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Abstract

A link diagram is said to be lune-free if, when viewed as a 4-regular plane graph it does not have
multiple edges between any pair of nodes. We prove that any colored link diagram is equivalent to
a colored lune-free diagram with the same number of colors. Thus any colored link diagram with a
minimum number of colors (known as a minimal diagram) is equivalent to a colored lune-free diagram
with that same number of colors. We call the passage from a link diagram to an equivalent lune-free
diagram its delunification process.

We then introduce a notion of grey sets in order to obtain higher lower bounds for minimum
number of colors. We calculate these higher lower bounds for a number of prime moduli with the
help of computer programs.

For each number of crossings through 16, we list the lune-free diagrams and we color them. If the
number of colors equals the corresponding higher lower bound we know we have a minimum number
of colors. We also introduce and list the lune-free crossing number of a link i.e., the minimum number
of crossings needed for a lune-free diagram of this link, and other related link invariants.

Keywords: links, colorings, lune-free diagrams, grey sets, lune-free crossing numbers.
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1 Introduction.

In this article we consider Fox colorings of link diagrams [3] and their minimality properties. A
Fox coloring is a labeling of the arcs of the link diagram with elements of the integers modulo m for
an appropriate modulus m. Such colorings can be regarded as labelings in a quandle with operation
a ∗ b = 2b− a, and are related to properties of the classical double-branched covering space with branch
set that knot or link. There are many minimality questions about such colorings, since it is often the
case that, for a given diagram, not all m elements of the modular arithmetic are needed to color that
diagram. Thus we consider the minimum coloring number of a knot or link to be the least number of
colors that suffice to produce a non-trivial coloring (among all possible diagrams for the link) in a given
modulus m, notation, mincolm L, for a link or knot L.

A link diagram is said to be lune-free if it does not have any two-sided regions [7]. An equivalent
term for lune-free is to say that the underlying flat diagram is a Conway polyhedron. This terminology
originated with J. H. Conway’s paper [4] in which he used a few basic polyhedra and insertions of rational
diagrams in them, to produce the complete tables of knots up through ten crossings. Since that time it
has been recognized that lune-free diagrams form a core structure for the class of all link diagrams.

In this article we prove that if a link, L, admits a non-trivial coloring modulo a positive integer
m, then there is a lune-free diagram of this link which supports such a non-trivial coloring using the
minimum number of colors, mincolmL. This is the consequence of the Main Lemma that we prove below
which shows that a colored lune is eliminated by a given finite sequence of colored Reidemeister moves
which preserves the number of colors. Since for any link, L, admitting non-trivial colorings mod m, there
is a diagram supporting a non-trivial coloring using the mincolmL colors, then if this diagram is not a
lune-free diagram, we can use the finite sequence of moves described in the Main Lemma to obtain a
lune-free diagram of L using mincolmL. It entails another interesting result: any link can be represented
by a lune-free diagram. We call this passage from a link diagram to an equivalent lune-free diagram the
delunification process.

Theorem 1.1. Let m be a positive integer greater than 1. Let L be a link admitting non-trivial m-
colorings. There is a lune-free diagram of L which supports a non-trivial m-coloring using the least
number of colors, mincolmL.

The proof of Theorem 1.1 is an immediate consequence of the Main Lemma (Lemma 2.1) which is
proved below in Section 2.

The relevance of the existence of lune-free diagrams supporting minimal colorings is that we may
search for minimum number of colors in the smaller subclass of lune-free diagrams. Also, due to their
rigidity, it is easier to list the lune-free diagrams of a given number of crossings than to list all the
diagrams for this number of crossings.

The study of minimum number of colors initiated with the article [8], and was carried on in a number
of other articles where the authors try to obtain estimates for the minimum number of colors for links
of specific families ([11, 12, 18]), or try to prove that links admitting non-trivial colorings on a given
modulus all have the same minimum number of colors. The latter statement is in fact the case for moduli
2, 3, 5, and 7 ([23, 20, 22, 17]). Moreover, for each of these moduli, there is a specific set of colors, whose
cardinality is the minimum number of colors for the modulus at stake, with which such a minimal coloring
can be assembled. But in [16] it is proved that at p = 11 this pattern breaks down. Specifically, knots 62
and 72 both admitting non-trivial 11-colorings, require distinct sets of colors in order to assemble minimal
11-colorings. Although the cardinality of these minimal sets of colors is 5 for both 62 and for 72, this
raises the following question. Does the minimum number of colors depend exclusively on the modulus at
stake? That is to say, are there distinct knots (or links), L and L′, both admitting non-trivial p-colorings
but such that mincolp L 6= mincolp L

′? These questions led us to trying to determine minimum number
of colors for moduli higher than 7 which in turn gave rise to the current article.

Remark We warn the reader that any link in this article is considered to have non-null determinant.
As a matter of fact, links with null determinant admit non-trivial colorings on any modulus. We therefore
think of them as forming a special class of links which we plan on addressing in a separate article.
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We remark that most of the results of this article and the new definitions go over to the class of
virtual knots [10]. Coloring is defined for virtual knots in the same way as we have defined it in this
article (by a relation at each classical crossing). Virtual crossings do not entail an extra coloring relation.
We define a lune in a virtual diagram to be a region in that diagram with two sides, whose crossings
are both classical. Then it is clear that our methods for delunification apply for virtual diagrams, since
they use local modifications that are not affected by the presence of virtual crossings. Examples and
consequences of these remarks for virtual knot theory will be the subject of a separate paper.

The article is organized as follows. In Section 2 we show how to obtain a lune-free diagram from a
diagram equipped with a non-trivial coloring, while preserving the number of colors. Colors apart, this
is the delunification process of a diagram. We also explore different ways of delunifying diagrams and
estimate the excess of crossings that each one brings about. This in turn leads us to defining three new
notions of crossing numbers. In Section 3 we introduce the notion of grey sets in order to obtain higher
lower bounds for the minimum number of colors and calculate these higher lower bounds for prime moduli
through 43. In Section 4 we discuss the algorithms employed in the listing of the lune-free diagrams and
present tables with the values obtained for the minimum number of colors, and for the distinct minimum
number of crossings.

2 The delunification process and minimal diagrams.

We start by defining a few notions which will simplify the statements of our results.

Definition 2.1. [m-Minimal Coloring of L] Let m be a positive integer, let L be a link admitting non-
trivial m-colorings. An m-Minimal Coloring of L is a diagram of L equipped with a non-trivial m-coloring
using mincolmL colors. (m and/or L will be dropped from m-Minimal Coloring of L whenever m and/or
L are clear from context.)

