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IGUSA QUARTIC AND BORCHERDS PRODUCTS
SHIGEYUKI KONDO

ABSTRACT. By applying Borcherds’ theory of automorphic forms on bdedh symmetric domains of type 1V,
we give a 5-dimensional linear system of automorphic forfne@ght 6 on Igusa quarti@-fold which induces
an Gg-equivariant rational map of degrdé from Igusa quartic to Segre cubic. In particular we have mat
self-map of Igusa quartic of degréé.

1. INTRODUCTION

The purpose of this paper is to give an application of therfhebautomorphic forms on bounded symmetric
domains of type IV due to Borcherds [B1], [B2]. We considandg quartic 3-fold given by

(1.1) > ai= (fo)z—zl(zgc;*) =0C P

where(z; : - - - : x6) is ahomogenous coordinatelf. It is classically known (Baker [Ba], Chap.V, Dolgachev
[D]) that Igusa quatrtic is the dual variety of Segre cubioRHS defined by

(1.2) sz = fo’ =0.

The symmetry groug of degree 6 naturally acts @dhandsS as automorphisms. Igusa quarfiés isomorphic
to the Satake compactificatiah, /T2(2) of the quotient of the Siegel upper half plafie of degree two by
the 2-congrunce subgroup,(2) of I'y; = Sp(4,Z) (Igusa [I], page 397; also see van der Geer![vG]). The
natural action ofSg(=2 T'y/T'2(2)) on $2/T'9(2) coincides with the above one dh On the other hand, let
M = U(2)%? @ A;(2) be the transcendental lattice of a generic Kummer surfageciged with a smooth
curve of genus 2 and 1éP(M) be a bounded symmetric domain of type IV and of dimensiassociated
with M. Then it follows from Gritsenko, HuleK [Gr][ [GHu] thab, /T'»(2) is isomorphic to the Baily-Borel
compactificatiorD (M) /T 5, wherel'; is a subgroup of the orthogonal groug @) such that QM) /Ty, =
Sg. This isomorphism i$5g-equivariant.

In this paper, by applying Borcherds’ theory, we presenvimarphic automorphic form# g, Usg, ¥o4 On
D(M) of weight 10, 30, 24 which coincide with the Siegel modular forms with HumbentfacgesH,, H,, H5
as zero divisors, respectively (Theorem| 8.6). Moreover we g 5-dimensional linear system of holomorphic
automorphic forms o (M) of weight6 which induces the linear systefhof cubics onZ given by

(1.3) (i —zj)(zp — z1)(@m —2n) ({4, k1, m,n} ={1,...,6})

(Theoren{ 8.8). The linear systefhgives anSg-equivariant rational map of degréé from Igusa quartic to
Segre cubic (Theorem 8]10). Thus we have a rational selfghégusa quartic of degre&s (Corollary[8.11).
Note that Mukai([M] recently found a holomorphic self-maplgfisa quartic of degreg On the other hand,
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Segre cubic is an arithmetic quotient of a 3-dimensionalmerball (see Hunt[H]). This complex ball can be
naturally embedded into a bounded symmetric domain of typand of dimensior6. Recently, by applying
Borcherds theory, the authar [K3] gives a 5-dimensionatepd automorphic forms on the complex ball which
defines the dual map from Segre cubic to Igusa quatrtic.

We use an idea of Allcock, Freitag [AF] in which they gave arbedding of the moduli space of marked
cubic surfaces int@®? by applying Borcherds’ theory. For a given latti¢eof signature(2, n), we consider
vector-valued modular forms with respect to the Weil repngstion of SI(2,Z) on the group ringC[L* /L]
where L* is the dual of L. There are two types of liftings of vector-valued modulamis both of which
give automorphic forms on the bounded symmetric dorif) of type IV associated witll. One is called
Borcherds producor multiplicative liftingwhich is an automorphic form with known zeros and poles. Aapt
one is callechdditive liftingwhich is an automorphic form with respect to the subgroufpefdrthogonal group
O(L) acting trivially on L* /L. Borcherds gives explicit formulae for the Fourier coeéfits of the additive
lifting in terms of the Fourier coefficients of the vectorhwed modular form.

We apply Borcherds’ theory to the latticé = U (2)®? @ AT? of signature(2, 4) instead ofM because\l
hasoddrank5 which makes a difficulty of calculations. We can emldédnto IV as a primitive sublattice which
induces an embedding of the dom&diA/) into D(N). We remark thaD(N) is the period domain of3
surfaces associated with six lines Bh(see Matsumoto, Sasaki, Yoshida [MSY]). We construct aotpimic
forms @4, @19, P39, P4g OND(N) of weight4, 10, 30, 48 as Borcherds products (Theoreém]6.3). By restricting
them toD (M), we get Siegel modular formB,, U3y, U9, mentioned as above(, vanishes orD(M)). For
example, ¥y, is the product[] #2,(7) of the square of even theta constants. We remark thaBtneherds
product®, is also obtained bwdditive lifting (Remark Z.B). Such example was already given by the author in
the case of the moduli space of Enriques surfaces ([K1], Red). On the other hand, to each 2-dimensional
isotorpic subspace iy = N*/N, we associate an automorphic form of weight 10 as additftiedi By
restricting them, we get fifteen automorphic formsB\/) of weight 6 corresponding to fifteen functions
given in [1.3) (Theorern 8.9).

The plan of this paper is as follows. #2], we recall a theory of lattices. Sectioh 3 is devoted to tie®ity
of periods of K'3 surfaces which are double coversR3fbranched along six lines, due to Matsumoto, Sasaki,
Yoshida [MSY]. In sectionl4, we recall a description of thesg quartic as an arithmetic quotient of a bounded
symmetric domain of type IV. Moreover we study the boundamnponents and Heegner divisors (= Humbert
surfaces) on the Igusa quartic. In section 5, we recall thé i&eresentation of S(2,Z) on the group ring
C[N*/N] and calculate its character. We study the 5-dimensionalgade appeared in the Weil representation.
The result will be used to construct additive liftings§ifl. In sectiori B, by using Borcherds products, we show
that there exist holomorphic automorphic forms BV ) of weight 4, 10, 30,48 with known zeros, and in
sectiorl Y, by using additive liftings, we give a 5-dimensilospace of automorphic forms @ V). Finally, in
g8, we discuss automorphic forms on Igusa quartic.

AcknowledgmentsThe author thanks Klaus Hulek and Matthias Schiitt for atle conversations, and
Igor Dolgachev for discussions in Schiermonnikoog 2014padrticular the proof of Theorefn 8J10 is due to
Dolgachev.
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2. PRELIMINARIES

A lattice is a free abelian group of finite rank equipped with a non-degenerate symmetrigyiadebilinear
form(,): L x L — Z. Forr € L® Q, we callz? = z - = thenormof z. For a latticeL and a rational number
m, we denote by(m) the freeZ-moduleL with the Q-valued bilinear form obtained from the bilinear form
of L by multiplication withm. The signature of a lattice is the sighature of the real catadspace. @ R. A
lattice is callecevenif (x,z) € 2Z for all z € L.

