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ACTIONS OF THE N-STRAND BRAID GROUPS ON THE FREE GROUP

OF RANK N WHICH ARE SIMILAR TO THE ARTIN REPRESENTATION

TETSUYA ITO

Abstract. We classify an action of the n-strand braid group on the free group of rank n which
is similar to the Artin representation in the sense that the i-th generator σi of Bn acts so that it
fixes all free generators xj except j = i, i+1. We determine all such representations and discuss
knot invariants coming from such representations.

1. Introduction

Let Bn be the braid group of n-strands, with standard generators σ1, . . . , σn−1 and let Fn be
the free group of rank n generated by x1, . . . , xn. Throughout the paper, we consider right actions.

The Artin representation ρArtin is a standard action of Bn on Fn, given by

(xj)ρArtin(σi) =





xixi+1x
−1
i (j = i),

xi (j = i+ 1),

xj (Otherwise).

A remarkable feature of ρArtin is that ρArtin(σi) preserves all free generators of Fn except xi and
xi+1, and that ρArtin(σi) sends xi and xi+1 to words on {xi, xi+1}. In this paper we study an
Aut (Fn)-representation of the braid group Bn having the same property.

For i = 1, . . . , n− 1, we say an automorphism τ̃ : Fn → Fn is i-local if τ̃ (xj) = xj for j 6= i, i+1
and τ̃ (〈xi, xi+1〉) = 〈xi, xi+1〉 where 〈xi, xi+1〉 represents the subgroup of Fn generated by xi and
xi+1. In other words, τ̃ ∈ Aut (Fn) is i-local if and only if there exists τ ∈ Aut (F2) such that

τ̃ = id ∗ τ ∗ id : Fn = Fi−1 ∗ F2 ∗ Fn−i−1 → Fi−1 ∗ F2 ∗ Fn−i−1 = Fn.

We say τ is the core of τ̃ , and write τ̃ = T i(τ).

Definition 1.1. An Aut (Fn) representation of the braid group Θ : Bn → Aut (Fn) is local if
Θ(σi) is i-local for all i = 1, 2, . . . , n− 1.

For a local Aut (Fn) representation Θ, we denote the core of Θ(σi) by τΘi (or simply τi), and
we will say that (τ1, . . . , τn−1) ∈ Aut (Fn)

n−1 defines Θ.
A local Aut (Fn) representation with τ1 = τ2 = · · · = τn−1 was introduced by Wada [9] and

called a Wada-type representation. In [6, Corollary 1.2] we determined all Wada-type represen-
tations (actually we have classified more general objects, called a solution of certain variant of
set-theoretical Yang-Baxter equation). We proved that, up to certain natural symmetries, there
are exactly seven types of Wada-type representations as Wada conjectured in [9].

In this paper we give a classification of local Aut (Fn)-representations: In Theorem 2.1 we list up
all local Aut (F3)-representations, and give an oriented, labelled graph whose edge-path describes
all local Aut (Fn)-representations.

One motivation of studying and introducing a local Aut (Fn) representation comes from knot
theory. By imitating the presentation of knot groups using the Artin representations [1], one
obtains a group-valued invariant of knots and links from Wada-type representations [9]. By gener-
alizing the Artin representation in a different manner, Crisp and Paris constructed a group-valued
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2 TETSUYA ITO

invariant of knots and links [3], and in [5] the author used a quandle variant of Crisp-Paris’ con-
struction to define a quandle-valued knot invariant. However, there are few applications of these
invariants. Unfortunately, the classification of Wada-type representations shows that in most cases
the group-valued invariants from Wada-type representations are determined by the fundamental
group of the double branched covering of knots, so they are less interesting.

We can use a local Aut (Fn)-representation to construct a group-valued invariant in a sim-
ilar manner (Proposition 4.1). Unfortunately, our classification again shows that group-valued
invariants from local Aut (Fn)-representations are nothing new, because they coincide with the
group-valued invariants from a Wada-type representation of the same type (see Theorem 4.1).

Nevertheless, the classification and idea of local Aut (Fn) representations are interesting in its
own right. First, a local Aut (Fn) representation can be seen as a generalization of Yang-Baxter
equation. Second, an idea of local Aut (Fn) representations to produce knot invariants can be
investigated further, although the local Aut (Fn) representation themselves cannot produce new
interesting invariants. In the theory of quandles or state-sum invariants (see [2]), one treats all
crossing in the same manner, in the sense that we assign the relations or weights of the same
form at each crossings. It is an interesting problem to try to generalize such invariants by giving
different types of relations or weights at each crossing. Finally, investigating a homomorphism
from Bn to Aut (Fn) would be interesting and will help us to understand relationships between
these two groups.

2. Classification of local Aut (Fn) braid representations

2.1. Statement of the Classification theorem. For τ, κ ∈ Aut (F2) and i, j ∈ {1, . . . , n− 1},
T i(τ)T j(κ) = T j(κ)T i(κ) if |i − j| > 1, so (τ1, . . . , τn−1) ∈ Aut (F2)

n−1 defines a local Aut (Fn)
representation if and only if (τi, τi+1) defines a local Aut (F3) representation for each i. Hence to
classify local Aut (Fn) representations, it is sufficient to consider the case n = 3. From now on,
we study the problem when (τ, κ) ∈ Aut (F2)

2 defines a local Aut (F3) braid representation.
Let F2 be the free group of rank two generated by {a, b}. For a pair of automorphisms (τ, κ) ∈

Aut (F2)
2 that defines a local Aut (F3) representation Θ, let A,B,C,D be the reduced words

representing τ(a), τ(b), κ(a), κ(b), respectively. We will often say reduced words (A,B,C,D) define
a local Aut (F3) braid representation.

