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A BLOW-UP RESULT FOR DYADIC MODELS OF THE EULER

EQUATIONS

IN-JEE JEONG AND DONG LI

Abstract. We partially answer a question raised by Kiselev and Zlatos in
[11]; in the generalized dyadic model of the Euler equation, a blow-up of

H1/3+δ-norm occurs. We recover a few previous blow-up results for various
related dyadic models as corollaries.

1. Introduction

In this paper, we consider the following infinite system of ordinary differential
equations (ODEs):

daj(t)

dt
= α

(

λja2j−1(t)− λj+1aj(t)aj+1(t)
)

+ β
(

λjaj−1(t)aj(t)− λj+1a2j+1(t)
)

, (1.1)

for j ≥ 0 and with the boundary condition a−1(t) ≡ 0. The coefficients α and β
are usually taken to be nonnegative constants. We will assume λ = 2 throughout,
but our results hold for arbitrary λ > 1 with proper adjustments of the parameters.
The special case α = 1, β = 0 is often called the KP equations, which have appeared
in the literature almost simultaneously in two papers [9, 10]. The opposite extreme
α = 0, β = 1 first appeared in Obukhov’s work [12] and was suggested as an
alternative to the KP equations in [13]. Hence (1.1) can be viewed as a linear
combination of these two models.

These types of infinite system of ODEs are called dyadic models of the Euler
equations. For a heuristic derivation of the KP equations from the Euler equations,
one can see [10] for an argument based on the wavelet expansion of a scalar function
over dyadic cubes. Alternatively, consider the Euler equations in R

n with periodic
boundary conditions and rewrite the equations in terms of the Fourier coefficients
of the velocity vector field. Then one obtains an infinite system of ODEs for the
evolution of Fourier coefficients which share several structural similarities with (1.1).
We will return to this point after Lemma 1, from which equations (1.1) appear
naturally from some constitutive relations.

To state blow-up and regularity results for dyadic models, let us first define
analogues of the Sobolev norms in the space of sequences. The Hs-norm of a
solution a = (a0, a1, ...) at time t is defined by the formula

||a(t)||2s :=

∞
∑

j=0

22sja2j(t).
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In particular, we define the energy E(t) as the square of H0-norm (or the usual
l2-norm):

E(t) :=

∞
∑

j=0

a2j(t).

Regarding the KP equations, the following blow-up result have been proved several
times (we have listed the references in a more or less chronological order):

Theorem ([9, 10, 13, 11, 1]). For every nonzero initial data, the Hs-norm of any
solution1 becomes infinite in finite time for all s > scr := 1/3.

Now for the Obukhov equations, there is the following regularity result:

Theorem ([11]). If the initial data have finite Hs-norm for some s > 1, then the
corresponding solution exists globally and has finite Hs-norm for all t ≥ 0.

In [11], Kiselev and Zlatos raised the question of whether blow-up can occur in
the case α, β > 0 (or more generally sgn(α) = sgn(β)). Corollary 6 of this paper
answers this question affirmatively, at least in the case when β is small relative to
α. Our proof of blow-up is quite different and seems to be simpler than the previous
proofs for the KP equations ([9, 10, 13, 11]). Roughly speaking, all the previous
blow-up proofs rest on the intuition that at least a fixed proportion of the energy
contained in the jth component must be transferred to the higher components
within a time scale of τ−j for some τ > 0. To achieve this, one has to make strong
use of the “positivity” of the KP equations; that is, once we have aj(t0) ≥ 0 for
some j and t0, then aj(t) ≥ 0 for all future t > t0. This positivity in turn implies
that there is no “backward” transfer of energy; to be more precise, if the initial data
satisfy aj0+1(0) ≥ 0, then aj0+1(t) ≥ 0, and

d

dt
Ej0(t) :=

d

dt

(

j0
∑

j=0

a2j(t)
)

= −2λj0+1a2j0aj0+1 ≤ 0

for all t ≥ 0. Unfortunately, this mechanism of forward energy transfer seems to
break down once we have both α, β > 0. The proof in [1] still makes use of positivity
but it appears to be different from others; we will come back to their proof after
Lemma 1.

