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OBSERVATIONS FROM MEASURABLE SETS AND

APPLICATIONS

LUIS ESCAURIAZA, SANTIAGO MONTANER, AND CAN ZHANG

Abstract. We find new quantitative estimates on the space-time analyticity
of solutions to linear parabolic equations with time-independent coefficients
and apply them to obtain observability inequalities for its solutions over mea-
surable sets.

1. Introduction

Mixing up ideas developed in [35], [2] and [32], it was shown in [3] that the heat
equation over bounded domains Ω in Rn can be null controlled at all times T > 0
with interior and bounded controls acting over space-time measurable sets D ⊂
Ω×(0, T ) with positive Lebesgue measure, when Ω is a Lipchitz polyhedron or a C1

domain in Rn. [3] also established the boundary null-controllability with bounded
controls over measurable sets J ⊂ ∂Ω× (0, T ) with positive surface measure.

In this work we explain the techniques necessary to apply the same methods
in [3] in order to obtain the interior and boundary null controllability of some
higher order or non self-adjoint parabolic evolutions with time-independent analytic
coefficients over analytic domains Ω of Rn and with bounded controls acting over
measurable sets with positive measure. We also show the null-controllability with
controls acting over possibly different measurable regions over each component of
the Dirichlet data of higher order parabolic equations or over each component of
the solution to second order parabolic systems; both at the interior and at the
boundary. Finally, we show that the same methods imply the null-controllability of
some not completely uncoupled parabolic systems with bounded interior controls
acting over only one of the components of the system and on measurable regions.

We explain the technical details for parabolic higher order equations with con-
stant coefficients and for second order systems with time independent analytic co-
efficients. We believe that this set of examples will make it clear to the experts
that the combination of the methods in [35], [2], [32] with others here imply analog
results to those in [3] for parabolic evolutions associated to possibly non self-adjoint
higher order elliptic equations or second order systems with time independent an-
alytic coefficients over analytic domains: existence of bounded null-controls acting
over measurable sets and the uniqueness and bang-bang property of certain optimal
controls.
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Throughout the work 0 < T ≤ 1 denotes a positive time, Ω ⊂ Rn a is bounded
domain with analytic boundary ∂Ω, ν is the exterior unit normal vector to the
boundary of Ω and dσ denotes surface measure on ∂Ω, BR(x0) stands for the ball
centered at x0 and of radius R, BR = BR(0). For measurable sets ω ⊂ Rn and
D ⊂ R

n × (0, T ), |ω| and |D| stand for the Lebesgue measures of the sets; for
measurable sets Γ ⊂ ∂Ω and J in ∂Ω× (0, T ), |Γ| and |J| denote respectively their
surface measures in ∂Ω and ∂Ω× R. |α| = α1 + · · ·+ αℓ, when α = (α1, . . . , αℓ) is
a ℓ-tuple in Nℓ, ℓ ≥ 1.

To describe the analyticity of the boundary of Ω we assume that there is some
δ > 0 such that for each x0 in ∂Ω there is, after a translation and rotations, a new
coordinate system (where x0 = 0) and a real analytic function ϕ : B′

δ ⊂ Rn−1 −→ R

verifying

(1.1)

ϕ(0′) = 0, |∂αx′ϕ(x′)| ≤ |α|! δ−|α|−1 , when x′ ∈ B′
δ, α ∈ N

n−1,

Bδ ∩ Ω = Bδ ∩ {(x′, xn) : x′ ∈ B′
δ, xn > ϕ(x′)},

Bδ ∩ ∂Ω = Bδ ∩ {(x′, xn) : x′ ∈ B′
δ, xn = ϕ(x′)}.

The existence of the bounded null-controls acting over the measurable sets for
the set of examples follows by standard duality arguments (cf. [5] or [20]) from the
following list of observability inequalities.

Theorem 1. Let D ⊂ Ω × (0, T ) be a measurable set with positive measure and

m ≥ 1. Then, there is a constant N = N(Ω, T,m,D, δ) such that the inequality

‖u(T )‖L2(Ω) ≤ N

∫

D

|u(x, t)| dxdt

holds for all solutions u to

(1.2)





∂tu+ (−1)m∆mu = 0, in Ω× (0, T ),

u = ∇u = · · · = ∇m−1u = 0, on ∂Ω× (0, T ),

u(0) = u0, in Ω,

with u0 in L2(Ω).

Remark 1. The constant N in Theorem 1 is of the form eN/T 1/(2m−1)

with N =
N(Ω, |ω|, δ), when D = ω × (0, T ), 0 < T ≤ 1 and ω ⊂ Ω is a measurable set. The
later is consistent with the case of the heat equation [8].

The second and third are two boundary observability inequalities over measur-
able sets for the higher order evolution (1.2). The first over a general measurable
set and the second over two possibly different measurable sets with the same pro-
jection over the time t-axis. To simplify, we give the details only for the evolution
associated to ∆2.

Theorem 2. Assume that J ⊂ ∂Ω× (0, T ) is a measurable set with positive surface

measure in ∂Ω× (0, T ). Then, there is N = N(Ω, J, T, δ) such that the inequality

(1.3) ‖u(T )‖L2(Ω) ≤ N

∫

J

|∂∆u
∂ν (x, t)|+ |∆u(x, t)| dσdt,
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holds for all solutions u to

(1.4)





∂tu+∆2u = 0, in Ω× (0, T ),

u = ∂u
∂ν = 0, on ∂Ω× (0, T ),

u(0) = u0, in Ω,

with u0 in L2(Ω).

Remark 2. When J = Γ × (0, T ), 0 < T ≤ 1 and Γ ⊂ ∂Ω, the constant N in

Theorem 2 is of the form eN/T 1/3

with N = N(Ω, |Γ|, δ).
Theorem 3. Assume that E ⊂ (0, T ) is a measurable set with positive measure and

that Γi ⊂ ∂Ω, i = 1, 2, are measurable sets with positive surface measure. Then,

there is N = N(Ω, |Γ1|, |Γ2|, E, δ) such that the inequality

‖u(T )‖L2(Ω) ≤ N

∫

E

‖∂∆u
∂ν (t)‖L1(Γ1) + ‖∆u(t)‖L1(Γ2) dt,

holds for all solutions u to (1.4).

Remark 3. We do not know if the sets Γ1×E and Γ2×E can be replaced by general
measurable sets Ji ⊂ ∂Ω× (0, T ), i = 1, 2.

Now we consider the evolutions associated with strongly coupled second order
time independent parabolic systems with a possible non self-adjoint structure, as
the second order system

(1.5)





∂tu− Lu = 0, in Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),

u(0) = u0, in Ω,

with L = (L1, . . . ,Lℓ),

with
Lξu = ∂xi(a

ξη
ij (x)∂xju

η) + bξηj (x)∂xju
η + cξη(x)uη, ξ = 1, . . . , ℓ,

and u0 in L2(Ω)ℓ. Here, u denotes the vector-valued function (u1, . . . , uℓ) and the

summation convention of repeated indices is understood. We assume that aξηij , b
ξη
j

and cξη are analytic functions over Ω, i.e., there is δ > 0 such that

(1.6) |∂γxaξηij (x)|+ |∂γxbξηj (x)|+ |∂γxcξη(x)| ≤ δ−|γ|−1|γ|!, for all γ ∈ N
n and x ∈ Ω,

and only requires that the higher order terms of the system (1.5) have a self-adjoint
structure; i.e.

(1.7) aξηij (x) = aηξji (x), for all x ∈ Ω, ξ, η = 1, . . . , ℓ, i, j = 1, . . . , n,

together with the strong ellipticity condition

(1.8)
∑

ξ,η,i,j

aξηij (x)ζ
ξ
i ζ

η
j ≥ δ

∑

i,ξ

|ζξi |2, for all ζ = (ζξi ) in R
nℓ and x ∈ Ω.