We denote by the even unimodular lattice of signatuig 1), and byA,,,, D, or Ej the evermegative
definite lattice defined by the Cartan matrix of typg,, D,, or E respectively. For an integen, we denote
by (m) the lattice of rank 1 generated by a vector with narm We denote byl. & M the orthogonal direct
sum of latticesl. and M, and byL®™ the orthogonal direct sum ef-copies ofL.

Let L be an even lattice and Iét* = Hom(L,Z). We denote by4;, the quotientZ* /L which is called the
discriminant groupof L, and define maps

qL:AL%@/QZ, bL:ALXAL%Q/Z

by qr.(z + L) = (x,x) mod 2Z andbr,(x + L,y + L) = (x,y) mod Z. We callq;, thediscriminant quadratic
formof L andby, thediscriminant bilinear form A lattice is called2-elementanyf its discriminant group is a
2-elementary abelian group. We denotedyyw or ¢4+ the discriminant quadratic form of 2-elementary lattice
U(2), D4 or (£2) respectively. For any 2-elementary latti€e the discriminant formy;, is a direct sum of
u, v, g+. An even 2-elementary lattick is called type | ifq;, is a direct sum of, andv, and type Il if otherwise.
It is known that the isomorphism class of an even indefiniedeZnentary lattice is determined by its signature,
the rank of4;, and its type | or Il.

Let O(L) be the orthogonal group df, that is, the group of isomorphisms bfpreserving the bilinear form.
Similarly O(qz,) denotes the group of isomorphismsAf preservingg;.. There is a natural map

(2.1) O(L) — O(qr)

whose kernel is denoted I§)(L). For more details we refer the reader to Nikulin [N1].

3. SX LINES ON P2 AND K3 SURFACES

Let/y, ..., ¢ be ordered six lines oR? in general position, that is, no three lines meet at one paigtt X
be the double cover @? branched along the sextig + - - - + /. ThenX hasl5 ordinary nodes over the point
pi; = £;N{;. Let X be the minimal resolution ok which is ak 3 surface. ObviouslyX containsl5 mutually
disjoint smooth rational curveB;; which are the exceptional curves oygf, and six smooth rational curves

¢; (1 <14 < 6) which are the proper transforms f Denote by Pi€X) the Picard lattice oX and bySx the
smallest primitive sublattice of Ri&’) containing21 smooth rational curves;;, l;.

3.1. Proposition. (Matsumoto, Sasaki, Yoshida [M$YThe latticeSx is a primitive sublattice of/?(X, Z)
of signature(1,15), S%/Sx = (Z/2Z)° andgs, = u® u @ g+ ® q+. The group Qgs,, ) is isomorphic to
S x Z/2Z, whereGg is the symmetric group of degrée The natural map Q5x) — O(q¢s, ) is surjective.

Proof. The assertion follows from Corollary 2.1.6 and Proposith8.2 in [MSY]. Here we give an another
proof by using Nikulin's lattice theory. First note th&f is the invariant sublattice off?(X,Z) under the
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action of the covering transformation &f — P2. It follows from Nikulin [N2], Theorem 4.2.2 tha$x is an
even 2-elementary lattice of signatute 15) and withgs, = udud gy Sq. Note that there exists a subgroup
F = (Z/27)5 of Ag, on which the restriction ofs, has values if%/2Z, that is,qs, |F is a quadratic form
of dimension5 overF,. Moreovergg, |F' contains a radicalx) = Z/2Z, that is, s is perpendicular to all
elements inF" with respect tdg, , andbg,, induces a symplectic form afi/(x) of dimension 4 ovelF,. Thus
the orthogonal group @s, ) is isomorphic to Spt, Fy) x Z/2Z = S¢ x Z/2Z whereZ /27 is generated by
the involution changing two components & ¢4 and acting trivially onu @ u. The surjectivity of the natural
map QSx) — O(gs, ) follows from [N1], Theorem 3.6.3. O

We call X genericif Sx = Pic(X). Let Ty be the orthogonal complement of PX) in H?(X, Z) which is
called thetranscendental latticef X. Also we denote byVy the orthogonal complement 6fy . It is known
thatgs, = —qn, (e.9. Nikulin [N1], Corollary 1.6.2) and henegy,, = u ® u ® g— ® g—. SinceNx is a
2-elementary lattice of signatur@, 4), the isomorphism class d¥x is determined by its signature ang,
(Nikulin [N1], Theorem 3.6.2). Thus we have

Nx 2U2)% @ AP? = A (-1)2 @ AP

We denote byV an abstract lattice of signatu(@, 4) and withgy = u @& u ® q— @ ¢—. If X is generic, then
Tx = N. We denote by:y € Ay the radical corresponding to(see the proof of Propositidn 3.1).
An elementary calculation shows the following Lemma.

3.2. Lemma. The discriminant groupd ;- consists of the following4 vectors
Type(00) : a =0, #a = 1;

Type(0) : a # 0, gn(a) =0, #a = 15;

Type(1) : o # ki, qn(a) = 1, #a = 15;

Type(10) : a = Ky, #a = 1;

Type(1/2) : qn () = 1/2, #a = 12;

Type(3/2) : qn(a) = 3/2, #a = 20.

Define
D(N) ={[w] e P(N®C) : (w,w) =0, (w,w) > 0}
wherew is the complex conjugate of. It is known thatD(N) is a disjoint union of two copies of a bounded
symmetric domain of type IV and of dimensidn We denote by the group6(N) which acts properly
discontinuously orD(L). It is known that the Baily-Borel compactification of the dieat D(N) /T y is the
coarse moduli space of ordered six linesFN([MSY]).

Now we define the Heegner divisors B V). Fix a vectora € Ay with ¢ (a) # 0 and a negative rational
numbern. Forr € N* with 2 < 0, we denote by the hyperplane iD(V) perpendicular te. We define a
Heegner divisof{(N ), by

N)an = Z rt

wherer runs through all vectors in N* satisfyingr mod N = « and(r,r) = n. For simplicity, we denote
by #(N), the Heegner divisot{(N),,, for n = —1,—1/2 or —3/2 according togy (o) = 1,3/2 or 1/2,
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respectively. Also we denote B (N)1, H(N )3/, or H(N), the union of all(V), wherea runs through

all vectorsa: with gy (o) = 1 (o # kn), 3/2 or 1/2 respectively. The geometric meaning of these Heegner
divisors is known. For example, A generic point#(N); corresponds to six lines such that three points
Pij, Pkl, Pmn are collinear wheréi, j, k,1,m,n} = {1,...,6}. For more details we refer the reader[to [LPS],
Theorem 3.6.

