|.

For every d ∈ Z, we denote by ∆d
X the set of equivalence classes of multidegrees of total degree d = |d|.

Clearly ∆0
X is a finite group under component-wise addition of multidegrees (called the degree class group

of X) and each ∆d
X is a torsor under ∆0

X . The cardinality of ∆0
X is called the degree class number or

the complexity of X , and it is denoted by c(X).

The name degree class group was first introduced by L. Caporaso in [Cap94, Sec. 4.1]. The name
complexity comes from the fact that if X is a nodal curve then c(X) is the complexity of the dual graph
ΓX of X , i.e. the number of spanning trees of ΓX (see e.g. [MV12, Sec. 2.2]).

Fact 5.13 (Raynaud). The group of connected component of the B-group scheme N(Pic0 SK) is isomor-

phic to ∆0
X . In particular, the special fiber of N(Picd SK) for any d ∈ Z is isomorphic to the disjoint

union of c(X) copies of the generalized Jacobian J(X) of X.

For a proof, see the original paper of Raynaud [Ray70, Prop. 8.1.2] or [BLR90, Sec. 9.6].
Finally, by combining Corollary 2.20, Fact 5.11 and Fact 5.13, we obtain a formula for the number of

irreducible components of a fine compactified Jacobian.

Corollary 5.14. Assume that X has locally planar singularities and let q be any general polarization

on X. Then JX(q) has c(X) irreducible components.

The above Corollary was obtained for nodal curves X by S. Busonero in his PhD thesis (unpublished)
in a combinatorial way; a slight variation of his proof is given in [MV12, Sec. 3].

Using the above Corollary, we can now prove the converse of Lemma 2.18(i) for curves with locally
planar singularities, generalizing the result of [MV12, Prop. 7.3] for nodal curves.

Lemma 5.15. Assume that X has locally planar singularities. For a polarization q on X, the following
conditions are equivalent

(i) q is general.
(ii) Every rank-1 torsion-free sheaf which is q-semistable is also q-stable.
(iii) Every simple rank-1 torsion-free sheaf which is q-semistable is also q-stable.
(iv) Every line bundle which is q-semistable is also q-stable.

Proof. (i) ⇒ (ii) follows from Lemma 2.18(i).
(ii) ⇒ (iii) ⇒ (iv) are trivial.
(iv) ⇒ (i): by contradiction, assume that q is not general. Then, by Remark 2.10, we can find a

proper subcurve Y ⊆ X with Y and Y c connected and such that q
Y
, q
Y c
∈ Z. This implies that we can

define a polarization q
|Y

on the connected curve Y by setting (q
|Y
)Z := q

Z
for any subcurve Z ⊆ Y .

And similarly, we can define a polarization q
|Y c

on Y c.

Claim 1: There exists a line bundle L such that L|Y is q
|Y
-semistable and L|Y c is q

|Y c
-semistable.

Clearly, it is enough to show the existence of a line bundle L1 (resp. L2) on Y (resp. on Y c) that
is q

|Y
-semistable (resp. q

|Y c
-semistable); the line bundle L that satisfies the conclusion of the Claim is

then any line bundle such that L|Y = L1 and L|Y c = L2 (clearly such a line bundle exists!). Let us prove
the existence of L1 on Y ; the argument for L2 being the same. We can deform slightly the polarization
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q
|Y

on Y in order to obtain a general polarization q̃ on Y . Corollary 5.14 implies that JY (q̃) is non

empty (since c(Y ) ≥ 1); hence also JY (q̃) is non empty by Corollary 2.20(ii). In particular, we can find
a line bundle L1 on Y that is q̃-semistable. Remark 2.13 implies that L1 is also q

|Y
-semistable, and the

Claim is proved.
Observe that the line bundle L is not q-stable since χ(LY ) = χ(L|Y ) = |q|Y | = q

Y
and similarly for

Y c. Therefore, we find the desired contradiction by proving the following
Claim 2: The line bundle L is q-semistable.

Let Z be a subcurve of X and set Z1 := Z ∩ Y , Z2 := Z ∩ Y c, W1 := Y \ Z1 and W2 := Y c \ Z2.
Tensoring with L the exact sequence

0→ OZ → OZ1 ⊕OZ2 → OZ1∩Z2 → 0,

and taking the Euler-Poincaré characteristic we get

χ(L|Z) = χ(L|Z1
) + χ(L|Z2

)− |Z1 ∩ Z2|.

Combining the above equality with the fact that L|Y (resp. L|Y c) is q
|Y
-semistable (resp. q

|Y c
-semistable)

by Claim 1 and using Remark 2.14, we compute

(5.14) χ(L|Z) = χ(L|Z1
) + χ(L|Z2

)− |Z1 ∩ Z2| ≤ qZ1
+ |Z1 ∩W1|+ q

Z2
+ |Z2 ∩W2| − |Z1 ∩ Z2| ≤

≤ q
Z
+ |Z1 ∩W1|+ |Z2 ∩W2|.