The results described below also hold when the higher order coefficients of the
system verify (1.7) and the weaker Legendre-Hadamard condition [13, p. 76],

(1.9)
∑

i,j,ξ,η

aξηij (x)ςiςjϑ
ξϑη ≥ δ|ς |2|ϑ|2, when ς ∈ R

n, ϑ ∈ R
ℓ, x ∈ R

n,

in place of (1.8). Recall that the Lamé system of elasticity

∇ ·
(
µ(x)

(
∇u+∇ut

))
+∇ (λ(x)∇ · u) ,
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with µ ≥ δ, µ+ λ ≥ 0 in Rn, ℓ = n and

aξηij (x) = µ(x)(δξηδij + δiηδjξ) + λ(x)δjηδξi,

are examples of systems verifying (1.9).
The observability inequalities related to parabolic second order systems are as

follows. The first is an interior observability inequality with possibly different mea-
surable interior observation regions for each component of the system but with the
same projection over the time t-axis.

Theorem 4. Let E ⊂ (0, T ) be a measurable, |E| > 0 and ωη ⊂ Ω, η = 1, . . . , ℓ,
be measurable with |ωη| ≥ ω0, η = 1, . . . , ℓ, for some ω0 > 0. Then, there is

N = N(Ω, T, E, ω0, δ) such that the inequality

‖u(T )‖L2(Ω)ℓ ≤ N

∫

E

ℓ∑

η=1

‖uη(t)‖L1(ωη) dt

holds for all solutions u to (1.5).

Remark 4. We do not know if the sets ωη × E, η = 1, . . . , ℓ, can be replaced by
different and more general measurable sets Dη ⊂ Ω× (0, T ).

The second is a boundary observability inequality over possibly different mea-
surable sets with the same projection over the time t-axis for each component of the
system and the third, a boundary observability over a general measurable subset
of ∂Ω× (0, T ).

Theorem 5. Let E ⊂ (0, T ) be a measurable set with a positive measure and

γη ⊂ ∂Ω, η = 1, . . . , ℓ, be measurable sets with minη=1,...,ℓ |γη| ≥ γ0, for some

γ0 > 0. Then, there is N = N(Ω, E, T, γ0, δ) ≥ 1 such that the inequality

‖u(T )‖L2(Ω)ℓ ≤ N

∫

E

ℓ∑

η=1

‖∂uη

∂ν (t)‖L1(γη) dt

holds for all solutions u to (1.5). Here ∂u
∂ν =

(
∂u1

∂ν , . . . ,
∂uℓ

∂ν

)
with ∂uη

∂ν , aηξij ∂xju
ξνi,

for η = 1, . . . , ℓ.

Remark 5. We do not know if the sets γη × E, η = 1, . . . , ℓ, can be replaced by
different and general measurable sets Jη ⊂ ∂Ω× (0, T ), η = 1, . . . , ℓ.

Theorem 6. Let J be measurable subset of ∂Ω×(0, T ) with positive measure. Then,

there is N = N(Ω, δ, J, T ) such that the inequality

‖u(T )‖L2(Ω)ℓ ≤ N

∫

J

|∂u∂ν (q, t)| dσdt.

holds for all solutions u to (1.5),

With the same methods as for Theorem 1 one can also get an observability
inequality for (1.5) with observations over general interior measurable sets.

Theorem 7. Let D ⊂ Ω× (0, T ) be a measurable set with positive measure. Then

there is N = N(Ω, T,D, δ) ≥ 1 such that the inequality

‖u(T )‖L2(Ω)ℓ ≤ N

∫

D

|u(x, t)| dxdt,

holds for all solutions u to (1.5).



OBSERVATIONS FROM MEASURABLE SETS 5

Remark 6. The constant in Theorem 7 is of the form eN/T with N = N(Ω, ω, δ),
when D = ω × (0, T ), 0 < T ≤ 1 and ω ⊂ Ω.

Finally, the last observability inequality deals with the observation of only one
interior component of two coupled parabolic equations over a measurable set (See
[36] for the case of open sets). In particular, we consider the time independent not
completely uncoupled parabolic system

(1.10)





∂tu−∆u+ a(x)u + b(x)v = 0, in Ω× (0, T ),

∂tv −∆v + c(x)u + d(x)v = 0, in Ω× (0, T ),

u = 0, v = 0, on ∂Ω× (0, T ),

u(0) = u0, v(0) = v0, in Ω,

with a, b, c and d analytic in Ω, b(·) 6= 0, somewhere in Ω and with

|∂γxa(x)|+ |∂γxb(x)| + |∂γxc(x)|+ |∂γxd(x)| ≤ δ−|γ|−1|γ|!, for all γ ∈ N
n and x ∈ Ω,

for some δ > 0. Then, we get the following bound.

Theorem 8. Let D ⊂ Ω× (0, T ) be a measurable set with positive measure. Then

there is N = N(Ω,D, T, δ) such that the inequality

‖u(T )‖L2(Ω) + ‖v(T )‖L2(Ω) ≤ N

∫

D

|u(x, t)| dxdt,

holds for all solutions (u, v) to (1.10)

Remark 7. Theorem 8 is still valid when the Laplace operator ∆ in (1.10) is replaced
by two second elliptic operators ∇ · (Ai(x)∇·), i = 1, 2, with matrices Ai real-
analytic, symmetric and positive-definite over Ω. Here, we must make sure that
the higher order terms of the system remain uncoupled: a diagonal principal part.
Otherwise, we do not know if such kind of observability estimates are possible. We
believe that generally they are not.

As far as we know, the observability inequalities for the evolutions (1.2) for
m ≥ 2 and (1.5) have not been proved with Carleman methods; not even when D,
J, Γ1, Γ2, ωη, γη are open sets and E = (0, T ), cases where the standard techniques
to prove Carleman inequalities should make it more feasible. The reasons for these
are the difficulties that one confronts when dealing with the calculation and test of
the positivity of the commutators associated to the Carleman methods for higher
order equations and second order systems.

The method we use relies on the telescoping series method - built with ideas
borrowed from [24] and first used in [32] - and on local observability inequalities
for analytic functions over measurable sets: the Lemma 1 as in [2, 3] and a new
extension of Lemma 1, the Lemma 2 below. We use Lemma 2 in the proof of
Theorem 8.

Lemma 1. Let Ω be a bounded domain in Rn and ω ⊂ Ω be a measurable set of

positive measure. Let f be an analytic function in Ω satisfying

|∂αx f(x)| ≤Mρ−|α||α|!, for x ∈ Ω and α ∈ N
n,

for some numbers M and ρ. Then, there are N = N(Ω, ρ, |ω|) and θ = θ(Ω, ρ, |ω|),
0 < θ < 1, such that

‖f‖L∞(Ω) ≤ NM1−θ
(
—

∫

ω

|f | dx
)θ
.
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Lemma 1 was first derived in [34]. See also [27] and [28] for close results. The
reader can find a simpler proof of Lemma 1 in [2, §3]. The proof there is built with
ideas from [21], [27] and [34].

Lemma 2. Let Ω be a bounded domain in Rn and ω ⊂ Ω be a measurable set with

positive Lebesgue measure. Let f be an analytic function in Ω satisfying

|∂αx f(x)| ≤M |α|! ρ−|α|, for α ∈ N
n and x ∈ Ω,

for some M > 0 and 0 < ρ ≤ 1. Then, there are constants N = N(Ω, ρ, |ω|, n) and
θ = θ(Ω, ρ, |ω|), 0 < θ < 1, such that

‖∂αx f‖L∞(Ω) ≤ |α|! (ρ/N)−|α|−1M
1− θ

2|α|

(
—

∫

ω

|f | dx
) θ

2|α|

, when α ∈ N
n.

To the best of our knowledge, the works studying the space-time analyticity of
solutions to linear parabolic equations or systems with space-time analytic coeffi-
cients over analytic domains with zero Dirichlet lateral data or with other types of
zero lateral data [9, 30, 10, 6, 15, 17] do not in general state clearly the quantitative
estimates on the analyticity of the solutions derived from the methods they use.
Likely, the authors were mostly interested in the qualitative behavior.

As far as we understand, the best quantitative bound that one can get for so-
lutions to (1.2), (1.4), (1.5) and (1.10) with initial data in L2(Ω) from the works
[9, 30, 10, 6, 15, 17] is the following:

There is 0 < ρ ≤ 1, ρ = ρ(m,n, δ) such that

(1.11) |∂αx ∂pt u(x, t)| ≤ ρ−1− |α|
2m−p|α|! p! t− |α|

2m−p− n
4m ‖u0‖L2(Ω), ∀α ∈ N

n, p ∈ N,

where 2m is the order of the evolution.

