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QUASIHOMOGENEOUS THREE-DIMENSIONAL REAL ANALYTIC LORENTZ METRICS
DO NOT EXIST

SORIN DUMITRESCU AND KARIN MELNICK

ABSTRACT. We show that a germ of a real analytic Lorentz metridiorwhich is locally homogeneousen an
open set containing the origin in its closure is necesshridglly homogeneous. We classifiy Lie algebras that can
actquasihomogeneouslymeaning they act transitively on an open set admitting tiggroin its closure, but not

at the origin—and isometrically for such a metric. In theectmat the isotropy at the origin of a quasihomogeneous
action is semi-simple, we provide a complete set of normah&oof the metric and the action.

1. INTRODUCTION

A Riemannian or pseudo-Riemannian metric is caltezhlly homogeneougany two points can be con-
nected by flowing along a finite sequence of local Killing feel@he study of such metrics is a traditional field
in differential geometry. In dimension two, they are exattle semi-Riemannian metrics of constant sec-
tional curvature. Locally homogeneous Riemannian metricmension three are the subject of Thurston’s
3-dimensional geometrization progrdm [Thu97]. The cfasgion of compact locally homogeneous Lorentz
3-manifolds was given in [DZ10].

The most symmetric geometric structures after the locallpbgeneous ones are those whichquasi-
homogeneoysneaning they are locally homogeneous on an open set comgahme origin in its closure,
but not locally homogeneous in the neighborhood of the origin particular, all the scalar invariants of a
guasihomogeneous geometric structure are constant. |Reaglfor Riemannian metrics, constant scalar
invariants implies local homogeneity (sée [PTV96] for afieetive result).

In a recent joint work with A. Guillot, the first author obtaid the classification of germs of quasihomo-
geneous, real analytic, torsion free, affine connectiorsuofaces [DG13]. The article [DG13] also classifies
the quasihomogeneous germs of real analytic, torsion &ffiee connections which extend compactsur-
faces. In particular, such germs of quasihomogeneous ctiong do exist.

The first author proved in [Dum08] thatreal analytic Lorentz metric on a compa®manifold which is
locally homogeneous on a nontrivial open set is locally hgem2ous on all of the manifalth other words,
guasihomogeneous real analytic Lorentz metrics do nonexicompactthreefolds. The same is known
to be true, by work of the second author, for real analyticelndz metrics on compact manifolds of higher
dimension, under the assumptions that the Killing algebszmisimple, the metric is geodesically complete,
and the universal cover is acyclic [Mel09]. In the smoottegaty, A. Zeghib proved ir [Zeg96] that compact
Lorentz 3-manifolds which admit essential Killing fieldearecessarily locally homogeneous.
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Here we simplify arguments df [Dum08] and introduce new gdieaorder to dispense with the compact-
ness assumption and prove the following local result:

Theorem 1. Let g be a real-analytic Lorentz metric in a connected opédghteorhood U of the origin iRS.
If g is locally homogeneous on a nontrivial open subset inHentg is locally homogeneous on all of U.

As a by-product of this new proof, we classifiy Lie algebrax ttan act isometrically for a three-dimensional
Lorentz metric andjuasihomogeneouslmeaning they act transitively on an open set admitting tiggroin
its closure, but not at the origin. In the case that the igytit the origin of such a quasihomogeneous action
is semisimple, we provide a complete set of normal forms eftietric and the action, which, by Theorgm 1
above, are all locally homogeneous (see Propodifibn 10 eopbBitior 11).

We also present a new approach to the problem in Sectionyingedn the Cartan connection associated
to a Lorentzian metric. This approach yields a nice alterpabof of our results.

Our work is motivated by Gromov®pen-Dense Orbit TheorefDG91,[Gro88] (see alsd [Ben97, Fer02]).
Gromov's result asserts that, if the pseudogroup of loceranrphisms of aigid geometric structure-such
as a Lorentz metric or a connection—acts with a dense ohah this orbit is open. In this case, the rigid
geometric structure is locally homogeneous on an open d&tsésromov’s theorem says little about this
maximal open and dense set of local homogeneity, which appedy mysterious (see [DG91, 7.3.C]). In
many interesting geometric situations, it can be shown tallbef the connected manifold. This was proved,
for instance, for Anosov flows preserving a pseudo-Rienamnietric arising from differentiable stable and
unstable foliations and a transverse contact structure9BF- In [BEOS], the authors deal with this question;
their results indicate ways in which some rigid geometrioctures cannot degenerate off the open dense set.

The composition of this article is the following. In Sect@nwe use the geometry of Killing fields and
geometric invariant theory to prove that the Killing Lie eliya of a three-dimensional quasihomogeneous
Lorentz metriqg is a three-dimensional, solvable, nonunimodular Lie algeW/e also show thatis locally
homogeneous away from a totally geodesic surfgcen which the isotropy is a one parameter semisim-
ple group or a one parameter unipotent group. In the casentiSgeple isotropy, Theorefd 1 is proved in
Sectior 8. The proof of this case relies on the classificatfamormal forms of the metrics admitting quasi-
homogeneous isometric actions (see Propodition 10 ancdbBitmm[11). In the case of unipotent isotropy,
Theorent is proved in Sectidh 4. Sectidn 5 provides an atiproof of Theorerl1 using the formalism
of Cartan connections.

Our result raises the following question:

Question 1. Let g be a smooth Lorentz metric on a connected three-dimealsinanifold M. If g is locally
homogeneous on an open, dense subset of M, then must g bg lkmrabgeneous on all of M?

We are aware of noncompact quasihomogeneous exampleseafiegularityC!, recently discovered by
C. Frances. We would like to thank C. Frances for interestimyersations on the topic of this paper. We
thank the referee for her/his careful reading of our manpsand many useful remarks.

2. KILLING LIE ALGEBRA. INVARIANT THEORY

Let g be a real analytic Lorentz metric defined in a connected op@ghborhoodJ of the origin inR3,
which we assume is also simply connected. In this sectionewallrthe definition and several properties of
the Killing algebra of(U,g). These were proved il [Dum08] without use of the compactassamption.
For completeness, we briefly explain their derivation adeire.

Classically, (see, for instande [Gro88, DG91]) one consideek-jet of g by taking at each poini € U
the expression off up to orderk in exponential coordinates. In these coordinates, the 6fjg is the
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standard flat Lorentz metrigx? + dydz At each pointu € U, the space of exponential coordinates is acted
on simply transitively byO(2,1), the identity component of which is isomorphicRSL(2,R). The space

of all exponential coordinates id compatible with a fixed orientation and time orientation iprancipal
PSL(2,R)-bundle ovetJ, which we will call the orthonormal frame bundle and dengtdJ ).

Geometrically, thé-jets ofg form an analyti®SL(2, R)-equivariant mag® : R(U) — V& wherev®¥
is the finite-dimensional vector spacekejets at 0 of Lorentz metrics dR® with fixed 0-jetdx? 4+ dydz The
group0°(2,1) ~ PSL(2,R) acts linearly on this space, in which the origin correspdndbek-jet of the flat
metric. One can find the details of this classical constondt [DG91].

Recall also that a local vector field ialling field for a Lorentz metriq if its flow preserveg wherever
it is defined. Note that local Killing fields preserve oridida and time orientation, so they act B(U). The
collection of all germs of local Killing fields at a pointhas the structure of a finite dimensional Lie alggbra
called thelocal Killing algebraof g atu. At a given pointu € U, the subalgebraof the local Killing algebra
consisting of the local Killing fieldX with X(u) = O is called thasotropyalgebra atu.

The proof of Theorerfll1 will use analyticity in an essentiaywslVe will make use of an extendability
result for local Killing fields proved first by Nomizu in theakanalytic Riemannian setting [Non60] and
generalized then for ar@® rigid geometric structure by Amores and Gromov [Amd79, &;,d8G91]. This
phenomenon states that a local Killing fieldgodan be extended analytically along any cupve U, and the
resulting Killing field germ at the endpoint only depends @ homotopy type of. BecauséJ is assumed
connected and simply connectéaal Killing fields extend to all of UTherefore, the local Killing algebra
at anyu € U equals the algebra of globally defined Killing fieldsldnwhich we will denote by.

