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5 QUASIHOMOGENEOUS THREE-DIMENSIONAL REAL ANALYTIC LORENTZ METRICS

DO NOT EXIST

SORIN DUMITRESCU AND KARIN MELNICK

ABSTRACT. We show that a germ of a real analytic Lorentz metric onR
3 which is locally homogeneouson an

open set containing the origin in its closure is necessarilylocally homogeneous. We classifiy Lie algebras that can
actquasihomogeneously—meaning they act transitively on an open set admitting the origin in its closure, but not
at the origin—and isometrically for such a metric. In the case that the isotropy at the origin of a quasihomogeneous
action is semi-simple, we provide a complete set of normal forms of the metric and the action.

1. INTRODUCTION

A Riemannian or pseudo-Riemannian metric is calledlocally homogeneousif any two points can be con-
nected by flowing along a finite sequence of local Killing fields. The study of such metrics is a traditional field
in differential geometry. In dimension two, they are exactly the semi-Riemannian metrics of constant sec-
tional curvature. Locally homogeneous Riemannian metricsof dimension three are the subject of Thurston’s
3-dimensional geometrization program [Thu97]. The classification of compact locally homogeneous Lorentz
3-manifolds was given in [DZ10].

The most symmetric geometric structures after the locally homogeneous ones are those which arequasi-
homogeneous, meaning they are locally homogeneous on an open set containing the origin in its closure,
but not locally homogeneous in the neighborhood of the origin. In particular, all the scalar invariants of a
quasihomogeneous geometric structure are constant. Recall that, for Riemannian metrics, constant scalar
invariants implies local homogeneity (see [PTV96] for an effective result).

In a recent joint work with A. Guillot, the first author obtained the classification of germs of quasihomo-
geneous, real analytic, torsion free, affine connections onsurfaces [DG13]. The article [DG13] also classifies
the quasihomogeneous germs of real analytic, torsion free,affine connections which extend tocompactsur-
faces. In particular, such germs of quasihomogeneous connections do exist.

The first author proved in [Dum08] thata real analytic Lorentz metric on a compact3-manifold which is
locally homogeneous on a nontrivial open set is locally homogeneous on all of the manifold. In other words,
quasihomogeneous real analytic Lorentz metrics do not extend to compactthreefolds. The same is known
to be true, by work of the second author, for real analytic Lorentz metrics on compact manifolds of higher
dimension, under the assumptions that the Killing algebra is semisimple, the metric is geodesically complete,
and the universal cover is acyclic [Mel09]. In the smooth category, A. Zeghib proved in [Zeg96] that compact
Lorentz 3-manifolds which admit essential Killing fields are necessarily locally homogeneous.
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Here we simplify arguments of [Dum08] and introduce new ideas in order to dispense with the compact-
ness assumption and prove the following local result:

Theorem 1. Let g be a real-analytic Lorentz metric in a connected open neighborhoodU of the origin inR3.
If g is locally homogeneous on a nontrivial open subset in U, then g is locally homogeneous on all of U.

As a by-product of this new proof, we classifiy Lie algebras that can act isometrically for a three-dimensional
Lorentz metric andquasihomogeneously, meaning they act transitively on an open set admitting the origin in
its closure, but not at the origin. In the case that the isotropy at the origin of such a quasihomogeneous action
is semisimple, we provide a complete set of normal forms of the metric and the action, which, by Theorem 1
above, are all locally homogeneous (see Proposition 10 and Proposition 11).

We also present a new approach to the problem in Section 5, relying on the Cartan connection associated
to a Lorentzian metric. This approach yields a nice alternate proof of our results.

Our work is motivated by Gromov’sOpen-Dense Orbit Theorem[DG91, Gro88] (see also [Ben97, Fer02]).
Gromov’s result asserts that, if the pseudogroup of local automorphisms of arigid geometric structure—such
as a Lorentz metric or a connection—acts with a dense orbit, then this orbit is open. In this case, the rigid
geometric structure is locally homogeneous on an open denseset. Gromov’s theorem says little about this
maximal open and dense set of local homogeneity, which appears to by mysterious (see [DG91, 7.3.C]). In
many interesting geometric situations, it can be shown to beall of the connected manifold. This was proved,
for instance, for Anosov flows preserving a pseudo-Riemannian metric arising from differentiable stable and
unstable foliations and a transverse contact structure [BFL92]. In [BF05], the authors deal with this question;
their results indicate ways in which some rigid geometric structures cannot degenerate off the open dense set.

The composition of this article is the following. In Section2 we use the geometry of Killing fields and
geometric invariant theory to prove that the Killing Lie algebra of a three-dimensional quasihomogeneous
Lorentz metricg is a three-dimensional, solvable, nonunimodular Lie algebra. We also show thatg is locally
homogeneous away from a totally geodesic surfaceS, on which the isotropy is a one parameter semisim-
ple group or a one parameter unipotent group. In the case of semisimple isotropy, Theorem 1 is proved in
Section 3. The proof of this case relies on the classificationof normal forms of the metrics admitting quasi-
homogeneous isometric actions (see Proposition 10 and Proposition 11). In the case of unipotent isotropy,
Theorem 1 is proved in Section 4. Section 5 provides an alternative proof of Theorem 1 using the formalism
of Cartan connections.

Our result raises the following question:

Question 1. Let g be a smooth Lorentz metric on a connected three-dimensional manifold M. If g is locally
homogeneous on an open, dense subset of M, then must g be locally homogeneous on all of M?

We are aware of noncompact quasihomogeneous examples of lower regularityC1, recently discovered by
C. Frances. We would like to thank C. Frances for interestingconversations on the topic of this paper. We
thank the referee for her/his careful reading of our manuscript and many useful remarks.

2. KILLING L IE ALGEBRA. INVARIANT THEORY

Let g be a real analytic Lorentz metric defined in a connected open neighborhoodU of the origin inR3,
which we assume is also simply connected. In this section we recall the definition and several properties of
the Killing algebra of(U,g). These were proved in [Dum08] without use of the compactnessassumption.
For completeness, we briefly explain their derivation againhere.

Classically, (see, for instance [Gro88, DG91]) one considers thek-jet of g by taking at each pointu∈U
the expression ofg up to orderk in exponential coordinates. In these coordinates, the 0-jet of g is the
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standard flat Lorentz metricdx2+dydz. At each pointu∈ U , the space of exponential coordinates is acted
on simply transitively byO(2,1), the identity component of which is isomorphic toPSL(2,R). The space
of all exponential coordinates inU compatible with a fixed orientation and time orientation is aprincipal
PSL(2,R)-bundle overU , which we will call the orthonormal frame bundle and denote by R(U).

Geometrically, thek-jets ofg form an analyticPSL(2,R)-equivariant mapg(k) : R(U)→V(k), whereV(k)

is the finite-dimensional vector space ofk-jets at 0 of Lorentz metrics onR3 with fixed 0-jetdx2+dydz. The
groupO0(2,1)≃ PSL(2,R) acts linearly on this space, in which the origin correspondsto thek-jet of the flat
metric. One can find the details of this classical construction in [DG91].

Recall also that a local vector field is aKilling field for a Lorentz metricg if its flow preservesg wherever
it is defined. Note that local Killing fields preserve orientation and time orientation, so they act onR(U). The
collection of all germs of local Killing fields at a pointu has the structure of a finite dimensional Lie algebrag

called thelocal Killing algebraof g atu. At a given pointu∈U , the subalgebrai of the local Killing algebra
consisting of the local Killing fieldsX with X(u) = 0 is called theisotropyalgebra atu.

The proof of Theorem 1 will use analyticity in an essential way. We will make use of an extendability
result for local Killing fields proved first by Nomizu in the real-analytic Riemannian setting [Nom60] and
generalized then for anyCω rigid geometric structure by Amores and Gromov [Amo79, Gro88, DG91]. This
phenomenon states that a local Killing field ofg can be extended analytically along any curveγ in U , and the
resulting Killing field germ at the endpoint only depends on the homotopy type ofγ. BecauseU is assumed
connected and simply connected,local Killing fields extend to all of U.Therefore, the local Killing algebra
at anyu∈U equals the algebra of globally defined Killing fields onU , which we will denote byg.

Definition2. The Lorentz metricg is locally homogeneous on an open subset W⊂U , if for any w∈W and
any tangent vectorV ∈ TwW, there existsX ∈ g such thatX(w) =V. In this case, we will say that the Killing
algebrag is transitive on W.

Any two points in aconnectedopen subsetW on whichg is locally homogeneous can be related by flowing
along a finite sequence of local Killing fields ofg.

Notice that Nomizu’s extension phenomenon does not imply that the extension of a family of pointwise
linearly independent Killing fields stays linearly independent. The assumption of Theorem 1 is thatg is
transitive on a nonempty open subsetW ⊂U . Choose three elementsX,Y,Z ∈ g that are linearly independent
at a pointu0 ∈W. The function volg(X(u),Y(u),Z(u)) is analytic onU and nonzero in a neighborhood ofu0.
The vanishing set of this function is a closed analytic proper subsetS′ of U containing the points whereg is
not transitive. Its complement is an open dense set ofU on whichg is transitive.