The arguments in [9, 30, 10, 6, 15, 17] show that (1.11) holds when the coefficients of
the underlying linear parabolic equation or system are time dependent and satisfy
bounds like

(1.12) |∂αx ∂ptA(x, t)| ≤ δ−1−|α|−p|α|! p! , for all α ∈ N
n, p ∈ N, x ∈ Ω and t > 0,

for some 0 < δ ≤ 1. On the other hand, there is ρ = ρ(n,m), 0 < ρ ≤ 1, such that
the solution to {

∂tu+ (−∆)mu = 0, in Rn × (0,+∞),

u(0) = u0, in Rn,

verifies

(1.13) |∂αx ∂pt u(x, t)| ≤ ρ−1−
|α|
2m−p|α|! 1

2m p! t−
|α|
2m−p− n

4m ‖u0‖L2(Rn),

when α ∈ Nn and p ∈ N. Thus, the radius of convergence of the Taylor series
expansion of u(·, t) around points in Rn is +∞ at all times t > 0. The same
holds when (−∆)m is replaced above by other elliptic operators or systems of order
2m with constant coefficients. These estimates follow from upper bounds of the
holomorphic extension to Cn of the fundamental solutions of higher order parabolic
equations or systems with constant coefficients [6, p.15 (15); p.47-48 Theorem 1.1
(3)] and the fact that a function f in C∞(Rn) verifies

|∂αx f(0)| ≤ |α|! 1
2m ρ−1−|α|, for all α ∈ N

n, for some 0 < ρ ≤ 1,

if and only if f is a holomorphic in Cn and

|f(z)| ≤ eN |z|
2m

2m−1
, for all z ∈ C

n and for some N ≥ 1.
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To prove the observability inequalities in Theorems 1 through 8 we apply Lemmas
1 or 2 to u(t) over Ω and to u(x, ·) over roughly ( t2 , t) for x in Ω and 0 < t ≤
T , with u a solution to one of the above systems. To get the result of these
applications compatible with the telescoping series method - to make sure that a
certain telescoping series converges - we need better quantifications of the space-
time analyticity of the solutions to (1.2), (1.4), (1.5) and (1.10) than the ones in
(1.11) or within the available literature [9, 30, 10, 6, 15, 17], where the Taylor series
expansion of u(·, t) around a point x0 in Ω is known to converge absolutely only at
points whose distance from x0 is less than a fixed constant multiple of 2m

√
t.

For our purpose, we need to find a quantification of the space-time analyticity
which implies that the space-time Taylor series expansion of solutions converge
absolutely over Bρ(x) × ((1 − ρ)t, (1 + ρ)t), for some 0 < ρ ≤ 1, when (x, t) is in

Ω× (0, 1]. Thus, independently of 0 < t ≤ 1 in the space variable.
E. M. Landis and O. A. Oleinik developed in [18] a reasoning which reduces the

study of the strong unique continuation property within characteristic hyperplanes
for solutions to time independent parabolic evolutions to its elliptic counterpart.
They informed their readers [18, p. 190] that their argument implies the space-
analyticity of solutions to time-independent linear parabolic equations from its cor-
responding elliptic counterpart though they did not bother to quantify their claim.
Here, we quantify each step of their reasonings and get the following quantitative
estimate.

Lemma 3. There is ρ = ρ(m,n, δ), 0 < ρ ≤ 1, such that

|∂αx ∂pt u(x, t)| ≤ e1/ρt
1/(2m−1)

ρ−|α|−p |α|! p! t−p‖u0‖L2(Ω),

when x ∈ Ω, 0 < t ≤ 1, α ∈ Nn, p ≥ 0, 2m is the order of the evolution and u
verifies (1.2), (1.4), (1.5) or (1.10).

It provides a better bound than (1.11) in [9, 30, 10, 6, 15, 17] and it is good, as
described above, for our applications to Control Theory. Also observe that Lemma
3 is somehow in between (1.11) and (1.13), since

sup
t>0

t−
|α|
2m e1/ρt

1/(2m−1)

. |α|!1− 1
2m , for α ∈ N

n.

Lemma 3 also holds for solutions to time independent linear parabolic equations
associated to elliptic and possibly non self-adjoint equations of order 2m with ana-
lytic coefficients. We do not complete the details here. The readers can obtain such
quantitative estimates from [18] and with arguments similar to those in Section 2.

We believe that Lemma 3 holds when the coefficients of the parabolic evolution
are time dependent and verify (1.12) but so far we do not know how to prove it.

The paper is organized as follows: Section 2 proves Lemma 3; Section 3 shows
the results related to higher order parabolic equatons, Section 4 verifies the ones
for systems and Section 5 recalls some applications of Theorems 1, 2, 4 and 8 to
Control Theory. One can find analogous applications of Theorems 3, 5, 6 and 7.

2. Proof of Lemma 3

We first prove Lemma 3 for solutions to (1.2). Other time-independent parabolic
evolutions associated to self-adjoint elliptic scalar operators or systems with analytic
coefficients are treated similarly.
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Proof of Lemma 3 for (1.2). Let {ej}j≥1 and {w2m
j }j≥1 be respectively the sets

of L2(Ω)-normalized eigenfunctions and eigenvalues for (−∆)m with zero lateral
Dirichlet boundary conditions; i.e.,

{
(−1)m∆mej − w2m

j ej = 0, in Ω,

ej = ∇ej = · · · = ∇m−1ej = 0, on ∂Ω.

Take u0 =
∑

j≥1 ajej , with
∑

j≥1 a
2
j < +∞ and define

u(x, y, t) =
∑

j≥1

aje
−tw2m

j ej(x)Xj(y), for x ∈ Ω, y ∈ R and t > 0,

with

(2.1) Xj(y) =

{
ewjy, when m is odd,

ewjye
πi
2m , when m is even,

where i =
√
−1. Then, u(x, t) = u(x, 0, t), solves (1.2) with initial datum u0 and

(2.2) ∂pt u(x, y, t) =
∑

j≥1

(−1)p aj w
2mp
j e−tw2m

j ej(x)Xj(y), x ∈ Ω, y ∈ R.

Moreover,
{
(∂2my +∆m

x )(∂pt u(·, ·, t)) = 0, in Ω× R,

∂pt u(·, ·, t) = ∇(∂pt u(·, ·, t)) = · · · = ∇m−1(∂pt u(·, ·, t)) = 0, on ∂Ω× R.

Because ∂Ω is analytic, the quantitative estimates on the analyticity up to the
boundary for solutions to elliptic equations with analytic coefficients and null-
Dirichlet data over nearby analytic boundaries (See [25, Ch. 5] or [11, Ch. 3]),
show that there is ρ = ρ(Ω), 0 < ρ ≤ 1, such that for x0 in Ω and 0 < R ≤ 1

(2.3) ‖∂αx ∂pt u(·, ·, t)‖L∞(BR/2(x0,0)∩Ω×R)

≤ |α|! ρ−1−|α|R−|α|

(
—

∫

BR(x0,0)∩Ω×R

|∂pt u(x, y, t)|2 dxdy
) 1

2

.

Because

(2.4)

∫

BR(x0,0)∩Ω×R

|∂pt u(x, y, t)|2 dxdy ≤
∫ R

−R

∫

Ω

|∂pt u(x, y, t)|2 dxdy,

we have from (2.1), (2.2) and the orthogonality of {ej}j≥1 in L2(Ω) that
∫

Ω

|∂pt u(x, y, t)|2 dx =

∫

Ω

∣∣∣
∑

j≥1

(−1)
p
aj w

2mp
j e−tw2m

j ej(x)Xj(y)
∣∣∣
2

dx

=
∑

j≥1

a2j w
4mp
j e−2tw2m

j |Xj(y)|2 ≤
∑

j≥1

a2j w
4mp
j e−2tw2m

j e2wj |y|

≤ max
j≥1

{
w4mp

j e−tw2m
j
}
max
j≥1

{
e−tw2m

j +2wj |y|
}∑

j≥1

a2j .

Next, from Stirling’s formula

max
x≥0

x2pe−xt = t−2p (2p)
2p
e−2p .