To give a precise statement of the classification, first we observe symmetries of local Aut (F3)
representation derived from symmetries of the free groups and the braid groups, which we will call
natural symmteries.

In this paper we use the following notation. For words V and W we will write V ≡ W if they
are the same as words, and will write V = W if they represents the same element in the free group.
Thus, abb−1 6≡ a but abb−1 = a, for example.

Inverse symmetry:
Let τ ′ and κ′ be the core of Θ(σ−11 ) and Θ(σ−12 ) respectively. Then (τ ′, κ′) also defines a
local Aut (F3) representation Θ− which we call the inverse representation of Θ.

Swap symmetry:
Let Aσ be the word over {a±1, b±1} obtained by interchanging the letters a and b. For
example, Aσ ≡ b−2ab if A ≡ a−2ba. Bσ, Cσ and Dσ are defined similarly. Then
(Dσ, Cσ, Bσ, Aσ) also defines a local Aut (F3) representation Θσ which we call the swap-
dual representation of Θ.

Backward symmetry:

Let
←−
A be a reduced word obtained by reading A backward. For example,

←−
A ≡ a2bab−1

if A ≡ b−1aba2.
←−
B ,
←−
C and

←−
D are defined similarly. Then (

←−
A,
←−
B,
←−
C ,
←−
D) defines a local

Aut (F3) braid representation
←−
Θ which we call the backward-dual representation of Θ.
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It is directly checked that these three symmetries commute each other. That is, (Θ−)σ, the
swap-dual of the inverse Θ− coincide with the (Θσ)−, the inverse of the swap-dual Θσ. So we
simply write Θ−σ to represent the swap and inverse dual of Θ, for example. Thus for each
local Aut (F3) representation Θ, there may be eight different local Aut (F3)-representations by
considering natural symmetries.

The following is the main result of this paper.

Theorem 2.1 (Classification of local Aut (F3) braid representation.). Up to natural symmetries,
reduced words (A,B,C,D) on {a±1, b±1} defines a local Aut (F3) braid representation if and only
if (A,B,C,D) is one of the following.

(T ) (A,B,C,D) = (a, b, a, b).
(T ′) (A,B,C,D) = (a, b−1, a−1, b).

(Ar – 1) (A,B,C,D) = (arba−r, a, arba−r, a) (r ∈ Z≥0).
(Ar – 2) (A,B,C,D) = (arba−r, a, arb−1a−r, a−1) (r ∈ Z≥0).
(Ar – 3) (A,B,C,D) = (arb−1a−r, a−1, a−rb−1ar, a−1) (r ∈ Z≥0).
(B – 1) (A,B,C,D) = (b−1, a, b−1, a).
(B – 2) (A,B,C,D) = (b−1, a, b, a−1).
(C – 1) (A,B,C,D) = (ab−1a, a, ab−1a, a).
(C – 2) (A,B,C,D) = (ab−1a, a, aba, a−1).
(C – 3) (A,B,C,D) = (aba, a−1, aba, a−1).
(D – 1) (A,B,C,D) = (a−1b−1a, b2a, a−1b−1a, b2a).
(D – 2) (A,B,C,D) = (aba−1, b2a−1, a−1b−1a, b2a).
(D – 3) (A,B,C,D) = (a−1b−1a, b2a, a−1ba, a−1b2).
(D – 4) (A,B,C,D) = (aba−1, b2a−1, a−1ba, a−1b2).

It is convenient to express the classification of local Aut (Fn) representations by using an ori-
ented graph Γ in Figure 1. For each vertex v of Γ, we assign an element of Aut (F2), τv : F2 → F2

by indicating a pair of reduced words (τv(a), τv(b)). Two vertices v and w are connected by an
oriented edge e oriented from v to w if and only if (τv, τw) defines a local Aut (F3) representation.
Up to natural symmetries, (τv, τw) appears in the list in Theorem 2.1 so for each edge, for conve-
nience we assign a labeling to indicate the correspondence to the list in Theorem 2.1: for example,
←−−−−−
(Ar − 1) means the backward-dual of the local Aut (F3)-representation (Ar − 1) in Theorem 2.1.

Up to natural symmetries, the set of local Aut (Fn) representations is identified with the set
of oriented edge-path of length (n − 2) in Γ: For an oriented edge-path γ of Γ, assume that γ

passes the vertices v1, v2, . . . , vn−1 in this order. Then (τv1 , . . . , τvn−1
) ∈ Aut (F2)

n−1 defines a
local Aut (Fn) representation Θγ . Conversely, for a local Aut (Fn) representation Θ, take a vertex
vi (i = 1, . . . , n− 1) of Γ so that τΘi = τvi i = 1, . . . , n− 1. If we take γ an oriented edge-path γ

of Γ so that γ passes the vertices v1, . . . , vn−1 in this order, then Θ = Θγ .
For each connected component of Γ, we assign the labeling {T, T ′, Ar(r ∈ Z≥0), C,D} and we

call a local Aut (Fn) representation Θ is of type L if Θ corresponds to the oriented edge-path in
the connected component labelled by L ∈ {T, T ′, Ar, B, C,D, }.

We also note:

Theorem 2.2. A local Aut (Fn)-representation which is not of type (T ), (T ′), (A0), (B) is faithful.

Proof. The faithfulness of Wada-type representation is proven in [8], by using the theory of De-
hornoy’s ordering [4]: For every non-trivial braid β, either β or β−1 is represented by a word w

over {σ±11 , . . . , σ±1n−1} which is σ-positive (there exists i ∈ {1, . . . , n − 1} such that w contains at

least one σi but does not contain any σ±11 , . . . , σ−1i−1, σ
−1
i .