Definition 2.2. [m-Colored Reidemeister Moves] Let D be a link diagram equipped with a coloring over
a given modulus m. An m-Colored Reidemeister Move on D is a Reidemeister move performed on D
along with the unique reassignment of colors to the arcs brought about by the Reidemeister move such that
the new diagram is also equipped with a coloring mod m. This new coloring coincides with the former
coloring in the arcs of the diagram not affected by the Reidemeister move ([15]). (m will be dropped from
m-Colored Reidemeister Move whenever it is clear from context which m is at issue.)

Definition 2.3. [k-Tassel; Maximal Tassel; Sub-Tassel; Isolated Lune.] Let D be a link diagram.
A k-Tassel is a portion of D which is isotopic on the plane to σk

1 where k is a non-null integer and
σ1 is a generator of the braid group corresponding to the second strand going over the first strand. (The
k- will be dropped whenever it is not meaningful or it is clear from context.)

A Maximal Tassel is a Tassel which is not part of a larger Tassel in the diagram under consideration.
A Sub-Tassel or Non-Maximal Tassel is a Tassel which is a proper part of a larger Tassel in the

diagram under consideration.
An Isolated Lune in a diagram D is a maximal 2-tassel of D.
Lunes in a (sub-)tassel will be referred to as consecutive lunes.
(See Figure 1 for illustrative examples.)

Lemma 2.1. [Main Lemma] There is a sequence of colored Reidemeister moves that eliminates lunes in
any colored link diagram while not creating new lunes and preserving the number of colors. This sequence
of moves increases the number of crossings by 8, per lune i.e., the neighborhood of the lune containing 2
crossings, will contain, after this sequence, 2 + 8 = 10 crossings.

Proof. See Figure 2.

Corollary 2.1. Any link can be represented by a lune-free diagram.

Proof. It is implicit in the proof of Lemma 2.1 above but here is another sequence of Reidemeister moves
which also eliminates lunes. This sequence, however, does not necessarily preserve the number of colors
but involve a smaller increase in the number of crossings - see Figure 3.
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Isolated Lune

(Non-Isolated Lune) Maximal Tassel

(Non-maximal) Tassel2b− a

3b− 2a
3b− 2a
4b− 3a

Figure 1: Illustrative Examples of Tassels (maximal and otherwise) and of Isolated Lune.
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Figure 2: The Main Lemma: a sequence of colored Reidemeister moves which eliminates a lune while not
creating new lunes and preserving the number of colors. The dotted lines indicate the move that realizes
the passage to the diagram on the right.
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Figure 3: The Corollary to the Main Lemma: a sequence of colored Reidemeister moves which eliminates
a lune. No more lunes are created and only 5 extra crossings are produced. On the other hand one color
is (locally) added. If this color is already present in another part of the diagram then no color is globally
added by way of this sequence of moves. For instance (referring to diagram on the left), if arc colored
3b−2a (bottom right) crosses over arc colored 2b−a (bottom left) in a part of the diagram not displayed
here, then no extra color is globally added - this argument will be used below in the proof of Lemma 2.2.

Lemma 2.2. [Auxiliary Lemma] Figures 4, 5, 6, and 7 indicate the sequences of colored Reidemeister
moves which eliminate the consecutive lunes in colored maximal 3-, 4-, 5-, and 6-tassels (respectively)
without increasing the number of colors, and with less increase in the number of crossings than via the
technique described in the Main Lemma (Lemma 2.1).
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Proof. See Figures 4, 5, 6, and 7.
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Figure 4: A sequence of Reidemeister moves which eliminates the lunes in a colored maximal 3-tassel,
preserving the number of colors and increasing the number of crossings by 5.
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Figure 5: A sequence of Reidemeister moves which eliminates the lunes in a colored maximal 4-tassel,
preserving the number of colors and increasing the number of crossings by 5.

At this point the following remarks seem to be in order. A maximal k-tassel involves k−1 consecutive
lunes. Figure 5 describes a technique for eliminating 3 consecutive lunes; Figure 4 is an application of this
technique to eliminating 2 consecutive lunes. Figure 7 describes a technique for eliminating 5 consecutive
lunes; Figure 6 is an application of this technique to eliminating 4 consecutive lunes.
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Figure 6: A sequence of Reidemeister moves which eliminates the lunes in a colored maximal 5-tassel,
preserving the number of colors and increasing the number of crossings by 6.
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Figure 7: A sequence of Reidemeister moves which eliminates the lunes in a colored maximal 6-tassel,
preserving the number of colors and increasing the number of crossings by 6.

Corollary 2.2. [Counting extra crossings] Consider a maximal n-tassel in a colored diagram. The ap-
plication of Auxiliary Lemma 2.2 in the elimination of the colored lunes of this tassel brings about the
following increase in the number of crossings (n ≥ 6).

• 6k if n = 6k;

• 6k + 4 if n = 6k + 1, or n = 6k + 2;
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• 6k + 5 if n = 6k + 3, or n = 6k + 4;

• 6k + 6 if n = 6k + 5.

Proof. n = 6k + k′ for positive k ≥ 1 and 0 ≤ k′ < 6.
If n = 6k then each sub-tassel σ6

1 is treated as in Figure 7.

If n = 6k+1 treat the σ
6(k−1)
1 part of the n-tassel as in the preceding case (obtaining from it 6(k− 1)

extra crossings), and the σ6+1
1 = σ3

1 · σ4
1 part of it as in Figure 3 (for the σ3

1 part of it and obtaining
another 5 extra crossings) and as in Figure 4 (for the σ4

1 part of it and obtaining another 5 extra crossings).
Analogously for n = 6k + 2 = 6(k − 1) + 4 + 4.

If n = 6k+3 (respect., n = 6k+4) then the σ6k
1 is treated as before giving rise to 6k extra crossings.

The σ3
1 (respect., σ4

1) part of it is treated as in Figure 3 (respect., as in Figure 4) giving rise to another
5 extra crossings.

If n = 6k + 5 the we write σ6k+5
1 = σ6k

1 · σ5
1 and reason analogously. This concludes the proof.

2.1 Review of the Teneva Game ([12]).

Proposition 2.2 below presents a different delunification of a maximal tassel. It is based on a procedure
for breaking down braid-closed tassels i.e., torus links of type (2, n), in order to estimate the minimum
number of colors they admit modulo their determinant (which is n, the number of crossings of the tassel
at stake). This procedure is called the Teneva Game ([12]) and the effect of one iteration of it is called
a Teneva transformation. Roughly speaking, a Teneva transformation is a finite sequence of colored
Reidemeister moves which splits σ2k+1

1 (respect., σ2k
1 ) into two σk

1 ’s (respect., into σk
1 and σk−1

1 ) and
reduces the number of colors to roughly half the original number of colors. A Teneva transformation is
illustrated in Figure 8 for odd n = 5 (left-hand side) and for even n = 6 (right-hand side).
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1
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k
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k
1

3b− 2a
3b− 2a
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Figure 8: σn
1 and how it looks like after a Teneva transformation. The pair on the left illustrates the

odd n instance. Along with each Teneva transformation, the effect on the size of the tassels is displayed:
2k + 1 → k + k whereas 2k → k + (k − 1).