(
2

t

)2p

p!2, when t > 0 and p ≥ 0,
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and the fact that

max
x≥0

e−tx2m+2x|y| = e(2−
1
m )( |y|

mt )
1

2m−1

, when t > 0, m ≥ 1,

we get that

∫

Ω

|∂pt u(x, y, t)|2 dx .

(
2

t

)2p

p!2e2|y|(
|y|
mt)

1
2m−1

∑

j≥1

a2j .

This, along with (2.3), (2.4) and the choice of R = 1 show that

‖∂αx ∂pt u(·, ·, t)‖L∞(B1/2(x0,0)∩Ω×R) ≤ N |α|! p! ρ−|α|

(
2

t

)p

eNt
− 1

2m−1



∑

j≥1

a2j




1/2

.

In particular,

|∂αx ∂pt u(x, t)| ≤ e1/ρt
1/(2m−1)

ρ−|α|−p|α|! p! t−p‖u0‖L2(Ω).

�

Remark 8. The last proof extends to the case m ≥ 2 its analog for m = 1 in [3,
Lemma 6]. There the authors used that the Green’s function over Ω for ∆−∂t with
zero lateral Dirichlet conditions has Gaussian upper bounds. The later shows that
one can derive [3, Lemma 6] without knowledge of upper bounds for the Green’s
function with lateral Dirichlet conditions of the parabolic evolution.

We now give a proof of Lemma 3 for solutions to the systems (1.5) and (1.10).
Other time-independent parabolic evolutions associated to possibly non self-adjoint

elliptic scalar equations with analytic coefficients over Ω are treated similarly.

Proof of Lemma 3 for (1.5). The proof of Lemma 3 requires first global bounds on
the time-analyticity of the solutions, Lemma 4 below. Of course, there is plenty of
literature on the time-analyticity of solutions to abstract evolutions [14, 16, 22, 31]
but we give here a proof of Lemma 4 because it serves better our purpose.

Lemma 4. There is ρ = ρ(δ), 0 < ρ ≤ 1, such that

tp‖∂pt u(t)‖L2(Ω) + tp+
1
2 ‖∇∂pt u(t)‖L2(Ω) ≤ ρ−1−pp! ‖u0‖L2(Ω),

when p ≥ 0, 0 < t ≤ 2 and u verifies (1.5) or (1.10).

Proof of Lemma 4. Let u solve (1.5). When u0 is in C∞
0 (Ω), the solution u to

(1.5) is in C∞(Ω × [0,+∞)) [10]. By the local energy inequality for (1.5) there is
ρ = ρ(δ) > 0 such that

sup
0≤t≤2

‖u(t)‖L2(Ω) ≤ ρ−1‖u0‖L2(Ω).

Multiply first the equation satisfied by ∂pt u,

(2.5)

{
∂p+1
t u− L∂pt u = 0, in Ω× (0,+∞),

∂pt u = 0, in ∂Ω× (0,+∞),



10 LUIS ESCAURIAZA, SANTIAGO MONTANER, AND CAN ZHANG

by t2p+2∂p+1
t u, after by t2p+1∂pt u and integrate by parts over ΩT = Ω × (0, T ),

0 < T ≤ 2, the two resulting identities. These, standard energy methods, Hölder’s
inequality together with (1.6) (1.7) and (1.8) imply that

(2.6) T p+1‖∇∂pt u(T )‖L2(Ω) + ‖tp+1∂p+1
t u‖L2(ΩT )

. ‖tp∂pt u‖L2(ΩT ) + (p+ 1)
1
2 ‖tp+ 1

2 ∂pt ∇u‖L2(ΩT ),

(2.7) T p+ 1
2 ‖∂pt u(T )‖L2(Ω) + ‖tp+ 1

2 ∂pt ∇u‖L2(ΩT ) . (p+ 1)
1
2 ‖tp∂pt u‖L2(ΩT ).

Thus,

(2.8) ‖tp+1∂p+1
t u‖L2(ΩT ) ≤ ρ−1 (p+ 1) ‖tp∂pt u‖L2(ΩT ), for p ≥ 0

and the iteration of (2.8) and the local energy inequality show that

‖tp∂pt u(t)‖L2(ΩT ) ≤ ρ−1−pp!
√
T ‖u0‖L2(Rn), for p ≥ 0.

This combined with (2.6) and (2.7) implies Lemma 4.
�

The next step is to show that we can realize u(x, t) and all its partial deriva-
tives with respect to time as functions with one more space variable, say xn+1,
which satisfy in the (X, t) = (x, xn+1, t) coordinates a time-independent parabolic
evolution associated to a self-adjoint elliptic system with analytic coefficients over
Ω× (−1, 1)× (0,+∞) and with zero boundary values over ∂Ω× (−1, 1)× (0,+∞).
To accomplish it, consider the system S =

(
S1, . . . , Sℓ

)
, which acts on functions w

in C∞(Ω× R,Rℓ), w =
(
w1, . . . , wℓ

)
, as

Sξw =
n+1∑

i,j=1

ℓ∑

η=1

∂xi

(
ãξηij (X)∂xjw

η
)

+

ℓ∑

η=1

[
∂xn+1

(
xn+1c

ξη(x)wη
)
− xn+1c

ηξ(x)∂xn+1w
η
]
,

for ξ = 1, . . . , ℓ, where for ξ, η = 1, . . . , ℓ,

ãξηij (X) =





aξηij (x), for i, j = 1, . . . , n,

xn+1b
ξη
j (x), for i = n+ 1, j = 1, . . . , n

xn+1b
ηξ
i (x), for i = 1, . . . , n, j = n+ 1,

Mδξη, for i = j = n+ 1.

Set QR = Ω × (−R,R) and ∂lQR = ∂Ω × (−R,R), the “lateral”boundary of QR.
From (1.7), S is a self-adjoint system and for large M = M(δ), the matrices of

coefficients ãξηij verify one the ellipticity conditions (1.8) or (1.9) with δ replaced

by δ
2 over Q1 when the original coefficients aξηij verify respectively (1.8) or (1.9).

Choosing M larger if it is necessary, we may assume that

(2.9) δ
2‖∇Xϕ‖2L2(Q1)

≤ −
∫

Q1

Sϕ ·ϕ dX ≤ 2
δ ‖∇Xϕ‖2L2(Q1)

,



OBSERVATIONS FROM MEASURABLE SETS 11

when ϕ is in W 1,2
0 (Q1) and ∇X =

(
∇x, ∂xn+1

)
. Also, Sϕ(X) = Lv(x), when

ϕ(X) = v(x) and for w(X, t) = ∂pt u(x, t), p ≥ 0, we have
{
∂tw − Sw = 0, in Q1 × (0,+∞),

w = 0, in ∂lQ1 × (0,+∞).

The symmetry, coerciveness and compactness of the operator mapping functions f
in L2(Q1)

m into the unique solution ϕ in W 1,2
0 (Q1)

m to
{
Sϕ = f , in Q1,

ϕ = 0, in ∂Q1

[13, Prop. 2.1] gives the existence of a complete orthogonal system {ek} in L2(Q1)
m

of eigenfunctions, ek = (e1k, . . . , e
m
k ), satisfying

{
Sek + ω2

k ek = 0, in Q1,

ek = 0, in ∂Q1,

with eigenvalues 0 < ω2
1 ≤ . . . ω2

k ≤ . . . . Fix 0 < T ≤ 1 and for (X, t) in Q1 ×
(T2 ,+∞) consider

w1(X, t) =
∑

j≥1

aje
−w2

j (t−T/2)ej(X),

with

(2.10) aj =

∫

Q1

∂pt u(x,
T
2 )ej(X) dX.

Clearly, w1(X,
T
2 ) = ∂pt u(x,

T
2 ) in Q1 and by the multiplications of the equation

verified by w1, first by w1, after by ∂tw1 and the integration by parts of the
resulting identities over Q1 × (T2 , τ), for

T
2 < τ ≤ 2T , we get

‖w1‖L∞(T
2 ,2T ;L2(Q1))

+
√
T ‖∇Xw1‖L∞(T

2 ,2T ;L2(Q1))

. ‖∂pt u(T2 )‖L2(Ω) +
√
T ‖∇∂pt u(T2 )‖L2(Ω).