Let Θ be a local Aut (Fn) representation which is not of type (T ), (T ′), (A0), (B) (note
that a local Aut (Fn) representation of type (T ), (T ′), (A0), (B) are clearly non-faithful). A
direct calculation (see [8], for details) shows that for a braid β represented by a σ-positive word,
Θ(β) 6= 1. �
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Figure 1. Graph Γ describing the clasisfication of local Aut (Fn)-representations

2.2. Classification: Outline. Before proceeding to prove the classification theorem, we briefly
explain an outline of the proof.

First of all, we review our notations. A word W over an alphabet A is reduced if W contains
no subword of the form aa−1 and a−1a (a ∈ A). By removing subwords of the form aa−1 or a−1a,
every word W is changed to the unique reduced word which we denote by red (W ). For two words
W and V , W = V if and only if red (W ) ≡ red (V ).

For a word W over an alphabet {a±1, b±1}, and words A and B over another alphabet X =
{x±1, y±1 . . .}, W (A,B) represents the word over X obtained from W by substituting each letter
a±1 and b±1 with the word A±1 and B±1, respectively. For example, if W ≡ aab, A ≡ xy and
B ≡ yx−1, then W (A,B) ≡ xyxyyx−1.
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For a word W over {x±1, y±1, z±1, . . .}, we will write

W ≡ xk1yk2 ∗ · · ·

to say that W is written as W ≡ xk1yk2W ′, where W ′ 6≡ yW ′′, y−1W ′′. (Here W ′ might be empty
word.) On the other hand, we will simply use dots, like

W ≡ xk1yk2 · · ·

to say that W is written as W ≡ xk1yk2W ′. For example, W ≡ x · · ·x just says that W ≡ xW ′x

for some word W ′, but if we write W ≡ x ∗ · · · ∗ x, then it means that W ≡ xW ′x with W ′ 6≡
x±1W ′′,W ′′x±1.

The proof of the classification theorem goes as follows. By direct computation, (A,B,C,D)
defines a local Aut (F3) representation if and only if the following four conditions are satisfied.

[T]: A(A(x, y), C(B(x, y), z)) = A(x,C(y, z)).
[M]: B(A(x, y), C(B(x, y), z)) = C(B(x,C(y, z)), D(y, z)).
[B]: D(B(x, y), z) = D(B(x,C(y, z)), D(y, z)).

[Aut]: The homomorphism τ of F2 = 〈a, b〉 defined by a 7→ A, b 7→ B is an automorphism.
Similarly, the homomorphism κ of F2 defined by a 7→ C, b 7→ D is an automorphism.

In particular, the last condition [Aut] implies that all elements A,B,C,D are primitive, that
is, they admit no non-trivial root in F2.

Let (A,B,C,D) be reduced words which defines a local Aut (F3) representation Θ. The proof of
classification theorem splits into the following two propositions which we will be proven in Section
3.

Proposition 2.1. If B does not contain a±1, then Θ is of type (T ) or (T ′).

Proposition 2.2. If B contains at least one a±1, then up to natural symmetries, Θ is of type
(Ar), (B), (C) or (D).

Finally we explain reasons why we are able to solve the equations [T], [M], and [B]. An
important feature of equations [T] and [B] is that the order of the length of words are different.

The left side of [T] is a word of the form W (W (W (•, •), •), •), where W is one of A,B,C,D.
This implies that the length of the left side of [T] is order of l3, where l denotes the length of W .
On the other hand, the right side of [T] is a word of the form W (W (•, •), •) so its length is order
of l2. This observation suggests that either l is small or the left side of the word [T] must admit
many cancellations – as the length l increases, the number of necessary cancellations must grow
quite rapidly. On the other hand, the number of possible cancellations are limited because all
words A,B,C,D are reduced. Thus [T] and [B] implicitly and vaguely says that the length of the
words cannot be large, or these words have strong symmetries which leads to many cancellations.

Remark 2.2.1. In [6], the author classified, the solutions of certain variant of the set-theoretical
Yang-Baxter equation, which is essentially equal to Wada-type representations without requiring
invertibility, the condition [Aut]. The main idea and the method in the proof Theorem 2.1 are
almost the same as the proof of [6, Theorem 1.1]. However, thanks to [Aut] we are often able to
simplify arguments. We also remark that the classification of local Aut (Fn) representations does
not use the classification of Wada-type representations.

3. Proof of Classification theorem

In this section we prove Theorem 2.1, by proving Proposition 2.1 and Proposition 2.2. Let
(A,B,C,D) be reduced words that defines a local Aut (F3)-representation.

3.1. Key observation. Let us regard two words C(y, z) and D(y, z) as alphabets C and D.
Temporary we regard the word C(B(x,C(y, z)), D(y, z)), the right side of [M], as a word over
{x±1,C±1,D±1}.

Then we write C(B(x,C(y, z)), D(y, z)) = C(B(x,C),D) in the form

C(B(x,C),D) = W0(C,D)xn1W1(C,D)xn2 ∗ · · · ∗ xnkWk(C,D),

where Wi and ni satisfy the following conditions.
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(i) W0(C,D) and Wk(C,D) are reduced words over {C±1,D±1}. W0(C,D) is an empty
word if and only if B ≡ a±1 · · · and C ≡ a±1 · · · .

(ii) For i = 1, . . . , k − 1, Wi(C,D) is a reduced, non-empty word over {C±1,D±1}.
(iii) n1, . . . , nk are non-zero integers.

