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Abstract

H-type Lie algebras were introduced by Kaplan as a class of real
Lie algebras generalizing the familiar Heisenberg Lie algebra h3. The
H-type property depends on a choice of inner product on the Lie al-
gebra g. Among the H-type Lie algebras are the complex Heisenberg

Lie algebras b%"“, for which the standard Euclidean inner product

not only satisfies the H-type condition, but is also compatible with the
complex structure, in that it is Hermitian. We show that, up to iso-
metric isomorphism, these are the only complex Lie algebras with an
inner product satisfying both conditions. In other words, the family
b%"“ comprises all of the complex H-type Lie algebras.
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1 Introduction

Since their introduction by Kaplan ﬂg], H-type Lie algebras, and their cor-
responding nilpotent Lie groups, have attracted interest as a natural gener-
alization of the classical real Heisenberg Lie algebra h® of dimension 3 and
the corresponding real Heisenberg group H3. The Heisenberg group is a
motivating example in many areas of mathematics, and in many cases, facts
about the Heisenberg group carry over into the H-type setting. For instance,
H-type groups carry a natural structure as sub-Riemannian manifolds, and
the analysis of their sub-Laplacians has attracted considerable interest. As
a sampling, we mention @, é, B, , B, ]

The H-type condition for a (real) Lie algebra g is dependent on a choice
of inner product (-,-) (i.e. a positive definite, symmetric, bilinear form) on
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g, so it is really a property of the pair (g, (-,-)). For example, in b3, the
natural Euclidean inner product will do.

In this note, we focus on the complex Heisenberg (or Heisenberg—Weyl)
Lie algebras f)%"“, which, when considered as real Lie algebras and equipped
with their natural Euclidean inner products, are likewise H-type. But these
Lie algebras also carry a complex structure, and the Euclidean inner product
is Hermitian with respect to this structure, which is a natural compatibility
condition. As such, analysis on the complex Heisenberg groups H%"H can
take advantage of all the tools of complex geometry, together with the many
results for H-type groups mentioned above. However, the purpose of this
note is to show that this harmonious relationship between these structures
is essentially unique to these specific Lie algebras (and their respective Lie
groups).

As an application, we refer to [4], in which we studied a property known
as strong hypercontractivity for the hypoelliptic heat kernel on a stratified
complex Lie group. An essential hypothesis for this result was that the heat
kernel should satisfy a logarithmic Sobolev inequality. For most Lie groups,
it remains an open problem to determine whether this inequality holds, but
it follows from the results of [3, 6] that the inequality holds in every H-type
Lie group. Thus, the strong hypercontractivity theorem proved in [4] holds
in particular for any complex Lie group which, when considered as a real Lie
group, is also H-type. The result of the present note implies that these Lie
groups are precisely the family H?C"H. As this is a relatively limited class of
examples, we see this as further motivation to try to extend the logarithmic
Sobolev inequality beyond the H-type case.

2 Definitions and examples

We begin by recalling the definition of an H-type Lie algebra, as formulated
in [2, Definition 18.1.1]. (Kaplan’s original definition [g] is equivalent, but
slightly less convenient for our purposes.) Let g be a real finite-dimensional
Lie algebra equipped with an inner product (-,-) : g x g — R. Let 3 be the
center of g, and let b = 3. For z € 3 and u € v, define J,u as the unique
element of v satisfying

(Jyu,v) = (z,[u,v]) forall v e v. (1)

It is clear that each J, : v — v is a linear map, and moreover z +— J, is
linear in z.



Definition 1. We say that (g, (-,-)) is H-type if the following two condi-
tions hold:

1. [o,0] C3

2. For each z € 3 with ||z|| =1, J, : v — v is an isometry with respect to
<'7 >

We observe that an H-type Lie algebra is necessarily nilpotent of step
2. A simply-connected Lie group is said to be H-type if its Lie algebra is
H-type in the above sense.

Now suppose that g is a complex Lie algebra, whose complex structure
we denote by i. If we wish to equip g with a real inner product, it is natural
to demand some compatibility with the complex structure. Specifically, we
would like the inner product to be Hermitian, i.e., for z,y € g we have
(iz,iy) = (x,y). We may then define J in terms of this inner product by ().
We observe for later use that, as a consequence of the Hermitian property
of the inner product, we have for o, 5 € C and u, z € g,

Jaz(Bu) = aBJ u. (2)

That is, J,u is complex linear in z and conjugate linear in wu.
The question of interest in this note is when both of the above properties
hold, motivating the following definition.

Definition 2. A complex H-type Lie algebra is a pair (g, (-,-)), where
g is a complex Lie algebra and (-, -) is an inner product on g, such that the
following two conditions hold:

e The inner product (-, -) is Hermitian with respect to the complex struc-
ture of g.

e Forgetting the complex structure on g, the pair (g, (-,-)) is H-type in
the sense of Definition [

We can likewise define a complex H-type Lie group as a connected
and simply connected complex Lie group G equipped with a Hermitian left-
invariant Riemannian metric g which, when viewed as an inner product on
the Lie algebra of G, satisfies the above conditions.