From Lemma 4

(2.11) ‖w1‖L∞(T
2 ,2T ;L2(Q1))

+
√
T ‖∇Xw1‖L∞(T

2 ,2T ;L2(Q1))
≤

√
T H(p, T, ρ),

with

(2.12) H(p, T, ρ) = ρ−1−pp!T−p− 1
2 ‖u0‖L2(Ω), 0 < ρ ≤ 1, ρ = ρ(δ).

Let w2 be the solution to




∂tw2 − Sw2 = 0, in Q1 × (T2 ,+∞),

w2 = η(t) (∂pt u−w1) , on ∂Q1 × (T2 ,+∞),

w2(0) = 0, in Q1,

where 0 ≤ η ≤ 1 verifies η = 1, for −∞ < t ≤ T , η = 0, for 3T
2 ≤ t < +∞ and

|∂tη| ≤ 1
T . Observe that because ∂pt u = 0 on ∂Ω × (0,+∞), ∂lQ1 ⊂ ∂Q1 and

w1 = 0 on ∂Q1, then w2 = 0 on ∂lQ1.
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The auxiliary function, v = w2 − η(t)(∂pt u−w1) satisfies




∂tv − Sv = −(∂pt u−w1)∂tη in Q1 × (T/2,+∞),

v = 0 on ∂Q1 × (T/2,+∞),

v(T/2) = 0 in Q1

and clearly v ≡ 0 in Q1 × [T2 , T ]. In particular,

(2.13) ∂pt u(x, T ) = w1(X,T ) +w2(X,T ), for X in Q1.

By the parabolic regularity

‖v‖L∞(T/2,2T ;L2(Q1)) + ‖∇Xv‖L∞(T/2,2T ;L2(Q1)) . ‖(∂pt u−w1)∂tη‖L2(T
2 ,2T ;L2(Q1))

and from Lemma 4 and (2.11)

‖v‖L∞(T/2,2T ;L2(Q1)) + ‖∇Xv‖L∞(T/2,2T ;L2(Q1)) . H(p, T, ρ).

Because w2 = v + η(t) (∂pt u−w1), we get from the latter, Lemma 4 and (2.11)

(2.14) ‖w2‖L∞(T
2 ,2T ;L2(Q1))

+ ‖∇Xw2‖L∞(T
2 ,2T ;L2(Q1))

. H(p, T, ρ).

By separation of variables,

w2(X, t) =
+∞∑

j=1

cje
−ω2

j (t−2T )ej(X), with cj =

∫

Q1

w2(X, 2T )ej(X) dX,

for t ≥ 2T . From (2.9), ω2
1 ≥ δ

2 and

(2.15) ‖w2(t)‖L2(Q1) ≤ e−
δ
2 (t−2T )‖w2(2T )‖L2(Q1), when t ≥ 2T.

Also,

−
∫

Q1

Sw2(t) ·w2(t) dX = −
∫

Q1

∂tw2(t) ·w2(t) dX =

+∞∑

j=1

c2jω
2
j e

−2ω2
j (t−2T ),

for t ≥ 2T and the last identity and (2.9) imply that

‖∇Xw2(t)‖L2(Q1) ≤ e−
δ
2 (t−2T )‖∇Xw2(2T )‖L2(Q1), when t ≥ 2T.

From (2.14), (2.15) and the last inequality

(2.16) ‖w2(t)‖L2(Q1) + ‖∇Xw2(t)‖L2(Q1) . e−
δ
2 (t−2T )+H(p, T, ρ)

and we may extend w2 as zero for t ≤ T
2 . Set

ŵ2(X,µ) =
1√
2π

∫ +∞

T
2

e−iµtw2(X, t) dt =
1√
2π

∫ +∞

−∞

e−iµtw2(X, t) dt,

for X in Q1 and µ in R. From (2.16)

(2.17) ‖ŵ2(µ)‖L2(Q1) + ‖∇Xŵ2(µ)‖L2(Q1) . H(p, T, ρ), for all µ ∈ R.

Moreover,
{
Sŵ2(X,µ)− iµŵ2(X,µ) = 0, in Q1,

ŵ2(X,µ) = 0, in ∂lQ1,
for each µ ∈ R.

For µ 6= 0, define

(2.18) v2(X, ζ, µ) = eiζ
√

|µ|ŵ2(X,µ), ζ ∈ R.
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Then, {
Sv2(X, ζ, µ) + i sgn (µ) ∂2ζv2(X, ζ, µ) = 0, in Q1 × R,

v2(X, ζ, µ) = 0, in ∂lQ1 × R.

As for the equation verified by v2, it is elliptic with complex coefficients and its
coefficients are independent of the ζ-variable. These and the fact that ∂kζv2 = 0 on

∂lQ1×R imply by energy methods [26] (k times localized Cacciopoli’s inequalities)
that

‖∂j+1
ζ v2‖L2(Q

1−
j+1
2k

×(−1+ j+1
2k ),1− j+1

2k )) ≤ k
ρ ‖∂

j
ζv2‖L2(Q

1−
j
2k

×(−1+ j
2k ,1− j

2k )),

for j = 0, . . . , k − 1, k ≥ 1, and for some 0 < ρ ≤ 1, ρ = ρ(δ). Its iteration gives

‖∂kζv2‖L2(Q 1
2
×(− 1

2 ,
1
2 ))

≤ k! ρ−k‖v2‖L2(Q1×(−1,1)), for k ≥ 1,

and from (2.17) and (2.18)

(2.19) ‖∂kζv2‖L2(Q 1
2
×(− 1

2 ,
1
2 ))

. k! ρ−kH(T, p, ρ), for k ≥ 1.

For ψ in L2(Q 1
2
), set γ(ζ) =

∫
Q 1

2

v2(X, ζ, µ)ψ(X) dX . Then, from (2.17), (2.18)

and (2.19)

‖γ(k)‖L∞(− 1
2 ,

1
2 )

. ρ−kk!H(T, p, ρ) ‖ψ‖L2(Q 1
2
), for k ≥ 0.

Thus, γ(− iρ
2 ) can be calculated via the Taylor series expansion of γ around ζ = 0

and after adding a geometric series

|γ(− iρ
2 )| =

∣∣∣
∫

Q 1
2

eρ
√

|µ|/2ŵ2(X,µ)ψ(X) dX
∣∣∣ . ‖ψ‖L2(Q 1

2
)H(T, p, ρ).

All together,

(2.20) ‖ŵ2(·, µ)‖L2(Q 1
2
) . e−ρ

√
|µ|/2H(T, p, ρ), when µ ∈ R.

Define then,

U2(X, y) =
1√
2π

∫

R

eiµT ŵ2(X,µ) cosh
(
y
√
−iµ

)
dµ,

for (X, y) in Q 1
2
× R, with

√−iµ =
√
|µ| e− iπ

4 sgn µ. From (2.20),

(2.21) ‖U2(·, y)‖L2(Q 1
2
) . H(T, p, ρ), for |y| ≤ ρ

4
.

Observe that U2 is in C∞(Q 1
2
× [− ρ

4 ,
ρ
4 ]) and that one may derive similar bounds

for higher derivatives of U2. Also,

(2.22)

{
SU2 + ∂2yU2 = 0, in Q 1

2
× (− ρ

4 ,
ρ
4 ),

U2 = 0, in ∂lQ 1
2
× (− ρ

4 ,
ρ
4 )

and

(2.23) U2(X, 0) =
1√
2π

∫

R

eiµT ŵ2(X,µ) dµ = w2(X,T ), in Q 1
2
.

Next,

U1(X, y) =

+∞∑

j=1

e−ω2
jT/2ajej(X) cosh (ωjy),
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with aj as in (2.10) satisfies

(2.24) U1(X, 0) = w1(X,T ), in Q1,

{
SU1 + ∂2yU1 = 0, in Q1 × R,

U1 = 0, in ∂Q1 × R,

and

(2.25) sup
|y|≤1

‖U1(·, y)‖L2(Q1) . e1/T ‖∂pt u(T2 )‖L2(Ω) . e1/TH(T, p, ρ).