From now on we will assume thatg is a quasihomogeneous Lorentz metric in the neighborhood Uof the
origin in R

3, with Killing algebrag. LetSbe the complement of the maximal open subset ofU on whichg acts
transitively—that is, of a maximal locally homogeneous subset ofU . It is an intersection of closed, analytic
proper subsets, soS is a nontrivial closed and analytic subset of positive codimension passing through the
origin. The aim of this article is to prove that this is impossible.

We will next derive some basic properties ofg that follow from quasihomogeneity.

Lemma 3 ([Dum08] Lemme 3.2(i)). The Killing algebrag cannot be both three-dimensional and unimodular.

Proof. Let (K1, K2, K3) be a basis of the Killing algebra. Again consider the analytic functionv= volg(K1,K2,K3).
Sinceg is unimodular and preserves the volume form ofg, the functionv is nonzero and constant on each
open set whereg is transitive. On the other hand,v vanishes onS: a contradiction. �

Lemma 4 ([Dum08] Lemme 2.1, Proposition 3.1, Lemme 3.2(i)).
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(i) The dimension of the isotropy at a point u∈U differs from two.
(ii) The Killing algebrag is of dimension three.
(iii) The Killing algebrag is solvable.

Proof. (i) Assume for a contradiction that the isotropy algebrai at a pointu∈U has dimension two. Elements
of i act linearly in exponential coordinates atu. Since elements ofi preserveg, they preserve, in particular,
thek-jet of g at u, for all k ∈ N. This gives an embedding ofi in the Lie algebra ofPSL(2,R) such that the
corresponding two-dimensional connected subgroup ofPSL(2,R) preserves thek-jet of g at u, for all k∈ N.
But stabilizers in a finite-dimensional linear algebraic PSL(2,R)-action never have dimension two. Indeed, it
suffices to check this statement for irreducible linear representations ofPSL(2,R), for which it is well-known
that the stabilizer inPSL(2,R) of a nonzero element is zero- or one-dimensional [Kir74].

It follows that the stabilizer inPSL(2,R) of the k-jet of g at u is of dimension three and hence equals
PSL(2,R). Consequently, in exponential coordinates atu, each element ofsl(2,R) gives rise to a local linear
vector field which preservesg, because it preserves allk-jets of the analytic metricg atu. The isotropy algebra
i thus contains a copy ofsl(2,R): a contradiction, sincei was assumed of dimension two.

(ii) Sinceg is quasihomogeneous, the Killing algebra is of dimension atleast 3. For a three-dimensional
Lorentz metric, the maximal dimension of the Killing algebra is 6. This characterizes Lorentz metrics of
constant sectional curvature. Indeed, in this case, the isotropy is, at each point, of dimension three (see, for
instance, [Wol67]). These Lorentz metrics are locally homogeneous.

Suppose that the Killing algebra ofg is of dimension 5. Then, on any open set of local homogeneity the
isotropy is two-dimensional. This is in contradiction withpoint (i).

Last, suppose that the Killing algebra ofg is of dimension 4. Then, at a points∈ S, the isotropy has
dimension≥ 2. Hence, point (i) implies that the isotropy ats has dimension three and thus is isomorphic to
sl(2,R). Moreover, the standard linear action of the isotropy onTsU preserves the image of the evaluation
morphismev(s) : g → TsU , which is a line. But the standard 3-dimensionalPSL(2,R)-representation does
not admit invariant lines: a contradiction.

Therefore, the Killing algebra is three-dimensional.
(iii) A Lie algebra of dimension three is semisimple or solvable [Kir74]. Since semisimple Lie algebras

are unimodular, Lemma 3 implies thatg is solvable. �

Let us recall Singer’s result [Sin60, DG91, Gro88] which asserts thatg is locally homogeneous if and only
if the image of g(k) is exactly one PSL(2,R)-orbit in V(k), for a certain k (big enough).This theorem is the
key ingredient in the proof of the following fact.

Proposition 5 ([Dum08] Lemme 2.2). If g is quasihomogeneous, then the Killing algebrag does not preserve
any nontrivial vector field of constant norm≤ 0.

Proof. Let k ∈ N be given by Singer’s Theorem. First suppose, for a contradiction, that there exists an
isotropic vector fieldX in U preserved byg. Then theg-action onR(U), lifted from the action onU , preserves
the subbundleR′(U), whereR′(U) is a reduction of the structural groupPSL(2,R)∼= Oo(2,1) to the stabilizer
of an isotropic vector in the standard linear representation onR3:

H =

{(

1 T
0 1

)

∈ PSL(2,R) : T ∈ R

}

.

Restricting to exponential coordinates with respect to frames the first vector of which isX gives anH-
equivariant mapg(k) : R′(U) → V(k). On each open setW on whichg is locally homogeneous, the image
g(k)(R′(W)) is exactly oneH-orbit O ⊂V(k). Let s∈ Sbe a point in the closure ofW. Then the image under
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g(k) of the fiberR′(W)s lies in the closure ofO. But H is unipotent, and a classical result due to Kostant and
Rosenlicht [Ros61] asserts thatfor algebraic representations of unipotent groups, the orbits are closed.This
implies that the imageg(k)(R′(W)s) is alsoO. Moreover, this holds for alls∈ S. Indeed, the restriction ofg
to Sbeing transitive (as will be proved independently in point (i) of Lemma 6), this holds for alls∈ S.

Any open set of local homogeneity inU admits points ofSin its closure. It follows that the image ofR′(U)

underg(k) is exactly the orbitO. Singer’s theorem implies thatg is locally homogeneous, a contradiction to
quasihomogeneity.

If there exists ag-invariant vector fieldX in U of constant strictly negativeg-norm, then theg-action on
R(U) preserves a subbundleR′(U) with structural groupH ′, whereH ′ is the stabilizer of a strictly negative
vector in the standard linear representation ofPSL(2,R) on R

3. In this case,H ′ is a compact one param-
eter group inPSL(2,R). The previous argument again yields a contradiction, afterreplacing the Kostant-
Rosenlicht Theorem by the obvious fact that orbits of smoothcompact group actions are closed. �

Lemma 6 (compare [Dum08], Proposition 3.3). After possibly shrinking U, we have

(i) S is a connected, real analytic submanifold of codimension one, on whichg acts transitively.
(ii) The isotropy at a point of S is unipotent orR-semisimple.
(iii) The restriction of g to S is degenerate.

Proof. (i) The fact thatS is a real analytic set was already established above: it coincides with the vanishing
of the analytic functionv= volg(K1,K2,K3), where(K1, K2, K3) is a basis of the Killing algebra. If needed,
one can shrink the open setU in order thatSbe connected. By point (i) in Lemma 4, the isotropy algebra at
points inShas dimension one or three. We prove that this dimension mustbe equal to one.

Assume, for a contradiction, that there existss∈ Ssuch that the isotropy ats has dimension three. Then,
the isotropy algebra ats is isomorphic tosl(2,R). On the other hand, since both are 3-dimensional, the
isotropy algebra ats is isomorphic tog. Hence,g is semisimple, which contradicts Lemma 4 (iii).

It follows that the isotropy algebra at each points∈ S is of dimension one. Equivalently, the evaluation
morphismev(s) : g → TsU has rank two. Since theg-action preservesS, this implies thatS is a smooth
submanifold of codimension one inU andTsS coincides with the image ofev(s). The restriction ofg to S
satisfies Definition 2, so is transitive.

(ii) Let i be the isotropy Lie algebra ats∈ S. It corresponds to a 1-parameter subgroup ofPSL(2,R),
which is elliptic,R-semisimple, or unipotent. In any case, there is a tangent vectorV ∈ TsU annihilated byi.
Theni also vanishes along the curve exps(tV), where defined. Because points ofU\Shave trivial isotropy,
this curve must be contained inS. Thus the fixed vectorV of the flow ofi is tangent toS.

If i is elliptic, it preserves a tangent direction ats transverse to the invariant subspaceTsS⊂ TsU . Within
TsS, there must also be an invariant line independent fromV. But now an elliptic flow with three invariant
lines must be trivial. We conclude thati is semisimple or unipotent.

(iii) If the isotropy is unipotent, the vectorV annihilated byi must be isotropic, and the invariant subspace
TsSmust equalV⊥. SoS is degenerate in this case.

If i is semisimple overR, thenV is spacelike. The other two eigenvectors ofi have nontrivial eigenvalues
and must be isotropic. On the other hand,i preserves the planeTsS, so it preserves a line ofTsU transverse
to Sand a line independent fromV in TsS. These lines must be the eigenspaces ofi. If the planeTsS⊂ TsU
contains an isotropic line and is transverse to an isotropicline, then it is degenerate. �

According to Lemma 6 we have two different geometric situations, which will be treated separately in
Sections 3 and 4. The case ofR-semisimple isotropy will be referred to as just “semisimple” below.
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3. NO QUASIHOMOGENEOUSLORENTZ METRICS WITH SEMISIMPLE ISOTROPY

If the isotropy ats∈ S is semisimple, then it fixes a vectorV ∈ TsSof positiveg-norm. Using the transitive
g-action onS, we can extendV to ag-invariant vector fieldX on S with constant positiveg-norm. In this
sectionwe assume that the isotropy is semisimple. We can suppose thatX is of constant norm equal to 1.