Now we back to see C(B(x,C),D) as a word over {x±1, y±1, z±1}, by substituting C and D
with C(x, y) and D(x, y). Let Wi ≡ Wi(C(y, z), D(y, z)) be a word over {y±1, z±1}. By [Aut],
C(y, z) and D(y, z) generate F2 = 〈y, z〉. Since Wi(C,D) is a non-empty reduced word, as an
element of F2 = 〈y, z〉, Wi 6= 1. This shows the following.

Lemma 3.1.

red (C(B(x,C(y, z)), D(y, z))) ≡ red (W0)x
n1 red (W1)x

n2 ∗ · · · ∗ xnk red (Wk)

A similar calculation applies for D(B(x,C(y, z)), D(y, z))). Similarly, by regarding A(x, y) and
B(x, y) as alphabets A and B, we can apply a similar calculation for A(A(x, y), C(B(x, y), z))
and B(A(A(x, y), C(B(x, y), z))). We will often use (sometimes without referring) Lemma 3.1 to
compute reduced word expression of left or right sides of equations [T], [M] and [B].

3.2. The case B contains no a±1.

Proof of Proposition 2.1. By [Aut] and the hypothesis that B does not contain a±1, B ≡ bβ

(β = ±1). By [Aut], this implies that A must be of the form

A ≡ bpaαbp
′

(p, p′ ∈ Z, α ∈ {±1}).

By [T], we get

C(yβ , z)p(ypxαyp
′

)αC(yβ , z)p
′

= C(y, z)pxαC(y, z)p
′

.

By comparing the exponent of x, we get α2 = α so α = 1. Hence the equation [T] is actually
written as

C(yβ , z)pypxyp
′

C(yβ , z)p
′

= C(y, z)pxC(y, z)p
′

.

This equality holds if and only if two equalities

(3.1)

{
C(yβ , z)pyp = C(y, z)p

yp
′

C(yβ , z)p
′

= C(y, z)p
′

hold. Let m be the exponent sum of the y in C(y, z). By comparing the exponent of y in (3.1),
we get

{
βmp+ p = mp

βmp′ + p′ = mp′.

If p 6= 0, then βm + 1 = m. Since β = ±1 and m is an integer, this is impossible so p = 0.
Similalry, p′ = 0 hence we conclude A ≡ a.

To determine C and D we consider the following two cases according to the value of β. Let
κ : F2 → F2 be an automorphism defined by κ(a) = C and κ(b) = D.

Case 1: β = +1.

By [M] and [B], {
C(y, z) = C(C(y, z), D(y, z))
D(y, z) = D(C(y, z), D(y, z))

These equalities show that κ2 = κ, so κ = id. Thus we get

(T ) (A,B,C,D) = (a, b, a, b).
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Case 2: β = −1.

By [M] and [B],
{

C(y−1, z)−1 = C(C(y, z)−1, D(y, z))
D(y−1, z) = D(C(y, z)−1, D(y, z)).

Let ι : F2 → F2 be the involution defined by ι(a) = a−1, ι(b) = b. Then the above equalities say
that ικι = κικ. Moreover, κ has order at most two since κ2 = κ2ικκ−1ι = ικκ−1ι = id.

Let G be the subgroup of Aut (F2) generated by ι and κ. The relations κ2 = ι2 = id and
ικι = κικ show that G is a quotient of the symmetric group S3 so G is either Z2 or S3.

Let π : Aut (F2)→ GL(2;Z) be the projection. By direct calculation, π(κ) =

(
±1 0
0 ±1

)
, so

π(G) ∼= Z2. On the other hand, an order 3 element of Aut (F2) is conjugate to ρ : F2 → F2 given
by ρ(a) = a−1b, ρ(b) = a−1 [7]. This shows that G cannot contain an element of order three, so G

is isomorphic to Z2. Hence κ = ι and we get

(T ′) (A,B,C,D) = (a, b−1, a−1, b).

�

3.3. The case B contains a±1. In this section we prove Proposition 2.2, which treats the case
B contains at least one a±1. If C does not contain b±1, then the swap-dual of Θ satisfies the
assumption of Proposition 2.1, so we may also assume that C contains at least one b±1.

Proposition 3.1. Under the assumption of Proposition 2.2, A contains at least one b±1 and D

contains at least one a±1

Proof. We show A contains at least one b±1. The assertion for D is obtained by considering the
swap-dual.

Assume contrary, A does not contain b±1, so A ≡ aα (α = ±1). By the same argument as

Proposition 2.1, by [T] and [Aut] α = +1 and B ≡ aqbβaq
′

(β ∈ {±1}, q, q′ ∈ Z). Since B

contains at least one a±1, qq′ 6= 0. By taking the backward-dual if necessary, we may assume that
q 6= 0. Then the equation [M] is written as

(3.2) xqC(xqyβxq′ , z)βxq′ = C(xqC(y, z)βxq′ , D(y, z))

We show that the equation (3.2) has no solutions.
Let m be the exponent sum of a in the word C. By comparing the exponent of x in (3.2), we

have (q + q′)(mβ + 1) = m(q + q′). If q + q′ 6= 0, then we get mβ + 1 = m. Since m is an integer
and β ∈ {±1}, this cannot happen so q′ = −q.

Let us put

C(x, y) ≡ xcyr ∗ · · · ≡ ∗ · · · yr
′

xc′ (r, r′ 6= 0).

Then the left side of (3.2) is

xqC(xqyβx−q, z)βx−q =

{
x2qycx−qzr ∗ · · · = · · · ∗ zr

′

xqyc
′

x−2q (β = +1)

x2qy−c
′

x−qzr
′

∗ · · · = · · · ∗ z−rxqy−cx−2q (β = −1)

whereas the right side of (3.2) is

C(xqC(y, z)βx−q, D(y, z)) = xqC(y, z)βcx−qD(y, z)r · · · = · · ·D(y, z)r
′

xqC(y, z)βc
′

x−q.