Set then, U = U1 +U2. From (2.22), (2.23), (2.24) and (2.13) we have




SU+ ∂2yU = 0, in Q 1
2
× (− ρ

4 ,
ρ
4 ),

U = 0, in ∂lQ 1
2
× (− ρ

4 ,
ρ
4 ),

U(X, 0) = ∂pt u(x, T ), in Q 1
2
,

while (2.21) and (2.25) show that

(2.26) sup
|y|≤ ρ

4

‖U(·, y)‖L2(Q 1
2
) . e1/TH(T, p, ρ), with ρ = ρ(δ), 0 < ρ ≤ 1.

Now, S + ∂2y is an elliptic system with analytic coefficients. This, (2.26), the fact

that U(X, y) = 0, for (X, y) = (x, xn+1, y) in ∂Ω× (− 1
2 ,

1
2 )× (− ρ

4 ,
ρ
4 ) and that ∂Ω

is analytic imply that there is ρ = ρ(δ), 0 < ρ ≤ 1 (See [26] or [13, Ch. II]) such
that

‖∂γX∂qyU(X, y)‖L∞(Q 1
4
×(− ρ

4 ,
ρ
4 ))

≤ ρ−|γ|−q|γ|! q! e1/TH(T, p, ρ), for γ ∈ N
n+1, q ∈ N.

Finally, U(X, 0) = ∂pt u(x, T ) in Ω and Lemma 3 follows from the latter and (2.12).
�

Remark 9. Observe that we did not use quantitatively the smoothness of ∂Ω in the
proof of Lemma 4 and that to get the quantitative estimate of Lemma 3 over only
B δ

2
(x0) ∩ Ω× (0, T ], with x0 in Ω and δ as in (1.1), it suffices to know that either

Bδ(x0) ⊂ Ω or that ∂Ω ∩Bδ(x0) is real-analytic.

3. Observability for higher order elliptic equations

We can now explain the proof of Theorem 1 by making use of Lemmas 1 and 3 .

Proof of Theorem 1. From Lemma 3

|∂αx u(x, L)| ≤ e1/ρL
1/(2m−1) |α|! ρ−|α|‖u(0)‖L2(Ω), for x ∈ Ω and 0 < L ≤ T

and from Lemma 1 there are N = N(Ω, |ω|, ρ) and θ = θ(Ω, |ω|, ρ) in (0, 1) such
that

(3.1) ‖u(L)‖L2(Ω) ≤ N‖u(L)‖θL1(ω)M
1−θ, with M = NeN/L‖u(0)‖L2(Ω),

when ω ⊂ Ω is a measurable set with a positive measure. Set for each t ∈ (0, T ),

Dt = {x ∈ Ω : (x, t) ∈ D} and E = {t ∈ (0, T ) : |Dt| ≥ |D|/(2T )}.
By Fubini’s theorem, Dt is measurable for a.e. t ∈ (0, T ), E is measurable in
(0, T ) with |E| ≥ |D|/(2|Ω|) and χE(t)χDt(x) ≤ χD(x, t) over Ω × (0, T ). Next,
let q ∈ (0, 1) be a constant to be determined later and l be a Lebesgue point of
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E. Then, from [3, Lemma 2] there is a monotone decreasing sequence {lk}k≥1

satisfying limk→∞ lk = l, l < l1 ≤ T ,

(3.2) lk+1 − lk+2 = q(lk − lk+1) and |(lk+1, lk) ∩ E| ≥ lk − lk+1

3
, k ∈ N.

Define
τk = lk+1 + (lk − lk+1)/6, k ∈ N.

From (3.1) there are N = N(Ω, |D|, T, ρ) and θ = θ(Ω, |D|, T, ρ), 0 < θ < 1, such
that

‖u(t)‖L2(Ω) ≤
(
Ne

N

(lk−lk+1)1/(2m−1) ‖u(t)‖L1(Dt)

)θ
‖u(lk+1)‖1−θ

L2(Ω),

when t ∈ [τk, lk]∩E. Integrating the above inequality over (τk, lk)∩E, from Young’s
inequality and the standard energy estimate for the solutions to (1.2), we have that
for each ǫ > 0,

‖u(lk)‖L2(Ω) ≤ ǫ‖u(lk+1)‖L2(Ω)

+ ǫ−
1−θ
θ Ne

N

(lk−lk+1)1/(2m−1)

∫ lk

lk+1

χE‖u(t)‖L1(Dt) dt.

Multiplying the above inequality by ǫ
1−θ
θ e

− N

(lk−lk+1)1/(2m−1)
, replacing ǫ by ǫθ and

finally choosing ǫ = e
− 1

(lk−lk+1)1/(2m−1)
in the resulting inequality, we obtain that

e
− N+1−θ

(lk−lk+1)1/(2m−1) ‖u(lk)‖L2(Ω) − e
− N+1

(lk−lk+1)1/(2m−1) ‖u(lk+1)‖L2(Ω)

≤ N

∫ lk

lk+1

χE‖u(t)‖L1(Dt)dt.

Therefore, fixing q in (3.2) as q =
(

N+1−θ
N+1

)2m−1

, we have

e
− N+1−θ

(lk−lk+1)1/(2m−1) ‖u(lk)‖L2(Ω) − e
− N+1−θ

(lk+1−lk+2)1/(2m−1) ‖u(lk+1)‖L2(Ω)

≤ N

∫ lk

lk+1

χE‖u(t)‖L1(Dt)dt.
(3.3)

Summing (3.3) from k = 1 to +∞ completes the proof (the telescoping series
method). �

To deal with the boundary observability inequalities for the fourth order para-
bolic evolution, let Ωρ = {x ∈ Rn : d(x,Ω) < ρ}, with ρ > 0 sufficiently small. By
the inverse function theorem for analytic functions, Ωρ is a domain with analytic
boundary (cf. [2, p. 249]) and by standard extension arguments (cf. [12, Chapter
I, Theorem 2.3]), the interior null controllability of the system





∂tu+∆2u = χ
Ωρ\Ω

f, in Ωρ × (0, T ),

u = ∂u
∂ν = 0, on ∂Ωρ × (0, T ),

u(0) = u0, in Ωρ,

with initial datum u0 in L2(Ω) is a consequence of Theorem 1 (See also Remark 1)
by standard duality arguments (HUM method) [20]. The later implies that there
are controls g1 and g2 in L2(∂Ω× (0, T )) with

‖gk‖L2(∂Ω×(0,T )) ≤ Ne
N

T1/3 ‖u0‖L2(Ω), k = 1, 2,
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such that the solution u to




∂tu+∆2u = 0, in Ω× (0, T ),

u = g1,
∂u
∂ν = g2, on ∂Ω× (0, T ),

u(0) = u0, in Ω,

verifies u(T ) ≡ 0. By a standard duality argument, this full boundary null control-
lability in turn implies the observability inequality

‖ϕ(0)‖L2(Ω) ≤ eN/T 1/3
[
‖∂∆ϕ

∂ν ‖L2(∂Ω×(0,T )) + ‖∆ϕ‖L2(∂Ω×(0,T ))

]
,

for solutions ϕ to the dual equation
{
−∂tϕ+∆2ϕ = 0, in Ω× (0, T ),

ϕ = ∂ϕ
∂ν = 0, on ∂Ω× (0, T ),

with initial datum ϕ(T ) = ϕT in L2(Ω). Thus, we can derive from the above lines
and from the decay of the energy the following result.

Lemma 5. There is N = N(Ω, δ) such that the interpolation inequality

‖u(T )‖L2(Ω)

≤
(
eN/[(ǫ2−ǫ1)T

1
3 ]
[
‖∂∆u

∂ν ‖L2(∂Ω×[ǫ1T,ǫ2T ]) + ‖∆u‖L2(∂Ω×[ǫ1T,ǫ2T ])

]) 1
2

‖u0‖
1
2

L2(Ω),

holds for all solutions u to (1.4) and 0 ≤ ǫ1 < ǫ2 ≤ 1.

Lemmas 3 and 5 imply in a similar way to the reasonings in [3, Theorem 11] the
following result.