Recall that the affine group of the real line Aff is the group oftransformations ofR given byx 7→ ax+b,
with a∈ R

∗ andb∈ R. If Y is the infinitesimal generator of the one-parameter group ofhomotheties andH
the infinitesimal generator of the one parameter group of translations, then[Y,H] = H.

Lemma 7 (compare [Dum08], Proposition 3.6). (i) The Killing algebrag is isomorphic toR⊕ aff. The
stabilizer of a point of S corresponds to a one-parameter group of homotheties inAff .

(ii) The vector field X is the restriction to S of a central element X′ in g.
(iii) The restriction of the Killing algebra to S has, in adapted analytic coordinates(x,h), a basis(−h ∂

∂h,
∂

∂h,
∂
∂x).

(iv) In the above coordinates, the restriction of g to S is dx2.

Proof. (i) We show first that the derived Lie algebrag′ = [g,g] is 1-dimensional. It is a general fact that the
derived algebra of a solvable Lie algebra is nilpotent [Kir74]. Remark first that[g,g] 6= 0. Indeed, otherwise
g is abelian and the action of the isotropyi ⊂ g at a points∈ S is trivial on g and hence onTsS, which is
identified withg/i. The isotropy action on the tangent spaceTsSbeing trivial implies that the isotropy action
is trivial on TsU (An element ofO(2,1) which acts trivially on a plane inR3 is trivial). This implies that the
isotropy is trivial ats∈ S: a contradiction. Asg is 3-dimensional,g′ is a nilpotent Lie algebra of dimension
1 or 2, henceg′ ≃ R, or g′ ≃R

2.
Assume, for a contradiction, thatg′ ≃ R

2. We first prove that the isotropyi lies in [g,g]. Suppose this is
not the case. Then[g,g] ≃ R

2 acts freely and transitively onS, preserving the vector fieldX. ThenX is the
restriction toSof a Killing vector fieldX′ ∈ [g,g].

Let Y be a generator of the isotropy ats∈ S. SinceX is fixed by the isotropy, one gets, in restriction
to S, the following Lie bracket relation:[Y,X′] = [Y,X] = aY, for somea ∈ R. On the other hand, by our
assumption,Y /∈ [g,g], meaning thata= 0. This implies thatX′ is a central element ing. In particular,g′ is
at most one-dimensional: a contradiction. Hencei⊂ [g,g].

Now let Y be a generator ofi, {Y,X′} be generators of[g,g], and(Y,X′,Z) be a basis ofg. The tangent
space ofSat a points∈ S is identified withg/i. DenoteX̄′, Z̄ the projections ofX′ andZ to this quotient. The
infinitesimal action ofY on this tangent space is given in the basis{X̄′, Z̄} by the matrix

ad(Y) =

(

0 ∗
0 0

)

becauseg′ ≃ R
2 and ad(Y)(g) ⊂ g′. Moreover,ad(Y) 6= 0, since the restriction of the isotropy action to

TsS is injective. From this form ofad(Y), we see that the isotropy is unipotent with fixed directionRX′: a
contradiction.

We have proved that[g,g] is 1-dimensional. Notice thati 6= [g,g]. Indeed, if they are equal, then the action
of the isotropy on the tangent spaceTsU ats∈ S is trivial: a contradiction.

Let H be a generator of[g,g], andY the generator ofi. Then[Y,H] = aH, with a∈ R. If a= 0, then the
image ofad(Y), which lies in[g,g], belongs to the kernel ofad(Y), which contradicts semisimplicity of the
isotropy. Thereforea 6= 0 and we can assume, by changing the generatorY of the isotropy, thata = 1, so
[Y,H] = H.

Let X′ ∈ g be such that{X′,H} span the kernel ofad(H). Then(Y,X′,H) is a basis ofg. There isb∈ R

such that[X′,Y] = bH. After replacingX′ by X′+bH, we can assume[X′,Y] = 0. It follows thatg is the Lie
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algebraR⊕ aff(R). The Killing field X′ spans the center, the isotropyY spans the one-parameter group of
homotheties, andH spans the one-parameter group of translations.

(ii) This comes from the fact thatX is the unique vector field tangent toS invariant byg.

(iii) The commuting Killing vector fieldsX′ andH are nonsingular onS. This implies that, in adapted
coordinates(x,h) on S, H = ∂

∂h andX = ∂
∂x. Because[Y,X] = 0, the restriction ofY to Shas the expression

f (h) ∂
∂h, with f an analytic function vanishing at the origin. The Lie bracket relation[Y,H] = H reads

[

f (h)
∂

∂h
,

∂
∂h

]

=
∂

∂h
,

and leads tof (h) =−h.

(iv) SinceH = ∂
∂h andX = ∂

∂x are Killing fields, the restriction ofg to Sadmits constant coefficients with
respect to the coordinates(x,h). SinceH is expanded by the isotropy, it follows thatH is of constantg-norm
equal to 0. On the other hand,X is of constantg-norm equal to one. It follows that the expression ofg on S
is dx2. �

Lemma 8. Assumeg as in Lemma 7 acts quasihomogeneously on(U,g). In adapted analytic coordinates
(x,h,z) on U,

g= dx2+dhdz+Cz2dh2+Dzdxdh for some C,D ∈ R.

Moreover, in these coordinates,∂
∂x, ∂

∂h, and−h ∂
∂h + z ∂

∂z are Killing fields.

Proof. Consider the commuting Killing vector fieldsX′ andH constructed in Lemma 7. Their restrictions to
Shave the expressionsH = ∂/∂h andX = ∂/∂x. Recall that onS, the vector fieldH is of constantg-norm
equal to 0 andX is of constantg-norm equal to one. Point (iv) in Lemma 7 also shows thatg(X,H) = 0 onS.
Moreover, being central,X′ is of constantg-norm onU \S, hence of constantg-norm one on all ofU .

Define a geodesic vector fieldZ as follows. At each points∈ S, there exists a unique tangent vector
Zs, transverse toTsS, such thatg(Zs,Zs) = 0, g(Xs,Zs) = 0, andg(Hs,Zs) = 1. In fact,Zs spans the second
isotropic line (other than that generated byHs) in X⊥

s . In this lineZs is uniquely determined by the relation
g(Hs,Zs) = 1. NowX′ andH are Killing and, in restriction toS, commute. So alongS, the vector fieldZ is
stable by the flow ofX andH. Now extendZ via the geodesic flow:

Z(exps(tZs)) := (exps)∗tZs(Zs) =
d
dt

exps(tZs)

The resulting geodesic vector field is well defined on a sufficiently small open neighborhood ofS in U . Since
X′ andH are Killing, their flows commute with the exponential map, soZ commutes withX′ andH.

The image ofS through the flow ofZ defines a foliation by surfaces. Each leaf is given by expS(zZ), for
somezsmall enough. The leafScorresponds toz= 0.

Let (x,h,z) be analytic coordinates in the neighborhood of the origin such thatX′ = ∂/∂x,H = ∂/∂h,Z =

∂/∂z. The scalar productg(Z,X′) is constant along the orbits ofZ. This comes from the following classical
computation :

Z ·g(X′,Z) = g(∇ZX′,Z)+g(X′,∇ZZ) = 0

since∇ZZ = 0 and∇·X′ is skew-symmetric with respect tog. The same is true forg(Z,H). In particular, the
coefficients ing of dxdzanddhdzare constant on the orbits ofZ.

Moreover, the invariance of the metric by the commutative Killing algebra generated byX′ andH implies
that dxdzanddhdzare also constant along the orbits ofX′ and ofH. This implies that the coefficients of
dxdzanddhdzare 0 and 1, respectively, not only onS, but over all ofU .
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The coefficients ofdh2 anddxdhdepend only onz. Then

g= dx2+dhdz+ c(z)dh2+d(z)dxdh

with c andd analytic functions which both vanish atz= 0.
Next we use the invariance ofg byY. Recall that[Y,X′] = 0 and[Y,H] = H. Note thatY preserves the two

isotropic directions ofX′⊥, which are spanned byZ andH −d(z)X′. Fromg(X′,H −d(z)X′)≡ 1, compute

0 = Y.(g(X′,H −d(z)X′)) = g([Y,X′],H −d(z)X′)+g(X′, [Y,H −d(z)X′])

= g(X′,H)− (Y.d)g(X′,X′) = d(z)− (Y.d)(z),

soY.d = d. Then[Y,H −d(z)X′] = H −d(z)X′. Next, fromg(H −d(z)X′,Z)≡ 1,

0= g([Y,H −d(z)X′],Z)+g(H−d(z)X′, [Y,Z]) = 1+g(H−d(z)X′, [Y,Z]),

so [Y,Z] =−Z. Now, sinceY andX′ commute, the general expression forY is

Y = u(h,z)
∂

∂h
+ v(h,z)

∂
∂z

+ t(h,z)
∂
∂x

with u,v, andt analytic functions, whereu(h,0) =−h, andv andt vanish on{z= 0}.
The other Lie bracket relations read

[u(h,z)
∂

∂h
+ v(h,z)

∂
∂z

+ t(h,z)
∂
∂x

,
∂
∂h

] =
∂

∂h

and

[u(h,z)
∂

∂h
+ v(h,z)

∂
∂z

+ t(h,z)
∂
∂x

,
∂
∂z

] =− ∂
∂z

.