Since X has locally planar singularity, we can embed X inside a smooth projective surface S (see 1.6).
In this way, the number |Zi ∩Wi| is equal to the intersection number Zi ·Wi of the divisors Zi and Wi

inside the smooth projective surface S. Using that the intersection product of divisors in S is bilinear,
we get that

(5.15) |Z ∩ Zc| = Z · Zc = (Z1 + Z2) · (W1 +W2) ≥ Z1 ·W1 + Z2 ·W2 = |Z1 ∩W1|+ |Z2 ∩W2|,

where we used that Z1 ·W2 ≥ 0 because Z1 and W2 do not have common components and similarly
Z2 ·W1 ≥ 0. Substituting (5.15) into (5.14), we find that

χ(L|Z) ≤ qZ + |Z ∩ Zc|,

for every subcurve Z ⊆ X , which implies that L is q-semistable by Remark 2.14.
�

It would be interesting to know if the above Lemma 5.15 holds true for every (reduced) curve X .

6. Abel maps

The aim of this section is to define Abel maps for singular (reduced) curves. Although in the following
sections we will only use Abel maps for curves with locally planar singularities, the results of this section
are valid for a broader class of singular curves, namely those for which every separating point is a node
(see Condition (6.3)), which includes for example all Gorenstein curves.

6.1. Abel maps without separating points. The aim of this subsection is to define the Abel maps
for a reduced curve X without separating points (in the sense of 1.8).

For every (geometric) point p on the curve X , its sheaf of ideals mp is a torsion-free rank-1 sheaf of
degree −1 on X . Also, if p is not a separating point of X , then mp is simple (see [Est01, Example 38]).
Therefore, if X does not have separating points (which is clearly equivalent to the fact that δY ≥ 2 for
every proper subcurve Y of X) then mp is torsion-free rank-1 and simple for any p ∈ X .

Let I∆ be the ideal of the diagonal ∆ of X ×X . For any line bundle L ∈ Pic(X), consider the sheaf
I∆ ⊗ p∗1L, where p1 : X ×X → X denotes the projection onto the first factor. The sheaf I∆ ⊗ p∗1L is
flat over X (with respect to the second projection p2 : X ×X → X) and for any point p of X it holds

I∆ ⊗ p
∗
1L|X×{p} = mp ⊗ L.

Therefore, if X does not have separating points, then I∆⊗p∗1L ∈ J
∗
X(X) where J

∗
X is the functor defined

by (2.1). Using the universal property of JX (see Fact 2.2(iii)), the sheaf I∆ ⊗ p∗1L induces a morphism

(6.1)
AL : X → JX

p 7→ mp ⊗ L.

We call the map AL the (L-twisted) Abel map of X .
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From the definition (2.4), it follows that a priori the Abel map AL takes values in the big compactified

Jacobian J
χ(L)−1

X . Under the assumption that X is Gorenstein, we can prove that the Abel map AL

takes always values in a fine compactified Jacobian contained in J
χ(L)−1

X .

Lemma 6.1. Assume that X is Gorenstein. Then for every L ∈ Pic(X) there exists a general polariza-
tion q on X of total degree |q| = χ(L)− 1 such that Im(AL) ⊆ JX(q).

Proof. Consider the polarization q′ on X defined by setting, for every irreducible component Ci of X ,

q′
Ci

= degCi
L−

degCi
(ωX)

2
−

1

γ(X)
,

where γ(X) denotes, as usual, the number of irreducible components of X . Note that for any subcurve

Y ⊆ X we have that q′
Y
= degY (L)−

degY (ωX)
2 − γ(Y )

γ(X) and in particular |q′| = degL− degωX

2 −1 = χ(L)−1.

We claim that every sheaf in the image of AL is q′-stable. Indeed, for any proper subcurve ∅ 6= Y ( X
and any point p ∈ X , we have that
(6.2)

degY (mp⊗L)− q
′
Y
−

degY (ωX)

2
= degY (L)+degY (mp)−degY (L)+

γ(Y )

γ(X)
≥ −1+

γ(Y )

γ(X)
> −1 ≥ −

δY
2
,

where we have used that γ(Y ) > 0 since Y is not the empty subcurve and that δY ≥ 2 since X does not
have separating points by assumption. Therefore, AL(p) is q′-stable for every p ∈ X by Remark 2.15.

Using Remark 2.13, we can deform slightly q′ in order to obtain a general polarization q with |q| = |q′|

and for which AL(p) is q-stable for every p ∈ X , which implies that ImAL ⊆ JX(q), q.e.d. �

Those fine compactified Jacobians for which there exists an Abel map as in the above Lemma 6.1 are
quite special, hence they deserve a special name.

Definition 6.2. Let X be a curve without separating points. A fine compactified Jacobian JX(q) is
said to admit an Abel map if there exists a line bundle L ∈ Pic(X) (necessarily of degree |q| + pa(X))

such that ImAL ⊆ JX(q).

Observe that clearly the property of admitting an Abel map is invariant under equivalence by trans-
lation (in the sense of Definition 3.1).

Remark 6.3. It is possible to prove that a curve X without separating points and having at most two
irreducible components is such that any fine compactified Jacobian of X admits an Abel map.