If, after the Teneva transformation has been performed, the remaining σk
1 ’s exhibit k > 4, a new

Teneva transformation can be performed on each σk
1 . This is the Teneva Game. The game ends when

the σk
1 ’s resulting from a Teneva transformation exhibit k ∈ {2, 3, 4} ([12]).

We remark that although the Teneva Game was conceived for a task which a priori had nothing to do
with delunification, it helps in the delunification process of a tassel. At the end of the Teneva Game we
only have maximal tassels of the sort σ±2

1 , σ±3
1 , or σ±4

1 , which can then be dealt with with the methods
described in the Main Lemma 2.1 or in Lemma 2.2. It thus seemed relevant to ascertain which of these
two methods brings about more crossings. The two methods we refer to are (i) the systematic use of the
methods described in Corollary 2.2, and (ii) the use of the Teneva Game first and eventually the use of
the methods in the Main Lemma 2.1 or in Lemma 2.2 to deal with the remaining σ±2

1 ’s , σ±3
1 ’s , or σ±4

1 ’s.

In the set-up of the Teneva Game, the following definitions are relevant.

Definition 2.4. [12][Lower Half of a positive integer; Sequence of lower halves of a positive integer]

7



For any positive odd integer 2k + 1 we set

lh(2k + 1) := k

and call it the Lower Half of 2k+1. The lower half of a positive even integer coincides with the ordinary
half.

Given a positive integer n ≥ 5, we define its Sequence of Lower Halves, notation LH(n), to be the
sequence of iterates of the map lh(. . . ) on n. Its last term is the first iterate to lie in the set {2, 3, 4}.
For instance, LH(5) = (2), LH(6) = (3), LH(7) = (3), LH(8) = 4, LH(9) = 4, LH(10) = (5, 2),
LH(11) = (5, 2), etc (more such calculations at the end of Section 3).

Furthermore, given a positive integer n, we define ln to be the number of entries in LH(n), and call it
the length of the sequence of lower halves of n; and we define tn to be the last entry of LH(n) (necessarily
tn ∈ {2, 3, 4}), and call it the tail of the sequence of lower halves of n.

We now state the main result of the Teneva Game which will be useful below in Section 3.

Theorem 2.1. [12] For any prime p > 7,

mincolp T (2, p) ≤ tp + 2lp − 1

with lp, and tp as defined in Definition 2.4.

Another result from [12] which will be useful below when comparing the two delunification processes
is the following.

Proposition 2.1. [12] Given a positive integer n, consider its 2-adic expansion:

n = 2e1 + 2e2 + · · ·+ 2eNn + 1 with e1 > e2 > · · · > eNn
≥ 0

Then

1. If e1 − e2 = 1 then
ln = e1 − 1 and tn = 3

2. If e1 − e2 = 2 then
ln = e1 − 1 and tn = 2

3. If e1 − e2 > 2 then
ln = e1 − 2 and tn = 4

with ln and tn as defined in Definition 2.4.

2.2 An alternative delunification process based on the Teneva Game.

We now give an alternative delunification of a maximal tassel along with an estimate of the extra
crossings it brings about.

Proposition 2.2. [Counting extra crossings - 2nd approach] Let m be a positive integer, let L be a link
admitting non-trivial m-colorings. Let D0 stand for an m-minimal coloring of L. If D0 is not a lune-free
diagram, we do the following on each maximal tassel in D0. We apply the Teneva Game ([12]) to the
maximal tassel at issue. At the end of the Teneva Game we obtain σi

1’s (where i = ±2, or ±3, or ±4).
We then treat each of these σi

1’s as in the Main Lemma 2.1 or as in Lemma 2.2. The upper bounds on
the increase in the number of the crossings at the end of the process are:

{

6 · 2l − 1 if there are no σ±2
1 at the end of the game

9 · 2l − 1 otherwise

where l is the length of the Lower Half Sequence of the number of crossings of the maximal tassel at issue
(2.4).
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Proof. A Teneva transformation consists of one type I Reidemeister move, producing one crossing, fol-
lowed by a number of type III Reidemeister moves, see Figure 8. Thus, each Teneva transformation
introduces, per se, one extra crossing, associated with the performance of the type I Reidemeister move.

We assume we are dealing with a maximal n-tassel for which we set l = ln.
When this tassel undergoes the Teneva Game it picks up 2k−1 crossings at the k − th sequence of

Teneva transformations (one crossing per type I Reidemeister move performed at this k − th step of the
Teneva Game). The overall increase in the number of crossings is then

l−1
∑

k=0

2k = 2l − 1

Then we have to address the maximal tassels left over in the last step of the Teneva game. These are of
the sort σ±2

1 , σ±3
1 , and/or σ±4

1 . There are 2l maximal tassels in this last step, so if there are no σ±2
1 ’s

at this last step, the increase in the number of crossings is 5 · 2l, leaning on Lemma 2.2. Otherwise the
upper bound in the increase of crossings at this last step is 8 ·2l. Adding to these the number of crossings
introduced before the end of the game, 2l − 1, we obtain the results in the statement. The proof is
concluded.

2.3 Comparing the two delunification processes.

We now compare the approaches described by Corollary 2.2 and Proposition 2.2 to see which one of
them increases the least the number of crossings. Since each one of them resorts to a different parameter
to express the results we have to express these parameters in terms of a common one. Specifically, if we
are dealing with a maximal n-tassel with n = 6k + k′, then Corollary 2.2 expresses results in terms of k
whereas Proposition 2.2 does this in terms of l = l6k+k′ . We will then write down the dyadic expansion
of k and from it extract information on the dyadic expansion of 6k+ k′ and on l6k+k′ . This will allow us
to rewrite the results of Corollary 2.2 and Proposition 2.2 in terms of k.

Proposition 2.3. The approach described in Corollary 2.2 gives rise to less crossings than the approach
described in Proposition 2.2. Thus the approach using the Teneva game gives rise to more crossings than
the other one.

Proof. We let n stand for the number of crossings of the maximal tassel under study, with n ≥ 12, the
other cases being left for the reader. We write n = 6k + k′ with k, k′ positive integers and 0 ≤ k′ < 6.
We will prove that the difference between the situation where the least number of crossings are created
leaning on Proposition 2.2, 6 · 2l6k+k′ − 1, and the situation where more crossings are created leaning
on Corollary 2.2, 6k + 6, is always non-negative. This amounts to proving that 2l6k+k′ − k − 1 − 1/6 is
non-negative. Let

k = 2e1 + 2e2 + · · ·+ 2eNk , with e1 > e2 > · · · > eNk
≥ 0

be the dyadic expansion of k.
The proof will be split into different instances.