Definition2. The Lorentz metrig is locally homogeneous on an open subset\W, if for anyw € W and
any tangent vectdr € TyW, there existX € g such thaX(w) = V. In this case, we will say that the Killing
algebrag is transitive on W

Any two points in aconnecte@pen subsal on whichgis locally homogeneous can be related by flowing
along a finite sequence of local Killing fields of

Notice that Nomizu’s extension phenomenon does not imy e extension of a family of pointwise
linearly independent Killing fields stays linearly indepent. The assumption of Theorem 1 is thaits
transitive on a nonempty open sub$ét_ U. Choose three elemerntsY, Z € g that are linearly independent
at a pointup € W. The function va}(X(u),Y (u),Z(u)) is analytic orlJ and nonzero in a neighborhoodwf
The vanishing set of this function is a closed analytic praubsetS of U containing the points whergis
not transitive. Its complement is an open dense set of whichg is transitive.

From now on we will assume thatis a quasihomogeneous Lorentz metric in the neighborhootlttie
originin R3, with Killing algebrag. LetSbe the complement of the maximal open subsét oh whichg acts
transitively—that is, of a maximal locally homogeneoussatiofU. It is an intersection of closed, analytic
proper subsets, S8 is a nontrivial closed and analytic subset of positive naision passing through the
origin. The aim of this article is to prove that this is impossible.

We will next derive some basic propertiesgthat follow from quasihomogeneity.

Lemma 3 ([DumO08&] Lemme 3.2(i)) The Killing algebrag cannot be both three-dimensional and unimodular.

Proof. Let (K1, Ko, K3) be a basis of the Killing algebra. Again consider the anafyictionv = voly(K1, Kz, K3).
Sinceg is unimodular and preserves the volume forngpthe functionv is nonzero and constant on each
open set wherg is transitive. On the other handyanishes ors: a contradiction. O

Lemma 4 ([DumO0€&] Lemme 2.1, Proposition 3.1, Lemme 3.2(i))
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(i) The dimension of the isotropy at a poineWJ differs from two.
(i) The Killing algebrag is of dimension three.
(i) The Killing algebrag is solvable.

Proof. (i) Assume for a contradiction that the isotropy algelaba pointu € U has dimension two. Elements
of i act linearly in exponential coordinatesiwatSince elements dfpreservey, they preserve, in particular,
thek-jet of g atu, for all k € N. This gives an embedding ofn the Lie algebra oPSL(2,R) such that the
corresponding two-dimensional connected subgroupSif2, R) preserves thk-jet of g atu, for all k € N.
But stabilizers in a finite-dimensional linear algebraic P@LR)-action never have dimension twiadeed, it
suffices to check this statement for irreducible linearespntations dPSL(2,R), for which it is well-known
that the stabilizer ifPSL(2, R) of a nonzero element is zero- or one-dimensidnal [Kir74].

It follows that the stabilizer ilPSL(2,R) of the k-jet of g at u is of dimension three and hence equals
PSL(2,R). Consequently, in exponential coordinates,aach element ofl(2,R) gives rise to a local linear
vector field which preserveag because it preserves kijets of the analytic metrig atu. The isotropy algebra
i thus contains a copy &f(2,R): a contradiction, sincewas assumed of dimension two.

(ii) Since g is quasihomogeneous, the Killing algebra is of dimensideadt 3. For a three-dimensional
Lorentz metric, the maximal dimension of the Killing algahs 6. This characterizes Lorentz metrics of
constant sectional curvature. Indeed, in this case, th®@pis, at each point, of dimension three (see, for
instance,[[Wol617]). These Lorentz metrics are locally hgereous.

Suppose that the Killing algebra gfis of dimension 5. Then, on any open set of local homogeniedy t
isotropy is two-dimensional. This is in contradiction wjghint (i).

Last, suppose that the Killing algebra @fis of dimension 4. Then, at a poiste S, the isotropy has
dimension> 2. Hence, point (i) implies that the isotropyshas dimension three and thus is isomorphic to
5[(2,R). Moreover, the standard linear action of the isotropyTgth preserves the image of the evaluation
morphismevs) : g — TU, which is a line. But the standard 3-dimensioR&L(2, R)-representation does
not admit invariant lines: a contradiction.

Therefore, the Killing algebra is three-dimensional.

(i) A Lie algebra of dimension three is semisimple or sdillea[Kir74]. Since semisimple Lie algebras
are unimodular, Lemnid 3 implies thats solvable. O

Let us recall Singer’s result [Sin60, DG91, Gro88] whicheatsthaq is locally homogeneous if and only
if the image of § is exactly one PS[2,R)-orbit in V¥, for a certain k (big enough)This theorem is the
key ingredient in the proof of the following fact.

Proposition 5 ([DumO0§&] Lemme 2.2) If g is quasihomogeneous, then the Killing algebidoes not preserve
any nontrivial vector field of constant normO.

Proof. Let k € N be given by Singer's Theorem. First suppose, for a conttiadicthat there exists an
isotropic vector field&X in U preserved by. Then thegg-action onR(U ), lifted from the action otJ, preserves

the subbundI& (U), whereR'(U) is a reduction of the structural groB8L(2,R) = O°(2,1) to the stabilizer

of an isotropic vector in the standard linear represemaiioR>:

Hz{(clJ E)ePSI(Z,R) : TER}.

Restricting to exponential coordinates with respect tonia the first vector of which iX gives anH-
equivariant mag® : R(U) — V(. On each open s&¥ on whichg is locally homogeneous, the image
g (R(W)) is exactly oneH-orbit & c V¥, Letse Sbe a point in the closure 8. Then the image under
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g® of the fiberR (W)s lies in the closure of7. ButH is unipotent, and a classical result due to Kostant and
Rosenlicht[[Ros61] asserts tHat algebraic representations of unipotent groups, theitsrare closedThis
implies that the imagg® (R (W)s) is also&. Moreover, this holds for ai € S. Indeed, the restriction af

to Sbeing transitive (as will be proved independently in poinof Lemma[6), this holds for abe S.

Any open set of local homogeneitylthadmits points oBin its closure. It follows that the image 8f(U)
underg¥ is exactly the orbitZ. Singer’s theorem implies thatis locally homogeneous, a contradiction to
guasihomogeneity.

If there exists g-invariant vector fieldX in U of constant strictly negativg-norm, then thgy-action on
R(U) preserves a subbundR(U ) with structural grougH’, whereH’ is the stabilizer of a strictly negative
vector in the standard linear representatiorP81(2,R) on R3. In this caseH’ is a compact one param-
eter group inPSL(2,R). The previous argument again yields a contradiction, atplacing the Kostant-
Rosenlicht Theorem by the obvious fact that orbits of sma@othpact group actions are closed. O

Lemma 6 (compare[[Dum08], Proposition 3.37fter possibly shrinking U, we have

(i) Sisaconnected, real analytic submanifold of codimamsine, on whicly acts transitively.
(i) The isotropy at a point of S is unipotent B-semisimple.
(iii) The restriction of g to S is degenerate.

Proof. (i) The fact thatSis a real analytic set was already established above: itites with the vanishing

of the analytic functiorv = voly(K1, Kz, Kz), where(Ky, Ky, K3) is a basis of the Killing algebra. If needed,
one can shrink the open détin order thatSbe connected. By point (i) in Lemnia 4, the isotropy algebra at
points inShas dimension one or three. We prove that this dimension beustjual to one.

Assume, for a contradiction, that there exists Ssuch that the isotropy athas dimension three. Then,
the isotropy algebra a is isomorphic tosl(2,R). On the other hand, since both are 3-dimensional, the
isotropy algebra atis isomorphic tag. Hence g is semisimple, which contradicts Lemina 4 (iii).

It follows that the isotropy algebra at each pasrgt Sis of dimension one. Equivalently, the evaluation
morphismev(s) : g — TU has rank two. Since thg-action preserve$§, this implies thatSis a smooth
submanifold of codimension one W andTsS coincides with the image af\(s). The restriction ofy to S
satisfies Definitiofl]2, so is transitive.

(i) Let i be the isotropy Lie algebra ate S. It corresponds to a 1-parameter subgroufP6L(2,R),
which is elliptic,R-semisimple, or unipotent. In any case, there is a tangenibké < TU annihilated byi.
Theni also vanishes along the curve gty ), where defined. Because pointsbfS have trivial isotropy,
this curve must be contained $ Thus the fixed vectdv of the flow ofi is tangent td&S.