However, in Section 7 we are going to show examples of curves with more than two components
and having a fine compactified Jacobian which does not admit an Abel map (see Proposition 7.4 and
Proposition 7.5). In particular, Proposition 7.4 shows that, as the number of irreducible components of
X increases, fine compactified Jacobians of X that admit an Abel map became more and more rare.

6.2. Abel maps with separating points. The aim of this subsection is to define Abel maps for
(reduced) curves X having separating points (in the sense of (1.8)) but satisfying the following

(6.3) Condition (†) : Every separating point is a node.

Indeed, there are plenty of curves that satisfy condition (†) due to the following result of Catanese (see
[Cat82, Prop. 1.10]).

Fact 6.4 (Catanese). A (reduced) Gorenstein curve X satisfies condition (†).

Let us give an example of a curve that does not satisfy condition (†).

Example 6.5. Consider a curve X made of three irreducible smooth components Y1, Y2 and Y3 glued at
one point p ∈ Y1 ∩Y2 ∩Y3 with linearly independent tangent directions, i.e. in a such a way that, locally
at p, the three components Y1, Y2 and Y3 look like the three coordinate axes in A3. A straightforward
local computation gives that δY1 = |Y1 ∩ (Y2 ∪ Y3)| = 1, so that p is a separating point of X (in the
sense of 1.8). However p is clearly not a node of X . Combined with Fact 6.4, this shows that X is not
Gorenstein at p ∈ X .

Throughout this section, we fix a connected (reduced) curve X satisfying condition (†) and let {n1, . . .

, nr−1} be its separating points. Since X satisfies condition (†), each ni is a node. Denote by X̃ the

partial normalization of X at the set {n1, . . . , nr−1}. Since each ni is a node, the curve X̃ is a disjoint
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union of r connected reduced curves {Y1, . . . , Yr} such that each Yi does not have separating points.
Note also that X has locally planar singularities if and only if each Yi has locally planar singularities.
We have a natural morphism

(6.4) τ : X̃ =
∐

i

Yi → X.

We can naturally identify each Yi with a subcurve of X in such a way that their union is X and that
they do not have common irreducible components. In particular, the irreducible components of X are
the union of the irreducible components of the curves Yi. We call the subcurves Yi (or their image in X)
the separating blocks of X .

Let us first show how the study of fine compactified Jacobians of X can be reduced to the study
of fine compactified Jacobians of Yi. Observe that, given a polarization qi on each curve Yi, we get a
polarization q on X such that for every irreducible component C of X we have

(6.5) q
C
=

{
qi
C

if C ⊆ Yi and C ∩ Yj = ∅ for all j 6= i,

qi
C
− 1

2 if C ⊆ Yi and C ∩ Yj 6= ∅ for some j 6= i.

Note that |q| =
∑

i |q
i|+1− r so that indeed q is a polarization on X . We say that q is the polarization

induced by the polarizations (q1, . . . , qr) and we write q := (q1, . . . , qr).

Proposition 6.6. Let X be a connected curve satisfying condition (†).

(i) The pull-back map

τ∗ : JX −→
r∏

i=1

JYi

I 7→ (I|Y1
, . . . , I|Yr

),

is an isomorphism. Moreover τ∗(JX) =
∏
i JYi

.
(ii) Given a polarization qi on each curve Yi, consider the induced polarization q := (q1, . . . , qr) on

X as above. Then q is general if and only if each qi is general and in this case the morphism τ∗

induces an isomorphism

(6.6) τ∗ : JX(q)
∼=
−→
∏

i

JYi
(qi).

(iii) If q is a general polarization on X then there exists a general polarization q′ with |q′| = |q| on X

which is induced by some polarizations qi on Yi and such that

JX(q) = JX(q′).

Proof. It is enough, by re-iterating the argument, to consider the case where there is only one separating

point n1 = n, i.e. r = 2. Therefore the normalization X̃ of X at n is the disjoint union of two connected
curves Y1 and Y2, which we also identify with two subcurves of X meeting at the node n. Denote by C1

(resp. C2) the irreducible component of Y1 (resp. Y2) that contains the separating point n. A warning
about the notation: given a subcurve Z ⊂ X , we will denote by Zc the complementary subcurve of Z

inside X , i.e. X \ Z. In the case where Z ⊂ Yi ⊂ X for some i = 1, 2 we will write Yi \ Z for the
complementary subcurve of Z inside Yi.

Part (i) is well-known, see [Est01, Example 37] and [Est09, Prop. 3.2]. The crucial fact is that if I
is simple then I must be locally free at the separating point n; hence τ∗(I) is still torsion-free, rank-1
and its restrictions τ∗(I)|Yi

= I|Yi
are torsion-free, rank-1 and simple. Moreover, since n is a separating

point, the sheaf I is completely determined by its pull-back τ∗(I), i.e. there are no gluing conditions.
Finally, I is a line bundle if and only if its pull-back τ∗(I) is a line bundle.