• If Nk = 1 i.e., k = 2e, then

6k + k′ = (22 + 2) · 2e + k′ = 22+e + 21+e + k′

and since 2 + e− (1 + e) = 1 then l6k+k′ = 2 + e− 1 = 1 + e, according to Proposition 2.1. Then

2l6k+k′ − k − 1− 1/6 = 21+e − 2e − 1− 1/6 = 2e − 1− 1/6 > 0

• We now assumeNk ≥ 2, such that 1 ≤ e1−e2 ≤ 2 and {eNk
, . . . , e2, e1} ( {0, 1, 2, . . . e1−2, e1−1, e1}

The latter condition implies that

k ≤ −1 +

e1
∑

s=0

2s = −1 +
21+e1 − 1

2− 1
= 21+e1 − 2

9



On the other hand

6k + k′ ≥ 6k > 22k = 22(2e1 + 2e2 + · · ·+ 2eNk ) = 22+e1 + 22+e2 + · · ·+ 22+eNk

so
1 ≤ 2 + e1 − (2 + e2) = e1 − e2 ≤ 2

thus
l6k+k′ ≥ (2 + e1)− 1 = 1 + e1

Then
2l6k+k′ − k − 1− 1/6 ≥ 21+e1 − 21+e1 + 2− 1− 1/6 = 5/6 > 0

• We now assume e1 − e2 > 2. We remark that this implies that {eNk
, . . . , e2, e1} ( {0, 1, 2, . . . e1 −

2, e1 − 1, e1}.

6k+k′ = (22+2)(2e1+2e2+ · · ·+2eNk )+k′ = (22+e1 +2e1)+(22+e2 +2e2)+ · · ·+(2e2+Nk +2eNk )+k′

so
2 + e1 − e1 = 2 and then l6k+k′ = 2 + e1 − 1 = 1 + e1

Then

2l6k+k′ − k − 1− 1/6 = 21+e1 − (2e1 + 2e2 + · · ·+ 2eNk )− 1− 1/6 ≥

≥ 21+e1 −

e1
∑

s=0

2s + 21+e2 + 22+e2 − 1− 1/6 = 21+e2 + 22+e2 − 1/6 > 0

• Finally we assume that k = 2e1 + 2e1−1 + 2e1−2 + · · ·+ 22 + 21 + 1 = 21+e1 − 1. Then

6k + k′ = (22 + 2)(2e1 + 2e1−1 + 2e1−2 + · · ·+ 22 + 21 + 1) + k′ =

= (22+e1 + 21+e1) + (21+e1 + 2e1) + · · ·+ (22+1 + 21+1) + (22+0 + 21+0) + k′ =

= 22+e1 + (21+e1 + 21+e1) + (2e1 + 2e1) + · · ·+ (21+1 + 22+0) + 21+0 + k′ =

= 23+e1 + 21+e1 + · · ·+ 23 + 21 + k′

so
3 + e1 − (1 + e1) = 2 and then 2l6k+k′ = 22+e1

and so
2l6k+k′ − k − 1− 1/6 = 22+e1 − 21+e1 + 1− 1− 1/6 = 21+e1 − 1/6 > 0

This concludes the proof.

We remark that when choosing the Teneva Game for the delunification process it is perhaps not wise
to perform the game to the end. For instance, if the last tassels are σ±2

1 each of them will contribute with
8 extra crossings to the delunification process. Had we stopped at the previous step, then the last tassels
would have been σ±6

1 or σ±5
1 and each of these would have contributed with only 6 extra crossings to the

delunification process. We then propose to use what we call the Truncated Teneva Game which we now
describe. We set out to perform a regular Teneva Game on the maximal tassel under study but after the
performance of a set of Teneva transformations we take the resulting tassels as the final tassels and use
Corollary 2.2 to calculate the number of extra crossings thus obtained. We then ascertain whether it is
worth it to carry on the Teneva Game or not. If it is not we stop the Teneva Game here. At the time of
writing we do not if it is better to use the Truncated Teneva Game.
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At this point it becomes clear that minimizing the number of crossings is another issue in the deluni-
fication process. We now introduce the relevant definitions for dealing with this.

Definition 2.5. [Lune-free crossing number] Let L be a link. The Lune-free crossing number of L,
notation LFC (L), is the minimum number of crossings needed to assemble a lune-free diagram of L.

Definition 2.6. [p-Lune-free crossing number] Let p be an odd prime. Let L be a link admitting non-
trivial p-colorings. The p-Lune-free crossing number of L, notation LFCp (L), is the minimum number
of crossings needed to assemble a lune-free diagram of L supporting a p-minimal coloring.

Definition 2.7. [p-crossing number] Let p be an odd prime. Let L be a link admitting non-trivial p-
colorings. The p-crossing number of L, notation Cp (L), is the minimum number of crossings needed to
assemble a diagram of L supporting a p-minimal coloring.

Figures 9, 10 and 11 provide illustrative examples for these definitions. Furthermore, in Figure 15,
as a result of listing all the lune-free diagrams with 8 crossings, it is shown that LFC (figure 8) = 8 (cf.
Figure 10).

PSfrag replacements
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0

0

1

1

2a− b

2

2

2b− a

0

0
3b− 2a

1

1

1

Figure 9: Illustrating Definitions 2.5, 2.6, and 2.7: LFC (trefoil) = 8 = LFC3 (trefoil), using the result
in [7] stating that no lune-free diagram has less than 8 crossings. Clearly, C3 (trefoil) = 3
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Figure 10: Illustrating Definitions 2.5, 2.6, and 2.7: This figure shows that LFC (figure 8) ≤ 9. It also
illustrates that a lune-free diagram with less crossings may not comply with a non-trivial coloring with
less colors. C5 (figure 8) = 4 as can be seen from the diagram on the left since a crossing number of 3
has to do with a diagram of the trefoil.
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Figure 11: Illustrating Definitions 2.5, 2.6, and 2.7: This figure shows that LFC5 (figure 8) ≤ 10. We
mimic here the technique of Main Lemma 2.1 illustrated in Figure 2 for the σ−2

2 and use the rest of the
construction for the σ2

1 .

3 Lower bounds on the minimum number of colors: a theory of

“Grey Sets”.