If iis elliptic, it preserves a tangent directionsatansverse to the invariant subspdgs c TU. Within
TsS, there must also be an invariant line independent fsanBut now an elliptic flow with three invariant
lines must be trivial. We conclude thiais semisimple or unipotent.

(iii) If the isotropy is unipotent, the vect& annihilated by must be isotropic, and the invariant subspace
TsSmust equaV/-. SoSis degenerate in this case.

If i is semisimple oveR, thenV is spacelike. The other two eigenvectors bave nontrivial eigenvalues
and must be isotropic. On the other hahgdreserves the planisS, so it preserves a line dgU transverse
to Sand a line independent from in TsS. These lines must be the eigenspaces tffthe planeTsSC TU
contains an isotropic line and is transverse to an isotriapéc then it is degenerate. O

According to Lemm&lé we have two different geometric sitoradi which will be treated separately in
Section$ B andl4. The case®fsemisimple isotropy will be referred to as just “semisigffelow.
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3. NO QUASIHOMOGENEOUSLORENTZ METRICS WITH SEMISIMPLE ISOTROPY

If the isotropy ass € Sis semisimple, then it fixes a vectdre TsSof positiveg-norm. Using the transitive
g-action onS, we can extend/ to ag-invariant vector fieldX on Swith constant positivgg-norm. In this
sectionwe assume that the isotropy is semisimplie can suppose thitis of constant norm equal to 1.

Recall that the affine group of the real line Aff is the grougrahsformations oR given byx — ax+ b,
with a€ R* andb € R. If Y is the infinitesimal generator of the one-parameter groumofiotheties an#
the infinitesimal generator of the one parameter group oftedions, therlY,H] = H.

Lemma 7 (compare[[DumQ8], Proposition 3.6) (i) The Killing algebrag is isomorphic toR & aff. The
stabilizer of a point of S corresponds to a one-parameteungrof homotheties iAff.
(i) The vector field X is the restriction to S of a central earhX in g.
(iii) The restriction of the Killing algebrato S has, in ad@pl analytic coordinate, h), a basis —h %, %, 2).
(iv) Inthe above coordinates, the restriction of g to S i8.dx

Proof. (i) We show first that the derived Lie algebya= [g,g] is 1-dimensional. It is a general fact that the
derived algebra of a solvable Lie algebra is nilpotent [Mir/Remark first thalg, g] # 0. Indeed, otherwise
g is abelian and the action of the isotropy. g at a points € Sis trivial on g and hence oifsS, which is
identified withg/i. The isotropy action on the tangent spdgBbeing trivial implies that the isotropy action
is trivial on TU (An element 0fO(2,1) which acts trivially on a plane ik? is trivial). This implies that the
isotropy is trivial ats € S; a contradiction. Ag is 3-dimensionalg’ is a nilpotent Lie algebra of dimension
1or2, hencg/ ~ R, org ~R2.

Assume, for a contradiction, thgt ~ R?. We first prove that the isotropylies in [g, g]. Suppose this is
not the case. Thef, g] ~ R? acts freely and transitively o8, preserving the vector field. ThenX is the
restriction toS of a Killing vector fieldX’ € [g, g].

LetY be a generator of the isotropy aE S. SinceX is fixed by the isotropy, one gets, in restriction
to S, the following Lie bracket relationfY,X’] = [Y,X] = aY, for somea € R. On the other hand, by our
assumptionY ¢ [g,g], meaning that = 0. This implies thaiX’ is a central element ip. In particular,g’ is
at most one-dimensional: a contradiction. Hencelg, g].

Now letY be a generator df {Y,X'} be generators dfy, g], and(Y,X’,Z) be a basis of. The tangent
space ofSat a points € Sis identified withg/i. Denotex_/, Z the projections oK’ andZ to this quotient. The
infinitesimal action ofY on this tangent space is given in the be{é@, Z_} by the matrix

ad(Y):(g B)

becausgy’ ~ R? andad(Y)(g) C g’. Moreover,ad(Y) # 0, since the restriction of the isotropy action to
TsSis injective. From this form ofd(Y), we see that the isotropy is unipotent with fixed directiif’: a
contradiction.

We have proved thay, g] is 1-dimensional. Notice that~ [g, g]. Indeed, if they are equal, then the action
of the isotropy on the tangent spal®) ats e Sis trivial: a contradiction.

LetH be a generator dfy, g], andY the generator of Then[Y,H] = aH, withac R. If a= 0, then the
image ofad(Y), which lies in[g, g, belongs to the kernel @fd(Y), which contradicts semisimplicity of the
isotropy. Therefor@ # 0 and we can assume, by changing the genehatirthe isotropy, that = 1, so
[Y,H] =H.

Let X’ € g be such tha{X’,H} span the kernel aiid(H). Then(Y,X’,H) is a basis of. There isb € R
such thafX’,Y] = bH. After replacingX’ by X’ +bH, we can assumi’,Y| = 0. It follows thatg is the Lie
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algebraR & aff(R). The Killing field X’ spans the center, the isotrogyspans the one-parameter group of
homotheties, anHl spans the one-parameter group of translations.

(i) This comes from the fact that is the unique vector field tangent&invariant byg.
(iii) The commuting Killing vector fieldsX” andH are nonsingular o%. This implies that, in adapted

coordinategx,h) on S, H = ﬁih andX = ix. BecausdY, X] = 0, the restriction o¥ to Shas the expression
f(h)%, with f an analytic function vanishing at the origin. The Lie bréaaletation[Y,H] = H reads
J 0 0
1 ar] =

and leads td (h) = —h.

(iv) SinceH = % andX = % are Killing fields, the restriction of to Sadmits constant coefficients with
respect to the coordinatés h). SinceH is expanded by the isotropy, it follows thitis of constang-norm
equal to 0. On the other hanX,is of constang-norm equal to one. It follows that the expressiorgai S
is dx2. O

Lemma 8. Assumgy as in Lemmal7 acts quasihomogeneouslyldrg). In adapted analytic coordinates
(x,h,z) on U,
g=dxX’ +dhdz+CZdH +Dzdxdh  for some D € R.

Moreover, in these coordinate&;, 2., and—h2. +z2 are Killing fields.

Proof. Consider the commuting Killing vector field6 andH constructed in Lemnia 7. Their restrictions to
Shave the expressiot$ = d/dh andX = d/dx. Recall that orS, the vector fielcH is of constang-norm
equal to 0 anc is of constang-norm equal to one. Point (iv) in Lemrh& 7 also shows gixt,H) =0 onS.
Moreover, being centrak’ is of constang-norm onU \ S, hence of constamg-norm one on all o).

Define a geodesic vector field as follows. At each poins € S, there exists a unique tangent vector
Zs, transverse tdsS, such thag(Zs,Zs) = 0, g(Xs,Zs) = 0, andg(Hs, Zs) = 1. In fact, Zs spans the second
isotropic line (other than that generatedy) in Xg-. In this line Zs is uniquely determined by the relation
g(Hs,Zs) = 1. Now X’ andH are Killing and, in restriction t&, commute. So alon§, the vector fieldZ is
stable by the flow oK andH. Now extendZ via the geodesic flow:

Z(eXR(1Z:)) 1= (OXR).az(26) = g OXA(IZ)

The resulting geodesic vector field is well defined on a seifity small open neighborhood 8in U. Since
X" andH are Killing, their flows commute with the exponential map Zscommutes withX’ andH.

The image ofSthrough the flow oZ defines a foliation by surfaces. Each leaf is given bys€zy), for
somez small enough. The le&@corresponds ta= 0.

Let (x,h,z) be analytic coordinates in the neighborhood of the origahghatX’ = d/dx,H =d/dh,Z =
d/0z The scalar produg(Z,X’) is constant along the orbits @t This comes from the following classical
computation :

Z-g(X',Z2) =9(0zX",2) +9(X',0zZ) = 0
sincelJzZ = 0 andl.X’ is skew-symmetric with respect ¢ The same is true fay(Z,H). In particular, the
coefficients ing of dxdzanddhdzare constant on the orbits @f

Moreover, the invariance of the metric by the commutativiéing algebra generated by’ andH implies
thatdxdzanddhdzare also constant along the orbitsXfand ofH. This implies that the coefficients of
dxdzanddhdzare 0 and 1, respectively, not only 8nbut over all ofU.
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The coefficients ofln? anddxdhdepend only orz. Then
g = dx® + dhdz+ c(2)dh? + d(z)dxdh

with ¢ andd analytic functions which both vanish a& 0.