Next, let us consider the following system of equations, where there is an extra
“dissipation” term on the right hand side:

daj
dt

= α
(

λja2j−1 − λj+1ajaj+1

)

+ β
(

λjaj−1aj − λj+1a2j+1

)

− νλ2γjaj , (1.2)

again for j ≥ 0 and with a−1(t) ≡ 0. Here, α = 1, ν = 1 can be assumed with
appropriate rescaling and γ > 0 is a parameter representing the intensity of the
dissipation. In the special case β = 0, these equations are often called the dyadic
Navier-Stokes Equations (NSEs), and they are already studied quite extensively
in the literature. In particular, the following blow-up result has been proved by
Cheskidov in [4]:

1The meaning of solution here requires some clarification. It is known (cf. Proposition 2.1 of
[11]) that local wellposedness holds in C0

t H
s with s ≥ 1. Alternatively one can work with finite

energy Leray-Hopf type solutions (cf. [2, 4]) for which uniqueness is a subtle issue.
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Theorem ([4]). Consider equations (1.2) with α = 1, β = 0, ν = 1, and γ < 1/3.
For every δ > 0, there exists a constant M(δ) such that if the initial data satisfy
aj(0) ≥ 0 for all j ≥ 0 and ||a(0)||δ > M(δ), then ||a(t)||31/3+δ is not locally

integrable on [0,∞).

In particular, any solution blows up in finite time in H1/3+δ-norm for every δ > 0.
Our proof of the main theorem recovers this H1/3+δ-norm blow-up in Corollary 8.

2. Results and Conjectures

To begin, we borrow a lemma from [11] from which the model (1.1) follows
naturally. We omit the proof since it is immediate in view of the (formal) energy
conservation constraint.

Lemma 1. Assume that real-valued functions aj(t) (j ≥ 0) satisfy a system of
ODEs of the form

daj(t)

dt
= Fj(a(t))

where

• for each j ≥ 0, the map Fj is a quadratic function of a(t);
• Fj can involve only aj−1(t), aj(t), and aj+1(t);
• each term for Fj has a factor of λj times a constant which is independent

of j, i.e.

Fj =
∑

µ1=±1,0
µ2=±1,0

Cµ1,µ2
λjaj+µ1

(t)aj+µ2
(t),

where Cµ1,µ2
are constants independent of j;

• and the energy
∑

a2j(t) is (formally) conserved.

Then the system is necessarily of the form (1.1).

The Euler equations are, of course, energy conserving (for smooth solutions) and
have quadratic nonlinearity. The factor λj was inserted so that the dyadic model
would share similar functional estimates with the Euler equations. One can argue
that to model 3D Euler equations, the choice λ = 25/2 is appropriate2 (see [9]).
Lastly, the fact that Fj only consists of aj−1 and aj+1 certainly does not hold in
the case of the Euler equations, but certain “locality of interactions” assumptions
are believed to hold in the theory of turbulence. For example one can see [7, 8].

Let us remark on the property of energy conservation. A formal calculation
yields that

d

dt
E(t) = 2

∑

j≥0

aj(λ
ja2j−1 − λj+1ajaj+1)

= 2
(

∑

j≥1

λja2j−1aj)− 2(
∑

j≥0

λj+1a2jaj+1) = 0.

But in the above computation, an interchange of the order of summation and dif-
ferentiation must be justified, and it is sufficient to require that ||a(t)||s < ∞ for

2Roughly speaking, this is based on the estimate that (here P2j is the usual Littlewood-Paley

projector adapted to the frequency block |ξ| ∼ 2
j and one can think of u as the velocity in Euler)

‖P2ju · ∇P2ju‖L2(Rd) . 2
( d
2
+1)j‖P2ju‖

2
L2(Rd)

. For d = 3, the factor is 2
5/2.
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s > scr = 1/3. However, for solutions with less regularity, this computation is
no longer valid and the dissipation of energy can indeed occur3. In [1] it was es-
tablished that for every initial condition with nonnegative components, the energy
dissipates to zero as t → ∞. In particular, it implies finite-time blow-up in every
Hs norm for s > 1/3.

We are ready to state our main result.

Theorem 2 (The full model with diffusion). Consider the equations (1.2) with
parameters λ = 2, α = 1, ν = 1, and β ≥ 0. For every s > 1/3 and γ < 1/3,
there exists a value βs,γ > 0 such that for β ∈ [0, βs,γ), there exists a class of initial
data for which the corresponding solutions blow up in finite time in Hs-norm. More
precisely, for each solution a(t), ‖a(t)‖2s is not locally integrable on [0,∞).

Remark 3. As will be clear from our proof, the initial data a(0) = (aj(0))
∞
j=0 can

even taken to be compactly supported, in the sense that for some integer j0 > 0,
aj(0) = 0 for all j ≥ j0.

Remark 4. Instead of considering only nearest neighborhood interactions (i.e aj ,
aj−1, aj+1), one can generalize the full model (1.2) to arbitrarily finitely many
(or even infinitely many with sufficiently fast decay of interaction) neighborhood
interactions. It is expected that our method of proof also carriers over to this case.