By comparing the reduced word expression of both sides, we conclude (3.2) has no solutions. For
example, assume that β = −1, c = 0 and c′ 6= 0. Then the reduced word expression of the left side
of (3.2) is x2q ∗ · · · , whereas the right side of (3.2) begins with a letter y±1 or z±1, contradiction.
The other cases are proven similarly.

�
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Summarizing, we have the following constraints for word A,B,C and D:




A contains at least one b±1.

B contains at least one a±1.

C contains at least one b±1.

D contains at least one a±1.

(3.3)

To proceed further, we observe the following much stronger constraints for the words B and C.

Lemma 3.2. Under the assumption of Proposition 2.2, the reduced words B and C satisfy the
following.

(1) B ≡ bqaβbq
′

, C ≡ arbγar
′

(q, q′, r, r′ ∈ Z, β, γ ∈ {±1}).
(2) qq′rr′ = 0.

Proof. By (3.3), we may put
{
A ≡ apbp

′

∗ · · · (p′ 6= 0)

C ≡ arbγar
′

bγ
′

∗ · · · (γ 6= 0).

Assume that r′, γ′ 6= 0. Then red (C(x, y)p
′

) ≡ xr1yγ1xr2yγ2 ∗ · · · (r1, r2, γ1, γ2 6= 0), so the
right side of [T] is

red (A(x,C(y, z)) ≡ xpyr1zγ1yr2zγ2 ∗ · · · .

On the other hand, by Lemma 3.1, the left side of [T] is

red (A(A(x, y), C(B(x, y), z))) = red (A(x, y)pB(x, y)r1)zγ1red (B(x, y)r2)xγ2 ∗ · · · ,

so B(x, y)r2 = yr2 . Since r2 6= 0, this implies B(x, y) ≡ y, which contradicts (3.3). Therefore γ′

should be zero, so C ≡ arbγar
′

. By considering the swap-dual we conclude B ≡ bqaβbq
′

.
To show (2), assume contrary that qq′rr′ 6= 0. By Lemma 3.1, the right side of [M] is given by

red (B(A(x, y), C(B(x, y), z)) ≡

{
red (B(x, y)r)zγ ∗ · · · (q > 0)

red (B(x, y)−r
′

)z−γ ∗ · · · (q < 0).

For a non-zero integer M , red (B(x, y)M ) ≡ yQx±l ∗ · · · , where Q = q or −q′, so the right side of
[M] is written as

red (B(A(x, y), C(B(x, y), z)) ≡ yQx±1 ∗ · · · (Q = q,−q′)

On the other hand, by Lemma 3.1, the left side of [M] is of the form

redC(B(x,C(y, z)), D(y, z)) ≡

{
red (C(y, z)q)x±1 ∗ · · · (r > 0)

red (C(y, z)−q
′

)x±1 ∗ · · · (r < 0)

hence

yQ = C(y, z)Q
′

(Q,Q′ ∈ {q,−q′}).

Since q, q′ 6= 0, this shows that C(y, z) contains no z±1, which contradicts (3.3). �

Now we are ready to complete the proof of Proposition 2.2.

Proof of Proposition 2.2. By Lemma 3.2, we already knowB ≡ bqaβbq
′

and C ≡ arbγar
′

(q, q′, r, r′ ∈
Z, β, γ ∈ {±1}). Since qq′rr′ = 0, by taking the swap and backward duals of Θ if necessary, we
may assume that q′ = 0, namely, B ≡ bqaβ .

Case 1: q = 0.

In this case, B ≡ aβ (β = ±1). By [B],

(3.4) D(xβ , z) = D(xβ , D(y, z)).

Assume that D contains b±1. Then the right side of (3.4) contains at least one y±1, but the
left side does not, contradiction. Thus D cannot contain b±1, so by [Aut], D ≡ aδ (δ = ±1).
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Now the equation [M] is written as

(3.5) A(x, y)β = xβryγδxβr′ .

Now we study the following four cases according to the value β and γδ.

Subcase 1-1: β = +1 and γδ = +1.

By (3.5), A(x, y) ≡ xryxr′ . The equation [T] is written as

(xryxr′)rxrzγxr′(xryxr′)r
′

= xryrzγyr
′

xr′ .

This is satisfied if and only if the following two equalities hold.
{
(xryxr′)rxr = xryr

xr′(xryxr′)r
′

= yr
′

xr′

These equations are written as
{
(xryxr′)r = (xryx−r)r

(xryxr′)r
′

= (x−r
′

yxr′)r
′

,

so [T] is satisfied if and only if r′ = −r, and we conclude

(Ar − 1) (A,B,C,D) = (arba−r, a, arba−r, a) (r ∈ Z≥0).
(Ar − 2) (A,B,C,D) = (arba−r, a, arb−1a−r, a−1) (r ∈ Z≥0).

Here we remark that (A−r − 1) =
←−−−−−
(Ar − 1) and (A−r − 2) =

←−−−−−
(Ar − 2) so up to natural symmetry

we can take r ≥ 0.

Subcase 1-2: β = +1 and γδ = −1.

By (3.5), A(x, y) ≡ xry−1xr′ so [T] is written as

(xry−1xr′)rx−r
′

z−γx−r(xry−1xr′)r
′

= xry−r
′

z−γy−rxr′ .

Consequently we get two equations
{
(xry−1xr′)rx−r

′

= xry−r
′

x−r(xry−1xr′)r
′

= y−rxr′

The first equation is written as

(3.6) (xry−1xr′)r = xry−r
′

xr′ .