Next we use the invariance gfy Y. Recall thafY, X'] = 0 and[Y,H] = H. Note thaty preserves the two
isotropic directions oK', which are spanned & andH — d(z)X’. Fromg(X’,H —d(2)X’) = 1, compute

0 = Y.(gX',H-d(2X"))=g(Y,X'],H-d(2X")+g(X',[Y,H —d(2)X])
= g(X',H)— (Y.d)g(X',X") = d(2) — (Y.d)(2),
soY.d =d. Then[Y,H —d(z)X'] =H —d(z)X’. Next, fromg(H — d(2)X',Z) = 1,
0=g([Y,H —d(2)X'],Z) +g(H —d(2X',Y,Z]) = 1+ g(H —d(2X',Y,Z]),
so[Y,Z] = —Z. Now, sinceY andX’ commute, the general expression Yois
Y = u(h,z)% +v(h,z)§z+t(h,z):—x

with u,v, andt analytic functions, where(h,0) = —h, andv andt vanish on{z= 0}.
The other Lie bracket relations read

0 g g 9, 0
[u(h,z)% +V(h’z)0_z+t(h’z)a_x’ %] -2
and
0 4 a 9 ]
[u(h,2) 5 +v(h2) = +t(h2) =, ] = ——.
The first relation gives
au ov ot

The second one leads to

du ov ot

— =0 —=1 — =0.

oz 0z oz
We get

u(h,z) = —h v(h,z) =z t(h,z) =0.

Hence, in our coordinate¥,= —hd/dh+ zd/dz. The invariance of under the action of this linear vector
field impliesc(e 'z)e? = c(z) andd(e'z)é = d(2), for all t € R. This implies then that(z) = CZ and
d(z) = Dz, with C, D real constants. O

3.1. Computation of the Killing algebra. We need to understand now whether the metrics
de.p = d¥ + dhdz+ CZd + Dzdxdh

constructed in Lemmia 8 really are quasihomogeneous. It atbils, do the metrics in this family admit
other Killing fields thand/dx, d/dh and—hd/dh+2z9/0z ? In this section we compute the full Killing
algebrag of gcp. In particular, we obtain that the metrigs p = dx? 4+ dhdz+ CZdr + Dzdxdhalways
admit additional Killing fields and, by Lemnha 4 (ii) are lolgghomogeneous.

The formula for the Lie derivative af (see, eg/[KN96]) gives

0 0 0 0 7} 7} 7} 7]
(Ltocp) (aaa—xj) =T-dcp (aa 0_XJ) +0dcp <[0_X,’T] 70—)(1) +0dcp <0_x.’ [ﬁ_XJ’T}) .
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LetT = ad/dx+ B3d/oh+ yd/dz The pairs
o)~ 55 ax 9% ox’ 9z ax’ ah ah' oz ah’ an
(o) -2 (35) @(5n) @(5z) @(5w) o) oG

give the following system of PDEs am, 3 andy in order forT to be a Killing field:

1) 0 = B

(2) 0 = ox+DzB,

3) 0 Bx+DzB;+ az,

(4) 0 = yD+Dzay+CZBx+ ¥+ an+ DzBy,
(5) 0 = pBy+CZB,+Dzay+y,,

(6) 0 = zCy+CZBn+ Dzap+ yh.

The following proposition finishes the proof of Theorem 1he tase of semisimple isotropy &n
Proposition 9. The Lorentz metricsgp are locally homogeneous for all,© € R.

Proof. It is straightforward to verify that

_onl 12 20 2 4
T_thx+2(D —C)h dh+((C_D )Zh_l)dz

satisfies equations (1)—(6). Note tAg0) = —d/dz, soT ¢ g, and(U,g) is locally homogeneous. O

We explain now our method to find the extra Killing fieldin Propositio ®, and we compute the full
Killing algebra,g, of gc p. Recall then-dimensional Lorentzian manifolds AB3/in", and d$, of constant
sectional curvature 1,0, and 1, respectively (see, €g, [Wdl67]). Recall also tla8As isometric tsSL(2, R)
with the bi-invariant Cartan-Killing metric.

Proposition 10.

(i) IfD #0and C¢ {0,D?}, then(U,gc p) is locally isometric to a left-invariant metric on $2,R) with
g 2 R@sl(2,R). The isotropy is the graph of a Lie algebra homomorphism efRRifactor to the
subalgebra spanned byRrsemisimple element sf(2,R).

(i) 1f D #0and C= D? then(U,gcp) is locally isometric to a left-invariant metric on the Heideerg
group withg = R x heis. The isotropy is th& factor, which acts by a semisimple automorphisriedf.

(iiiy IfC =0and D# 0, then(U,gc p) is locally isometric to Ad% sog = s1(2,R) @ s[(2,R).
(iv) If C #0and D= 0, then(U,gcp) is locally isometric toR x d<, for whichg = R @ 5[(2,R). The
isotropy is generated by a semisimple elemert@&R).

(v) IfC=0and D=0, then(U,gcp) is locally isometric to Mif, sog = s[(2,R) x R®.

Proof. Recall that(x,h,z) are analytic coordinates dd, with S= z%(0), such that all Lorentz metrics
ge,p admit the Killing fieldsX’ = 2., Y = —h2. +z2 andH = £, for which the Lie bracket relations are
[Y,X'] = [H,X] =0and[Y,H] = H. Moreover, Proposition9 shows that all Lorentz metdep are locally
homogeneous and that their full Killing algebgas of dimension at least four. In particular, the Killing
algebrag strictly contains the previous three-dimensional Lie bigeas a subalgebtacting quasihomoge-
neously in the neighborhood of the origin.

Assuminggc p is not of constant sectional curvature, then Leniina 4 (i) iespdimg = 4. We first derive

some information on the algebraic structurgyan this case.
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If dim g = 4, then it is generated by, Y,H, and an additional Killing fieldT. Since the isotropRY at
the origin fixes the spacelike vect§(0) and expandsi, we can choose a fourth generafoof g evaluating
at the origin to a generator of the second isotropic directibthe Lorentz plane&(0)*. As the action of
Ad(Y) on g is g-skew symmetric, we get at the origin[Y,T](0) = —T(0). HencelY,T] = —T +aY for
some constard € R, and we can replacg with T —aY in order thafY, T] = —T. SinceX’ andY commute,
[X',T] is also an eigenvector afd(Y) with eigenvalue-1. This eigenspace afd(Y) is one-dimensional, so
[T,X'] =cT, for somec € R.

The Jacobi relation

[Y,[T,H]] =Y, T],H] +[T,[Y,H]] = [-T,H]+[T,H] =0

says thafT,H] commutes witty. The centralizer of in gisRY @ RX’. We conclude thgH, T] = aX' —bY,
for somea,b € R.

(i) AssumeD # 0 andC ¢ {0,D?}. A straightforward computation shows thgd p is not of constant
sectional curvature. We will construct a Killing field= ad/dx+ d/dh+ yd/dz, meaning the functions
a, B andy solve the PDE system (1)—(6). We will moreover construab itteatc = 0 anda = 1.

First we use the Lie bracket relations derived abovelf@andl. Remark that, sinc& andX’ commute,
the coefficientsr, 8 andy of T do not depend on the coordinatén particular, equation {2) is satisfied. The
relation[H,T] = aX’ — bY reads, whema =1,

7} 7} 7} 7}
[%,T} =7 b (h% —zd—z) .
This leads taay, = 1, B = bh, andy, = —bz Using equatior[{1), we obtaj = %bh2+[30. We can take the

additive constanBy =0 becaus% € . Now equation[() giveg = —bzh—1/D.
Equation[(6) now reads

0= zC(—% — zbh) +CZbh+ Dz—bz= —%Z+ Dz— bz

which yieldsb = D — C/D. Now y can be written-1/D — zh(D — C/D).
Equation[(B) says; = 0, so we conclude = h. The resulting vector field is

J 1 C,,0 C 1\ 0
Note that the coefficients df also satisfy equation)5), sbis indeed a Killing field.