The first relation gives
∂u
∂h

=−1
∂v
∂h

= 0
∂ t
∂h

= 0.

The second one leads to
∂u
∂z

= 0
∂v
∂z

= 1
∂ t
∂z

= 0.

We get

u(h,z) =−h v(h,z) = z t(h,z) = 0.

Hence, in our coordinates,Y = −h∂/∂h+ z∂/∂z. The invariance ofg under the action of this linear vector
field impliesc(e−tz)e2t = c(z) andd(e−tz)et = d(z), for all t ∈ R. This implies then thatc(z) = Cz2 and
d(z) = Dz, with C,D real constants. �

3.1. Computation of the Killing algebra. We need to understand now whether the metrics

gC,D = dx2+dhdz+Cz2dh2+Dzdxdh

constructed in Lemma 8 really are quasihomogeneous. In other words, do the metrics in this family admit
other Killing fields than∂/∂x, ∂/∂h and−h∂/∂h+ z∂/∂z ? In this section we compute the full Killing
algebrag of gC,D. In particular, we obtain that the metricsgC,D = dx2 +dhdz+Cz2dh2+Dzdxdhalways
admit additional Killing fields and, by Lemma 4 (ii) are locally homogeneous.

The formula for the Lie derivative ofg (see, eg, [KN96]) gives

(LTgC,D)

(

∂
∂xi

,
∂

∂x j

)

= T ·gC,D

(

∂
∂xi

,
∂

∂x j

)

+gC,D

([

∂
∂xi

,T

]

,
∂

∂x j

)

+gC,D

(

∂
∂xi

,

[

∂
∂x j

,T

])

.
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Let T = α∂/∂x+β ∂/∂h+ γ∂/∂z. The pairs
(

∂
∂xi

,
∂

∂x j

)

=(1)

(

∂
∂z

,
∂
∂z

)

(2)

(

∂
∂x

,
∂
∂x

)

(3)

(

∂
∂x

,
∂
∂z

)

(4)

(

∂
∂x

,
∂

∂h

)

(5)

(

∂
∂h

,
∂
∂z

)

(6)

(

∂
∂h

,
∂

∂h

)

give the following system of PDEs onα,β andγ in order forT to be a Killing field:

0 = βz,(1)

0 = αx+Dzβx,(2)

0 = βx+Dzβz+αz,(3)

0 = γD+Dzαx+Cz2βx+ γx+αh+Dzβh,(4)

0 = βh+Cz2βz+Dzαz+ γz,(5)

0 = zCγ +Cz2βh+Dzαh+ γh.(6)

The following proposition finishes the proof of Theorem 1 in the case of semisimple isotropy onS:

Proposition 9. The Lorentz metrics gC,D are locally homogeneous for all C,D ∈ R.

Proof. It is straightforward to verify that

T = Dh
∂
∂x

+
1
2
(D2−C)h2 ∂

∂h
+((C−D2)zh−1)

∂
∂z

satisfies equations (1)–(6). Note thatT(0) =−∂/∂z, soT /∈ g, and(U,g) is locally homogeneous. �

We explain now our method to find the extra Killing fieldT in Proposition 9, and we compute the full
Killing algebra,g, of gC,D. Recall then-dimensional Lorentzian manifolds AdSn,Minn, and dSn, of constant
sectional curvature−1,0, and 1, respectively (see, eg, [Wol67]). Recall also that AdS3 is isometric toSL(2,R)
with the bi-invariant Cartan-Killing metric.

Proposition 10.

(i) If D 6= 0 and C/∈ {0,D2}, then(U,gC,D) is locally isometric to a left-invariant metric on SL(2,R) with
g ∼= R⊕ sl(2,R). The isotropy is the graph of a Lie algebra homomorphism of the R factor to the
subalgebra spanned by aR-semisimple element ofsl(2,R).

(ii) If D 6= 0 and C= D2, then(U,gC,D) is locally isometric to a left-invariant metric on the Heisenberg
group withg∼=R⋉heis. The isotropy is theR factor, which acts by a semisimple automorphism ofheis.

(iii) If C = 0 and D 6= 0, then(U,gC,D) is locally isometric to AdS3, sog∼= sl(2,R)⊕ sl(2,R).
(iv) If C 6= 0 and D= 0, then(U,gC,D) is locally isometric toR× dS2, for whichg ∼= R⊕ sl(2,R). The

isotropy is generated by a semisimple element ofsl(2,R).
(v) If C= 0 and D= 0, then(U,gC,D) is locally isometric to Min3, sog∼= sl(2,R)⋉R

3.

Proof. Recall that(x,h,z) are analytic coordinates onU , with S= z−1(0), such that all Lorentz metrics
gC,D admit the Killing fieldsX′ = ∂

∂x, Y = −h ∂
∂h + z ∂

∂z andH = ∂
∂h, for which the Lie bracket relations are

[Y,X′] = [H,X′] = 0 and[Y,H] = H. Moreover, Proposition 9 shows that all Lorentz metricsgC,D are locally
homogeneous and that their full Killing algebrag is of dimension at least four. In particular, the Killing
algebrag strictly contains the previous three-dimensional Lie algebra as a subalgebral acting quasihomoge-
neously in the neighborhood of the origin.

AssuminggC,D is not of constant sectional curvature, then Lemma 4 (i) implies dimg= 4. We first derive
some information on the algebraic structure ofg in this case.
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If dim g= 4, then it is generated byX′,Y,H, and an additional Killing fieldT. Since the isotropyRY at
the origin fixes the spacelike vectorX(0) and expandsH, we can choose a fourth generatorT of g evaluating
at the origin to a generator of the second isotropic direction of the Lorentz planeX(0)⊥. As the action of
Ad(Y) on g is g-skew symmetric, we get at the origin :[Y,T](0) = −T(0). Hence[Y,T] = −T +aY for
some constanta∈ R, and we can replaceT with T −aY in order that[Y,T] =−T. SinceX′ andY commute,
[X′,T] is also an eigenvector ofad(Y) with eigenvalue−1. This eigenspace ofad(Y) is one-dimensional, so
[T,X′] = cT, for somec∈R.

The Jacobi relation

[Y, [T,H]] = [[Y,T],H]+ [T, [Y,H]] = [−T,H]+ [T,H] = 0

says that[T,H] commutes withY. The centralizer ofY in g isRY⊕RX′. We conclude that[H,T] = aX′−bY,
for somea,b∈ R.

(i) AssumeD 6= 0 andC /∈ {0,D2}. A straightforward computation shows thatgC,D is not of constant
sectional curvature. We will construct a Killing fieldT = α∂/∂x+β ∂/∂h+ γ∂/∂z, meaning the functions
α, β andγ solve the PDE system (1)–(6). We will moreover construct it so thatc= 0 anda= 1.

First we use the Lie bracket relations derived above forT andl. Remark that, sinceT andX′ commute,
the coefficientsα,β andγ of T do not depend on the coordinatex; in particular, equation (2) is satisfied. The
relation[H,T] = aX′−bY reads, whena= 1,

[

∂
∂h

,T

]

=
∂
∂x

+b

(

h
∂
∂h

− z
∂
∂z

)

.

This leads toαh = 1,βh = bh, andγh = −bz. Using equation (1), we obtainβ = 1
2bh2+β0. We can take the

additive constantβ0 = 0 because∂
∂h ∈ l. Now equation (4) givesγ =−bzh−1/D.

Equation (6) now reads

0= zC(− 1
D
− zbh)+Cz2bh+Dz−bz=−Cz

D
+Dz−bz

which yieldsb= D−C/D. Now γ can be written−1/D− zh(D−C/D).
Equation (3) saysαz = 0, so we concludeα = h. The resulting vector field is

T = h
∂
∂x

+
1
2
(D− C

D
)h2 ∂

∂h
+

(

zh(
C
D
−D)− 1

D

)

∂
∂z

.(7)

Note that the coefficients ofT also satisfy equation (5), soT is indeed a Killing field.
We obtained this solution settingc = 0, so the Lie algebrag generated by{T,X′,Y,H} containsX′ as a

central element. We also seta= 1, and foundb= D−C/D, so [H,T] = X′+(C/D−D)Y, which we will
callY′. It is straightforward to verify that forT as above,[Y,T] =−T. Under the hypothesisC 6= D2, the Lie
subalgebra generated by{Y′,H,T} is isomorphic tosl(2,R), withY′

R-semisimple, and it acts transitively on
U . Consequently,gC,D is locally isomorphic to a left-invariant Lorentz metric onSL(2,R). The full Killing
algebra isg∼= R⊕ sl(2,R), with center generated byX′, and isotropyRY = R(X′+Y′). This terminates the
proof of point (i).

(ii) WhenD 6= 0 andC= D2, then (7) still solves the Killing equations. The bracket relations are the same,
but now[H,T] =X′. Theng∼=R⋉heis, where theheis factor is generated by{H,T,X′} and acts transitively,
and theR factor is generated by the isotropyY, which acts by a semisimple automorphism onheis. Up to
homothety, there is a unique left-invariant Lorentz metricon Heis in whichX′ is spacelike, by Proposition
1.1 of [DZ10], where it is called theLorentz-Heisenberg geometry.
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(iii) When C= 0 andD 6= 0, then (7) again solves the Killing equations. It now simplifies to

T = h
∂
∂x

+
1
2

Dh2 ∂
∂h

+

(

−zhD− 1
D

)

∂
∂z

.