Lemma 6. Assume that E ⊂ (0, T ) is a measurable set of positive measure and

that Γi ⊂ ∂Ω, i = 1, 2, are measurable subsets with |Γ1|, |Γ2| ≥ γ0 > 0. Then, for

each η ∈ (0, 1) there are N = N(Ω, η, γ0, δ) ≥ 1 and θ = θ(Ω, η, γ0, δ), 0 < θ < 1,
such that the inequality

‖u(t2)‖L2(Ω) ≤
(
eN/(t2−t1)

1/3

∫ t2

t1

χE(t)
[
‖∂∆u(t)

∂ν ‖L1(Γ1) + ‖∆u(t)‖L1(Γ2)

]
dt

)θ

‖u(t1)‖1−θ
L2(Ω),

(3.4)

holds for all solutions u to (1.4), when 0 ≤ t1 < t2 ≤ T and |(t1, t2)∩E| ≥ η(t2−t1).
Moreover,

e
− N+1−θ

(t2−t1)1/3 ‖u(t2)‖L2(Ω) − e
− N+1−θ

(q(t2−t1))1/3 ‖u(t1)‖L2(Ω)

≤ N

∫ t2

t1

χE(t)
[
‖∂∆u(t)

∂ν ‖L1(Γ1) + ‖∆u(t)‖L1(Γ2)

]
dt, when q ≥

(
N+1−θ
N+1

)3
.

Proof. Suppose that 0 < η < 1 satisfies |(t1, t2) ∩ E| ≥ η(t2 − t1). Set

τ = t1 +
η

20
(t2 − t1), t̃1 = t1 +

η

8
(t2 − t1),

t̃2 = t2 −
η

8
(t2 − t1), τ̃ = t2 −

η

20
(t2 − t1).
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Then, t1 < τ < t̃1 < t̃2 < τ̃ < t2 and |E ∩ (t̃1, t̃2)| ≥ 3η
4 (t2 − t1) and it follows from

Lemma 5 that there is N = N(Ω, η, δ) such that

‖u(t2)‖L2(Ω) ≤ eN/(t2−t1)
1/3[‖∂∆u

∂ν ‖L2(∂Ω×(τ,τ̃))+ ‖∆u‖L2(∂Ω×(τ,τ̃))

]1/2‖u(t1)‖1/2L2(Ω).

Next, the inequality

‖∂∆u
∂ν ‖L2(∂Ω×(τ,τ̃)) ≤ ‖∂∆u

∂ν ‖1/2L1(∂Ω×(τ,τ̃))‖∂∆u
∂ν ‖1/2L∞(∂Ω×(τ,τ̃))

and Lemma 3 show that

(3.5) ‖∂∆u
∂ν ‖L2(∂Ω×(τ,τ̃)) ≤ Ne

N

(t2−t1)1/3 ‖u(t1)‖1/2L2(Ω)‖∂∆u
∂ν ‖1/2L1(∂Ω×(τ,τ̃)).

Set v(x, t) = ∂∆u
∂ν (x, t), for x in ∂Ω and t > 0. Then,

(3.6) ‖v‖L1(∂Ω×(τ,τ̃)) ≤ (τ̃ − τ)

∫

∂Ω

‖v(x, ·)‖L∞(τ,τ̃) dσ .

Denote the interval [τ, τ̃ ] as [a, a+L], with a = τ and L = τ̃ − τ = (1− η
10 )(t2− t1).

Then, Lemma 3 shows that there is N = N(Ω, η, δ) such that for each fixed x in
∂Ω, τ ≤ t ≤ τ̃ and p ≥ 0,

(3.7) |∂pt v(x, t)| ≤
eN/(t2−t1)

1/3

p!

(η(t2 − t1)/40)
p ‖u(t1)‖L2(Ω) ,

Mp!

(2ρL)
β
,

with

M = eN/(t2−t1)
1/3‖u(t1)‖L2(Ω) and ρ =

η

8 (10− η)
.

Hence it follows from (3.7) and [3, Lemma 13] that

‖v(x, ·)‖L∞(τ,τ̃) ≤
(
—

∫

E∩(t̃1,t̃2)

|v(x, t)| dt
)γ (

NeN/(t2−t1)
1/3‖u(t1)‖L2(Ω)

)1−γ

,

for all x in ∂Ω, with N = N(Ω, η, δ) and γ = γ(η) in (0, 1). This, along with (3.6)
and Hölder’s inequality leads to

‖v‖L1(∂Ω×(τ,τ̃)) ≤ e
N

(t2−t1)1/3

(∫

E∩(t̃1,t̃2)

∫

∂Ω

|v(x, t)| dσdt
)γ

‖u(t1)‖1−γ
L2(Ω),(3.8)

with some new N and γ as above. Because, t − t1 ≥ t̃1 − t1 = η
8 (t2 − t1), when

t ∈ (t̃1, t̃2), we get from Lemma 3 that

‖∂αx′v(t)‖L∞(∂Ω) ≤
eN/(t2−t1)

1/3 |α|!
ρ|α|

‖u(t1)‖L2(Ω), for α ∈ N
n−1

and for some new constants N = N(Ω, η, δ) and ρ = ρ(Ω, δ). By the obvious
generalization of Lemma 1 to the case of real-analytic functions defined over analytic
hypersurfaces in Rn, there are N = N (Ω, η, |Γ1|, δ) and ϑ = ϑ (Ω, |Γ1|, δ), 0 < ϑ <
1, such that

(3.9)

∫

∂Ω

|v(x, t)| dσ ≤
(∫

Γ1

|v(x, t)| dσ
)ϑ (

eN/(t2−t1)
1/3‖u(t1)‖L2(Ω)

)1−ϑ

,

when t ∈ E ∩ (t̃1, t̃2), and it follows from (3.8), (3.9) as well as Hölder’s inequality
that

‖v‖L1(∂Ω×(τ,τ̃)) ≤
(
eN/(t2−t1)

1/3

∫

E∩(t̃1,t̃2)

∫

Γ1

|v(x, t)| dσdt
)ϑγ

‖u(t1)‖1−ϑγ
L2(Ω).
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This, together with (3.5) and the definition of v leads to

‖∂∆u
∂ν ‖L2(∂Ω×(τ,τ̃)) ≤

(
e

N

(t2−t1)1/3

∫

E∩(t̃1,t̃2)

∫

Γ1

|∂∆u
∂ν (x, t)| dσdt

)θ1
‖u(t1)‖1−θ1

L2(Ω).

Similarly, we can get that

‖∆u‖L2(∂Ω×(τ,τ̃)) ≤
(
e

N

(t2−t1)1/3

∫

E∩(t̃1,t̃2)

∫

Γ2

∣∣∆u(x, t)
∣∣ dσdt

)θ2
‖u(t1)‖1−θ2

L2(Ω).

These last two inequalities, as well as the fact that

aθ + bθ

2
≤
(a+ b

2

)θ
, when a, b > 0, 0 < θ < 1,

lead to the first desired estimate (3.4). Next, applying Young’s inequality to (3.4),
we obtain that for each ε > 0,

‖u(t2)‖L2(Ω) ≤ ε‖u(t1)‖L2(Ω)

+ ε−
1−θ
θ Ne

N

(t2−t1)1/3

∫ t2

t1

χE(t)
[
‖∂∆u

∂ν (t)‖L1(Γ1) + ‖∆u(t)‖L1(Γ2)

]
dt.

Hence, after some computations, we may get that

ε1−θe
− N

(t2−t1)1/3 ‖u(t2)‖L2(Ω) − εe
− N

(t2−t1)1/3 ‖u(t1)‖L2(Ω)

≤
∫ t2

t1

χE(t)
[
‖∂∆u

∂ν (t)‖L1(Γ1) + ‖∆u(t)‖L1(Γ2)

]
dt, for all ǫ > 0.

Choosing now ε = e
− 1

(t2−t1)1/3 implies the second estimate in the Lemma. �

We now complete the proof of Theorems 2 and 3.