Consider a positive integer m > 2 and assume L is a link admitting non-trivial m-colorings. In
order to ascertain if some integer equals mincolm L it is useful to know a lower bound for the minimum
number of colors on that modulus. Things are fairly simple for the prime moduli up to 7 because we
know which are the corresponding minimum number of colors. On the other hand, for larger primes, we
suspect that the coloring structure is more complex as for instance there being distinct links admitting
non-trivial p-colorings with distinct minimum numbers of colors. Thus the knowledge of lower bounds
on numbers of colors is helpful because the upper bounds are automatically set once we (non-trivially)
color a diagram of the link at stake, and in the case of alternating knots of prime determinant, once we
know their crossing numbers ([8, 19]).

It is in this set up that we introduce the grey sets, after recalling the notion ofm-coloring automorphism
([6, 5]).

Definition 3.1. [m-coloring automorphism([6, 5])] Let m be a positive integer.
An m-coloring automorphism is a bijection of the integers modulo m, Z/mZ, such that for any

a, b ∈ Z,
f(a ∗ b) = f(a) ∗ f(b) mod m,

where, for any x, y ∈ Z

x ∗ y := 2y − x.

Furthermore, any m-coloring automorphism is of the form f(x) = µx + λ where µ is a unit from
Z/mZ, and λ is any element from Z/mZ.

Proposition 3.1. Given an integer m > 1, let L be a link admitting non-trivial m-colorings. Let f be an
m-automorphism. Let D be a diagram of L endowed with a non-trivial m-coloring whose distinct colors
are (ci)i=1,...,n.

Then, (f(ci))i=1,...,n are also the distinct colors of a(nother) non-trivial m-coloring of D.
Furthermore, if m = 2k + 1, for some positive integer k then (ci)i=1,...,n * {0, 1, 2, . . . , k} mod m.

Proof. The first statement is clear since an m automorphism preserves the ∗ operation.
For the proof of the second statement, assume (ci)i=1,...,n ⊂ {0, 1, 2, . . . , k} mod m. Then the sum of

any two colors from this set, or twice any color from this set is strictly less than 2k+1. This means that
any coloring condition satisfied by elements from this set, say csi + csj = 2csl , is true modulo any integer.
This is absurd since as remarked in the introduction we only work with links of non-null determinant.

The material developing Definition 3.1 into Proposition 3.1 and other results is found in [6]. We are
now ready to define Grey Sets.
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Definition 3.2. [Grey Sets] Let p(= 2k + 1) be an odd prime.
Let S be a subset of the integers modulo p. S is called a Grey Set (or p-Grey Set, when there is need

to emphasize the modulus) if there is a p-coloring automorphism, f , such that

f(S) ⊆ {0, 1, 2, . . . , k} mod p

That is, a non-trivial p-coloring cannot be assembled with the colors from a p-grey set alone.

Lemma 3.1 proves this is not a vacuous notion.

Lemma 3.1. Let p(= 2k + 1) be an odd prime. If p ≥ 3 (respect., p ≥ 5) then a set with at most two
(respect., at most three) elements modulo p is a p-grey set.

Proof. The strategy of the proof is to find p-coloring automorphisms which alone or composed will map
the potential coloring set into {0, 1, 2, . . . , k}. Then Proposition 3.1 implies that this set cannot be a
coloring set concluding the proof. We will let S denote the potential coloring set.

We first consider the p ≥ 3 instance. Let S = {a} be the set described in the statement. Then
f(S) = {0} with f(x) = x− a.

Let S = {a, b} be the subset described in the statement with 0 ≤ a < b < p. Then g(S) = {0, 1} with

g(x) = (b− a)−1(x− a) mod p

We now let p ≥ 5 and note that the possibilities for the cardinality of S to be 2 or 3 have already
been contemplated. Let then S = {a, b, c} with 0 ≤ a < b < c < p. Then g(S) = {0, 1, c′} mod p with
1 < c′ < p. If c′ ≤ k (where p = 2k+ 1) the proof is complete. Otherwise, assume k+ 1 ≤ c′ ≤ 2k. Then
2k + 2 ≤ 2c′ ≤ 4k. If 2k + 2 ≤ 2c′ ≤ 3k + 1, then set h1(x) = 2x mod p. Then (h1 ◦ g)(S) = {0, 2, c′′}
with 1 ≤ c′′ ≤ k mod p.

Otherwise assume 3k + 2 ≤ 2c′ ≤ 4k. If k = 2l (so that p = 2k + 1 = 4l + 1) then 3l + 1 ≤ c′ ≤ 4l.
With h2(x) = x + l mod p we have (h2 ◦ g)(S) = {l, l + 1, c′′} with 0 ≤ c′′ ≤ l − 1 mod p. Finally, if
k = 2l + 1 (so that p = 2k + 1 = 4l + 3) then 3l + 3 ≤ c′ ≤ 4l + 1. With h3(x) = x + l mod p we have
(h2 ◦ g)(S) = {l, l+ 1, c′′} with 0 ≤ c′′ ≤ l − 2 mod p. The proof is complete.

Definition 3.3. [p-grey Index; rainbow Index] Let p be an odd prime. Let Gp be the largest integer such
that any subset of the integers mod p with Gp elements is a p-grey set. We call Gp the grey index of p.

We write
algmincolp := 1 +Gp

and call it the rainbow index of p.

We have done some brute force attempts at calculating the rainbow index for a number of prime
moduli with the help of computers; the results are displayed in Table 3.1.

prime p 3 5 7 11 13 17 19 23 29 31 37 41 43
algmincolp 3 4 4 5 5 6 6 6 6 6 6 6 6

tp + 2lp − 1 - - - 5 6 7 7 7 8 8 9 9 9

Table 3.1: The rainbow index for a number of primes p. Note the plateau on 6 for primes 17 through
43. The tp + 2lp − 1-line displays upper bounds for the minimum number of colors mod p for T (2, p),
rendering the corresponding algmincolp plausible.

Although the plateau on 6 for the primes 17 through 43 seemed strange at first, we realized there
were already a number of examples that complied with this data. For example, from Theorem 2.1 (see
also [12]) we obtain the following for torus knots of type (2, p) (note that such a torus knot for prime p
has determinant p):

mincolp T (2, p) ≤ tp + 2lp − 1
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where lp and tp are respectively, the length and the tail of the sequence of lower halves for p. This
estimate complies with the algmincolp of 6 for all primes from 17 through 43. We show the calculations
for p = 17 and p = 19 and display the results obtained in the bottom line of Table 3.1.

17 = 2×8+1 = 2×(2×4)+1 LH(17) = (8, 4), l17 = 2, t17 = 4, t17+2l17−1 = 4+4−1 = 7

19 = 2×9+1 = 2×(2×4+1)+1 LH(17) = (9, 4), l19 = 2, t19 = 4, t19+2l17−1 = 4+4−1 = 7

We now stand on firmer grounds in order to look for minimum number of colors for links albeit only
up to modulus 43.