The bracket relation is[H,T] = X′−DY, andg still contains a copy ofR⊕ sl(2,R), with center generated
by X′ andsl(2,R) generated by{X′−DY,H,T ′}. Thesl(2,R) factor still acts simply transitively. On the
other hand, one directly checks thatα = β = 0 andγ = e−Dx is a solution of the PDE system, meaning that
e−Dx∂/∂z is also a Killing field. From

[

X′,e−Dx ∂
∂z

]

=−De−Dx ∂
∂z

6= 0

it is clear that this additional Killing field does not belongto the subalgebra generated by{T,X′,Y,H}, in
whichX′ is central. It follows that the Killing algebra is of dimension at least five, hence six by Lemma 4 (i),
which implies thatg0,D is of constant sectional curvature. Sinceg0,D is locally isomorphic to a left-invariant
Lorentz metric onSL(2,R), the sectional curvature is negative. Up to normalization,g0,D is locally isometric
to AdS3.

(iv) The Killing field T in (7) multiplied byD gives

TD = Dh
∂
∂x

+
1
2
(D2−C)h2 ∂

∂h
+
(

zh(C−D2)−1
) ∂

∂z
.

SettingC 6= 0 andD = 0 gives

T0 =−Ch2

2
∂

∂h
+(zhC−1)

∂
∂z

which is indeed a Killing field ofgC,0. The brackets are[X′,T0] = 0, [H,T0] = CY, and[Y,T0] = −T0. As in
case (i), the Killing Lie algebra contains a copy ofR⊕sl(2,R), with center generated byX′, andsl(2,R) gen-
erated by{Y,H,T0}. Here the isotropy generatorY lies in thesl(2,R)-factor, which acts with two-dimensional
orbits. This localsl(2,R)-action defines a two-dimensional foliation tangent toX′⊥. Recall thatX′ is of con-
stantg-norm equal to one, soX′⊥ has Lorentzian signature. The metric is, up to homotheties on the two
factors, locally isomorphic to the productR×dS2.

(v) If C= D = 0, thengC,D is flat andg∼= sl(2,R)⋉R
3. �

As a by-product of the proof of Theorem 1 in the case of semisimple isotropy, we have obtained the
following more technical result:

Proposition 11. Let g be a real-analytic Lorentz metric in a neighborhood of the origin inR3. Suppose that
there exists a three-dimensional subalgebral of the Killing Lie algebra acting transitively on an open set
admitting the origin in its closure, but not in the neighborhood of the origin. If the isotropy at the origin is a
one-parameterR-semisimple subgroup in O(2,1), then

(i) There exist local analytic coordinates(x,h,z) in the neighborhood of the origin and real constants C,D
such that

g= gC,D = dx2+dhdz+Cz2dh2+Dzdxdh.

(ii) The algebral is solvable, and equals, in these coordinates,

l= 〈 ∂
∂x

,
∂

∂h
,−h

∂
∂h

+ z
∂
∂z

〉.

In particular, l∼= R⊕ aff(R), whereaff(R) is the Lie algebra of the affine group of the real line.
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(iii) All the metrics gC,D are locally homogeneous. They admit a Killing field T/∈ l of the form

T = Dh
∂
∂x

+
1
2
(D2−C)h2 ∂

∂h
+((C−D2)zh−1)

∂
∂z

.

The possible geometries on(U,gC,D) are given by (i) - (v) of Proposition 10.

4. NO QUASIHOMOGENEOUSLORENTZ METRICS WITH UNIPOTENT ISOTROPY

We next treat the unipotent case of Lemma 6. The following results can be found in [Dum08] Propositions
3.4 and 3.5 in Section 3.1, where they are proved without making use of compactness. See also [Zeg96,
Proposition 9.2] for point (iii).

Proposition 12.

(i) The surface S is totally geodesic.
(ii) The Levi-Civita connection∇ restricted to S is either flat, or locally isomorphic to the canonical bi-

invariant connection on the affine group of the real lineAff .
(iii) The restriction of the Killing algebrag to S is isomorphic either to the Lie algebra of the Heisenberg

group in the flat case, or otherwise to a solvable subalgebrasol(1,a) of Aff ×Aff , spanned by the
elements(t,0),(0, t) and(w,aw), where t is the infinitesimal generator of the one-parametergroup of
translations, w the infinitesimal generator of the one-parameter group of homotheties, and a∈R.

Recall that, asS has codimension one, the restriction toSof the Killing Lie algebrag of g is an isomor-
phism. The Heisenberg group andsol(1,−1) are unimodular, so by Lemma 3,g is isomorphic tosol(1,a),
with a 6=−1, andS is non flat.

Recall that in dimension three, the curvature is completelydetermined by its Ricci tensor, which is a
symmetric bilinear form. The Ricci tensor is determined by the Ricci operator, which is a field ofg-symmetric
endomorphismsA : TU → TU such that Ricci(u,v) = g(Au,v), for any tangent vectorsu,v.

Definition 13. The metricg is said to becurvature homogeneousif for any pair of pointsu,u′ ∈ U , there
exists a linear isomorphism fromTuU to Tu′U preserving bothg and the curvature tensor.

In dimension three, it is equivalent to assume in the previous definition that these linear maps preserve
bothg and the Ricci operatorA.

Proposition 14.

(i) The only eigenvalue of the Ricci operator is0, everywhere on U.
(ii) The metric g is curvature homogeneous; more precisely,in an adapted framing on U, the Ricci operator

reads

A=





0 0 α
0 0 0
0 0 0



 , α ∈ R
∗.

Proof. (i) Pick a points in S. The Ricci operatorA(s) must be invariant by the unipotent isotropy (which
identifies with the stabilizer in the orthogonal group ofg(s) of an isotropic vectorX(s) ∈ TsU).

The action of the isotropy onTsU fixes an isotropic vectore1 = X(s) tangent toS and so preserves the
degenerate planee⊥1 = TsS. In order to define an adapted basis, consider two vectorse2,e3 ∈ TsU such that

g(e1,e2) = 0 g(e2,e2) = 1 g(e3,e3) = 0 g(e2,e3) = 0 g(e3,e1) = 1
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The action onTsU of the one-parameter group of isotropy is given in the basis(e1,e2,e3) by the matrix

Lt =







1 t − t2
2

0 1 −t
0 0 1






, t ∈ R.

First we show thatA(s) : TsU → TsU has, in our adapted basis, the following form:





λ β α
0 λ −β
0 0 λ



 , α,β ,λ ∈ R.

SinceA(s) is invariant by the isotropy, it commutes withLt for all t. Each eigenspace ofA(s) is preserved by
Lt , and eigenspaces ofLt are preserved byA(s). As Lt does not preserve any non trivial splitting ofTsU , it
follows that all eigenvalues ofA(s) are equal to someλ ∈ R. Moreover, the unique line and plane invariant
by Lt must also be invariant byA(s), soA(s) is upper-triangular in the basis(e1,e2,e3). A straightforward
calculation of the top corner entry ofA(s)Lt = LtA(s) leads to the relation on theβ entries and thus to our
claimed form forA(s).

Now theg-symmetry ofA(s) meansg(A(s)e2,e3) = g(e2,A(s)e3), which givesβ = 0. Since the symmetric
functions of the eigenvalues ofA are scalar invariants, they must be constant on all ofU . This implies that
the only eigenvalue ofA is λ , on all ofU . It remains only to prove thatλ = 0. Consider an open set inU on
which the Killing algebrasol(1,a) is transitive, sog is locally isomorphic to a left-invariant Lorentz metric
onSOL(1,a).

The sectional and Ricci curvatures and Ricci operator of a left-invariant Lorentz metric on a given Lie
group can be calculated, starting from the Koszul formula, in terms of the brackets between left-invariant
vector fields forming an adapted framing of the metric. In [CK09] Calvaruso and Kowalski calculate Ricci
operators for left-invariant Lorentz metrics on three-dimensional Lie groups, assuming they are not sym-
metric (see also previous curvature calculations in [Nom79], [CP97], [Cal07]). If the metric onU\S were
symmetric, then the covariant derivative of the curvature would vanish on all ofU , which would implyU lo-
cally symmetric, hence locally homogeneous; therefore, weneed consider only nonsymmetric left-invariant
metrics here. A consequence of their Theorems 3.5, 3.6, and 3.7 is that the Ricci operator of a left-invariant,
nonsymmetric Lorentz metric on anonunimodularthree-dimensional Lie group admits a triple eigenvalueλ
if and only if λ = 0, and the Ricci operator is nilpotent of order two. We concludeλ = 0, soA(s) has the
form claimed. Moreover,A is nilpotent of order two onU \S.