3.3. Reflections. Let r be a(—4)-vector inN with /2 € N*. Then the reflectios, defined by
2(x, )
(r,r)
is contained in QN). The reflectiors,. induces a reflectioh, on Ay associated witlhx = /2 mod N defined

by
3.2) ta(B) = B+ 20N (B, a)a (B € AN).

(3.2) sp(z) =2 — r=x+ (x,r/2)r (r€N)

4. IGUSA QUARTIC AND A BOUNDED SYMMETRIC DOMAIN OF TYPEIV

Let $, be the Siegel upper half plane of degree two and'i¢®2) be the principal 2-congurence subgroup
of I'y = Sp(4,Z). We denote by, /T»(2) the Satake compactification of the quotient/I'>(2). Igusa []
showed thaf, /T (2) can be embedded in® by using theta constants, whose image is a quartic hypacsurf
7 given by the equatiori_(1.1) callddusa quartic(lgusa gave a different form. See [vG]). The boundary of
the compactification consists of fifteen 1-dimensional congmts and fifteen 0-dimensinal components which
correspond to fifteen lines and fifteen points on the Igusatiguay definition £, /T'2(2) is the moduli space
of principally polarized abelian surfaces with a level Bisture.

On the other hand it is known tha, is isomorphic to a bounded symmetric domain of type IV and of

dimension 3 as bounded symmetric domains (&€.gl [vG]). Put
(4.1) M=U(2)%* @ A(2).

Then)M is an even lattice of signatute, 4) and is isomorphic to the transcendental lattice of a ge@nomer
surface associated with a smooth curve of genus two. Define

D(M) ={w] e P(M®C) : (w,w) =0, (w,w) >0}

which is a disjoint union of two copies of a bounded symmaeatneain of type IV and of dimension 3. The
quotientD(M)/O(M) is birational to the moduli space of Kummer surfaces astetiwith a smooth curve
of genus 2.

The discriminant groupdy; = M*/M is isomorphic to(Z/27)* @ Z./47. Let AS@) be the 2-elementary
subgroup ofA ;. ThenAE&} =~ (Z/27)° and the restriction of the discriminant forg; on AESI) has a radical
Z/27. We denote by, the generator of the radical. #f is a generator of the componedt (2) of the
decomposition[(4]1) oM, thenk,; = a/2 mod M. The discriminant bilinear form,, induces a symplectic
form on A§5}/<HM> of dimension4 overFy. Thus the orthogonal group(@y) is isomorphic to Spt, Fy) x
L]27 = S&¢ x /27 whereZ/2Z is generated by the involutionl,,,. Put

OM)={y€OM) : v| Ay =1}, Ty ={yeOM) : y]|Ay ==*1}.
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Obviously we have two exact sequences
1— Ty — OM) — S — 1, 1— OM) — Ty — Z/2Z — 1.

Gritsenko, Hulek[[GHu],§1 gave an explicit correspondence between(Bp and SA3,2);. First we
remark that in the paper [GHu] they considered the lattite-1/2) = U®?@ A;(—1) instead of\/. However
M is obtained fromA/(—1/2) by multiplying the bilinear form by-2, and hence Q/) =~ O(M(—1/2)).
They gave an isomorphism

U:Ty — SOM)NOH (M)
explicitly, where SQM) is the special orthogonal group and @) is the subgroup of QW) preserving a
component of0(M). SinceM has odd rank;-1,, and SQM) generate Q). Since—1,; acts trivially on
D(M) and QM) interchanges two components®f M), we have an isomorphis®, /Ty = D(M)/O(M).
Note thatM* /M = M/2M. By using this fact and the explicit isomorphism given [in [GHwe see that
the image of the principal 2-congurence subgrdyfe) is contained irO(M) N SO(M). Since—1,; € T'y;
represents-14,, and acts trivially orD(M ), we have an isomorphism

$2/T2(2) = D(M)/T .
Now we conclude that Igusa quartitis isomorphic to the Baily-Borel compactificatiadd(M)/I"y, of the
quotientD(M) /T ;.
Next we study boundaries and Heegner divisordgn/) /Ty, .

4.1. Lemma. The discriminant groupd,;/{%14,, } consists of the following8 vectors

Type(00) : a =0, #a =1,

Type(0) : a # 0, qur(a) =0, #a = 15,

Type(1) : qu(a) =1, o # Ky, #a = 15,

Type(10) : o = Ky, #a =1,

Type(3/4) : qu(a) = 3/4, #a =6,

Type(7/4) : qu () = 7/4, #a = 10.
Proof. The assertion follows from a direct calculation. We reméudt the involution—14,, acts trivially on
the 2-elementary subgrouﬁaﬁ) of Ays. In particular—14,, fixes all vectors of typ€00), (0), (1), (10), and

—14,,(0) =a+kpm
if ois of type(3/4), (7/4). O

4.2. Boundary components. We call a subgrouf@” of M anisotoropic sublatticaf the symmetric bilinear
form vanishes ofi". SinceM has the signaturg, 4), the rank of an isotoropic sublattice is at mdsSimilary
we define ansotoropic subspacef A,; as a subgroup on which the discriminant quadratic fegmvanishes.
The dimension of an isotoropic subspace is also at fiost

It is known thatD (M) /I" (=2 $2/IT'2(2)) has fifteen0-dimensional boundary components and fiftéen
dimensional boundary component8-dimensional (resp. 1-dimensional) boundary componeigstively
correspond to primitive isotoropic sublattices of ranKresp. of rank 2) inAM/ moduloI';;. A primitive
isotoropic sublattice of rank 1 (resp. isotoropic subtattof rank 2) inM determines a non-zero isotoropic
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vector (resp. 1-dimensional isotoropic subspaceia. For example, if(e1, e) is a primitive isotoropic
sublattice ofM generated by, e, then(e; /2 mod M, e3/2 mod M) is an isotoropic subspace iy, .

4.3. Lemma. The0-dimensional(resp. 1-dimensional boundary components correspond to non-zero iso-
toropic vectorsresp. 1-dimensional isotoropic subspagds Aj;.

Proof. Sincel’,, acts trivially on isotoropic vectors iA,,, it suffices to see that there exists exadfiynon-zero
isotoropic vectors and 15 isotoropic subspaced jp. The first assertion follows from Lemrha #.1. Moreover
we see that for each non-zero isotoropic veetor A,,, there are 7 non-zero isotropic vectors (including
perpendicular tex. This implies that there are three isotoropic subspacetiriing .. Since there are 15 non-
Zero isotoropic vectors and each 1-dimensional isotorsyiispace contains three non-zero isotoropic vectors,
the number of 1-dimensional isotoropic subspacésisx 3)/3 = 15. O

4.4. Remark. The incidence relation between Q&limensional boundary components andlidimensional
boundary components is call¢tls)s-configurationbecause each-dimensional boundary component is con-
tained in exactly thregé-dimensional boundary components and ekadimensional boundary component con-
tains exactly thre@-dimensional boundary componets (e.g. §e€ [vG]).