We obtained this solution settirg= 0, so the Lie algebrg generated by T, X’,Y,H} containsX’ as a
central element. We also set= 1, and founco =D —C/D, so[H,T] = X'+ (C/D — D)Y, which we will
callY’. Itis straightforward to verify that fof as above}Y, T] = —T. Under the hypothesfs # D?, the Lie
subalgebra generated By’ H, T } is isomorphic tas[(2,R), with Y/ R-semisimple, and it acts transitively on
U. Consequentlygc p is locally isomorphic to a left-invariant Lorentz metric &b(2,R). The full Killing
algebra igy = R @ s[(2,R), with center generated by, and isotropyRY = R(X’' +Y’). This terminates the
proof of point (i).

(i) When D # 0 andC = D?, then [7) still solves the Killing equations. The brackdatiens are the same,
but now[H,T] = X'. Theng = R x heis, where théeis factor is generated bjH, T, X'} and acts transitively,
and theR factor is generated by the isotrojy which acts by a semisimple automorphismipis. Up to
homothety, there is a unique left-invariant Lorentz mesticHeis in whichX’ is spacelike, by Proposition
1.1 of [DZ10], where it is called theorentz-Heisenberg geometry
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(iii) When C = 0 andD # 0, then[[7) again solves the Killing equations. It now sirfigd to

J 1_,0 1\ o0
The bracket relation ifH, T] = X’ — DY, andg still contains a copy oR ¢ s[(2,R), with center generated
by X" andsl(2,R) generated by{X' — DY,H,T’}. Thesl(2,R) factor still acts simply transitively. On the
other hand, one directly checks that= 8 = 0 andy = e PX is a solution of the PDE system, meaning that
e PXg/dzis also a Killing field. From
J
X/ 7DX_
[ © 5z
it is clear that this additional Killing field does not belotmthe subalgebra generated {¥,X’,Y,H}, in
which X’ is central. It follows that the Killing algebra is of dimensiat least five, hence six by Lemida 4 (i),
which implies thabp p is of constant sectional curvature. Sirig is locally isomorphic to a left-invariant
Lorentz metric orSL(2,R), the sectional curvature is negative. Up to normalizatigsm, is locally isometric
to AdS®.

(iv) The Killing field T in (@) multiplied byD gives

] = —De*Dxﬁiz #0

a9 1, 5 0 2 7}
SettingC # 0 andD = 0 gives
To=—Chz 0 —l—(ZhC—l)i

2 oh 0z
which is indeed a Killing field ofic o. The brackets argX’, To] = 0, [H, To] = CY, and[Y, To] = —To. Asin
case (i), the Killing Lie algebra contains a copyfof s[(2, R), with center generated B/, ands[(2,R) gen-
erated by(Y,H, To}. Here the isotropy generatélies in thesl(2, R)-factor, which acts with two-dimensional
orbits. This locak!(2,R)-action defines a two-dimensional foliation tangenXté. Recall thatX’ is of con-
stantg-norm equal to one, s¥’* has Lorentzian signature. The metric is, up to homothetiethe two
factors, locally isomorphic to the produitx d<.

(V) If C=D =0, thengc p is flat andg = 5/(2,R) x R3, a

As a by-product of the proof of Theorelm 1 in the case of senmiEnisotropy, we have obtained the
following more technical result:

Proposition 11. Let g be a real-analytic Lorentz metric in a neighborhoodr brigin inR3. Suppose that
there exists a three-dimensional subalgebiat the Killing Lie algebra acting transitively on an open set
admitting the origin in its closure, but not in the neighbodd of the origin. If the isotropy at the origin is a
one-parameteR-semisimple subgroup in(@, 1), then
(i) There exist local analytic coordinatég, h,z) in the neighborhood of the origin and real constant®©C
such that
g=gcp = dx¢ + dhdz+ CZdi? + Dzdxdh
(ii) The algebral is solvable, and equals, in these coordinates,
J 0 7} 7}
[= <5(’ ah —h% +Zd_z>'
In particular, [ = R @ aff(R), whereaff(R) is the Lie algebra of the affine group of the real line.
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(iii) All the metrics g p are locally homogeneous. They admit a Killing fiel@T of the form

01, , 0 5 i,
T_Dh5(+§(D —C)h %+((C—D )Zh_l)a_z'

The possible geometries 0d,gc p) are given by (i) - (v) of Propositidn10.

4. NO QUASIHOMOGENEOUSLORENTZ METRICS WITH UNIPOTENT ISOTROPY

We next treat the unipotent case of Lenirha 6. The followingltegan be found in [Dum08] Propositions
3.4 and 3.5 in Section 3.1, where they are proved without ntakise of compactness. See also [Z&€g96,
Proposition 9.2] for point (iii).

Proposition 12.

(i) The surface S is totally geodesic.

(i) The Levi-Civita connectiof] restricted to S is either flat, or locally isomorphic to thencaical bi-
invariant connection on the affine group of the real liu.

(iii) The restriction of the Killing algebrgy to S is isomorphic either to the Lie algebra of the Heisenberg
group in the flat case, or otherwise to a solvable subalgedi§l,a) of Aff x Aff, spanned by the
elementst,0), (0,t) and (w,aw), where t is the infinitesimal generator of the one-paramgteup of
translations, w the infinitesimal generator of the one-paeder group of homotheties, and:aR.

Recall that, as$s has codimension one, the restrictionSeof the Killing Lie algebrag of g is an isomor-
phism. The Heisenberg group amel(1,—1) are unimodular, so by Lemn& g,is isomorphic tasol(1,a),
with a# —1, andS is non flat

Recall that in dimension three, the curvature is completietiermined by its Ricci tensor, which is a
symmetric bilinear form. The Ricci tensor is determinedhmyRicci operator, which is a field gfsymmetric
endomorphismé: TU — TU such that Ricdiu,v) = g(Au,Vv), for any tangent vectors v.

Definition 13. The metricg is said to becurvature homogeneousfor any pair of pointsu,u’ € U, there
exists a linear isomorphism fromU to TyU preserving botly and the curvature tensor.

In dimension three, it is equivalent to assume in the prevaefinition that these linear maps preserve
bothg and the Ricci operatok.

Proposition 14.

(i) The only eigenvalue of the Ricci operatofiseverywhere on U.

(i) The metric g is curvature homogeneous; more preciselsn adapted framing on U, the Ricci operator
reads

0 0 «a
A= 0 0 0 |, a eR".
0 0O

Proof. (i) Pick a pointsin S. The Ricci operatoA(s) must be invariant by the unipotent isotropy (which
identifies with the stabilizer in the orthogonal groupyg$) of an isotropic vectoK(s) € TU).

The action of the isotropy omsU fixes an isotropic vectog; = X(s) tangent toS and so preserves the
degenerate plarq = TsS. In order to define an adapted basis, consider two veefoes € TU such that

ge,e) =0 g(ex,e)=1 g(e3,e3)=0 g(ex,e3)=0  g(eze)=1
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The action onTU of the one-parameter group of isotropy is given in the b@sise,, e3) by the matrix

t2
1t -8
Lk=|01 -t |, teRr
00

1

First we show thaf(s) : TU — TdU has, in our adapted basis, the following form:

A B «a
oA -B |, a,B,A €R.
0 0 A

SinceA(s) is invariant by the isotropy, it commutes with for all t. Each eigenspace #{s) is preserved by
L, and eigenspaces bf are preserved bj(s). As L; does not preserve any non trivial splitting &J, it
follows that all eigenvalues di(s) are equal to som& € R. Moreover, the unique line and plane invariant
by Lt must also be invariant bi(s), soA(s) is upper-triangular in the basig;, e, e3). A straightforward
calculation of the top corner entry &fs)L; = L{A(s) leads to the relation on th@ entries and thus to our
claimed form forA(s).

Now theg-symmetry ofA(s) meang(A(s)e, e3) = g(e2, A(S)e3), which gives3 = 0. Since the symmetric
functions of the eigenvalues éfare scalar invariants, they must be constant on dll ofrhis implies that
the only eigenvalue oA is A, on all ofU. It remains only to prove that = 0. Consider an open setlthon
which the Killing algebrasol(1,a) is transitive, sq is locally isomorphic to a left-invariant Lorentz metric
onSOL1, a).