Part (ii). Assume first that each qi is a general polarization on Yi for i = 1, 2. Consider a proper
subcurve Z ⊂ X such that Z and Zc are connected. There are three possibilities:

(6.7)





Case I: C1, C2 ⊂ Z
c =⇒ Z ⊂ Yi and Yi \ Z is connected (for some i = 1, 2),

Case II: C1, C2 ⊂ Z =⇒ Zc ⊂ Yi and Yi \ Zc is connected (for some i = 1, 2),

Case III: Ci ⊂ Z and C3−i ⊂ Z
c =⇒ Z = Yi and Z

c = Y3−i (for some i = 1, 2).
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Therefore, from the definition of q = (q1, q2), it follows that

(6.8) q
Z
=





qi
Z

in case I,

|q| − q
Zc

= |q| − qi
Zc

in case II,

|qi| −
1

2
in case III.

In each of the cases I, II, III we conclude that q
Z
6∈ Z using that qi is general and that |q|, |qi| ∈ Z.

Therefore q is general by Remark 2.10.

Conversely, assume that q is general and let us show that qi is general for i = 1, 2. Consider a proper

subcurve Z ⊂ Yi such that Z and Yi \ Z is connected. There are two possibilities:

(6.9)

{
Case A: Ci 6⊂ Z =⇒ Zc is connected,

Case B: Ci ⊂ Z =⇒ (Yi \ Z)
c is connected.

Using the definition of q = (q1, q2), we compute

(6.10) qi
Z
=

{
q
Z

in case A,

|qi| − qi
Y i\Z

= |qi| − q
Y i\Z

in case B.

In each of the cases A, B we conclude that qi
Z
6∈ Z using that q is general and |qi| ∈ Z. Therefore qi is

general by Remark 2.10.
Finally, in order to prove (6.6), it is enough, using part (i), to show that a simple torsion-free rank-1

sheaf I on X is q-semistable if and only if I|Yi
is qi-semistable for i = 1, 2. Observe first that, since I is

locally free at the node n (see the proof of part (i)), we have that for any subcurve Z ⊂ X it holds

(6.11) χ(IZ) =

{
χ(IZ∩Yi

) = χ(IZ ) if Z ⊆ Yi for some i,

χ(IZ∩Y1) + χ(IZ∩Y2 )− 1 otherwise.

Assume first that I|Yi
is qi-semistable for i = 1, 2. Using (6.11), we get

χ(I) = χ(IY1) + χ(IY2)− 1 = |q1|+ |q2| − 1 = |q|.

Consider a proper subcurve Z ⊂ X such that Z and Zc are connected. Using (6.7), (6.8) and (6.11), we
compute

χ(IZ)− qZ =





χ(IZ)− q
i
Z
= χ(IZ∩Yi

)− qi
Z∩Yi

in case I,

χ(IZ∩Y1) + χ(IZ∩Y2)− 1− |q|+ qi
Zc

=

= χ(IYi\Zc) + χ(IY3−i
)− |q1| − |q2|+ qi

Zc
= χ(IYi\Zc)− q

i
Yi\Zc

in case II,

χ(IYi
)− |qi|+

1

2
=

1

2
in case III.

In each of the cases I, II, III we conclude that χ(IZ)− qZ ≥ 0 using that I|Yi
is qi-semistable. Therefore

I is q-semistable by Remark 2.12.
Conversely, assume that I is q-semistable. Using (6.11), we get that

(6.12) |q1|+ |q2| = |q|+ 1 = χ(I) + 1 = χ(IY1 ) + χ(IY2).

Since I is q-semistable, inequalities (2.8) applied to Yi for i = 1, 2 give that

(6.13) χ(IYi
) ≥ q

Yi
= |qi| −

1

2
.

Since χ(IYi
) and |qi| are integral numbers, from (6.13) we get that χ(IYi

) ≥ |qi| which combined with

(6.12) gives that χ(IYi
) = |qi|. Consider now a subcurve Z ⊂ Yi (for some i = 1, 2) such that Z and

Yi \ Z are connected. Since I is locally free at n, we have that (I|Yi
)Z = IZ . Using (6.9) and (6.10), we

compute

χ((I|Yi
)Z)− q

i
Z
=





χ(IZ)− qZ in case A,

χ(IYi\Z
c)− χ(IY3−i

) + 1− |qi|+ q
Y i\Z

=

= χ(IYi\Z
c)− q

Y i\Z
c in case B.

37



In each of the cases A, B we conclude that χ((I|Yi
)Z) − qiZ ≥ 0 using that I is q-semistable. Therefore

I|Yi
is qi-semistable by Remark 2.12.

Part (iii): note that a polarization q′ on X is induced by some polarizations qi on Yi if and only if

q′
Yi

+ 1
2 ∈ Z for i = 1, 2. For a general polarization q on Y , we have that

{
|q| = q

Y1
+ q

Y2
∈ Z,

q
Yi
6∈ Z.

Therefore, we can find unique integral numbers m1,m2 ∈ Z and a unique rational number r ∈ Q with
− 1

2 < r < 1
2 such that

(6.14)





q
Y1

= m1 +
1

2
+ r,

q
Y2

= m2 −
1

2
− r.