Remark 5. Although Theorem 2 settles the blow-up of (1.2) more or less satisfacto-
rily, the proof itself (albeit simple) gives little information on the transfer of energy
mechanism in the model. On the other hand, the previous proofs on the blow-up
of KP model do respect the details of the dynamics and give some insight of the
cascade mechanism. In light of this, it is still desirable to give a more "dynamic"
proof in this flavor. After all, one of the main reasons for studying the dyadic
models is to understand energy cascade and even turbulence transport.

Before the proof of Theorem 2, we state two direct corollaries which simply
correspond to cases ν = 0 and β = 0, respectively.

Corollary 6 (The full model with no diffusion). Consider the equations (1.1) with
parameters λ = 2, α = 1, and β ≥ 0, and fix s > 1/3 together with (2s−21−2s)/(1+
21−3s) > β. Then for every nonnegative initial data (that is, aj(0) ≥ 0 for all j),
there is finite-time blow up in Hs-norm.

Remark 7. Here and below (in Corollary 8), the blow-up of Hs-norm is again
understood as that ‖a(t)‖2s is not locally integrable on [0,∞).

For example, when β < 6/5, every nonnegative initial data blow-up in the H1-
norm.

Corollary 8 (KP with diffusion). Consider the equations (1.2) with λ = 2, α = 1,
β = 0, ν = 1, and γ < 1/3. For every s > 1/3, let θ = θ(s, γ) be a constant such
that

−
4

3
< θ < 2(s− 1),

−
4

3
< θ < −4γ.

3This is in some sense connected to the Onsager’s conjecture.
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There exists a constant C = C(s, γ, θ) > 0, such that once the initial data (aj(0))
∞
j=0 ∈

Hs satisfy
∞
∑

j=0

2j(θ+1)aj(0) > C,

there is finite-time blow up in Hs-norm.

Proof of Theorem 2. We fix some s > 1/3 and assume towards contradiction that
||a(t)||2s is locally integrable4 on [0,∞). By setting bj(t) := λjaj(t), we simplify the
equation as follows:

dbj
dt

=
(

λ2b2j−1 − bjbj+1

)

+ β
(

λbj−1bj − λ−1b2j+1

)

− λ2γjbj . (2.1)

Then we consider the sum

A(t) :=

∞
∑

j=0

b2jw
−j

where w > 1 is a constant to be optimized later. We observe that if w−1 ≤ λ−2 ·22s,
then A(t) is also integrable since A(t) ≤ ||a(t)||2s for all t ≥ 0. Then we consider
the quantities

d

dt
(bjw

−j) = (λ2b2j−1w
−j−bjbj+1w

−j)+β(λbj−1bjw
−j−λ−1b2j+1w

−j)−λ2γjbjw
−j

and sum them over all j ≥ 0. By the Cauchy-Schwartz inequality, the infinite sum
appearing on the right hand side is bounded in absolute value by const · (A(t) +
√

A(t)), and therefore the sum can be rearranged whenever A(t) is finite. We
therefore obtain:

d

dt
(

∞
∑

j=0

bjw
−j) = λ2

∞
∑

j=1

b2j−1w
−j −

∞
∑

j=0

bjbj+1w
−j (2.2)

+ βλ
∞
∑

j=1

bj−1bjw
−j − βλ−1

∞
∑

j=0

b2j+1w
−j −

∞
∑

j=0

λ2γjbjw
−j .

We note in advance that again by the Cauchy-Schwartz inequality,

(

∞
∑

j=0

bjw
−j)2 ≤ (

∞
∑

j=0

w−j)(

∞
∑

j=0

b2jw
−j) =

A(t)

1− w−1
(2.3)

holds. Then first four terms on the right hand side of (2.2) can be estimated as
follows:

λ2w−1
∞
∑

j=1

b2j−1w
−j−1 − w1/2

∞
∑

j=0

(bjw
− j

2 )(bj+1w
− j+1

2 )

+βλw−1/2
∞
∑

j=1

(bj−1w
− j−1

2 )(bjw
−j)− βλ−1w

∞
∑

j=0

b2j+1w
−(j+1)

≥ (λ2w−1 − w1/2 − βλw−1/2 − βλ−1w) · A(t).