Example 3. The complex Heisenberg Lie algebra of complex dimen-

sion 2n + 1 is the complex Lie algebra f)%"“ generated (over C) by the

basis of the 2n + 1 vectors {z1,y1,...,%n,Yn, 2}, with the bracket defined



by [zk,yr] = z, and for j # k, [x;,yx] = [2;, 2] = [y, 2] = 0. We may equip
E)%"H with the real inner product (-, -) that makes all of x, iz, yk, iyk, 2, iz
orthonormal; it is clear that this inner product is Hermitian. The center }
of f)?c"H is spanned (over C) by z, so we clearly have [v,v] = 3. Defining J
as above, it is easy to compute

Joxp =y Sy = -1 Jaxp = =iy Jiyp = 1T

so that J, is an isometry. Moreover, every element w € 3 is of the form

w = az for some a € C, and ||w| = |a], so using (2] we see that J,, is an
isometry whenever ||w| = 1. Thus (hZ**',(-,-)) is a complex H-type Lie
algebra.

Of course, the complex Heisenberg Lie algebras are a very special family
within the far larger class of all complex Lie algebras. Likewise, the class of
H-type Lie algebras, although fairly restrictive, is still much broader than
this specific family. For instance, there exist H-type Lie algebras having
centers of any given real dimension [§], while the complex Heisenberg Lie
algebras all have centers of real dimension 2.

Nevertheless, we shall now prove that the complex Heisenberg Lie alge-
bras are, up to isometric isomorphism, the only complex H-type Lie algebras.

3 Main result

Theorem. Let (g,(-,-)) be a complex H-type Lie algebra as defined above.
Then for some n, (g,(-,-)) is isometrically isomorphic to h%"“ with its
standard Hermitian inner product.

In particular, complex H-type Lie algebras are completely classified by
their dimension. We also immediately obtain the analogous classification of
complex H-type Lie groups.

Proof. Suppose (g, (-,-)) is complex H-type, and let v, 3 and J be defined as
above.
We recall the well-known Clifford algebra identity for H-type Lie alge-
bras:
Jodw + T, = =2(z,w) I, z,w€}. (3)

To prove this, first consider the case when w = z and ||z|| = 1. Then for
any u,v € v, we have

<Jz2u,v> = (z,[Ju,v]) = — (2, [v, JLu]) = — (Jv, J,u) = — (v, u)



since J, is an isometry. So J? = —I. The general case follows by scaling
and polarization.

We begin by showing that 3 must have complex dimension 1. If not, then
we can find z,w € 3 with ||z]| = [Jw|| =1 and (z,w) = (iz,w) = 0. Then by
@) and () we have

0==2(z,w) I = J,Jy+ Ju:
0=—=2(iz,w) I = JizJy + Judir = i, Jy + Jyid, = i(J,Jw — JwJ2).

Thus Jy,J, = J,Jy, = 0, contradicting the requirement that J,, J,, be isome-
tries.

Therefore, 3 is the complex span of a single unit vector z. We recursively
construct an orthonormal basis for v over R, of the form {zy,izk, yr, iy :
k = 1,...,n}. Suppose {zk,izk, yr,iyx : k = 1,...,m — 1} have been
constructed and do not span v. Let x,, be any unit vector orthogonal to all
of xg, ixk, yk, iy for k = 1,...,m. Then set y,, = J,x,,. We have |lyn| = 1,
and a few straightforward computations verify that {zy,izg, yk,iyx : k =
1,...,m} are now orthogonal. When the process terminates, we have the
desired orthonormal basis.

To compute brackets, for j # k we have

(2, [zr, yr]) = (Lo, k) = (Y> Uk) =
(z, [$k7$3]> (J2 $k,33j> (Y, x >
< [ykyyjb < Zyk7yj> < S2Yks J2 33]> <yka$j> =0
(2, [k, y5]) = (Jer, y5) = (Yrs y5) = 0.

Similar computations show that if z is replaced by iz, all of the above ex-
pressions vanish. Each bracket is in 3 and hence a complex scalar multiple
of z, so we have

[Tk, Y6l = 2, [zK, 5] = [Yk, y5] = [28, y5] = 0.

The corresponding brackets for iz, iy, etc, follow from the complex bi-
linearity of the bracket. These are precisely the same relations as for the
complex Heisenberg Lie algebra 52”“, and the basis is orthonormal, just
as for the standard inner product on b%"“. Therefore, the unique complex
linear map g — h2"+1 sending x1,¥y1,-..,Tn, Yn, 2 € @ to the standard basis
for h2"+1 (described in Example [B]) is an isometric isomorphism of complex
Lie algebras. O
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