Define now the polarization q′ on X in such a way that for an irreducible component C of X , we have
that

q′
C
:=





q
C

if C 6= C1, C2,

q
C1
− r if C = C1,

q
C2

+ r if C = C2.

In particular for any subcurve Z ⊂ X , the polarization q′ is such that

(6.15) q′
Z
:=





q
Z

if either C1, C2 ⊂ Z or C1, C2 ⊂ Z
c,

q
Z
− r if C1 ⊂ Z and C2 ⊂ Z

c,

q
Z
+ r if C2 ⊂ Z and C1 ⊂ Z

c.

Specializing to the case Z = Y1, Y2 and using (6.14), we get that

(6.16)





q′
Y1

= q
Y1
− r = m1 +

1

2
,

q′
Y2

= q
Y2

+ r = m2 −
1

2
,

|q′| = q′
Y1

+ q′
Y2

= m1 +m2 = q
Y1

+ q
Y2

= |q|.

As observed before, this implies that q′ is induced by two (uniquely determined) polarizations q1 and q2

on Y1 and Y2, respectively, and moreover that |q′| = |q|.
Let us check that q′ is general. Consider a proper subcurve Z ⊂ X such that Z and Zc are connected.

Using (6.7), (6.15) and (6.16), we compute that

(6.17) q′
Z
=





q
Z

in case I and II,

q′
Yi

= q
Yi

+ (−1)ir = mi + (−1)i+1 1

2
in case III.

In each of the above cases I, II, III we get that q′
Z
6∈ Z using that q is general and that mi ∈ Z. Therefore

q′ is general by Remark 2.10.

Finally, in order to check that JX(q) = JX(q′) we must show that a simple rank-1 torsion-free sheaf
I on X with χ(I) = |q| = |q′| is q-semistable if and only if it is q′-semistable. Using Remark 2.12, it

is sufficient (and necessary) to check that for, any proper subcurve Z ⊂ X such that Z and Zc are
connected, I satisfies (2.8) with respect to q

Z
if and only if it satisfies (2.8) with respect to q′

Z
. If Z

belongs to case I or II (according to the classification (6.7)), this is clear by (6.17). If Z belongs to case
III, i.e. if Z = Yi for some i = 1, 2, then, using (6.14) together with the fact that − 1

2 < r < 1
2 and

mi, χ(IYi
) ∈ Z, we get that

χ(IYi
) ≥ q

Yi
= mi + (−1)i+1

(
1

2
+ r

)
⇐⇒

{
χ(IYi

) ≥ mi + 1 if i = 1,

χ(IYi
) ≥ mi if i = 2.

Similarly using (6.16), we get that

χ(IYi
) ≥ q′

Yi
= mi + (−1)i+1 1

2
⇐⇒

{
χ(IYi

) ≥ mi + 1 if i = 1,

χ(IYi
) ≥ mi if i = 2.
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This shows that I satisfies (2.8) with respect to q
Y1

if and only if it satisfies (2.8) with respect to q′
Y1
,

which concludes our proof.
�

We can now define the Abel maps for X .

Proposition 6.7. Let X be a connected curve satisfying condition (†) as above.

(i) For any line bundle L ∈ Pic(X), there exists a unique morphism AL : X → JX such that for any
i = 1, . . . , r it holds:
(a) the following diagram is commutative

Yi
ALi //

_�

��

JYi

X
AL // JX

τ∗

∼=
//
∏
j JYj

πi

bbbb❉
❉

❉

❉

❉

❉

❉

❉

where πi denotes the projection onto the i-th factor, τ∗ is the isomorphism of Proposition 6.6(i)
and ALi

is the Li-twisted map of (6.4) for Li := L|Yi
.

(b) The composition

Yi →֒ X
AL−−→ JX

τ∗

−→
∼=

∏

j

JYj

∏
j 6=i πj

−−−−−→
∏

j 6=i

JYj

is a constant map.
Explicitly, the morphism AL is given for p ∈ Yi (with 1 ≤ i ≤ r) by

τ∗(AL(p)) = (L1(−n
i
1), . . . , Li−1(−n

i
i−1),mp ⊗ Li, Li+1(−n

i
i+1), . . . , Lr(−n

i
r))

where for any h 6= k we denote by nhk the unique separating node of X that belongs to Yk and such
that Yk and Yh belong to the distinct connected components of the partial normalization of X at nhk
(note that such a point nhk exists and it is a smooth point of Yk).

(ii) Let qi be a general polarization on Yi for any 1 ≤ i ≤ r and denote by q the induced (general)
polarization on X. Then

AL(X) ⊂ JX(q)⇔ ALi
(Yi) ⊂ JYi

(qi) for any 1 ≤ i ≤ r.

Proof. Part (i): assume that such a map AL exists and let us prove its uniqueness. From (ia) and (ib)
it follows that the composition

ÃL : X̃ =
∐

i

Yi
τ
−→ X

AL−−→ JX
τ∗

−→
∏

i

JYi

is such that for every 1 ≤ i ≤ r and every p ∈ Yi it holds

(6.18) (ÃL)|Yi
(p) = (M i

1, . . . ,M
i
i−1, ALi

(p),M i
i+1, . . . ,M

i
r)

for some elements M i
j ∈ JYj

for j 6= i. Moreover, if we set τ−1(nk) = {n1
k, n

2
k} then we must have that

(6.19) ÃL(n
1
k) = ÃL(n

2
k) for any 1 ≤ k ≤ r − 1.