(ii) Becauseg acts transitively onS, there is an adapted framing alongS in whichA≡ A(s). The parameter
α in A(s) cannot vanish; otherwise the curvature ofg vanishes onS and (S,∇) is flat, which was proved
to be impossible in Proposition 12. Now the Ricci operator onS is nontrivial and lies in the closure of the
PSL(2,R)-orbit O of the Ricci operator onU \S. But we know from (i) that onU\S, the Ricci operator
is g-symmetric and nilpotent of order 2, so it has the same form asA(s), meaning it also belongs to the
PSL(2,R)-orbit of





0 0 1
0 0 0
0 0 0



 .

�
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Now Ricc(u,u) is a quadratic form of rank one equal tog(W,u)2, for some nonvanishing isotropic vector
field W onU , which coincides withX on S. Invariance of Ricci byg implies invariance ofW. Proposition 5
implies thatg is locally homogeneous.

5. ALTERNATE PROOFS USING THECARTAN CONNECTION

The aim of this section is to give a second proof of Theorem 1 using the Cartan connection associated
to a Lorentz metric. The reader can find more details about thegeometry of Cartan connections in the
book [Sha97]. We still considerg a Lorentz metric defined in a connected open neighborhoodU of the origin
in R

3.

5.1. Introduction to the Cartan connection. Let h = o(2,1)⋉R
2,1. Let P= O(2,1)< O(2,1)⋉R

2,1, so
p = o(2,1)⊂ h. Let π : B→U be the principalP-bundle of normalized frames onU , in which the Lorentz
metricg has the matrix form

I=





1
1

1



 .

(Note thatB is nearly the same as the bundleR(U) from Section 2, though it has been enlarged to allow all
possible orientations and time orientations.)

TheCartan connectionassociated to(U,g) is the 1-formω ∈ Ω1(B,h) formed by the sum of the Levi-
Civita connection of the metricν ∈ Ω1(B,p) and the tautological 1-formθ ∈ Ω1(B,R2,1), defined byθb(v) =
b−1(π∗v). The formω satisfies the following axioms for a Cartan connection:

(1) It gives a parallelization ofB—that is, for allb∈ B, the restrictionωb : TbB→ h is an isomorphism.
(2) It is P-equivariant: for allp∈ P, the pullbackR∗

pω = Ad p−1◦ω .
(3) It recognizes fundamental vertical vector fields: for all X ∈ p, if X‡ is the vertical vector field onB

generated byX, thenω(X‡)≡ X.

TheCartan curvatureof ω is

K(X,Y) = dω(X,Y)+ [ω(X),ω(Y)].

This 2-form is always semibasic, meaningKb(X,Y) only depends on the projections ofX andY to Tπ(b)U ;
in particular,K vanishes when either input is a vertical vector. We will therefore express the inputs toKb as
tangent vectors atπ(b). Torsion-freeness of the Levi-Civita connection implies thatK has values inp. Thus
K is related to the usual Riemannian curvature tensorR∈ Ω2(U)⊗End(TM) by

b◦Rπ(b)(u,v)◦b−1 = Kb(u,v).

The benefit here of working with the Cartan curvature is that,when applied to Killing vector fields, it gives a
precise relation between the brackets on the manifoldU and the brackets in the Killing algebrag.

TheP-equivariance ofω leads toP-equivariance ofK: (R∗
pK)(X,Y) = (Ad p−1)(K(X,Y)). The infinites-

imal version of this statement is, forA∈ p,

K([A‡,X],Y)+K(X, [A‡,Y]) = [K(X,Y),A].

A Killing field Y onU lifts to a vector field onB, which we will also denoteY, with LYω = 0. Note that
alsoLYK = 0 in this case. Thus ifX andY are Killing fields, then

X.(ω(Y)) = ω [X,Y] and Y.(ω(X)) = ω [Y,X].
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In this case,

K(X,Y) = X.(ω(Y))−Y.(ω(X))−ω [X,Y]+ [ω(X),ω(Y)]

= ω [X,Y]−ω [Y,X]−ω [X,Y]+ [ω(X),ω(Y)]

= ω [X,Y]+ [ω(X),ω(Y)]

so, whenX andY are Killing, then

ω [X,Y] = [ω(Y),ω(X)]+K(X,Y).(8)

Via the parallelization given byω , the semibasic,p-valued 2-formK corresponds to aP-equivariant,
automorphism-invariant function

κ : B→∧2
R

2,1∗⊗ p.

The P-representation on the target vector space is associated naturally to the adjoint representation ofG
restricted toP, and will be denotedg ·κ(b), for g ∈ P andb∈ B. We will use the same notation below for
otherP-represenations associated to the adjoint, and also for thecorresponding Lie algebra representations—
for example,X ·κ(b) for X ∈ p.

5.2. Curvature representation. Denote(e,h, f ) a basis ofR2,1 in which the inner product is given byI. Let
E,H,F be generators ofp with matrix expression in the basis(e,h, f )

E =





0 −1
0 1

0



 H =





1
0

−1



 F =





0
−1 0

1 0



 .

Therefore this representation ofp is equivalent to adp via the isomorphism sending(e,h, f ) to (E,H,F).
Denote by ∗ the isomorphismR2,1 → R

2,1∗ with w∗(u) = 〈w,u〉. Note that forp∈ O(2,1) andx∈ R
2,1,

we have(px)∗ = p∗x∗ for the dual representionp∗x∗ = x∗ ◦ p−1.
Next we define anO(2,1)-equivariant homomorphismϕ : ∧2

R
2,1∗⊗ o(2,1)→ R

3∗⊗R
3, where the rep-

resentation on EndR3 is by conjugation. Defineϕ on simple tensors by

ϕ(v∗∧w∗⊗X) = (Xv)∗⊗w− (Xw)∗⊗ v= (w∗ ◦X)⊗ v− (v∗◦X)⊗w.

Equivariance is easy to check. When the input lies in the submoduleW satisfying the Bianchi identity,
then the output isI-symmetric (see [Sha97], Section 6, Proposition 1.4 (ii)(c)). The Ricci endomorphismA,
defined in terms of the curvature tensor by

〈Axv,w〉= tr Rx(v, ·)w= Riccix(v,w), ∀v,w∈ TxM

corresponds viaω to the functionϕ ◦κ . Recall that in dimension 3, the curvature tensor is determined by the
Ricci curvature, soϕ restricted toW is actually an isomorphism onto its image.

This image is the sumE0⊕E2 of two irreducible components of theO(2,1)-representation on EndR3.
The first, denotedE0, is the one-dimensional trivial representation, generated by the identity onR3, which we
will denotemd. Another irreducible componentE1 corresponds to endomorphisms ino(2,1), which satisfy
XI= −IXt . TheO(2,1)-invariant complementary subspace, consisting of theI-symmetric endomorphisms,
splits intoE0 and the last irreducible component,E2, which is five-dimensional. The componentE0 captures
the scalar curvature, whileE2 corresponds to the tracefree Ricci endomorphism.

In the second column of the following table, we list a basis for E0⊕E2, with notation for each element in
the first column, and the elements ofW ⊂ ∧2

R
2,1∗⊗ o(2,1) mapping to them underϕ in the third column.

Note that the elements in the last column span the space of allpossible values ofκ .
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R
3×3

W⊂ ∧2
R

2,1∗⊗ o(2,1)
md 2( f ∗⊗e+h∗⊗h+e∗⊗ f ) h∗∧e∗⊗F +e∗∧ f ∗⊗H+ f ∗∧h∗⊗E
me2 e∗⊗e e∗∧h∗⊗E
meh h∗⊗e+e∗⊗h f ∗∧e∗⊗E+ f ∗∧h∗⊗H

m2h2−e f 2h∗⊗h− f ∗⊗e−e∗⊗ f 2 f ∗∧e∗⊗H+ f ∗∧h∗⊗E+h∗∧e∗⊗F
mh f f ∗⊗h+h∗⊗ f h∗∧ f ∗⊗H + f ∗∧e∗⊗F
mf 2 f ∗⊗ f h∗∧ f ∗⊗F

Assume now thatg is quasihomogeneous. Recall that, by the results in Section2, the Killing algebra
g is three-dimensional. It acts transitively onU , away from a two-dimensional, degenerate submanifoldS
passing through the origin. Moreover,g acts transitively onS and the isotropy at points ofS is conjugated
to a one-parameter semisimple group or to a one-parameter unipotent group inPSL(2,R). We will study the
interaction ofg, ω(g), andκ , both on and offS.

5.3. Semisimple isotropy. Let b0 be a point ofB lying over the origin and assume that the isotropy action of
g at 0 is semisimple, as in Section 3. A semisimple element ofp is conjugate inP intoRH, so up to changing
the choice ofb0 ∈ π−1(0), we may assume thatωb0(g)∩p is spanned byH.

Proposition 15. (compare Lemma 7 (i)) If the isotropy ofg at the origin is semisimple, theng∼=R⊕aff(R).