The sectional and Ricci curvatures and Ricci operator oftareariant Lorentz metric on a given Lie
group can be calculated, starting from the Koszul formuiaerms of the brackets between left-invariant
vector fields forming an adapted framing of the metric.[In 8K Calvaruso and Kowalski calculate Ricci
operators for left-invariant Lorentz metrics on three-dimsional Lie groups, assuming they are not sym-
metric (see also previous curvature calculations in [Ngm[®P97], [Cal07]). If the metric otJ\S were
symmetric, then the covariant derivative of the curvatuoeld vanish on all otJ, which would implyU lo-
cally symmetric, hence locally homogeneous; thereforenaed consider only nonsymmetric left-invariant
metrics here. A consequence of their Theorems 3.5, 3.6, and ghat the Ricci operator of a left-invariant,
nonsymmetric Lorentz metric onreonunimodulathree-dimensional Lie group admits a triple eigenvalue
if and only if A = 0, and the Ricci operator is nilpotent of order two. We codeld = 0, soA(s) has the
form claimed. Moreovet is nilpotent of order two otJ \ S.

(i) Becausegy acts transitively org, there is an adapted framing alo8@ which A= A(s). The parameter
a in A(s) cannot vanish; otherwise the curvaturego¥anishes ors and (S, 0) is flat, which was proved
to be impossible in Propositidn12. Now the Ricci operatoiSas nontrivial and lies in the closure of the
PSL(2,R)-orbit &' of the Ricci operator ot \ S. But we know from (i) that orU\ S, the Ricci operator
is g-symmetric and nilpotent of order 2, so it has the same formA(8s meaning it also belongs to the
PSL(2,IR)-orbit of

0 01
0 0O
0 0O
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Now Ricdqu, u) is a quadratic form of rank one equald®V, u)?, for some nonvanishing isotropic vector
field W onU, which coincides withX on S. Invariance of Ricci by implies invariance ofV. Propositiofi b
implies thatg is locally homogeneous.

5. ALTERNATE PROOFS USING THECARTAN CONNECTION

The aim of this section is to give a second proof of Thedrémitiguthe Cartan connection associated
to a Lorentz metric. The reader can find more details aboug&mmetry of Cartan connections in the

book [Sha9J7]. We still considgyra Lorentz metric defined in a connected open neighborhbbofithe origin
in RS,

5.1. Introduction to the Cartan connection. Leth = 0(2,1) x R, LetP = 0(2,1) < O(2,1) x R?%, so
p=o0(2,1) C h. Letr: B— U be the principaP-bundle of normalized frames d#, in which the Lorentz
metricg has the matrix form
1
I= 1
1
(Note thatB is nearly the same as the bunél@J) from Sectior 2, though it has been enlarged to allow all
possible orientations and time orientations.)

The Cartan connectiorassociated t¢U, g) is the 1-formw € Q*(B,h) formed by the sum of the Levi-
Civita connection of the metrie € Q(B, p) and the tautological 1-for € Q'(B,R?1), defined bydy(v) =
b~1(r.v). The formw satisfies the following axioms for a Cartan connection:

(1) It gives a parallelization dB—that is, for allb € B, the restrictiorty, : T,B — § is an isomorphism.

(2) Itis P-equivariant: for allp € P, the pullbackRyw = Ad plow.

(3) It recognizes fundamental vertical vector fields: fanake p, if X* is the vertical vector field oB
generated by, thenw(X*¥) = X.

TheCartan curvatureof w is
K(X,Y) = dw(X,Y) + [w(X), w(Y)].

This 2-form is always semibasic, meanikg(X,Y) only depends on the projections ¥fandY to Ty U;
in particular,K vanishes when either input is a vertical vector. We will #fere express the inputs kg, as
tangent vectors at(b). Torsion-freeness of the Levi-Civita connection implieatK has values ip. Thus
K is related to the usual Riemannian curvature teRseIQ?(U ) @ End T M) by

bo Ry (U,v) o bt = Kp(u,v).

The benefit here of working with the Cartan curvature is tiwagn applied to Killing vector fields, it gives a
precise relation between the brackets on the manotthd the brackets in the Killing algebga
TheP-equivariance otv leads toP-equivariance oK: (RyK)(X,Y) = (Ad p~1)(K(X,Y)). The infinites-
imal version of this statement is, fére p,
K (A", X],Y) +K (X, [A%Y]) = [K(X,Y),A.
A Killing field Y onU lifts to a vector field orB, which we will also denot®, with Lyw = 0. Note that
alsoLyK = 0 in this case. Thus X andY are Killing fields, then

X.((Y)) = w[X,Y] and  Y.(w(X)) = w[Y,X].
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In this case,
KX)Y) = X (o)) —=Y.(w(X)) —w[X,Y]+[w(X),w(Y)]
w[X,Y] — oY, X] — w[X,Y] + [w(X), w(Y)]
= wX,Y]+[w(X),w(Y)]
so, whenX andY are Killing, then
(8) w[X,Y] = [w(Y), w(X)] + K(X,Y).

Via the parallelization given by, the semibasicp-valued 2-formK corresponds to &-equivariant,
automorphism-invariant function
K:B— AR @p.
The P-representation on the target vector space is associatadatya to the adjoint representation &
restricted toP, and will be denoted- k (b), for g € P andb € B. We will use the same notation below for
otherP-represenations associated to the adjoint, and also faotiesponding Lie algebra representations—
for exampleX - k (b) for X € p.

5.2. Curvaturerepresentation. Denote(g,h, f) a basis oR?* in which the inner product is given ty Let
E,H,F be generators gf with matrix expression in the bagis, h, f)

0 -1 1 0
E= 0 1 H= 0 F=| -1 0
0 -1 10

Therefore this representationpfs equivalent to ag via the isomorphism sendir(g, h, f) to (E,H,F).
Denote by * the isomorphisnR?! — R?* with w* (u) = (w,u). Note that forp € O(2,1) andx € R>?,
we have(px)* = p*x* for the dual representiopix* = x* o p 2.
Next we define a®(2, 1)-equivariant homomorphisig : A?R>%* © 0(2,1) — R* @ R3, where the rep-
resentation on En®? is by conjugation. Defing on simple tensors by

PV AW @X) = (XV)* @W— (XW) ' @Vv=(WoX)@V—(VoX)®@W

Equivariance is easy to check. When the input lies in the sulute W satisfying the Bianchi identity,
then the output i§-symmetric (se€ [ShaB7], Section 6, Proposition 1.4 {ijj)(€he Ricci endomorphism,
defined in terms of the curvature tensor by

(Axv,w) = tr Ry(v,-)w = Riccix(v,w), Yv,w € TuM

corresponds via to the functionp o k. Recall that in dimension 3, the curvature tensor is deteethby the
Ricci curvature, s@ restricted toW is actually an isomorphism onto its image.

This image is the surfy @ E; of two irreducible components of t@(2, 1)-representation on Eri.
The first, denote&,, is the one-dimensional trivial representation, generayethe identity orR3, which we
will denotemy. Another irreducible componef; corresponds to endomorphismsif?, 1), which satisfy
XI = —IX'. TheO(2,1)-invariant complementary subspace, consisting ofitegmmetric endomorphisms,
splits intoEg and the last irreducible componeBs, which is five-dimensional. The compond captures
the scalar curvature, whilg, corresponds to the tracefree Ricci endomorphism.

In the second column of the following table, we list a basisHg® E,, with notation for each element in
the first column, and the elementsf ¢ A2R% ® 0(2,1) mapping to them undep in the third column.
Note that the elements in the last column span the space pdsdible values of.
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R3*3 W C A’R2¥ ®0(2,1)
my | 2(fF@erh@h+e®f)| MAeRF+e AT @H+ " A ®E
M2 g®e AN QE
Meh h*®e+e ®h f“Ae"QE+ AN ®H
Myz et | 2N ®h—f*@e—eaf | 2f*Ae"@H+ f*Ah*@E+h*Ae* ®F
Mt f*oh+h*® f h*Af*@H+ " Ae*QF
M2 f*@ f h* A f* @ F

Assume now thag is quasihomogeneous. Recall that, by the results in Se@idhe Killing algebra
g is three-dimensional. It acts transitively bh away from a two-dimensional, degenerate submanifld
passing through the origin. Moreoveracts transitively ors and the isotropy at points &is conjugated
to a one-parameter semisimple group or to a one-paramepEtant group inrPSL(2,R). We will study the
interaction ofg, w(g), andk, both on and offS.

5.3. Semisimpleisotropy. Letbg be a point oB lying over the origin and assume that the isotropy action of
g at 0 is semisimple, as in Sectigh 3. A semisimple elemepti®tonjugate irP into RH, so up to changing
the choice obp € m-1(0), we may assume thak,(g) Np is spanned by.