Claim: The unique elements M i
j ∈ JYj

(for any i 6= j) such that the map ÃL in (6.18) satisfies the

conditions in (6.19) are given by M i
j = Lj(−nij), where n

i
j are as above.

The claim clearly implies the uniqueness of the map ÃL, hence the uniqueness of the map AL. More-
over, the same claim also shows the existence of the map AL with the desired properties: it is enough to

define ÃL via the formula (6.18) and notice that, since the conditions (6.19) are satisfied, then the map

ÃL descends to a map AL : X → JX .
It remains therefore to prove the Claim. Choose a separating node nk of X with inverse image

τ−1(nk) = {n1
k, n

2
k} and suppose that n1

k ∈ Yi and n
2
k ∈ Yj . Clearly, we have that n1

k = nji and n2
k = nij

by construction and it is easily checked that

(*) nik = njk for any k 6= i, j.
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From condition (6.19) applied to nk, we deduce that

(**)





M j
i = mn1

k
⊗ Li = Li(−n

j
i ),

M i
j = mn2

k
⊗ Lj = Lj(−n

i
j),

M i
k =M j

k for any k 6= i, j.

By combining (*) and (**), it is easily checked that the unique elements M i
j that satisfy condition (6.19)

for every separating node are given by M i
j = Lj(−nij), q.e.d.

Part (ii) follows easily from the diagram in (ia) and the isomorphism (6.6). �

We call the map AL of Proposition 6.7(i) the (L-twisted) Abel map of X . We can extend Definition
6.2 to the case of curves satisfying condition (†) from (6.4).

Definition 6.8. Let X be a curve satisfying condition (†). We say that a fine compactified Jacobian
JX(q) of X admits an Abel map if there exists L ∈ Pic(X) (necessarily of degree |q|+ pa(X)) such that

ImAL ⊆ JX(q).

By combining Propositions 6.6 and 6.7, we can easily reduce the problem of the existence of an Abel
map for a fine compactified Jacobian of X to the analogous question on the separating blocks of X .

Corollary 6.9. Let X be a curve satisfying condition (†) with separating blocks Y1, . . . , Yr.

(i) Let q be a general polarization of X and assume (without loss of generality by Proposition 6.6(iii))

that q is induced by some general polarizations qi on Yi. Then JX(q) admits an Abel map if and

only if each JYi
(qi) admits an Abel map.

(ii) If X is Gorenstein, then for any L ∈ Pic(X) there exists a general polarization q on X of total

degree |q| = χ(L)− 1 such that ImAL ⊆ JX(q).

Proof. Part (i) follows from Proposition 6.7(ii). Part (ii) follows from Proposition 6.7(ii) together with
Lemma 6.1. �

When is the Abel map AL an embedding? The answer is provided by the following result, whose
proof is identical to the proof of [CCE08, Thm. 6.3].

Fact 6.10 (Caporaso-Coelho-Esteves). Let X be a curve satisfying condition (†) and L ∈ Pic(X). The
Abel map AL is an embedding away from the rational separating blocks (which are isomorphic to P1)
while it contracts each rational separating block Yi ∼= P1 into a seminormal point of AL(X), i.e. an
ordinary singularity with linearly independent tangent directions.

7. Examples: Locally planar curves of arithmetic genus 1

In this section, we are going to study fine compactified Jacobians and Abel maps for singular curves
of arithmetic genus 1 with locally planar singularities. According to Fact 6.4, such a curve X satisfies
the condition (†) and therefore, using Proposition 6.6 and Proposition 6.7, we can reduce the study of
fine compactified Jacobians and Abel maps to the case where X does not have separating points (or
equivalently separating nodes). Under this additional assumption, a classification is possible.

Fact 7.1. Let X be a (reduced) connected singular curve without separating points, with locally planar
singularities and pa(X) = 1. Then X is one of the curves depicted in Figure 1, which are called Kodaira
curves.

Proof. Since X has non separating points and pa(X) = 1 then X has trivial canonical sheaf by [Est01,
Example 39]. These curves were classified by Catanese in [Cat82, Prop. 1.18]. An inspection of the
classification in loc. cit. reveals that the only such singular curves that have locally planar singularities
are the ones depicted in Figure 1, i.e. the Kodaira curves. �

Note that the curves in Figure 1 are exactly the reduced fibers appearing in the well-known Kodaira
classification of singular fibers of minimal elliptic fibrations (see [BPV84, Chap. V, Sec. 7]). This
explains why they are called Kodaira curves.

Abel maps for Kodaira curves behave particularly well, due to the following result proved in [Est01,
Example 39].
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Type I

Type II
Type III

�
�
�
��

Type IV

Type In, n ≥ 2

Figure 1. Kodaira curves.