The following questions seem to be in order at this point. We let p = 2k + 1 stand for an odd prime.

1. Can we treat the grey index theoretically? That is, are there other ways of calculating/estimating
it besides brute force?

2. How does G2k+1 evolve with k ?

3. Given a modulus p, is there a knot (link) K such that mincolpK = algmincolp ? If there is a
Common p-Minimal Sufficient Set of Colors is its cardinality algmincolp ?

4 Algorithms and computational results.

According to Conway [4], links can be divided into two basic classes: algebraic and non-algebraic. Alge-
braic links (numerator closures of algebraic tangles) can be obtained from elementary tangles 0, 1, and
−1 using three operations for the derivation of algebraic tangles: sum, product, and ramification. A
basic polyhedron [4, 13, 14, 2, 9] (or a lune-free diagram [7]) is a link diagram without two-sided regions
(bigons). As a graph, it is a 4-valent, 4-edge connected, at least 2-vertex connected graph without bigons.
The main difference between basic polyhedra and the geometrical polyhedra is that the geometrical poly-
hedra has to be 3-vertex connected, and basic polyhedra may be 2-vertex connected. A bigon collapse
(or bigon contraction) is the operation that can be used in order to distinguish algebraic links from non-
algebraic ones: after complete bigon collapse, an algebraic link collapses to a closure of the tangle 1, and
every minimal (with respect to the number of crossings) diagram of a non-algebraic (or polyhedral) link
collapses into some basic polyhedron.

The first problem is the derivation of basic polyhedra. This problem was solved for n ≤ 12 crossings
by T.P. Kirkman [13, 14]. J.H. Conway used basic polyhedra for the derivation of knots and links
with n ≤ 11 crossings and for the Conway notation, where polyhedral links are derived by substituting
crossings in basic polyhedra by algebraic tangles. A. Caudron [2] added the missing basic polyhedron 12E
to Kirkman’s list of basic polyhedra. Hence, the complete list of basic polyhedra with n ≤ 12 crossings
contains one basic polyhedron 6∗ with n = 6 (Borromean rings), one basic polyhedron 8∗ (knot 818),
one basic polyhedron with n = 9(knot 940), three basic polyhedra 10∗-10∗∗∗ with n = 10 (where among
them the only knot is 10123 = 10∗), three basic polyhedra 11∗-11∗∗∗ with n = 11 and 12 basic polyhedra
12A-12L with n = 12 crossings. Derivation of basic polyhedra with more than n = 12 crossings became
possible thanks to the use of the computer program ”plantri” written by G. Brinkmann and B. McKay
[1]. In the program LinKnot [9] we provide the list of basic polyhedra with n ≤ 20 crossings, which
contains 19 basic polyhedra with n = 13, 64 with n = 14, 155 with n = 15, 510 withn = 16, 1514 with
n = 17, 5145 with n = 18, 16966 with n = 19, and 58782 with n = 20 crossings.

According to Theorem 1.1, every knot K admitting non-trivial p-colorings has a p-minimal diagram
which is lune-free. Hence, for the exhaustive derivation of such colorings we implemented the following
algorithm:

Algorithm 1:

1. take a basic polyhedron B which is a knot;

2. make all crossing changes in B;
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3. recognize all knots represented by diagrams obtained in (2) and select among them diagrams rep-
resenting K;

4. make all p-colorings of these diagrams and find the coloring with the smallest number of colors;

5. apply (1)-(4) to all basic polyhedra (in ascending order), until the first diagram of K which supports
mincolp(K) is obtained.

In this paper we applied this algorithm to all basic polyhedra with n ≤ 16 crossings. For all compu-
tations we used the program LinKnot [9].

This and the next algorithm guarantee the exact computation of the numbers LFCp(K) and Cp(K).
Notice that by the reduction of the number of colors “by hand” we can never be sure that we obtained
exact values of these numbers. E.g., knot 73 with p = 13 and mincolp(73) = 5 is represented in [16] (Fig.
10) with a lune-free diagram supporting mincolp (73) = 5 with n = 18 crossings has LFCp(73) = 16,
supported on the lune-free diagram 16110∗ − 1.1.1.1.− 1.1.− 1.− 1.− 1.1.1.− 1.1.− 1.1.− 1 (Fig. 1).

Figure 12: Lune-free diagram 16110∗− 1.1.1.1.− 1.1.− 1.− 1.− 1.1.1.− 1.1.− 1.1.− 1 of the knot 73 with
n = 16 crossings. Hence, LFCp(73) = 16.

The main difficulties for the application of this algorithm are the enormously large size of the com-
putations (e.g., in order to find the lune-free diagram for the knot 72 we need to make crossing changes
in all basic polyhedra up to 1595∗, select 4805 lune-free diagrams representing 72 and check them for
mincolpK), and the problem of when the algorithm finishes, i.e., step (5). For mincolpK we know that
algmincolp ≤ mincolpK. Hence, if in step (3) we obtain a number of colors equal to algmincolp we
know that we reached mincolpK. However, we don’t know if for every knot K mincolpK = algmincolp,
i.e., that do not exist knots for which mincolpK > algmincolp. Therefore, in Table 4.1 we selected only
knots for which we are sure we obtained mincolpK, because for them mincolpK = algmincolp. The
other possibility to confirm mincolpK on lune-free diagrams is to find any diagram of K which supports
mincolpK = algmincolp and which, usually, has the smaller number of crossings Cp(K) < LFCp(K)
than the lune-free diagram with the same property. In this case, thanks to Corollary 2.1 we know that
there exists a lune-free diagram of K which supports mincolpK = algmincolp.

The other algorithm for finding arbitrary diagrams of a knot K supporting mincolpK is even more
complicated, because it works with all diagrams of K, and not just with the lune-free diagrams.

Algorithm 2:

1. take an arbitrary knot diagram D;

2. make all crossing changes in D;

3. recognize all knots obtained in (2) and select among them diagrams representing K;

4. make all p-colorings of these diagrams and find the coloring with the smallest number of colors;

5. apply (1)-(4) to all diagrams (in ascending order), until the first diagram of K which supports
mincolp(K) is obtained.
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Certainly, because the number of different diagrams given by crossing changes of the knot K is
enormously large, this algorithm is almost impossible for the practical application, especially because
even small changes in diagrams representing K can result in different number of colors. E.g., the knot
K = 41 = 2 2 has C5(41) = 4, because its mincol5(41) = 4 is supported on its minimal diagram. Let’s
consider two non-minimal diagrams of K, D1 = (−1, 1, 1, 1) 2 and D2 = (1,−1, 1, 1) 2, which differ one
from the other only in that two first crossings changed their places. The number of colors necessary for
coloring D1 is 5, and for D2 is 4 (Figure 13).