Proposition 15. (compare Lemmi@ 7 (i)) If the isotropy g@ht the origin is semisimple, then® R & aff(R).

Proof. LetY € g havew,,(Y) = H, so the corresponding Killing field vanishes at the origiheprojection
W, (g) Of wy,(g) to R21 is 2-dimensional, degenerate, aHdinvariant. Again, by changing the poibg
in the fiber above the origin, we may conjugate by an elemennalizing RH so that this projection is
spar{e h}. Therefore, there is a badiX,Y,Z) of g such that

Why(X) =h+aE+BF and @y, (Z) =e+yE+OF
for somea, B,y,d € R. Becaus&y, (Y, ) = 0, equation[(B) gives
Wy, [Y,X] = [h+aE+BF,H] = —aE+ BF € wy,(g)
soa = 3 =0 and[Y,X] = 0. A similar computation gives
Wy, Y,Z] = [e+ YE+OF,H| = —e— yE+ OF

s0d =0, andY,Z] = —Z.
Infinitesimal invariance oK by Y gives

Ko ([Y:X1,2Z) + Kuo (X, [Y,Z]) = Y.(K(X, Z))ny = H¥.(K(X,Z)), = [-H,Key(X, Z)],
which reduces td, (X, Z) = [H, Ky, (X,Z)]. SinceK takes values ip, where kefadH — Id) = RE, we get
Koo (X,Z) = Kp,(h,€) =TE for somer € R.
Now equation[(B) gives foX andZ,

WolX,Z] = [e+VEh+rE
= —ye+rE.

In order that this element belong ta,,(g) = spa{H,h,e+ yE}, we must have = —y?, and[X,Z] = —yZ.
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The structure of the algebggin the basigX,Y,Z) is

0 0 0
adyY = 0 adX = 0 adZ = 0
-1 -y y 1 0

This g is isomorphic taaff(R) & R, with center generated by — X. O

LetW = X — y¥. Note thatW(0) has norm 1 because, (W) = h. As in Sectiori B, where the central
element ofg is calledX’, the norm oW is constant 1 o) because it ig-invariant and equals 1 at a point of
S Existence of a Killing field of constant norm 1 has the follogvconsequences for the geometryof

Proposition 16.

(i) The localg-action on U preserves a splitting of TU into three line biewIL” @ RW ¢ LT, with L™
and L' isotropic.

(i) The distributions L ¢ RW and L™ & RW are each tangent tg-invariant, degenerate, totally geodesic
foliations 22~ and £, respectively; moreover, the surface S is a leaf of one sil@iations, which
we may assume ™.

Proof. (i) Becauseg preservesV, it preservesV', which is a 2-dimensional Lorentz distribution. A 2-
dimensional Lorentz vector space splits into two isotrdipies preserved by all linear isometries. Therefore
W+ =L~ @L*, with both line bundles isotropic anginvariant.

(i) Because the flow alori¢y preserves ™ andL™, the distributiond = ¢ RW andL™ & RW are involutive,
and thus they each integrate to foliatio#s™ and 2" by degenerate surfaces.

LetxeU. LetV~ €Tl (L") andV*t € [(L") be vector fields with/=(x) # 0 and|W,V*](x) = 0. Itis
well known that a Killing field of constant norm is geodesidyW = 0. Moreover, becausgV+,V*) is
constant zerdV.(g(V+,V*)) =V=.(g(VE,VE)) = 0, from which

I (OWVEVE) = ge(Oy=W,VF) = gy(Oy=VE,VE) = 0.
The tangent distribution® 22+ equal(V*)+, and it is now straightforward to verify from the axioms far
that 22~ and 2+ are totally geodesic through

The Killing field W is tangent to the surfac® BecauseSis degenerat€l S- is an isotropic line oW+

and therefore coincides willi" or L~. We can assume it is™, soSis a leaf of Z2*; in particular, we have
shownSis totally geodesic. O

Proposition 17.

(i) Forx €U and uve T2, the curvature Ru,v) annihilates(Z5)*.
(i) The Ricci endomorphism at x preserves each of the limellms L, RW, and L.

Proof. (i) The argument is the same fo?™ and 22—, so we write it for?~. Letx € U\S. Becausg acts
transitively on a neighborhood a&f there is a Killing fieldA~ evaluating ak to a nonzero element af (x).
Note thafA—,W] = 0. The orbit ofx underA~ andW coincides neax with an open subset a¥, . Because
L~ is g-invariant, the values oA~ in this relatively open set belong to .

Now A~.(g(A~,A™)) =0 impliesg(p-A",A") =0, andA~.(g(A~,W)) = 0 gives

0=gx(0a-A",W) +0x(A",0p-W) = gx(Op-A", W),

using thatZ is totally geodesic. Therefor@l,- A~ )x = aA~ for somea € R. The flows alongA~ andW
act locally transitively on??; preserving the connectidnand commuting withA~—. ThusOa-A~ =aA™ on
a neighborhood af in &7 .
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Next,W.(g(A~,W)) = 0 gives
0=g(OwA™, W) +g(A", OwW) = g(OwA™, W),

using thatw is geodesic. Therefor@lwA~)x = bA~ for someb € R. Again invariance of], A~, andW
implies thatTwA~ = bA™ on a neighborhood ofin 27, . Now we compute

R(A"\W)A™ = (Op Ow —OwDa —Opp-w))A™ = Oa- (DA ) — Ow(aA ) = abA —baA = 0.

This property of the curvature we have provedbySremains true oisbecause it is a closed condition.

(i) It suffices to show that the Ricci endomorphism presstve RW =T 2~ andL™ @ RW =T 2.
Then invariance of™ andL~ will follow from symmetry of A with respect tay. Again, we just write the
proof for #2~. The Ricci endomorphism preserves?~ if and only if Ricci(u,v) = Riccix(v,u) = 0 for any
ueLly,ve T2 . Assumeu# 0 and complete it to an adapted basisw, z) of T,U withw=W(x), ze L},
andgy(u,z) = 1. Then, by part (i),

Riccix(v,u) = gx(R(V,u)u,2) + gx(R(V, w)u,w) + gx(R(V,2)u,u) = 0+ 0+ 0= 0.
O

Let Z be theg-invariant reduction oB to the subbundle comprising frames (v ,W(x),v")) with v €
L, andvt € L. Now Z is a principalA-bundle, wherd®* = A < P is the subgroup with matrix form

A_{(“ 1 )A}

A -2
Note that, at any € Z, the projectionuy, (W) = h. Propositiori 1l7 translates to the following statement
onZ.

Proposition 18. For any be %, the componerty, in the representation ¢b E, corresponding to the Ricci
endomorphism, is diagonal, so has the form

Kb =YMy+2ZMy2 o  Y,ZER.

Note thatH - kp, = 0, so byP-equivariance ok, the derivative in the vertical directidf*.k, = 0. Because
this curvature function is alsgrinvariant, it is constant o\ s. By continuity, we conclude that on a#,

K=Yymy+2zZmye ot  Y,ZER.

Sinceg acts transitively orJ \ S and preserveg, for anyb € %’|U\S there exists a sequeneg in A
such thatpnba; ! — by, where eachy, is in the pseudo-group generated by flows along local Kilfietgls
in g; then (Ad an)(awh(g)) — why(g) in the Grassmannian G3,h). Let us consider such a sequerge
corresponding to a poitite B lying aboveU \ S. Then we prove the following

A
an = 1 , An € R*.
Ay

Lemma 19. Write

ThenA, — oo.
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Proof. First note thafA, cannot converge to a nonzero number, because in this cagé\tn,)(w,(g)) =
Wy, (g) would still project ontdR?! moduloyp, contradicting that thg-orbit of 0 is two-dimensional. This
also shows that,, cannot admit a convergent subsequence, meaningdltgtes to infinity inA.