If r′ = −r, then (3.6) is written as

(xry−1x−r)r = (xry−1x−r)−r.

This shows −r = r, so r = r′ = 0.
If r 6= −r′, then the right side of (3.6) is primitive, so |r| ≤ 1. By direct calculations (3.6) is

satisfied only if (r, r′) = (1, 1) or (r, r′) = (0, 0). In the case (r, r′) = (0, 0) we get

(B − 1) (A,B,C,D) = (b−1, a, b−1, a).
(B − 2) (A,B,C,D) = (b−1, a, b, a−1).

and in the case (r, r′) = (1, 1) we get

(C − 1) (A,B,C,D) = (ab−1a, a, ab−1a, a).
(C − 2) (A,B,C,D) = (ab−1a, a, aba, a−1).

Subcase 1-3: β = −1 and δγ = +1.

By (3.5), A(x, y) ≡ xr′y−1xr so [T] is written as

(xr′y−1xr)r
′

xr′z−γxr(xr′y−1xr)r = xr′y−r
′

z−γy−rxr.
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Consequently we get two equations
{
(xr′y−1xr)r

′

xr′ = xr′y−r
′

xr(xr′y−1xr)r = y−rxr.

As in the Subcase 1-1, these two equations are written as
{
(xr′y−1xr)r

′

= (xr′y−1x−r
′

)r
′

(xr′y−1xr)r = (x−ry−1xr)r.

This shows r = −r′ and we get

(Ar − 2)−σ (A,B,C,D) = (a−rb−1ar, a−1, arba−r, a).
(Ar − 3) (A,B,C,D) = (a−rb−1ar, a−1, arb−1a−r, a−1).

Subcase 1-4: β = −1, γδ = −1.

By (3.5), A(x, y) ≡ xr′yxr so the equation [T] is written as

(xr′yxr)r
′

x−rzγx−r
′

(xr′yxr)r = xr′yrzγyr
′

xr.

Consequently we get two equations
{
(xr′yxr)r

′

x−r = xr′yr

x−r
′

(xr′yxr)r = yr
′

xr

The first equation is written as

(3.7) (xr′yxr)r
′

= xr′yrxr

If r′ = −r, then (3.7) is written as

(x−ryxr)−r = (x−ryx−r)r .

Thus −r = r, so we conclude r = r′ = 0. If r 6= −r′, then the right side of (3.7) is primitive so
|r| ≤ 1. By direct calculation, (3.7) is satisfied only if (r, r′) = (1, 1) or (r, r′) = (0, 0).

If (r, r′) = (0, 0) then we get

(B − 2)− (A,B,C,D) = (b, a−1, b−1, a).
(B − 1)σ (A,B,C,D) = (b, a−1, b, a−1).

and if (r, r′) = (1, 1) and (c, d) = (−1, 1), then we get

(C − 2)−σ (A,B,C,D) = (aba, a−1, ab−1a, a).
(C − 3) (A,B,C,D) = (aba, a−1, aba, a−1).

Case 2: q 6= 0.

Let us put B ≡ yqxβ and D ≡ bsaδbs
′

aδ
′

bs
′′

aδ
′′

∗ · · · (δ 6= 0).

Claim 3.1. δ, δ′, δ′′, . . . ∈ {±1, 0}.

Proof of Claim. Assume that |δ| > 1. Then the left side of [B] is

(3.8) red (D(B(x, y), z)) ≡

{
zsyqxδyqxδ ∗ · · · (δ > 1)
zsx−δy−qx−δ ∗ · · · (δ < −1).

On the other hand by Lemma 3.1, the right side of [B] is

(3.9) red (D(B(x,C(y, z)), D(y, z))) ≡

{
red (zsC(y, z)q)xδ

red (C(y, z)q)xδ ∗ · · · (δ > 1)
zsx−δred (C(y, z)−q)x−δ ∗ · · · (δ < −1).

Hence by [B] yq = C(y, z)q. Since we have assumed q 6= 0, this implies C(y, z) ≡ y, which
contradicts (3.3). This proves δ = ±1. Similar arguments show δ′, δ′′, . . . ∈ {±1, 0}. �
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Then we consider the following two cases according to the value of δ.

Subcase 2-1: δ = +1

Claim 3.2. If δ = 1, then D ≡ bsa (s 6= 0).

Proof of Claim. If δ = +1, then by (3.8) and (3.9) we get

(3.10) zsyδ = D(y, z)sC(y, z)δ.

If s = 0, then the equation (3.10) gives yq = C(y, z)q (q 6= 0), contradictions (3.3), hence s 6= 0.
Assume that δ′ = −1. This implies, in particular, s′ 6= 0. Then the right side of [B] is written

as
red (D(B(x, y), z)) ≡ zsyqxβzs

′

x−β ∗ · · ·

and the left side of equation [B] is

red (D(B(x,C(y, z)), D(y, z))) ≡ red (D(y, z)sC(y, z)q)xβ
red (D(y, z)s

′

)x−β ∗ · · ·

so we get

D(y, z)s
′

= zs
′

.

Since s′ 6= 0, this implies D(y, z) = z, which contradicts (3.3).
Similarly, if δ′ = 0, then the equation [B] is written as

zsyqxβzs
′

= D(y, z)sC(y, z)qxβD(y, z)s
′

so we get

D(y, z)s
′

= zs
′

,

which leads to a contradiction unless s′ = 0, so we have D ≡ bsa as desired.
Finally assume that δ′ = +1. Then s′ 6= 0, and equation [B] is written as

zsyqxβzs
′

yqxβ ∗ · · · = D(y, z)sC(y, z)qxβD(y, z)s
′

C(y, z)qxβ ∗ · · · .