4.5. Heegner divisors. Next we define Heegner divisors dn(M) as those orD(L). Letr € M* with
r?2 < 0. Denote byr* the hyperplane irD(M) orthogonal tor. Fix a vectora € Ajys with gys(a) # 0,
a # k) and a negative rational number We define éHeegner divisof{ (M ), by

H(M)am=> 1"

wherer runs through all vectors in M* satisfyingr mod M = « and(r,r) = n. For simplicity we denote
by #H(M), the Heegner divisoH (M), , for n = —1,—-5/4 or —1/4 according togys (o) = 1,3/4 or 7/4
respectively. We also denote Bf(M )1, H(M )34 or H(M )74 the union of alfH (M), wherea runs through
all vectors of typg1), (3/4) or (7/4) respectively. The image of a Heegner divisoDi(l/) /T"), is also called
aHeegner divisor

In Gritsenko, Hulek[[GHu], Lemma 3.2, they proved that ang wectors inM (1/2)* with the same norm
and the same image i, /2) are conjugate under the action of @ (1/2)). It follows that all(—1)-vectors
r € M* with » mod M being of type(1) are conjugate under the action of ). The same statement
holds for (—5/4)- or (—1/4)-vectorsr € M* with » mod M being of type(3/4) or (7/4) respectively.
ThereforeH (M )1 /T nr, H(M )3/4/T n oF H(M)7,4/T 1 has exactly fifteen, six or ten irreducible components
H(M)q/Trr wherea € Ay /{x1} is of type(1),(3/4) or (7/4) respectively (see Lemnia 4.1).

4.6. Remark. In the theory of moduli of abelian surfaces, Heegner digsoe calledHumbert surfacege.qg.
[VG], [GHu]). Let us compare Heegner divisors and Humbertazies. Recall that/ = U(2)%? @ A4,(2) is
obtained fromM (1/2) = U®? @& A, by multiplying the bilinear form by 2. In the notation as InH@], the
Humbert surfaced A of the discriminantA is the image of the Heegner divistif_ 5 ,, onD(M (1/2)) because
they consider the lattice of signatuf&, 2) and hence we should take the opposite sign (see the defioiion
page 476 in[[GHu]). The Heegner divistf_x /» onD(M(1/2)) corresponds to the Heegner divisdr x /4
onD(M). Thus the closure 6f (M )74/T pr, H(M)1/Tar or H(M)3,4/T ar in Baily-Borel compactification
of D(M)/T', is equal to the Humbert surfadé,, H, or Hs5 given in [GHu], [VG], respectively.
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5. THE WEIL REPRESENTATION

In this section we recall the Weil representation assodiati¢h the latticeN = U(2) @ U(2) & A1 & 4
given in§3, and calculate its character. The following Tdble 1 mehas for each vector € Ay of given
type,m; is the number of vectors € Ay of given type with(u, v) = j/2.

00 00 00 00 00 00O 0 O ©0 o0 ©0 o0 1 1 1 1 1 1
v 000 1 10 3/2 1/2 00 0 1 10 3/2 1/2 00 0 1 10 3/2 1/2
mg 1 15 15 1 2 12 1 7 7 1 12 4 1 7 7 1 8 8
m 0 0 0 0 0O O 0O 8 8 0 8 8 0 8 8 0 12 4
10 10 10 10 10 10 3/2 3/2 3/2 3/2 3/2 3/2 1/2 1/2 1/2 1/2 1/2 1/2
v 0000 1 10 3/2 1/2 00 0 1 10 3/2 1/2 00 0 1 10 3/2 1/2

mg 1 15 15 1 0 O 1 9 6 O 10 6 1 5 10 O 10 6
m 0 O O o0 20 12 0 6 9 1 10 6 O 10 5 1 10 6

TABLE 1.

LetT = L , S = 0
0 1 1

SL(2,Z) on the group ringC[A ] defined by

-1 . .
0| ThenS andT generate S(2,Z). Let p be theWeil representatiorof

5. pT)(ea) = VT, p(S)(eq) = L 3T eVl
BEAN
By definition and Tabl&l1, we see thatS?)(e,) = —e,. The action of SI2,7Z) on C[Ay] factorizes to
the one of SI2,7Z/47). The conjugacy classes of 81,7 /47) consist oftE, +5, +T, £T2, ST, (ST)?. Let
xi (1 <4 < 10) be the characters of irreducible representations @¢2SL/47Z). One can easily compute the
character table of Si2,Z/47) by using GAP[[GAP]. For the convenience of the reader we dieecharacter
table (TabléR) of S[2,Z/4Z).

5.1. Lemma. Letx be the character of the Weil representationsdf(2, Z/4Z) on C[Ay]. Let

10
X = Z My X
i=1

be the decomposition gfinto irreducible characters. Then

X = X3+ 5x4 + 5x6 + 6x9 + 10x10-

Proof. By definition [5.1) and Tablé]1, we see that trag¢ = 26, tracd —F) = —25, tracdS) = 0,
tracg—S) = 0, tracdT) = —8y/—1, tracé —T) = 8y/—1, tracdT?) = 0, tracd —T2) = 0, tracg ST) = —1
and trac¢(ST)?) = 1. The assertion now follows from the Table 2. O
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E -E S -S T -T T —-T? ST (ST)*
x1 1 1 1 1 1 11 1
xo 1 ~1 ~1 ~1 ~1 11 1
x3 1 -1 V=1 —y/=1 V=1 —y/—-1 -1 1 -1 1
xa 1 -1 —/~1 V=1 /-1 V-1 -11 -1 1
xs 2 2 0 0 0 0 2 2 -1 -1
x6 2 -2 0 0 0 0 -2 2 1 -1
x7 3 3 1 1 -1 -1 -1 -1 0 0
xs 3 3 -1 —-1 1 1 -1 -1 0 0
xXo 3 -3 —/-1 -1 /-1 —/~-11 -1 0 0
xio 3 -3 V-1 /-1 —y/-1 /-1 1 -1 0 0
TABLE 2.

5.2. Definition. Let IV (resp. W) be the subspace ii[A ] on which the character of $2,7Z) is given by
5x4 (resp. x3). Note that the action of @) on C[Ax] commutes with the action of $2,7). Therefore
O(gqn) acts onW andW. In the sectio]7 we will construct a 5-dimensional spacevbdmorphic forms on
D(N) associated withV (For Wy, see Remark713).

5.3. Definition. Let I be a 2-dimensional isotropic subspaceAf with respect togy. Note that! is a
maximal isotoropic subspace. LEtbe the subspace ofy generated by andxy. Take a vectoryy € Ay

satisfying gy () = 3/2 andby(ap,c) = 0 for anyc € I. Note thatag is unique modulol” because
I+ )V = TFs,. Define

My ={ap+c:cel}, M_={a+c+rn:cel}

and

Oy = Z €g — Z 656@[14]\[].