The spacew,(g) can be written as spga+ p(e),h+ p(h), f +p(f)} for p : R2! — p a linear map. The
space(Ad an)(ap(g)) containsA;?f +an - p(f), so it containsf +A2an- p(f). If An — 0O, then this last
term converges td + & € wy,(g), for someé € p (because the adjoint action af on p is diagonal with
eigenvalues ?, 1 andA; ). But Wy, (9) is spanned by andh, so this is a contradiction. O

Differentiating the functiork : B — V(9 = Eq @ E, gives, via the parallelization d8 arising fromw,
a P-equivariant, automorphism-invariant functié?k : B — V(1) = p* © V°, and similarly, by iteration,
functionsDk : B — V() = h* @ V(=1 automorphism-invariant here mead¥ k( f (b)) = Dk (b) for all
b € B and all automorphisms. For vertical directionX € p, the derivative is determined by equivariance:
X*.k = —X-K. Our goal, in order to show local homogeneityldf is to show thaD)k has values o8
in a singleP-orbit. Because determinesc for 3-dimensional metrics, it will follow thabk has values
on B in a singleP-orbit, which suffices by Singer’s theorem to conclude Iduahogeneity (see Proposition
3.8 in [Mel11] for a version of Singer’s theorem for real ariil Cartan connections and also [Pelc14] for the
smooth case). By-equivariance of these functions, it suffices to show thatlues orZ lie in a single
A-orbit. We will prove the following slightly stronger resul

Proposition 20. The curvatures and all of its derivatives Yk are constant on.

Proof. Recall that
K=Yy +ZMyz g
on all of Z, for some fixedy,z € R. The proof proceeds by induction an Suppose that for > 0, the
derivativeD()k is constant o, so that in particular, the valu@) k is annihilated byH. As in the proof for
i = 0 above, to show thd@(+Vk is constant o, it suffices to show thati*.Dl*Yk, = —H - DDk, =0
atasingle poinb € Z|,s.
To complete the induction step, we will need the followinfpimation onwy,(g).

Lemma?2l. Atbe Z lying over xe U\S, the Killing algebra evaluates to
wh(g) =spae+ yE+ BH,h—yH, f+aH + dF}, v,B,a,0 €R.
Proof. Write
wh(g) = sparfe+p(e),h+p(h), f+p(f)}.
From Proposition 115, we know that
(Ad an)(an(g)) — why(g) = spae+ yE, h,H}.

Now Lemmd& 1D implies that(h) andp(f) both have zero component & Indeed, since this component
is dilated byA?, it must vanish in order thd ¢ wy, (g).
At the pointb, let A~ be a Killing field with r,,A~ € L;(b), S0 we can assum@,(A-) = e. We have

wy(A™) = e+p(e) andwy(W) = h+p(h). Recall from Proposition 15 thady, (h,e) = rE. The fact that
Kp = Kp, implies that the full curvaturey, = Kp,, So also

Kp(e, h) = Kb(Ai,W) =rE.
On the other hand, equatidd (8) gives
0=wp|A" W] =[h+p(h),e+p(e)] +TIE,
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S0
p(he=p(eh and [p(h).p(e)] = —rE.

Writing p(e) = yE + BH + dF andp(h) = B’H + &'F givesf’ = —yandd = &’ = 0 from the first equation.

Note that the second equation giy€s= —r, which is consistent with Propositién]15. O

We now useg-invariance ofD()k. For abitraryX € b, write X* for the coresponding)>-constant vector
field onB. Lemmd2l gives

1) (e+yE+[3H) ( ).DKk=0
(2) (h—yH)¥(b).DYk=0
(3) (f +aH+6F)*(b).DVk =0

From (1),
D Vkp(e) = (vE+BH>*(> Wi
(VE+BH) Dk
= VE'D

The last equality above follows from the induction hypothe¥hen

(H-D"kp)(e) = H- (DI iy(e)) — D Vip([H, €)
H- (yE)- DYk, — DI Yky(e)
y(H,E]+EH)-DVk, — yE - (D" kp)
— VE-D(DI?b—VE-D(i)Eb:O
where the last equality again uses the induction hypothksia (2) gives, by a similar calculation,
D+ Viy(h) = —yH-DViky =0
and
(H-DI Vi) (h) = 0.
Finally, (3) gives
DI+D iy (f) = 5F - DUk,
and again
(H D) (f) =0.
We have thus shown vanishing bf- D(+Vk, on R?1. The remainder of) is obtained by taking linear
combinations withp. TheH-invariance oD() k andP-equivariance oDk give, forX € p,

(H- DU kp)(X) = H- (DM Yky(X)) — DT Yky([H, X])
= —H-X-DWky+[H,X]- DYk,
_ _x.H.DVk —o.
The conclusion i$d - D+ ky = 0, as desired. O

Now if k and all its derivatives are constant g#y thenU is curvature homogeneous to all orders, and
thereforel is locally homogeneous by Singer’s theorem for Cartan cotimes [Mel11] Pec14].

Let us consider now the remaining case where the isotrogheatrigin is unipotent.
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5.4. Unipotent isotropy.
Proposition 22. If the isotropy al € S is unipotent, thep is isomorphic tosol(a,b), for b# —a.

Proof. LetY € g generate the isotropy at 0. Therebige m1(0) for which Wy, (Y) = E. The projection
o, (9) Of any(g) to R21 is 2-dimensional ané-invariant, so it must be spge h}. Therefore, there is a
basis(X,Y,Z) of g such that

Wy, (X) = e+ aH + BF and @y (Z) =h+yH+OF
for somea, B,y,d € R. Becaus&y, (Y, ) = 0, equation[(B) gives
Wy, [Y,X] = [e+ aH + BF,E] = aE — BH € wy,(9)
sof =0 and[Y,X] = aY¥. A similar computation gives
Wy, Y, Z] = [h+ yH + O6F,E] = e+ yE — SH
s0d = —a, and[Y,Z] = X+ V.
Infinitesimal invariance oK by Y gives

But the left side is 0 becau$é, X](0) = 0 and[Y,Z](0) = X(0). ThereforeE commutes withKy, (X,Z) € p,
which means

Kpo(X,Z) =TrE for somer € R.
Now equation[(B) gives foX andZ,
Wy (X,Z] = [h+yH—-aFe+aH]+rE
= ye+ah—a’F +rE.

In order that this element belongs d®,(g), one must haver = 0 or y = 0. First considely = 0. The
structure of the algebrgin the basigX,Y,Z) is

0 1 0 0o -1
adY = a O adX = —a r adZ = -r 0 .
0 a —-a 0

This algebra is unimodular, so this case does not arise, ya3.
Next consider = 0. Then the Lie algebra is

0 1 0 y -y -1
adY = 0 vy adX = or adZ=| —-r -y .
0 0 0

In order thay not be unimodulaty must be nonzero (notice also that foe r = 0, we would get a Heisenberg
algebra). We obtain a solvable Lie algebra

g=RxyR%  whereg = ( -y -1 )
If r >0, then
g sol(a,b), wherea= —y++/r, b= —y—r.
Converselyg is R-diagonalizable only if > 0. O
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Proposition 23. (compare Proposition 14 (i))

(i) At points of S, there is only one eigenvalue of the Ricerator.
(i) This triple eigenvalue is positive if and only if the Kilg algebraso((a,b) is R-diagonalizable.

Proof. (i) The invariance of the Ricci endomorphiseg, by E means (see the table in Subseckion 5.2):

Kb, € SPaf{my, mg}.

The triple eigenvalue is the coefficientiog.

(i) The full curvatureky, € W is E-invariant, so it is in the span of the elementsWéfcorresponding to
myg andme. Referring to the column labeled?R?1* @ p in the table reveals thaty is the only of these two
components okp, possibly assigning a nonzero value to the input pain). Therefore the parametetin
the proof of Proposition 22 coincides with the coefficienttaf element correspondingn in K, and with
half the triple eigenvalue of the Ricci endomorphism at 0. O

But, by the point (iii) in Proposition 12, we know that the I algebrasol(a,b) is R-diagonalizable.
This implies that > 0.

On the other hand, recall that ih [CK09] Calvaruso and Kowat$assified Ricci operators for left-
invariant Lorentz metricg on three-dimensional Lie groups. In particular, they prb{gee their Theorems
3.5, 3.6 and 3.7) that a Ricci operator of a left-invariantdriz metric on @aonunimodulathree-dimensional
Lie group admits a triple eigenvalue 0 if and only ifg is of constant sectional curvature. SinceldR S,
our Lorentz metriq is locally isomorphic to a left-invariant Lorentz metric tire nonunimodular Lie group
SOL(a,b) corresponding to the Killing algebra, this implies tltais of constant sectional curvature. In
particular,g is locally homogeneous.
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