Fact 7.2 (Esteves). Let X be a connected curve without separating points and such that pa(X) = 1.
Then for any L ∈ Pic(X) the image AL(X) ⊆ JX of X via the L-twisted Abel map is equal to a fine
compactified Jacobian JX(q) of X and AL induces an isomorphism

AL : X
∼=
−→ AL(X) = JX(q).

From the above Fact 7.2, we deduce that, up to equivalence by translation (in the sense of Definition
3.1), there is exactly one fine compactified Jacobian that admits an Abel map and this fine compactified
Jacobian is isomorphic to the curve itself. This last property is indeed true for any fine compactified
Jacobian of a Kodaira curve, as shown in the following

Proposition 7.3. Let X be a Kodaira curve. Then every fine compactified Jacobian of X is isomorphic
to X.

Proof. Let JX(q) be a fine compactified Jacobian of X . By Proposition 5.10, we can find a 1-parameter
regular smoothing f : S → B = Spec R of X (in the sense of Definition 5.9), where R is a complete
discrete valuation ring with quotient field K. Note that the generic fiber SK of f is an elliptic curve.
Following the notation of §5.1, we can form the f -relative fine compactified Jacobian π : Jf (q) → B
with respect to the polarization q. Recall that π is a projective and flat morphism whose generic fiber

is Pic|q|(SK) and whose special fiber is JX(q). Using Theorem 5.5, it is easy to show that if we choose

a generic 1-parameter smoothing f : S → B of X , then the surface Jf (q) is regular. Moreover, Fact

5.11 implies that the smooth locus Jf (q)→ B of π is isomorphic to the Néron model of the generic fiber

Pic|q|(SK). Therefore, using the well-known relation between the Néron model and the regular minimal

model of the elliptic curve Pic|q|(SK) ∼= SK over K (see [BLR90, Chap. 1.5, Prop. 1]), we deduce that

π : Jf (q)→ B is the regular minimal model of Pic|q|(SK). In particular, π is a minimal elliptic fibration
with reduced fibers and therefore, according to Kodaira’s classification (see see [BPV84, Chap. V, Sec.
7]), the special fiber JX(q) of π must be a smooth elliptic curve or a Kodaira curve.

According to Corollary 5.14, the number of irreducible components of JX(q) is equal to the complexity

c(X) of X . However, it is very easy to see that for a Kodaira curve X the complexity number c(X) is
equal to the number of irreducible components of X . Therefore if c(X) ≥ 4, i.e. if X is of Type In with
n ≥ 4, then necessarily JX(q) is of type In, hence it is isomorphic to X .

In the case n ≤ 3, the required isomorphism JX(q) ∼= X follows from the fact that the smooth locus

of JX(q) is isomorphic to a disjoint union of torsors under Pic0(X) (see Corollary 2.20) and that

Pic0(X) =

{
Gm if X is of Type I or In (n ≥ 2),

Ga if X is of Type II, III or IV.

�

Let us now classify the fine compactified Jacobians for a Kodaira curve X , up to equivalence by
translation, and indicate which of them admits an Abel map.

X is of Type I or Type II
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Since the curve X is irreducible, we have that the fine compactified Jacobians of X are of the form

J
d

X for some d ∈ Z. Hence they are all equivalent by translation and each of them admits an Abel map.

X is of Type In, with n ≥ 2

The fine compactified Jacobians of X up to equivalence by translation and their behavior with respect
to the Abel map are described in the following proposition.

Proposition 7.4. Let X be a Kodaira curve of type In (with n ≥ 2) and let {C1, . . . , Cn} be the
irreducible components of X, ordered in such a way that, for any 1 ≤ i ≤ n, Ci intersects Ci−1 and Ci+1,
with the cyclic convention that Cn+1 := C1.

(i) Any fine compactified Jacobian is equivalent by translation to a unique fine compactified Jacobian
of the form JX(q) for a polarization q that satisfies

(*) q =

(
q1, . . . , qn−1,−

n−1∑

i=1

qi

)
with 0 ≤ qi < 1,

(**)

s∑

i=r

qi 6∈ Z for any 1 ≤ r ≤ s ≤ n− 1,

(***) qi =
ki
n

with ki = 1, . . . , n− 1, for any 1 ≤ i ≤ n− 1.

In particular, there are exactly (n − 1)! fine compactified Jacobians of X up to equivalence by
translation.

(ii) The unique fine compactified Jacobian, up to equivalence by translation, that admits an Abel map
is

JX

(
n− 1

n
, . . . ,

n− 1

n
,−

(n− 1)2

n

)
.