BeM4 BeM_

This definition is the same as the one given in the case of tlilingpace of plane quartic curves in [K2].

5.4. Lemma.
(i) p(S)(0v) = —/—10y andp(T")(0y) = —/—16y. In particular 6y is contained iniV.

(i) For g e V withgn(B) =1, ts(6yv) = —6y wheretg is the reflection associated with
Proof. (i) If 8 € My, thengn(8) = 3/2, and hence(T')(6y ) = —v/—10y. Next by definition [(5.11),
v—l1 —omy/=1 by (5,3 —omy/=T by (5,3
5 \BeM, BEM_

We denote by\/gii1 - ¢5 the coefficient ok in the equation(5]2). 1§ € M, thenby (5, 8) = 1/2for 8 € My
andby (6, B3) € Z/27Z for B € M_. Hencecs = —2% — 22 = —23, Similary if § € M_, thencs = 23.
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Now assume) ¢ M. If § € V, we can easily see that = 0. Hence we assume& ¢ V. First consider
the casehy (6, xy) € Z/2Z. SinceV+ = V, there existsy € V such thatoy(v,6) ¢ Z/2Z. In this case
I=6"NITU{y+a:ac NI} Thisimplies that

Z e 2mV=1bNn(8,8) _ Z e 2mV/=1bn(6.8) _ ).
peM BeM_
Finally if by (6, kn) ¢ Z/2Z, thend = o+ 0’ andby (8, kn) € Z/27Z. Then this case reduces to the previous
case.

(i Let 5 € V. ThenpB = c+ kn,c € 1. If ¢ € I, then(B,a0 + ¢’) = 1/2. Therefore the reflectioty
defined by the equatiofi (3.2) interchangés and/_ and hence the assertion follows. O

5.5. Lemma. There exist exactly fifteelxdimensional isotropic subspaces.ny.

Proof. Recall that each non-zero isotropic vectorc Ay, there exist exactly 7 non-zero isotropic vectors
(includinga) perpendicular tax (see Tablgll). It follows that there are three maximal tpiathtropic subspaces
containinga. Since the number of non-zero isotropic vectors is 15, thabar of maximal totally isotropic
subspace i$5 x 3/3 = 15. O

Thus we have 15 vectots, in .
5.6. Lemma. As a Qqn)(= S x Z/2Z) module, IV is irreducible.

Proof. It is well known that there are no irreducible representatiof G4 of degree2, 3,4. If W' is an irre-
ducible representation abs and dimWW’ > 2, then dimWW’ > 5. Hence it suffices to see that there are no
1-dimensional invariant subspaces under the actioBgf Assume thatl’ is a direct sum of 1-dimensional
representations. A direct calculation shows that therst éixe linearly independent vectafs, , . . ., 6y, where
Vi(i=1,...,5)isasubspace ol y generated by a 2-dimensional isotropic subspace:andt follows from
LemmdX5.4, (ii) thatV is a direct sum of alternating representations. In padicahy 1-dimensional subspace
is invariant under the action @g. However any vectofy, as above is not invariant under the action&.
This is a contradiction. O

In the sectiofn]7 we will construct a 5-dimensional space traorphic forms orD(N) associated withil.

5.7. Correction. The proof of Lemma 9 in [K3] is not complete. We should add aesgce "There exist five
lineraly independent vectoa;)%, Vg " Then the same proof as in Lemmal5.6 holds in this case, too.
6. BORCHERDS PRODUCTS

Borcherds productare automorphic forms oR (V) whose zeros and poles lie on Heegner divisors. First of
all we recall the definition of automorphic forms. Define
D(N)={w e N®C : (w,w)=0, (w,&) > 0}.

Then the canonical map(N) — D(N) is aC*-bundle. Letl’ be a subgroup of V) of finite index. A
holomorphic function

®:D(N)— C



IGUSA QUARTIC AND BORCHERDS PRODUCTS 11

is called a holomorphic automorphic form of weightwith respect tol" on D(N) if ® is homogeneous of
degree—k, thatis,®(c - w) = ¢ *®(w) for ¢ € C*, and is invariant under.
Let~ be a representation of $ Z) on C[Ay]. A vector-valued modular form of weightand of typey is
a holomorphic map
f = {fa}aeAN cHY — (C[AN]
satisfying
f(AT) = (er + )" v(A) f(7)
b

whereA = [ © J € SL(2,Z). We assume thaft is holomorphic at cusps.
C

In this section, we will show that there exists a holomorpdnitomorphic form of weight, 10, 30 or 48
whose zero divisor is the Heegner divisH(V )., H(N)3/2, H(N)1 or H(N )/, respectively. To show
the existence of such Borcherds products, we introduceliseraction spaceonsisting of all vector-valued
modular forms{ f, }aca, Of weight3 = (rank(V)/2) with respect to the dual representatighof the Weil
representatiop given in [5.1):

* —mv/—1{a, * V-1 T — a
(6.1) pr(T)(ea) = ™V T Ney, pi(S)(ea) = —Yg D7 VT
BEAN

In other words,

(6.2) mwnwmﬂW%m,mam=”?ﬁZWm“Ww>
B

We will apply the next theorem to show the existence of sucitBerds products.

6.1. Theorem. (Borcherds[[B2], Freitad [F], Theorem 5.8)linear combination
Z CanM(N)an (Can €Z)
OCEAN7 n<0
of Heegner divisors is the divisor of an automorphic formZ(iV) of weightk if for every cusp form
f = {fa(T)}aeANv fa(T) = Z aa,nezw\/__lm—
neQ
in the obstruction space, the relation
Z aa,—n/2ca,n =0

acApn, n<0
holds. In this case the weightis given by

k= Z ba,n/2ca,—n

(XEAN, nez

whereb,, ,, are the Fourier coefficients of the Eisenstein series wigrctnstant termhy o = —1/2 andb, 0 =0
for o # 0.
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In the following we study the divisory_ . 4 . ;<o Can(N)a,n Wherec, , depends only on the type of
«. Recall that there are 1, 15, 15, 1, 20 and 12 elementkirof types(00), (0), (1), (10), (3/2) and(1/2),
respectively (see Lemnia 8.2). We consider vector valuedutaoébrms

(6.3) foo, fo, f1, fio, f325 fuy2

where eachf; is the sum of thef,, asa runs through the elements dfy of typet. Then we obtain a 6-
dimensional representation

p*:SL(2,Z) — GL(V)
induced by[(6.11) wher& is a 6-dimensional vector space (for simplicity, we use tiraes notatiorp*). Then
a direct calculation shows that is given by

10 0 0 0 0
01 0 0 0 0
00 -1 0 0 0
6.4 (T =
(6.4) PM=100 0 -1 o 0
00 0 0 v=I 0
00 0 0 0 —v=1
11 1 1 1 1
15 -1 -1 15 3 -5
. V=1l -1 -1 15 -3 5
(6.5) p(S) =

8 1 1 1 1 -1 -1
20 4 -4 =20 0 O
12 -4 4 =12 0 O

6.2. Lemma. The dimension of the space of modular forms of welgahd of typep™ is 2. The dimension
of the space of Eisenstein forms of weigland of typep* is also2. In particular there are no non-zero cusp
forms in the obstraction space.