Proof. Let Y ∈ g haveωb0(Y) = H, so the corresponding Killing field vanishes at the origin. The projection
ωb0(g) of ωb0(g) to R

2,1 is 2-dimensional, degenerate, andH-invariant. Again, by changing the pointb0

in the fiber above the origin, we may conjugate by an element normalizingRH so that this projection is
span{e,h}. Therefore, there is a basis(X,Y,Z) of g such that

ωb0(X) = h+αE+βF and ωb0(Z) = e+ γE+ δF

for someα,β ,γ,δ ∈ R. BecauseKb0(Y, ·) = 0, equation (8) gives

ωb0[Y,X] = [h+αE+βF,H] =−αE+βF ∈ ωb0(g)

soα = β = 0 and[Y,X] = 0. A similar computation gives

ωb0[Y,Z] = [e+ γE+ δF,H] =−e− γE+ δF

soδ = 0, and[Y,Z] =−Z.
Infinitesimal invariance ofK by Y gives

Kb0([Y,X],Z)+Kb0(X, [Y,Z]) =Y.(K(X,Z))b0 = H‡.(K(X,Z))b0 = [−H,Kb0(X,Z)],

which reduces toKb0(X,Z) = [H,Kb0(X,Z)]. SinceK takes values inp, where ker(adH − Id) = RE, we get

Kb0(X,Z) = κb0(h,e) = rE for somer ∈ R.

Now equation (8) gives forX andZ,

ωb0[X,Z] = [e+ γE,h]+ rE

= −γe+ rE.

In order that this element belong toωb0(g) = span{H,h,e+ γE}, we must haver =−γ2, and[X,Z] =−γZ.
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The structure of the algebrag in the basis(X,Y,Z) is

adY =





0
0

−1



 adX =





0
0

−γ



 adZ =





0
0

γ 1 0



 .

Thisg is isomorphic toaff(R)⊕R, with center generated byγY−X. �

Let W = X − γY. Note thatW(0) has norm 1 becauseωb0(W) = h. As in Section 3, where the central
element ofg is calledX′, the norm ofW is constant 1 onU because it isg-invariant and equals 1 at a point of
S. Existence of a Killing field of constant norm 1 has the following consequences for the geometry ofU :

Proposition 16.

(i) The localg-action on U preserves a splitting of TU into three line bundles, L− ⊕RW⊕L+, with L−

and L+ isotropic.
(ii) The distributions L−⊕RW and L+⊕RW are each tangent tog-invariant, degenerate, totally geodesic

foliationsP− andP+, respectively; moreover, the surface S is a leaf of one of these foliations, which
we may assume isP+.

Proof. (i) Becauseg preservesW, it preservesW⊥, which is a 2-dimensional Lorentz distribution. A 2-
dimensional Lorentz vector space splits into two isotropiclines preserved by all linear isometries. Therefore
W⊥ = L−⊕L+, with both line bundles isotropic andg-invariant.

(ii) Because the flow alongW preservesL− andL+, the distributionsL−⊕RW andL+⊕RW are involutive,
and thus they each integrate to foliationsP

− andP
+ by degenerate surfaces.

Let x ∈ U . Let V− ∈ Γ(L−) andV+ ∈ Γ(L+) be vector fields withV±(x) 6= 0 and[W,V±](x) = 0. It is
well known that a Killing field of constant norm is geodesic:∇WW = 0. Moreover, becauseg(V±,V±) is
constant zero,W.(g(V±,V±)) =V±.(g(V±,V±)) = 0, from which

gx(∇WV±,V±) = gx(∇V±W,V±) = gx(∇V±V±,V±) = 0.

The tangent distributionsTP± equal(V±)⊥, and it is now straightforward to verify from the axioms for∇
thatP− andP+ are totally geodesic throughx.

The Killing field W is tangent to the surfaceS. BecauseS is degenerate,TS⊥ is an isotropic line ofW⊥

and therefore coincides withL+ or L−. We can assume it isL+, soS is a leaf ofP+; in particular, we have
shownS is totally geodesic. �

Proposition 17.

(i) For x ∈U and u,v∈ TP±
x , the curvature Rx(u,v) annihilates(P±

x )⊥.
(ii) The Ricci endomorphism at x preserves each of the line bundles L+,RW, and L−.

Proof. (i) The argument is the same forP+ andP−, so we write it forP−. Let x∈U\S. Becauseg acts
transitively on a neighborhood ofx, there is a Killing fieldA− evaluating atx to a nonzero element ofL−(x).
Note that[A−,W] = 0. The orbit ofx underA− andW coincides nearx with an open subset ofP−

x . Because
L− is g-invariant, the values ofA− in this relatively open set belong toL−.

Now A−.(g(A−,A−)) = 0 impliesg(∇A−A−,A−) = 0, andA−.(g(A−,W)) = 0 gives

0= gx(∇A−A−,W)+gx(A
−,∇A−W) = gx(∇A−A−,W),

using thatP−
x is totally geodesic. Therefore(∇A−A−)x = aA− for somea∈ R. The flows alongA− andW

act locally transitively onP−
x preserving the connection∇ and commuting withA−. Thus∇A−A− ≡ aA− on

a neighborhood ofx in P
−
x .
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Next,W.(g(A−,W)) = 0 gives

0= g(∇WA−,W)+g(A−,∇WW) = g(∇WA−,W),

using thatW is geodesic. Therefore(∇WA−)x = bA− for someb ∈ R. Again invariance of∇, A−, andW
implies that∇WA− ≡ bA− on a neighborhood ofx in P−

x . Now we compute

Rx(A
−,W)A− = (∇A−∇W −∇W∇A− −∇[A−,W])A

− = ∇A−(bA−)−∇W(aA−) = abA−−baA− = 0.

This property of the curvature we have proved onU\Sremains true onSbecause it is a closed condition.

(ii) It suffices to show that the Ricci endomorphism preservesL−⊕RW = TP− andL+⊕RW = TP+.
Then invariance ofL+ andL− will follow from symmetry ofA with respect tog. Again, we just write the
proof forP−. The Ricci endomorphism preservesTP

− if and only if Riccix(u,v) = Riccix(v,u) = 0 for any
u∈ L−

x , v∈ TP−
x . Assumeu 6= 0 and complete it to an adapted basis(u,w,z) of TxU with w=W(x), z∈ L+

x ,
andgx(u,z) = 1. Then, by part (i),

Riccix(v,u) = gx(R(v,u)u,z)+gx(R(v,w)u,w)+gx(R(v,z)u,u) = 0+0+0= 0.

�

Let R be theg-invariant reduction ofB to the subbundle comprising frames(x,(v−,W(x),v+)) with v− ∈
L−

x andv+ ∈ L+
x . Now R is a principalA-bundle, whereR∗ ∼= A< P is the subgroup with matrix form

A=











λ 2

1
λ−2



 : λ ∈ R
∗







.

Note that, at anyb∈ R, the projectionωb(W) = h. Proposition 17 translates to the following statement
onR.

Proposition 18. For any b∈ R, the component̄κb in the representation E0⊕E2, corresponding to the Ricci
endomorphism, is diagonal, so has the form

κ̄b = ymd + zm2h2−e f y,z∈ R.

Note thatH · κ̄b = 0, so byP-equivariance of̄κ , the derivative in the vertical directionH‡.κ̄b = 0. Because
this curvature function is alsog-invariant, it is constant onRU\S. By continuity, we conclude that on allR,

κ̄ ≡ ymd + zm2h2−e f y,z∈ R.

Sinceg acts transitively onU \S and preservesR, for anyb ∈ R|U\S there exists a sequencean in A

such thatϕnba−1
n → b0, where eachϕn is in the pseudo-group generated by flows along local Killingfields

in g; then (Ad an)(ωb(g)) → ωb0(g) in the Grassmannian Gr(3,h). Let us consider such a sequencean

corresponding to a pointb∈ B lying aboveU \S. Then we prove the following

Lemma 19. Write

an =





λ 2
n

1
λ−2

n



 , λn ∈ R
∗.

Thenλn → ∞.
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Proof. First note thatλn cannot converge to a nonzero number, because in this case limn(Ad an)(ωb(g)) =

ωb0(g) would still project ontoR2,1 modulop, contradicting that theg-orbit of 0 is two-dimensional. This
also shows thatan cannot admit a convergent subsequence, meaning thatan goes to infinity inA.

The spaceωb(g) can be written as span{e+ρ(e),h+ρ(h), f +ρ( f )} for ρ : R2,1 → p a linear map. The
space(Ad an)(ωb(g)) containsλ−2

n f + an · ρ( f ), so it containsf + λ 2
n an · ρ( f ). If λn → 0, then this last

term converges tof + ξ ∈ ωb0(g), for someξ ∈ p (because the adjoint action ofan on p is diagonal with
eigenvaluesλ 2

n , 1 andλ−2
n ). But ωb0(g) is spanned bye andh, so this is a contradiction. �

Differentiating the functionκ̄ : B → V
(0) = E0 ⊕E2 gives, via the parallelization ofB arising fromω ,

a P-equivariant, automorphism-invariant functionD(1)κ̄ : B → V
(1) = h∗ ⊗V

0, and similarly, by iteration,
functionsD(i)κ̄ : B→V

(i) = h∗⊗V
(i−1); automorphism-invariant here meansD(i)κ̄( f (b)) = D(i)κ̄(b) for all

b∈ B and all automorphismsf . For vertical directionsX ∈ p, the derivative is determined by equivariance:
X‡.κ̄ = −X · κ̄ . Our goal, in order to show local homogeneity ofU , is to show thatD(i)κ̄ has values onB
in a singleP-orbit. Becausēκ determinesκ for 3-dimensional metrics, it will follow thatD(i)κ has values
on B in a singleP-orbit, which suffices by Singer’s theorem to conclude localhomogeneity (see Proposition
3.8 in [Mel11] for a version of Singer’s theorem for real analytic Cartan connections and also [Pec14] for the
smooth case). ByP-equivariance of these functions, it suffices to show that the values onR lie in a single
A-orbit. We will prove the following slightly stronger result:

Proposition 20. The curvaturēκ and all of its derivatives D(i)κ̄ are constant onR.