Proof. Part (i): given any polarization q′, there exists a unique polarization q that satisfies conditions

(*) and such that q − q′ ∈ Zn. Since any connected subcurve Y ⊂ X is such that Y or Y c is equal to
Cr ∪ . . .∪Cs (for some 1 ≤ r ≤ s ≤ n− 1), we deduce that a polarization q that satisfies (*) is general if

and only if it satisfies (**). Hence any fine compactified Jacobian is equivalent by translation to a unique
JX(q), for a polarization q that satisfies (*) and (**). Consider now the arrangement of hyperplanes in

Rn−1 given by {
s∑

i=r

qi = n

}

for all 1 ≤ r ≤ s ≤ n− 1 and all n ∈ Z. This arrangement of hyperplanes cuts the hypercube [0, 1]n−1

into finitely many chambers. Notice that a polarization q satisfies (*) and (**) if and only if it belongs to
the interior of one of these chambers. Arguing as in the proof of Proposition 3.2, it is easy to see that two
polarizations q and q′ satisfying (*) and (**) belong to the same chamber if and only if JX(q) = JX(q′).
Now it is an entertaining exercise (that we leave to the reader) to check that any chamber contains
exactly one polarization q that satisfies (***). This proves the first claim of part (i). The second claim
in part (i) is an easy counting argument that we again leave to the reader.

Part (ii): if we take a line bundle L of multidegree degL = (1, . . . , 1,−(n− 2)) then from the proof of

Lemma 6.1 it follows that ImAL ⊆ J := JX(n−1
n , . . . , n−1

n ,− (n−1)2

n ). Therefore, from Fact 7.2, it follows

that J is the unique fine compactified Jacobian, up to equivalence by translation, that admits an Abel
map.

�

X is of Type III

Since X has two irreducible components, then every fine compactified Jacobian of X admits an Abel
map by Remark 6.3. By Fact 7.2, all fine compactified Jacobians of X are therefore equivalent by
translation.

X is of Type IV

The fine compactified Jacobians of X up to equivalence by translation and their behavior with respect
to the Abel map are described in the following proposition.
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Proposition 7.5. Let X be a Kodaira curve of type IV .

(i) Any fine compactified Jacobian of X is equivalent by translation to either J1 := JX
(
2
3 ,

2
3 ,−

4
3

)
or

J2 := JX
(
1
3 ,

1
3 ,−

2
3

)
.

(ii) J1 admits an Abel map while J2 does not admit an Abel map.

Proof. Part (i) is proved exactly as in the case of the Kodaira curve of type I3 (see Proposition 7.4(i)).
Part (ii): if we take a line bundle L of multidegree degL = (1, 1,−1) then ImAL ⊆ J1 as follows from

the proof of Lemma 6.1. Therefore J1 admits an Abel map.
Let us now show that J2 does not admit an Abel map. Suppose by contradiction that there exists a line

bundle L of multidegree degL = (d1, d2, d3) such that AL(p) = mp⊗L ∈ J2 where p denotes the unique
singular point of X . The stability of mp ⊗ L with respect to the polarization (q1, q2, q3) = (13 ,

1
3 ,−

2
3 )

gives for any irreducible component Ci of X :

di = di − 1 + 1 = degCi
(mp ⊗ L) + 1 = χ((mp ⊗ L)Ci

) > qi.

We deduce that d1 ≥ 1, d2 ≥ 1 and d3 ≥ 0. However if ImAL ⊂ J2 then the total degree of L must be
one, which contradicts the previous conditions.

�

Remark 7.6. Realize a Kodaira curve X of Type IV as the plane cubic with equation y(x+y)(x−y) = 0.
One can show that the singular points in J1 and in J2 correspond to two sheaves that are not locally
isomorphic: the singular point of J1 is the sheaf I1 := mp ⊗L where mp is the ideal sheaf of the point p

defined by (x, y) and L is any line bundle on X of multidegree (1, 1,−1); the singular point of J2 is the
sheaf I2 := IZ ⊗M where IZ is the ideal sheaf of the length 2 subscheme defined by (x, y2) and M is
any line bundle on X of multidegree (1, 1, 0).

Moreover, denote by X̃ the seminormalization of X (explicitly X̃ can be realized as the union of three

lines in projective space meeting in one point with linearly independent directions) and π : X̃ → X is the

natural map. Using Table 2 of [Kas12] (where the unique singularity of X̃ is called D̃4 and the unique
singular point of X is classically called D4), it can be shown that, up to the tensorization with a suitable

line bundle on X , I2 is the pushforward of the trivial line bundle on X̃ while I1 is the pushforward of

the canonical sheaf on X̃, which is not a line bundle since X̃ is not Gorenstein (see Example 6.5).

Remark 7.7. Simpson (possibly coarse) compactified Jacobians of Kodaira curves have been studied by
A. C. López Mart́ın in [LM05, Sec. 5], see also [LM06], [LRST09].
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176 (2012), No. 3, 1647–1781. 2

[CP10] J. Coelho, M. Pacini: Abel maps for curves of compact type. J. Pure Appl. Algebra 214 (2010), no. 8, 1319–1333.
4, 5

[DP12] R. Donagi, T. Pantev: Langlands duality for Hitchin systems. Invent. Math. 189 (2012), 653–735. 2
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[Ngo10] B. C. Ngô: Le lemme fondamental pour les algèbres de Lie. Publ. Math. Inst. Hautes Études Sci. No. 111
(2010), 1–169. 2

[OS79] T. Oda, C.S. Seshadri: Compactifications of the generalized Jacobian variety. Trans. Amer. Math. Soc. 253
(1979), 1–90. 3, 18
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