Proof. The dimension of the space of modular forms of wegjand of typep* is given by
d+ dk/12 = a(e™ T 2p(8)) — a((e™ TP (ST)) ) — alp*(T))
([B2], section 4,[[F], Proposition 2.1). Hekte= 3 is the weight,
d=dim{z e V:p*(—E)z = (-1)kz}
and

a(A) = Za
A

where \ runs through all eigenvalues of and\ = ¢*™V=1¢, 0 < a < 1. Sincep*(S?) = p*(—F) and
p*(S%)(eq) = —eq for any a, we haved = 6. A direct calculation shows that(e™~1%/2p%(S)) = 3/2,
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a((e™=IR/3 p*(ST))~1) = 2 anda(p*(T')) = 2. Thus we have proved the first assertion. It follows frofn [F],
Remark 2.2 that the space of Eisenstein forms of weight 3 &tygpe p* is isomorphic to
{zeV : p"(T)(x) =z, p"(~E) = (~1)*x}
which has dimension 2. Therefore the second and hence tdeagertions hold. O
We need Fourier coefficients of Eisenstein series of weighith respect tgp*. Sincep* is trivial on the
principal congurence subgroup of levglthese Eisenstein series are linear combiantions of thelatd ones.

For (a1,a2) € (Z/NZ)?, let G,(fl’”)(n N) be the Eisenstein series of weightind levelV corresponding to
(a1, a2) (e.g. see[F]). Then

(6.6) (er + d) G ((ar +b)/(er + d), N) = G2 (1, N)
whereA = (a Z) € SL(2,Z). Note that
C

G (7, N) = (~1)FGE*) (r, N).

PutEy = GV (7,4), By = GV (1,4), B3 = GS"V(1,4), By = G7 (1,4), BEs = G¥(1,4), Es =
G§2’1)(T, 4). It follows from the equation[(6l6) that the actions’Bfand S on these forms are as followd:
fixes 1 and sends

FEy - F3 — By — BEs — FEy, FEg — —Fg,

andS sends, up te?,
E1 — E2 — —El, E3 — E5 — —E3, E4 — —E6 — —E4.

An elementary calculation shows that Eisenstein forms dflate3 and of typep* are given by

foo =aFE1 + z‘(a; ) (B2 + E3 + E4 + E5),
Jo="bE + Z‘(15QT_6)(E2 + E3 + Ey + E5),
fi= W(Ez — E3+ Ey — E5) + bE,
fio = i(a;—b) (B2 — B3 + B4 — E5) + akj,
fij2 = M(E2 By — E4 +iF5),
fije = M(@ +iBs — By — iF),

wherea, b are parameters. On the other hand, the Fourier seriééabf”)(r, N) are known (e.g. Freita@ [F],
§1) . It follows that the Fourier series &f; are given by :

(27T)

Ei = {~i+dig+--},

i(2m)3

{0+ 4g" 2 8¢ + 160+,

Ey =



14 SHIGEYUK| KONDO

By — i(227;)3{z-q1/4 —4g"? —8ig¥t 4 16q + - - ),
B, = (277) Sl G4 4 4qV? - 8q3/4+16q+-~},
Es = “25)3{—iqu4——4quz—FShﬁ/4+—16q+~~-L
Eg=——" (277) {2i¢"* +0-q+---}.
Puta = —% andb = 0. Then we have
foo=—1/2+10g+---, fo=120g+---, f1=30g""+---,
Fro=4¢"7+ - f30=10¢" 4o, fip=48¢%" +

Combining Lemm&a6]2 and Theorém6.1, we have

6.3. Theorem. There exists a holomorphic automorphic fof on D(N) with respect to a subgroup of
O(N) of finite index whose weigltis 4, 10, 30 or 48, and whose zero divisor is the Heegner divi$tiV)
H(N)3/2, H(N)1 or H(N ), o respectively

KN

7. ADDITIVE LIFTINGS

For an even latticé of signature(2, n), theadditive liftingis a correspondence from vector-valued modular
forms of weightk and typep to automorphic forms of weight + n/2 — 1 on D(L) with respect to(ND(L).
By using additive liftings, we construct a 5-dimensionahap of automorphic forms oR(N) with respect to
Iy = O(N).

Let W be the subspace ifi[Ay] defined in[(5.2). Recall that@y) acts onC[A x| which commutes with
the action of SI2,Z). Hence Qqy ) acts onWW. First we consider the following special vectorslin. Let
n(7) be the Dedekind eta function. Then

n(r+ 1D =—V=1-9(n)%,  n(-1/7)"" = —V/=17" - y(r)"%.

Therefore, ford € W, n(7)'® - 0 is a vector-valued modular form of weight 9 and of tyme By applying
additive lifting ([B1], Theorem 14.3), we have an automacptorm Fy on D(N) of weight 10 associated to
n(7)186. Let A,(D(N),Tn) be the space of automorphic forms Bf V) of weight k& with respect tal' y.
Recall that Qg ) acts onl¥/, and also acts naturally dd(N). Additive lifting is an Qg )-equivariant map

(7.1) W — A19(D(N),T'n)

by sending) to F,. We denote by¥ the image of the mafi (7.1).
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7.1. Lemma. W is a5-dimensional space on which(@y) acts irreducibly.

Proof. It suffices to see that the mdp (I7.1) is non-zero. Then thetasséllows from the Schur's lemma. We
use Theorem 14.3 in [B1]. We fix an orthogonal decomposifior= U(2) & U(2) ¢ A; & A;. Letey, f1 be

a basis of the first factol/ (2) with e? = f2 = 0, (e1, f1) = 2, and letes, f> be a basis of the secorid(2)
with e2 f2 =0, (e2, f2) = 2. Leta; be a basis of the third factot; anday a basis of the fourth factor. Put
z=erandy’ = fi1/2and letK = 21 /Zz = U(2) ® Ay ® Ay C N. ObviouslyAy = U(2)*/U(2) & K*/K.
For simplicity, we denote b¥ for xt mod N € Ax. We consider the Fourier expansion aroundince

() =gt

for 0 = (c,) € W, the initial term of

189 _ Z € Z Ca 27r\/7n’r

aEAN nEQ

> eacad®

a€AN, gn(a)=3/2
Now we consider a special vectdr = e3/2 + fa + a1/2. Since(\,\) = 3/2 > 0, A has positive inner
products with all elements in the interior of the Weyl chamb&so note that\ is of type (3/2). We choose
0 = (co) € W satistyingey # 0 andc; 7 7oy = 0 (for example, we take the isotoropic subspdaenerated

by f1/2 ande, /2, and considel” generated by andky = a1 /2 + az/2. Then the support oy is

{(fi+a)/2, (e2+4ai)/2, (fi+e2+ai)/2}iz12,

and hencdy, satisfies the condition). Now it follows from [B1], Theorem.3 that the Fourier coefficient of
e2™V=1\2Z) in the lifting Fy of n(7)'80 is equal to

ex(W2/2) - VT oo ((ea/2 4 M) 2) - 2TV THAPIA) < (3/4) = ey A 0.
Hence the lifting ofy(7)'®4 is non-zero. O

7.2. Theorem. Letdy € W be as in LemmB&4l Let Fy be the additive lifting of)(7)!'® - 6y,. ThenFy, is an
automorphic form orD(N) of weight10 with respect td" . MoreoverFy, vanishes exactly along

> HWN),

OZEV, qN(a):l

with multiplicity one.