4This in turn would imply that one can freely interchange summation and differentiation in the
argument below. Alternatively, one can recast the equations into integral (in time) formulation
and justify passing the limit under the integral.
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Regarding the last term, we have

−

∞
∑

j=0

λ2γjbjw
−j = −

∞
∑

j=0

(bjw
−

j

2 )(λ2γjw−
j

2 ) ≥ −(

∞
∑

j=0

b2jw
−j)

1
2 (

∞
∑

j=0

λ4γjw−j)
1
2

= −
1

1− λ4γw−1
· (

∞
∑

j=0

b2jw
−j)

1
2

≥ −
1

1− λ4γw−1
(ηA(t) +

1

4η
),

where η > 0 is a constant. Here we have assumed that λ4γw−1 < 1. Adding above
two estimates together with (2.3), we conclude for some C2 > 0,

d

dt
(

∞
∑

j=0

bjw
−j) ≥ C1 · (

∞
∑

j=0

bjw
−j)2 − C2.

Therefore, if we have C1 > 0 and
∑

bj(0)w
−j >

√

C2/C1, then
∑

bjw
−j will not

be locally integrable on [0,∞), which is a contradiction to the fact that A(t) is
locally integrable. To this end, we need

C1 = (1− w−1) ·
(

λ2w−1 − w1/2 − βλw−1/2 − βλ−1w −
η

1− λ4γw−1

)

> 0.

But at the expense of choosing η sufficiently small, it is enough to have

λ2w−1 − w1/2 − βλw−1/2 − βλ−1w > 0.

Therefore, to conclude the proof, we need:

w−1 ≤ λ−222s

w−1 < λ−4γ

λ2w−1 − w1/2 > β(λw−1/2 + λ−1w), (2.4)

where λ = 2. Assuming for the moment that β = 0, we have λ > w3/4 from the
last inequality which gives restrictions s > 1/3, γ < 1/3. On the other hand, it is
clear now that once we have s > 1/3, γ < 1/3, we can choose w in a way that for
small β > 0, all the above three inequalities are satisfied. �

Proof of Corollary 6. Since ν = 0, the second inequality of (2.4) is not needed. One
can just choose w−1 = 22(s−1) and this gives

2s − 21−2s

1 + 21−3s
> β.

�

Proof of Corollary 8. Since β = 0, the conditions on w−1 in (2.4) take the form

2−
4
3 < w−1 ≤ 22(s−1),

2−
4
3 < w−1 < 2−4γ .

Denoting w−1 = 2θ then yields the result. �



A BLOW-UP RESULT FOR DYADIC MODELS OF THE EULER EQUATIONS 7

Let us close by presenting a few conjectures which would complement or gener-
alize regularity and blow-up results currently known. We first explain the result of
[1]: recall that we have already mentioned their dissipation of energy result. But
they also proved the existence of so-called “self-similar solutions”, which are natural
analogues of the fixed point in the forced case. To be specific, consider the forced
KP equations:

d

dt
aj(t) = λja2j−1(t)− λj+1aj(t)aj+1(t), (j ≥ 1)

d

dt
a0(t) = −λa0(t)a1(t) + f0,

where f0 > 0 is a constant. Then it is immediate that there exists a unique fixed
point which have finite energy. This fixed point satisfies āj = const ·λ−j/3 so it has
finite Hs-norm precisely for s < 1/3. In [5, 6], it was established that this fixed
point is the unique global attractor of the dynamics.

When there is no forcing, there does not exist nontrivial fixed points. However,
self-similar solutions are the correct analogues; we define a solution self-similar if
for every j ≥ 0, aj+1(t)/aj(t) is constant in time. From this requirement, it is
straightforward to check that the solution must have the form

aj(t) =
cj

t− t0

for some constants cj and t0 > 0 which satisfy the recurrence (for λ = 2)

cjcj+1 = 2−jcj + c2j−1/2

for all j ≥ 0 with c−1 = 0. The choice of c0 > 0 uniquely determines the whole
sequence and the self-similar solution, modulo the choice of t0 > 0 which is inde-
pendent. The hard part is to show that there exists a value of c0 > 0 (which turns
out to be unique) such that the self-similar solution a(t) has finite energy. Then it
is not hard to see that the self-similar solution satisfies cj ∼ const ·λ−j/3. Note this

power-law decay in j can already be noticed from our proof; the scale aj(t) ∼ λ−j/3

roughly corresponds to the case where we have equalities in the Cauchy-Schwartz
inequalities used in the proof. Now it is very desirable to show that the self-similar
solutions are the global attractors of the unforced dynamics. If we believe in the
convergence towards self-similar ones, it is natural to conjecture that in the KP
equations, the Hs-norms remain finite for all s < 1/3. This finiteness of smaller
Sobolev norms are partially obtained in the works [2, 3]. Also, one can revert all
inequalities in our proof and try to get some a priori estimates on the solution,
which look similar to some regularity results proved in [2, 3]. Finally, it is tempting
to believe that such self-similar solutions also exist for our equation, at least when
β is small. One can write down the recurrence relation as above but this relation
is now more complicated.
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