Figure 13: (a) Minimal diagram of the knot 41 = 2 2 supporting mincol5(41) = 4; (b) non-minimal
diagram of the same knot colored with 5 colors; (c) non-minimal diagram of the same knot colored with
4 colors.

Question: Is the knot 41 the only knot supporting mincolp(K) (p ≥ 5) on its minimal diagram?

K Con Lune− free diagram p mincolp(K) LFCp(K)

41 2 2 111∗ − 1.1.− 1.− 1.1.1.1.− 1.− 1.1.1 5 4 11
51 5 101∗ − 1.− 1.− 1.1.− 1.1.− 1.1.1.1 5 4 10
52 3 2 8∗ − 1.− 1.− 1.1.− 1.1.1.1 7 4 8
62 3 1 2 9∗1.1.1.1.1.1.1.− 1.− 1 11 5 9
63 2 1 1 2 122∗ − 1.− 1.− 1.1.− 1.1.1.1.1.− 1.1.− 1 13 5 12
71 7 1420∗1.1.− 1.1.1.− 1.− 1.1.− 1.1.− 1.− 1.1.− 1 7 4 14
72 5 2 11 5
73 4 3 16110∗ − 1.1.1.1.− 1.1.− 1.− 1.− 1.1.1.− 1.1.− 1.1.− 1 13 5 16
75 3 2 2 122∗ − 1.1.1.1.− 1.− 1.− 1.1.1.− 1.1.− 1 17 6 12
76 2 2 1 2 148∗ − 1.− 1.1.− 1.1.1.1.1.1.− 1.− 1.− 1.1.− 1 19 6 14
82 5 1 2 17 6
942 2 2, 3,−2 1420∗ − 1.− 1.1.1.1.− 1.1.− 1.1.1.− 1.− 1.− 1.1 7 4 14
10128 3 2, 3,−2 5 4
10125 5, 2 1,−2 11 5
10132 2 3, 3,−2 138∗1.− 1.1.1.− 1.− 1.− 1.1.1.− 1.1.1.1 5 4 13
10152 (3, 2) − (3, 2) 11 5
10154 (2 1, 2) − (2 1, 2) 13 5
10161 3 : 2 0 : −2 0 1315∗ − 1.− 1.1.1.1.1.− 1.1.− 1.1.1.1.− 1 5 4 13
11n19 5, 2 2,−2 1211∗ − 1.− 1.− 1.1.1.1.− 1.− 1.1.1.1.− 1 5 4 12
11n135 2 2 : −2 0 : −2 0 1452∗1.1.1.− 1.1.− 1.1.− 1.− 1.− 1.1.1.− 1.1 5 4 14

Table 4.1: This is the list of knots with mincolp(K) supported on the lune-free diagrams, obtained by
using Algorithm 1. Every knot is given by its classical symbol, Conway symbol, p, the lune-free dia-
gram supporting mincolp(K), and with mincolp(K). The knots where the lune-free diagram supporting
LFCp(K) is omitted have such diagram with more than n = 16 crossings.
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Figure 14: Lune-free diagram of the knots (a) 41; (b) 51; (c) 52; (d) 62; (e) 63; (f) 71; (g) 73; (h) 75; (i)
76; (j) 942; (k) 10132; (l) 10161; (m) 11n19; (n) 11n135 with LFCp(K) supported on them.

Figure 15: Lune-free diagram of the knot 41 with n = 8 crossings. Hence, LFC(41) = 8 (compare with
Fig. 9).
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K Con LFC K Con LFC K Con LFC K Con LFC

31 3 8 88 2 3 1 2 11 98 2 4 1 2 14 929 .2.2 0.2 14
41 2 2 8 89 3 1 1 3 10 99 4 2 3 14 930 2 1 1, 2 1, 2 13
51 5 8 810 2 1, 3, 2 13 910 3 3 3 14 931 2 1 1 1 1 1 2 11
52 3 2 8 811 3 2 1 2 12 911 4 1 2 2 14 932 .2 1.2 0 11
61 4 2 9 812 2 2 2 2 12 912 4 2 1 2 14 933 .2 1.2 11
62 3 1 2 9 813 3 1 1 1 2 11 913 3 2 1 3 14 934 8∗2 0 11
63 2 1 1 2 8 814 2 2 1 1 2 12 914 4 1 1 1 2 12 935 3, 3, 3 15
71 7 11 815 2 1, 2 1, 2 12 915 2 3 2 2 14 936 2 2, 3, 2 14
72 5 2 11 816 .2.2 0 11 916 3, 3, 2+ 14 937 2 1, 2 1, 3 14
73 4 3 11 817 .2.2 10 917 2 1 3 1 2 12 938 .2.2.2 14
74 3 1 3 11 818 8∗ 8 918 3 2 2 2 14 939 2 : 2 : 2 0 12
75 3 2 2 11 819 3, 3,−2 9 919 2 3 1 1 2 12 940 9∗ 9
76 2 2 1 2 11 820 3, 2 1,−2 10 920 3 1 2 1 2 13 941 2 0 : 2 0 : 2 0 12
77 2 1 1 1 2 9 821 2 1, 2 1,−2 9 921 3 1 1 2 2 14 942 2 2, 3,−2 11
81 6 2 12 91 9 14 922 2 1 1, 3, 2 12 943 2 1 1, 3,−2 11
82 5 1 2 12 92 7 2 14 923 2 2 1 2 2 14 944 2 2, 2 1,−2 11
83 4 4 12 93 6 3 14 924 2 1, 3, 2+ 13 945 2 1 1, 2 1,−2 11
84 4 1 3 12 94 5 4 14 925 2 2, 2 1, 2 14 946 3, 3,−3 11
85 3, 3, 2 13 95 5 1 3 14 926 3 1 1 1 1 2 11 947 8∗ − 2 0 11
86 3 3 2 12 96 5 2 2 14 927 2 1 2 1 1 2 13 948 2 1, 2 1,−3 12
87 4 1 1 2 11 97 3 4 2 14 928 2 1, 2 1, 2+ 13 949 −2 0 : −2 0 : −2 0 12

Table 4.2: In this table and the next two, we present LFC(K) for each knot K from the Rolfsen tables
[21] (in the classical notation and in Conway’s). From the Conway symbol or its DT code is easy to make
drawings of the corresponding lune-free diagrams.