Hence we get

zs
′

yq = D(y, z)s
′

C(y, z)q.

By applying this equality to equation (3.10), we get

D(y, z)s−s
′

= zs−s
′

.

If s− s′ 6= 0, then D(y, z) ≡ z, which contradicts (3.3) hence s = s′.
By iterating the above arguments for δ′′, δ′′′, . . ., we conclude that the possible form of the word

D(x, y) is D(x, y) = ysxysx · · · ysx = (ysx)N . By [Aut] D(y, z) must be a primitive element, so
N = 1. This complete the proof of claim. �

By Claim 3.2, the equation (3.10) is now in a simple form,

(3.11) zsyq = (zsy)s(yrzγyr
′

)q.

This equation can be solved directly.

Claim 3.3. The equation (3.11) is satisfied only if (q, r, γ, r′, s) = (2,−1,−1, 1, 2).

Proof of Claim. We have seen that C ≡ arbγar
′

and D ≡ bsa.
First we consider the case r = −r′. Then the equation (3.11) is written as

(3.12) zsyq = (zsy)syrzγqy−r

If r = 0, then zsyq = (zsy)szγq. However, since γ, q 6= 0 this is impossible so r 6= 0. Then
we conclude s > 0 and r = −1 because otherwise the right side of (3.12) is already reduced so
(3.12) cannot be satisfied. If s = 1, then we get zsyq = zs+γqy−r. However, γ, q 6= 0 this is
impossible. If s = 2, we get a solution (q, r, γ, r′, s) = (2,−1,−1, 1, 2). Finally, if s > 2 then
zsyq = (zsy)s−2zsyzs+γqy, it is impossible.

To complete the proof of claim, we show that there are no (q, r, γ, r′, s) satisfying (3.11) if
r 6= −r′. We prove this for the case s > 0, q > 0. The other cases are treated in a similar way.



12 TETSUYA ITO

In the case s > 0, q > 0 the equation (3.11) is written as

(3.13) zsyq = (zsy)s−1zsyr+1zγyr
′

(yrzγyr
′

)q−1.

Since r 6= −r′, to satisfy (3.13), we need r = −1 because otherwise the right side of (3.13) is
reduced. Hence we have

zsyq = (zsy)s−1zs+γyr
′

(y−1zγyr
′

)q−1

By [Aut], s and γ should be coprime so s+ γ 6= 0 if |s| > 1. Hence if s > 1, then the right side
cannot be reduced further, so this equation cannot be satisfied. Thus s = 1, and we finally get

zyq = z1+γyr
′

(y−1zγyr
′

)q−1.

If q > 1, then the right side cannot be reduced further, and if q = 1 we get r′ = +1, which
contradicts our assumption that r 6= −r′ because we have seen r = −1. �

By Claim 3.3, B ≡ b2aβ , C ≡ a−1ba and D ≡ b2a (β ∈ {±1}). By [M], Aβ = xβy−1xβ , so we
conclude

(D − 1) (A,B,C,D) = (a−1b−1a, b2a, a−1b−1a, b2a).
(D − 2) (A,B,C,D) = (aba−1, b2a−1, a−1b−1a, b2a).

Subcase 2-2: δ = −1.

In this case the equation [B] is given by

zsx−βy−qzs
′

(yqxβ)δ
′

· · · = D(y, z)sx−βC(y, z)−qD(y, z)s
′

(C(y, z)qxβ)δ
′

· · ·

hence we get

zs = D(y, z)s

If s 6= 0, this shows that D(y, z) ≡ z, which contradicts (3.3). Hence s = 0 and D(x, y) is

D(x, y) ≡ x−1ys
′

xδ′ys
′′

· · · .

We consider the following three cases according to the value δ′.

Subcase 2-2-1: δ′ = +1.

In this case s′ 6= 0 and the equation [B] is

x−βy−qzs
′

yqxβzs
′′

(yqxβ)δ
′′

· · · = x−βC(y, z)−qD(y, z)s
′

C(y, z)qxβD(y, z)s
′′

(C(y, z)qxβ)δ
′′

· · ·

so we have

(3.14) y−qzs
′

yq = C(y, z)−qD(y, z)s
′

C(y, z)q.

Moreover, if s′′ 6= 0, then we further get
{
zs

′′

= D(y, z)s
′′

(δ′′ = −1, 0)

zs
′′

yq = D(y, z)s
′′

C(y, z)q (δ′′ = +1)
(3.15)

However, (3.14) and (3.15) show D(y, z) = z, which contradicts (3.3). Hence s′′ = δ′′ = · · · = 0

and D ≡ a−1bs
′

. Then (3.14) is written as

y−qzs
′

yq = (yrzγyr
′

)−q(y−1zs
′

)s
′

(yrzγyr
′

)q

By comparing the exponent of y, we conclude s′ = 0. However, since we have assumed s′ 6= 0, this
is a contradiction.

Subcase 2-2-2: δ′ = −1.

In this case s′ 6= 0 and the equation [B] is

x−βy−qzs
′

x−βy−qzs
′′

(yqxβ)δ
′′

· · · = x−βC(y, z)−qD(y, z)s
′

x−βC(y, z)−qD(y, z)s
′′

· · · ,



n-BRAID ACTION ON THE FREE GROUP OF RANK n 13

so we get

(3.16) y−qzs
′

= C(y, z)−qD(y, z)s
′

.

Then, by using a similar argument as in SubCase 2-1 (Claim 3.2), we conclude that δ′′ = 0 and

s′ = s′′. Thus, D ≡ a−1bs
′

a−1bs
′

. However, by [Aut] D is primitive, contradiction.