Proof. Let o« € V with gy () = 1. Recall that the reflection, is represented by a reflection acting on
D(N) wherer € N with r2 = —4 andr/2 mod N = « (see the equation§ (3.1}, (B.2)). It now follows
from Lemmd5.4 and the @y )-equivariance of the additive lifting (7.1) thay, vanishes alon@{ (), where

a € V with gy(a) = 1. Therefore the product of fifteeRy has weight150 and vanishes along Heegner
divisorsH(N ), (a € V,gn(a) = 1,0 # k) with at least multiplicity 3 and along Heegner divisd#(N),,
with at least multiplicity15.
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On the other hand, consider the automorphic fofms®3, of weight 4, 30 in Theorem 6.3. Ther® - 3,
has weight150 and vanishes along Heegner divisi§N ), (o« € V,qn(a) = 1,a # ky) with exactly
multiplicity 3 and along the Heegner divisét(NV),, with exactly multiplicity 15. Then the ratio

[[Fv /(@i 23)
v
is a holomorphic automorphic form of weightand hence it is constant by Koecher principle. O

7.3. Remark. Let W, be the 1-dimensional subspaceGAy| on which the character of $2,7) is given
by x5 (LemmdX5.1). Let), be a generator dfi/y. Then by definition,

p(S)(60) = V=16, p(T)(6o) = V—1bp.

Hencen(7)° - 6, is a vector-valued modular form of weight 3 and of typeMoreover we see thaf,,, (6y) =
—0y wheret,,, is the reflection associated with,. Similar argument as above shows that the additive lifting
Fy of n(7)® - 6y is an automorphic form of weight 4 and vanishes alét(@V )., . Moreover by considering the
ratio Fy/®4, theadditive lifting Fy coincides with théBorcherds producf4 in Theoreni 6.B.

8. AUTOMORPHIC FORMS OND(M)

In this section we show the existence of some automorphing@nD (M ) by restricting the automorphic
forms onD(NN) obtained in the previous sections. First we fix an embeddiny/anto N as follows. Fix a
decomposition

N=U22)aU(2)s A & A

Let a; (resp. as) be a basis of the first (resp. second) compongntn the above decomposition. Then we
considerM as a sublattice ofV generated by/(2) @ U(2) anda; — as. Note that) is the orthogonal
complement ofi; + ag and is primitive inN. This embedding induces an embeddipg\/) C D(N).

8.1. Lemma. Any~ € 6(M) can be extended to an isometry gfacting trivially on Ax. In other words,
O(M) c O(N).

Proof. This follows from Proposition 1.5.1 in Nikulin [N1]. O

8.2. Lemma. The restriction ofH ()1, H(N )32 or H(N)y /2 t0D(M) isH(M )1, 2H (M )74 OF 2H (M )34
respectively.

Proof. Forr € N, write r = r; + % (a1 + az) wherer; € M* andm € Z. If r/2 € N*, thenr/2 € M*.
Now assume? = —4,7/2 € N* andr mod N # xy. Then if (r1)? > 0, then the hyperplane;- does not
meetD(M). If (r)? < 0, then(r1)? = —4 +m? = —4,-3. The casen = 1 ((r1/2)? = —3/4) does not
occur because the valuesgf; are0, 1,3/4,7/4 mod2Z. Hence we havér,)? = —4 andm = 0. Thus the
restriction of H(N); to D(M) is H(M);. Similarly in case that/2 ¢ N* andr? = —2 or r2 = —6, then
m # 0 because the norm of any vector Mf is divided by4. If > = —6 andm = 2, thenr; € M with
r? = —2. This is a contradiction. Hendg;)? = —1if 2 = —2 and(r1)? = -5 if »> = —6. Note that
the hyperplanea; anday onD(N) cut the same hyperplare; — az)* on D(M). Hence the restriction of
H(N)3/2 Or H(N )12 t0D(M) is 2H(M )74 OF 2H (M )34 respectively. O
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Recall that the 2-elementary subgroﬂﬁl) of A, together withy,, is a5-dimensional quadratic space over
F5 with the radicals ;.

8.3. Lemma. (1) Let! be a2-dimensional isotoropic subspace 4f; and letV be the subspace generated by
I and k. Then the restriction of the Heegner divisor

> H(N),

a€V, qn(a)=1, aFkn

to D(M) is of the form
(8.1) > H(M),

BEVL, am (B)=1, B#kK M

whereV; is a 3-dimensional subspace ﬂiﬁ) such thath,;|V; = 0.
(2) The Heegner divisof8.1]) contains exactly lines through thre®-dimensional components in a line.

Proof. (1) The same argument in the proof of Lemma 8.2 shows thatrbjeqiions of three non-isotoropic
vectors inV’ not equal ta<y generate a 3-dimensional subsp&ge_ A§5} satisfyingb,s|V1 = 0.

(2) Let 51, 52, B3 be non-isotoropic vectors ifr; not equal tox,; and let! be the maximal isotoropic
subspace o¥/. Since din¥; = 3 andby/|Vi = 0, ks is contained inVy, that is, 81 + 2 + B3 = k-
For eachs; (i = 1,2,3), there are exactly 7 non-zero isotoropic vectors perpeiati¢o 3;, and hence there
exist exactly three 2-dimensional isotorpic subspdcds, I/’ perpendicular t@;. Note thatl, I/, I/’ contains

a non-zero isotoropic vectat; + ;. Denote by, 2/, ¢ the corresponding lines respectively. Then three lines

2T

meet at one point correspondingAp+ s and the Heegner divis@i (M) s, containst, ¢;, ¢/ . O

?Y

Now, by restricting the automorphic fornds;, @19, @45 in Theoren 6.8 td (M), we have the following:

8.4. Corollary. There exists automorphic fornis,, ¥y, or W45 onD(M) of weight30, 10 or 48 whose zero
divisor onD (M) is H(M )1, 2H(M )74 OF 2H (M )3, respectively

Proof. The restriction toD (M) is not identically zero, and hence it is an automorphic forithwespect to a
subgroup of QM) of finite index by Lemm@&8]1. Now the assertion follows fronmiraad 8.2. O

8.5. Remark. The restriction ofb, to D(M) is identically zero.

Leta € Ay be of type(7/4) and letr be in M with (r,r) = —4 andr/4 mod M = «. Then the reflection,
defined by

2(x,r)
(r,r)
is contained in QV). Sincer/2 mod M = k), the action ofs, on Ay, is equal to—14,, (see the proof
of Lemmal4.1l). Therefore, is contained iny;. Moreover the set of fixed points a&f. is the hyperplane
r+. Hence the projectioD(M) — D(M)/T'y; is ramified along the Heegner divisor of tygpe/4) with
ramification degree two. Finally ldt,, be the square root @f ;5. Thus we have proved the following Theorem.