K Con LFC K Con LFC K Con LFC K Con LFC

101 8 2 15 1022 3 3 1 3 15 1043 2 1 2 2 1 2 14 1064 3 1, 3, 3 15
102 7 1 2 15 1023 3 3 1 1 2 14 1044 2 1 2 1 1 1 2 14 1065 3 1, 2 1, 3 14
103 6 4 15 1024 3 2 3 2 15 1045 2 1 1 1 1 1 1 2 12 1066 3 1, 2 1, 2 1 15
104 6 1 3 15 1025 3 2 2 1 2 15 1046 5, 3, 2 16 1067 2 2, 2 1, 3 15
105 6 1 1 2 14 1026 3 2 1 1 3 15 1047 2 1, 5, 2 15 1068 2 1 1, 3, 3 15
106 5 3 2 15 1027 3 2 1 1 1 2 14 1048 4 1, 3, 2 15 1069 2 1 1, 2 1, 2 1 14
107 5 2 1 2 15 1028 3 1 3 1 2 14 1049 4 1, 2 1, 2 15 1070 2 2, 3, 2+ 15
108 5 1 4 15 1029 3 1 2 2 2 15 1050 3 2, 3, 2 15 1071 2 2, 2 1, 2+ 14
109 5 1 1 3 15 1030 3 1 2 1 1 2 15 1051 3 2, 2 1, 2 14 1072 2 1 1, 3, 2+ 14
1010 5 1 1 1 2 14 1031 3 1 1 3 2 14 1052 3 1 1, 3, 2 15 1073 2 1 1, 2 1, 2+ 14
1011 4 3 3 15 1032 3 1 1 1 2 2 15 1053 3 1 1, 2 1, 2 15 1074 2 1, 3, 3+ 15
1012 4 3 1 2 14 1033 3 1 1 1 1 3 12 1054 2 3, 3, 2 15 1075 2 1, 2 1, 2 1+ 14
1013 4 2 2 2 15 1034 2 5 1 2 14 1055 2 3, 2 1, 2 15 1076 3, 3, 2 + + 16
1014 4 2 1 1 2 15 1035 2 4 2 2 15 1056 2 2 1, 3, 2 15 1077 2 1, 3, 2 + + 15
1015 4 1 3 2 14 1036 2 4 1 1 2 15 1057 2 2 1, 2 1, 2 14 1078 2 1, 2 1, 2+ + 15
1016 4 1 2 3 15 1037 2 3 3 2 14 1058 2 2, 2 2, 2 15 1079 (3, 2) (3, 2) 15
1017 4 1 1 4 14 1038 2 3 1 2 2 15 1059 2 1 1, 2 2, 2 15 1080 (3, 2) (2 1, 2) 15
1018 4 1 1 2 2 15 1039 2 2 3 1 2 15 1060 2 1 1, 2 1 1, 2 14 1081 (2 1, 2) (2 1, 2) 14
1019 4 1 1 1 3 13 1040 2 2 2 1 1 2 14 1061 4, 3, 3 16 1082 .4.2 13
1020 3 5 2 15 1041 2 2 1 2 1 2 14 1062 2 1, 4, 3 15 1083 .3 1.2 13
1021 3 4 1 2 15 1042 2 2 1 1 1 1 2 14 1063 2 1, 2 1, 4 15 1084 .2 2.2 13

Table 4.3: LFC(K) for each knot K from the Rolfsen tables [21] (cont’d).
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K Con LFC K Con LFC K Con LFC K Con LFC

1085 .4.2 0 13 10106 3 0 : 2 : 2 0 15 10127 4 1, 2 1,−2 13 10148 (3, 2) (3,−2) 13
1086 .3 1.2 0 12 10107 2 1 0 : 2 : 2 0 14 10128 3 2, 3,−2 12 10149 (3, 2) (2 1,−2) 12
1087 .2 2.2 0 13 10108 3 0 : 2 0 : 20 13 10129 3 2, 2 1,−2 11 10150 (2 1, 2) (3− 2) 12
1088 .2 1.2 1 12 10109 2.2.2.2 14 10130 3 1 1, 3,−2 13 10151 (2 1, 2) (2 1,−2) 13
1089 .2 1.2 1 0 12 10110 2.2.2.2 0 15 10131 3 1 1, 2 1,−2 12 10152 (3, 2) − (3, 2) 14
1090 .3.2.2 15 10111 2.2.2 0.2 15 10132 2 3, 3,−2 11 10153 (3, 2) − (2 1, 2) 13
1091 .3.2.2 0 14 10112 8∗3 13 10133 2 3, 2 1,−2 12 10154 (2 1, 2) − (2 1, 2) 12
1092 .2 1.2.2 0 14 10113 8∗2 1 12 10134 2 2 1, 3,−2 12 10155 −3 : 2 : 2 13
1093 .3.2 0.2 15 10114 8∗3 0 13 10135 2 2 1, 2 1,−2 13 10156 −3 : 2 : 20 11
1094 .3 0.2.2 15 10115 8∗2 0.2 0 12 10136 2 2, 2 2,−2 11 10157 −3 : 2 0 : 2 0 12
1095 .2 1 0.2.2 14 10116 8∗2 : 2 13 10137 2 2, 2 1 1,−2 12 10158 −3 0 : 2 : 2 13
1096 .2.2 1.2 15 10117 8∗2 : 2 0 12 10138 2 1 1, 2 1 1,−2 12 10159 −3 0 : 2 : 2 0 11
1097 .2.2 1 0.2 15 10118 8∗2 : .2 12 10139 4, 3,−2 − 1 13 10160 −3 0 : 2 0 : 2 0 12
1098 .2.2.2.2 0 15 10119 8∗2 : .2 0 13 10140 4, 3,−3 11 10161 3 : −2 0 : −2 0 12
1099 .2.2.2 0.2 0 15 10120 8∗2 0 :: 2 0 15 10141 4, 2 1,−3 11 10162 −3 0 : −2 0 : −2 0 13
10100 3 : 2 : 2 15 10121 9∗2 0 12 10142 3 1, 3,−2 − 1 12 10163 8∗ − 3 0 11
10101 2 1 : 2 : 2 15 10122 9∗.2 0 13 10143 3 1, 3,−3 11 10164 8∗2 : −2 0 11
10102 3 : 2 : 2 0 15 10123 10∗ 10 10144 3 1, 2 1,−3 12 10165 8∗2 : .− 2 0 12
10103 3 0 : 2 : 2 14 10124 5, 3,−2 11 10145 2 2, 3,−2 − 1 12 - - -
10104 3 : 2 0 : 2 0 13 10125 5, 2 1,−2 13 10146 2 2, 2 1,−3 11 - - -
10105 2 1 : 2 0 : 2 0 14 10126 4 1, 3,−2 13 10147 2 1 1, 3,−3 12 - - -

Table 4.4: LFC(K) for each knot K from the Rolfsen tables [21] (concl).
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