Subcase 2-2-3: δ′ = 0.

By [B], we get equation

(3.17) y−qzs
′

= (yrzγyr
′

)−q(y−1zs
′

)s
′

.

By a similar argument as Claim 3.3, (3.17) is satisfied only if (q, r, γ, r′, s′) = (2,−1, 1, 1, 2) so
C ≡ a−1ba and D ≡ a−1b2. By [M], A(x, y)β = x−βy−1xβ , hence we conclude

(D − 3) (A,B,C,D) = (a−1ba, b2a, a−1ba, a−1b2).
(D − 4) (A,B,C,D) = (ab−1a−1, b2a−1, a−1ba, a−1b2).

�

4. Group-valued invariants of knots and links

We close the paper by giving a short discussion on group-valued invariants of knots and links
from local Aut (Fn) representations.

Definition 4.1. We say a local Aut (Fn) braid representation Θ defined by (τ1, . . . , τn−1) ∈
Aut (F2)

n−1 has the stabilization properties if the following two conditions are satisfied:

S1: The group Gi = 〈a, b | (b)τi = b〉 is an infinite cyclic group generated by a = b.
S2: For any m > n, there exist a local Aut (Fm) representation Θ∗ which extends Θ: That

is, there is a local Aut (Fm) representation Θ∗ defined by (τ1, . . . , τn−1, τn, . . . , τm−1).

Let L be an oriented link in S3 represented as a closure of an n-braid β, and let Θ be a local
Aut (Fn) representation having the stabilization properties. Let GΘ(β) be a group given by the
presentation

GΘ(β) = 〈x1, . . . , xn | (xi)[Θ(β)] = xi (i = 1, . . . , n)〉 .

Proposition 4.1 (Group-valued invariant of links). The group GΘ(β) does not depend on a choice
of closed braid representatives of L, hence GΘ(β) defines a group-valued invariant of L.

Proof. By Markov theorem (see [1], for example) the closures of two braids α and β represent the
same oriented link if and only if α is converted to β by applying following two operations.

Conjugation: α→ γ−1αγ where α, γ ∈ Bn.
(De)Stabilization: α↔ ασ±1n where α ∈ Bn.

Assume that Θ be a local Aut (Fn) representation defined by (τ1, . . . , τn−1) ∈ Aut (F2)
n−1. By

definition, the group GΘ(β) does not change under the conjugacy, so it is sufficient to show the
invariance under the stabilization.

Take an arbitrary local Aut (Fn+1) representation Θ∗ which extends Θ. That is, we assume
that Θ∗ is defined by (τ1, . . . , τn−1, τn) ∈ Aut (F2)

n for some τn ∈ Aut (F2). Such Θ∗ exists from
the assumption S2. Then

[Θ∗(βσ±1n )](xi) =





(xi)[Θ(β)] i 6= n, n+ 1,
(xn)[Θ(β)τ±1n ] i = n,

(xn+1)τ
±1
n i = n+ 1.

By S1, the relation (xn+1)τ
±1
n = xn+1 implies (xn)τ

±1
n = xn = xn+1, hence two groups GΘ(β)

and GΘ∗(βσ±1n ) are isomorphic. �

A priori, it is not clear whether there is a local Aut (Fn)-representation having stabilization
properties. However, the classification theorem shows almost all local Aut (Fn)-representations
satisfy the stabilization properties.
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Corollary 4.1. If Θ is a local Aut (Fn)-representation which is not of type (T ) or (T ′), then Θ
satisfies the stabilization properties.

To take into account of a choice of local Aut (Fn) representations and closed braid representative,
it is convenient to formulate the group-valued invariants as follows.

Definition 4.2 (Group-valued invariants). Let L be an oriented link in S3 and Θ̂ be a non-trivial
local Aut (F∞)-representation defined by a sequence (τ1, τ2, . . . , ). The group-valued invariant
GΘ̂ (L) is a group GΘ̂ (L) = GΘn

(β) where β is an n-braid whose closure is L and Θn is a local
Aut (Fn)-representation defined by (τ1, . . . , τn).

As we have mentioned in introduction, at first glance we have obtained many new group-valued
invariants. However, classification theorem also tells us that group-valued invariants for certain
local Aut (Fn)-representations are nothing new.

Theorem 4.1. Two local Aut (F∞) representations defines the same invariant if they are of the
same type. In particular, a group-valued invariant from local Aut (F∞) representations coincides
with the group-valued invariant from the corresponding Wada-type representation.

Proof. Assume that Θ̂ and Θ̂ ′ are of the same type defined by (τ1, . . .) and (τ ′1, . . .), respectively.
Represent L a closure of n-braid β, and let Θn,Θ

′
n be the local Aut (Fn)-representations defined by

(τ1, . . . , τn−1) and (τ ′1, . . . , τ
′
n−1), respectively. From the Classification theorem of local Aut (Fn)-

representation, by taking sufficiently large N , there is a local Aut (FN )-representations Φ defined
by a sequence

(τ1, . . . , τn−1︸ ︷︷ ︸
n−1

, . . . , τ ′1, . . . , τ
′
n−1︸ ︷︷ ︸

n−1

) ∈ Aut (F2)
N .

Let sh : Bn → BN be the homomorphism defined by sh(σi) = σi+(N−n). The closures of N -braids
(βσnσn+1 · · ·σN−1) and σ1 · · ·σN−nsh(β) are L, hence

GΘ̂ (L) ∼= GΦ(βσnσn+1 · · ·σN−1) ∼= GΦ(σ1 · · ·σN−nsh(β)) ∼= GΘ̂ ′(L).

�
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