Sp(z) =2 — r=a+ (z,r/2)r

8.6. Theorem. The zero divisors 0¥ 3, W1g Or Wou oND(M) /T iSH(M )1 /T pr, H(M )7/4/T ar or H(M )34 /T 1t
respectively.
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8.7. Remark. The automorphic from¥ sy, U1y or ¥54 are known as Siegel modular forms (seel[v@}g, ¥

or ¥y, coincides with the Siegel modular form with the same Humberface as its zero divisor. This follows
from Koecher principle. For exampld;o coincides with the produdf] 62,(7) of the square of even theta
constants. The divisat (M) 1/Tar, H(M)7/4/T s Of H(M)3,4/T s o0nD(M) /Ty consists of fifteen, ten or
six irreducible components, and coincides with the HumbertaceH,, H, or Hs, respectively (see Remark

[4.8).

Finally we consider the restriction of the 5-dimensionadcgil’ on D(N) to D(M). Let(xy : -+ : xg)
be a homogenous coordinate®f. Then Igusa quarti@ and Segre cubi& are given by the equations (1L.1),
(1.2), respectively. We note that Igusa quartic is alscedalCastelnuovo-Richimond quartic (see Dolgachev
[D], page 478).

The symmetric grou®s naturally acts oi¥ andS as automorphisms. It is classically known that the dual
variety ofZ is S ([Ba], Chap.V).

Recall that the boundary of Satake’s compactificatfgnT'»(2) consists of fifteen 1-dimensional and 15
0-dimensional components. The fifteen 1-dimensional corefgoare the fifteen lines dhdefined by

(8.2) (a:a:b:b:—a—b:—a—0)

and its permutations (see [VG], Theorem 4.1). Each lineainstthree 0-dimensional components. For exam-
ple, the line defined by (8.2) contains three 0-dimensionaigonents

(I:1:1:1:-2:-2), (1:1:-2:-2:1:1), (=2:—-2:1:1:1:1).

The singular locus af is nothing but the union of fifteen lines.

On the other hand, the fifteen differenegs-xz; (i # j) are modular forms of weight 2 each of which defines
an irreducible component df 4 ([vG], 8). Each divisor defined by; — x; contains three lines meeting at one
point. For example, the divisor defined by — x5 contains three lines

(@:a:b:b:—a—b:—a—">), (a:a:b:—a—b:b:—a—"b), (a:a:b:—a—b:—a—0>:b)

which meetaf{2 : 2: —1: —1: —1: —1). Moreover the divisor defined by the following modular forfn o
weight6

(8.3) (i — ) (wx — w1)(@m —2n) ({64, K, 1,mn} = {1,...,6}).

contains 7 lines containing one of the three 0-dimensiooaiponents on a line. For example; — x2)(x3 —
x4)(x5 — z6) contains 7 lines passing a 0-dimensional component onribédi: a : b:b: —a—b: —a —b).
Combining this with LemmB 813, we have the following Lemma.

8.8. Lemma. There exists a bijective correspondence between the fifteegner divisors given iff.1]) and
the fifteen divisors defined I§8.3).

Let 4 be the automorphic form of weightwith the Heegner divisoH (N),, (Theoren6.8). The ratio
Fy /®4 is a holomorphic automorphic form of weightwhose zero divisor is

> H(N),

a€V, gn(a)=l,a#kN

(see Theorem 7.2).
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8.9. Theorem. The linear system obtained by the restriction of fiftégr/ @, to D(M) coincide with the one
defined by the modular forms given {8.3)

Proof. Note that the restriction of eadh, /®4 to D(M) is an automorphic form of weight 6 with respect to a
subgroupl’ of O(M) of finite index (Theoren 613, Theordm 7.2, Lemmad 8.1). UnHerabove identification
given in Lemma 88, this form and the corresponding autommorform (8:3]) have the same weiglitand the
same zero divisor (Theordm 6.3, Theofend 7.2). Hence theicta by Koecher principle. O

Finally we discuss the geometric meaning of the linear syslegenerated by 15 cubics given (&3]). Let
P* be the subspace &° defined by>" z; = 0. Consider( as a linear system di’*. Its base locus consists
of the 15 lines defined by; = x; = z, = ;. For(x;) € P5, if we considerz; as an affine coordinate of
P!, then fifteen functions given iff.3]) induce an&g-equivariant isomorphism from the moduli spaeg of
ordered six points oP! onto Segre cubi& (see [D], Theorem 9.4.10, [DO], page 15). This implies tiat t
linear systemC onP* defines ar&4-equivariant rational mag from P* to S whose general fiber is a rational
curve. The proof of the following theorem is due to I. Dolgeeh

8.10. Theorem. The linear systenf gives anSg-equivariant rational magp fromZ to S of degreel 6.

Proof. The base locus of the rational mé@p: P* — S consists of 15 lines through two points in the set of six
points

(8.4) pi=(@i: - rag) : =5, 2; =1(j #1)}ti=1,.6-
Note that these six points are in general position. Take atpoic P* such that 7 point®, p1, ..., ps are
in general position. Then there is a unique rational normaleC of degreet passing through, p1, . .., pg

(IGHa], p.179, p.530). Each cubic ifrhas singularities at six poinig. Therefore ifp is contained in a cubic
in £, thenC' is contained in this cubic. This implies th&tis a fiber of the mapp. Recall that the singular
locus ofZ is the union of fifteen lines(([viG], Theorem 4.1). Since themintsp, ..., ps do not lie on Igusa
quarticZ, a general’ intersectsZ at4 x 4 = 16 points. Hence the resrtictiop of ® to Z has degree 16. [

Since the dual variety of Segre cubic is Igusa quariicl([Ba$ have the following Corollary.
8.11. Corollary. The rational mapp : Z — S induces a rational self-map @f of degreel 6.

8.12. Remark. The author([K3] gave a 5-dimensional linear system of holghiz automorphic forms on a
3-dimensional complex ball by applying Borcherds theorpaatfomorphic forms. This linear system gives the
dual map from Segre cubic to Igusa quartic. The author doeknuav the geometric meaning of the spé?(?e

of automorphic forms o®(N).
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