Proof. Recall that
κ̄ ≡ ymd + zm2h2−e f

on all of R, for some fixedy,z∈ R. The proof proceeds by induction oni. Suppose that fori ≥ 0, the
derivativeD(i)κ̄ is constant onR, so that in particular, the valueD(i)κ̄ is annihilated byH. As in the proof for
i = 0 above, to show thatD(i+1)κ̄ is constant onR, it suffices to show thatH‡.D(i+1)κ̄b =−H ·D(i+1)κ̄b = 0
at a single pointb∈ R|U\S.

To complete the induction step, we will need the following information onωb(g).

Lemma 21. At b∈ R lying over x∈U\S, the Killing algebra evaluates to

ωb(g) = span{e+ γE+βH,h− γH, f +αH + δF}, γ,β ,α,δ ∈ R.

Proof. Write
ωb(g) = span{e+ρ(e),h+ρ(h), f +ρ( f )}.

From Proposition 15, we know that

(Ad an)(ωb(g))→ ωb0(g) = span{e+ γE,h,H}.
Now Lemma 19 implies thatρ(h) andρ( f ) both have zero component onE. Indeed, since this component
is dilated byλ 2

n , it must vanish in order thatE /∈ ωb0(g).
At the pointb, let A− be a Killing field with π∗bA− ∈ L−

π(b), so we can assumeωb(A−) = e. We have

ωb(A−) = e+ρ(e) andωb(W) = h+ρ(h). Recall from Proposition 15 thatκb0(h,e) = rE. The fact that
κ̄b = κ̄b0 implies that the full curvatureκb = κb0, so also

κb(e,h) = Kb(A
−,W) = rE.

On the other hand, equation (8) gives

0= ωb[A
−,W] = [h+ρ(h),e+ρ(e)]+ rE,
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so

ρ(h)e= ρ(e)h and [ρ(h),ρ(e)] =−rE.

Writing ρ(e) = γE+βH+δF andρ(h) = β ′H+δ ′F givesβ ′ =−γ andδ = δ ′ = 0 from the first equation.
Note that the second equation givesγ2 =−r, which is consistent with Proposition 15. �

We now useg-invariance ofD(i)κ̄. For abitraryX ∈ h, write X‡ for the corespondingω-constant vector
field onB. Lemma 21 gives

(1) (e+ γE+βH)‡(b).D(i)κ̄ ≡ 0
(2) (h− γH)‡(b).D(i)κ̄ ≡ 0
(3) ( f +αH+ δF)‡(b).D(i)κ̄ ≡ 0

From (1),

D(i+1)κ̄b(e) = −(γE+βH)‡(b).D(i)κ̄
= (γE+βH) ·D(i)κ̄b

= γE ·D(i)κ̄b.

The last equality above follows from the induction hypothesis. Then

(H ·D(i+1)κ̄b)(e) = H · (D(i+1)κ̄b(e))−D(i+1)κ̄b([H,e])

= H · (γE) ·D(i)κ̄b−D(i+1)κ̄b(e)

= γ([H,E]+EH) ·D(i)κ̄b− γE · (D(i)κ̄b)

= γE ·D(i)κ̄b− γE ·D(i)κ̄b = 0

where the last equality again uses the induction hypothesis. Item (2) gives, by a similar calculation,

D(i+1)κ̄b(h) =−γH ·D(i)κ̄b = 0

and

(H ·D(i+1)κ̄b)(h) = 0.

Finally, (3) gives

D(i+1)κ̄b( f ) = δF ·D(i)κ̄b

and again

(H ·D(i+1)κ̄b)( f ) = 0.

We have thus shown vanishing ofH ·D(i+1)κ̄b on R
2,1. The remainder ofh is obtained by taking linear

combinations withp. TheH-invariance ofD(i)κ̄ andP-equivariance ofD(i+1)κ̄ give, forX ∈ p,

(H ·D(i+1)κ̄b)(X) = H · (D(i+1)κ̄b(X))−D(i+1)κ̄b([H,X])

= −H ·X ·D(i)κ̄b+[H,X] ·D(i)κ̄b

= −X ·H ·D(i)κ̄b = 0.

The conclusion isH ·D(i+1)κ̄b = 0, as desired. �

Now if κ̄ and all its derivatives are constant onR, thenU is curvature homogeneous to all orders, and
therefore,U is locally homogeneous by Singer’s theorem for Cartan connections [Mel11, Pec14].

Let us consider now the remaining case where the isotropy at the origin is unipotent.
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5.4. Unipotent isotropy.

Proposition 22. If the isotropy at0∈ S is unipotent, theng is isomorphic tosol(a,b), for b 6=−a.

Proof. Let Y ∈ g generate the isotropy at 0. There isb0 ∈ π−1(0) for which ωb0(Y) = E. The projection
ωb0(g) of ωb0(g) to R

2,1 is 2-dimensional andE-invariant, so it must be span{e,h}. Therefore, there is a
basis(X,Y,Z) of g such that

ωb0(X) = e+αH+βF and ωb0(Z) = h+ γH+ δF

for someα,β ,γ,δ ∈ R. BecauseKb0(Y, ·) = 0, equation (8) gives

ωb0[Y,X] = [e+αH+βF,E] = αE−βH ∈ ωb0(g)

soβ = 0 and[Y,X] = αY. A similar computation gives

ωb0[Y,Z] = [h+ γH+ δF,E] = e+ γE− δH

soδ =−α, and[Y,Z] = X+ γY.
Infinitesimal invariance ofK by Y gives

Kb0([Y,X],Z)+Kb0(X, [Y,Z]) = [−E,Kb0(X,Z)].

But the left side is 0 because[Y,X](0) = 0 and[Y,Z](0) = X(0). ThereforeE commutes withKb0(X,Z) ∈ p,
which means

Kb0(X,Z) = rE for somer ∈ R.

Now equation (8) gives forX andZ,

ωb0[X,Z] = [h+ γH−αF,e+αH]+ rE

= γe+αh−α2F + rE.

In order that this element belongs toωb0(g), one must haveα = 0 or γ = 0. First considerγ = 0. The
structure of the algebrag in the basis(X,Y,Z) is

adY =





0 1
α 0

0



 adX =





0
−α r

α



 adZ =





0 −1
−r 0
−α 0



 .

This algebra is unimodular, so this case does not arise, by Lemma 3.
Next considerα = 0. Then the Lie algebra is

adY =





0 1
0 γ

0



 adX =





0 γ
0 r

0



 adZ =





−γ −1
−r −γ

0



 .

In order thatg not be unimodular,γ must be nonzero (notice also that forγ = r = 0, we would get a Heisenberg
algebra). We obtain a solvable Lie algebra

g∼= R⋉ϕ R
2, whereϕ =

(

−γ −1
−r −γ

)

.

If r > 0, then
g∼= sol(a,b), wherea=−γ +

√
r , b=−γ −

√
r.

Conversely,ϕ is R-diagonalizable only ifr > 0. �
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Proposition 23. (compare Proposition 14 (i))

(i) At points of S, there is only one eigenvalue of the Ricci operator.
(ii) This triple eigenvalue is positive if and only if the Killing algebrasol(a,b) isR-diagonalizable.

Proof. (i) The invariance of the Ricci endomorphism̄κb0 by E means (see the table in Subsection 5.2):

κ̄b0 ∈ span{md,me2}.

The triple eigenvalue is the coefficient ofmd.
(ii) The full curvatureκb0 ∈W is E-invariant, so it is in the span of the elements ofW corresponding to

md andme2. Referring to the column labeled∧2
R

2,1∗⊗ p in the table reveals thatmd is the only of these two
components ofκb0 possibly assigning a nonzero value to the input pair(e,h). Therefore the parameterr in
the proof of Proposition 22 coincides with the coefficient ofthe element corresponding tomd in κb0 and with
half the triple eigenvalue of the Ricci endomorphism at 0. �

But, by the point (iii) in Proposition 12, we know that the Killing algebrasol(a,b) is R-diagonalizable.
This implies thatr > 0.

On the other hand, recall that in [CK09] Calvaruso and Kowalski classified Ricci operators for left-
invariant Lorentz metricsg on three-dimensional Lie groups. In particular, they proved (see their Theorems
3.5, 3.6 and 3.7) that a Ricci operator of a left-invariant Lorentz metric on anonunimodularthree-dimensional
Lie group admits a triple eigenvaluer 6= 0 if and only if g is of constant sectional curvature. Since onU \S,
our Lorentz metricg is locally isomorphic to a left-invariant Lorentz metric onthe nonunimodular Lie group
SOL(a,b) corresponding to the Killing algebra, this implies thatg is of constant sectional curvature. In
particular,g is locally homogeneous.
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