Proof of Theorems 2 and 3. Set for each t ∈ (0, T )

Jt = {x ∈ ∂Ω : (x, t) ∈ J} and E = {t ∈ (0, T ) : |Jt| ≥ |J|/(2T )}.
By Fubini’s theorem, Jt is measurable for a.e. t ∈ (0, T ), E is measurable in (0, T )
with |E| ≥ |J|/(2|∂Ω|) and χE(t)χJt(x) ≤ χJ(x, t) over ∂Ω × (0, T ). Then, with
similar arguments as the ones in the proof of Lemma 6, we can get that for each
0 < η < 1, there are N = N(Ω, η, |J|, T, δ) and θ = θ(Ω, η, |J|, T, δ) with 0 < θ < 1,
such that

‖u(t2)‖L2(Ω) ≤
(
NeN/(t2−t1)

1/3

∫ t2

t1

χE(t)
[
‖∂∆u

∂ν (t)‖L1(Jt) + ‖∆u(t)‖L1(Jt)

]
dt

)θ

‖u(t1)‖1−θ
L2(Ω),

holds for all solutions u to (1.4), when 0 ≤ t1 < t2 ≤ T and |(t1, t2)∩E| ≥ η(t2−t1).
Moreover,

e
− N+1−θ

(t2−t1)1/3 ‖u(t2)‖L2(Ω) − e
− N+1−θ

(q(t2−t1))1/3 ‖u(t1)‖L2(Ω)

≤ N

∫ t2

t1

χE(t)
[
‖∂∆u

∂ν (t)‖L1(Jt) + ‖∆u(t)‖L1(Jt)

]
dt, when q ≥

(
N+1−θ
N+1

)3
.

(3.10)

Now, let η = 1/3 and q = (N+1−θ)3/(N+1)3 with N and θ as above. Assume
that l is a Lebesgue point of E. By [3, Lemma 2], there is a monotone decreasing
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sequence {lk}k≥1 in (0, T ) satisfying limk→∞ lk = l, l < l1 ≤ T and (3.2). These,
together with (3.10), imply that

e
− N+1−θ

(lk−lk+1)1/3 ‖u(lk)‖L2(Ω) − e
− N+1−θ

(lk+1−lk+2)1/3 ‖u(lk+1)‖L2(Ω)

≤ N

∫ lk

lk+1

χE(t)
[
‖∂∆u

∂ν (t)‖L1(Jt) + ‖∆u(t)‖L1(Jt)

]
dt, k ∈ N.

(3.11)

Finally, adding up (3.11) from k = 1 to +∞ (the telescoping series) we get that

‖u(l1)‖L2(Ω) ≤ Ne
N+1−θ

(l1−l2)1/3

∫ l1

l

χE(t)
[
‖∂∆u

∂ν (t)‖L1(Jt) + ‖∆u(t)‖L1(Jt)

]
dt

≤ N

∫

J

|∂∆u
∂ν (x, t)|+ |∆u(x, t)| dσdt,

which completes the proof of Theorem 2.
The previous reasonings show that Lemma 6, as well as [3, Lemma 2] and the

telescoping series method imply the observability inequality from two possibly dis-
tinct measurable subsets of ∂Ω× (0, T ) in Theorem 3. �

4. Observability for second order systems

Now, we can apply Lemmas 3, 1 and the telescoping series method to sketch a
proof Theorem 4.

Proof of Theorem 4. From Lemma 3,

|∂αxu(x, L)| ≤ e1/ρL|α|! ρ−|α|‖u(0)‖L2(Ω)ℓ , for all x ∈ Ω, α ∈ N
n.

Hence, for each η = 1, . . . , ℓ, it holds that

|∂αx uη(x, L)| ≤M |α|! ρ−|α|, for all α ∈ N
n, x ∈ Ω, with M = e1/ρL‖u(0)‖L2(Ω)ℓ .

From the propagation of smallness for real-analytic functions from measurable sets
(cf. Lemma 1), we get that for each η = 1, . . . , ℓ, there are Nη = Nη(Ω, ω0, δ) and
θη = θη(Ω, ω0, δ), 0 < θη < 1, such that

‖uη(L)‖L2(Ω) ≤ Nη‖uη(L)‖θηL1(ωη)
M1−θη .

Let N = max1≤η≤ℓ{Nη} and θ = min1≤η≤ℓ{θη}. Then, we get the following
interpolation inequality with ℓ different observations:

‖u(L)‖L2(Ω)ℓ ≤ N
( ℓ∑

η=1

‖uη(L)‖θL1(ωη)

)
M1−θ

≤ N
( ℓ∑

η=1

‖uη(L)‖L1(ωη)

)θ (
NeN/L‖u(0)‖L2(Ω)ℓ

)1−θ

.

(4.1)

Next, let q ∈ (0, 1) be a constant to be determined later and l be a Lebesgue point
of E. Then, by [3, Lemma 2] there is a decreasing sequence {lm}m≥1 satisfying
limm→∞ lm = l, l < l1 ≤ T and (3.2). Define as before for each m ∈ N,

τm = lm+1 + (lm − lm+1)/6.

Then, by the decay of the energy of the solutions u to (1.5),

(4.2) ‖u(lm)‖L2(Ω)ℓ ≤ ‖u(t)‖L2(Ω)ℓ , for all t ∈ (τm, lm).
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Moreover, it follows from (4.1) that

‖u(t)‖L2(Ω)ℓ ≤
(
Ne

N
lm−lm+1

ℓ∑

η=1

‖uη(t)‖L1(ωη)

)θ
‖u(lm+1)‖1−θ

L2(Ω)ℓ
, for τm ≤ t < lm.

Applying the Young inequality, we get that for each ǫ > 0,

‖u(t)‖L2(Ω)ℓ ≤ ǫ‖u(lm+1)‖L2(Ω)ℓ + ǫ−
1−θ
θ Ne

N
lm−lm+1

ℓ∑

η=1

‖uη(t)‖L1(ωη),

for τm ≤ t < lm. Integrating the above inequality over (τm, lm) ∩ E, we have by
(4.2) that for each ǫ > 0,

‖u(lm)‖L2(Ω)ℓ ≤ ǫ‖u(lm+1)‖L2(Ω)ℓ

+ ǫ−
1−θ
θ Ne

N
lm−lm+1

∫ lm

lm+1

χE

ℓ∑

η=1

‖uη(t)‖L1(ωη) dt.

Multiplying the above inequality by ǫ
1−θ
θ e

− N
lm−lm+1 and replacing ǫ by ǫθ, we get

ǫ1−θe
− N

lm−lm+1 ‖u(lm)‖L2(Ω)ℓ ≤ ǫe
− N

lm−lm+1 ‖u(lm+1)‖L2(Ω)ℓ

+N

∫ lm

lm+1

χE

ℓ∑

η=1

‖uη(t)‖L1(ωη)dt.

Choosse then ǫ = e
− 1

lm−lm+1 to obtain that

e
− N+1−θ

lm−lm+1 ‖u(lm)‖L2(Ω)ℓ − e
− N+1

lm−lm+1 ‖u(lm+1)‖L2(Ω)ℓ

≤ N

∫ lm

lm+1

χE

ℓ∑

η=1

‖uη(t)‖L1(ωη)dt, when m ≥ 0.
(4.3)

Finally, we take q = N+1−θ
N+1 . Clearly, 0 < q < 1 and from (4.3) and (3.2)

e
− N+1−θ

lm−lm+1 ‖u(lm)‖L2(Ω)ℓ − e
− N+1−θ

lm+1−lm+2 ‖u(lm+1)‖L2(Ω)ℓ

≤ N

∫ lm

lm+1

χE

ℓ∑

η=1

‖uη(t)‖L1(ωη)dt .
(4.4)

Summing (4.4) from m = 1 to +∞ completes the proof. �

Because the full boundary ∂Ω is analytic, we can use the global internal null
controllability for the system (1.5) (a known consequence of Theorem 7 by duality)
and the standard extension method (cf. [2, p. 249]) to get the following boundary
null controllability: for each u0 in L2(Ω)ℓ, there is g ∈ L2(∂Ω× (0, T ))ℓ, with

‖g‖L2(∂Ω×(0,T ))ℓ ≤ NeN/T‖u0‖L2(Ω)ℓ ,

such that the solution u to




∂tu− L∗u = 0, in Ω× (0, T ),

u = g, on ∂Ω× (0, T ),

u(0) = u0, in Ω.
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verifies u(T ) = 0. Also, by the standard duality argument [20], this boundary null
controllability in turn implies the observability inequality:

‖w(0)‖L2(Ω)ℓ ≤ NeN/T‖∂w
∂ν ‖L2(∂Ω×(0,T )),

(
∂w
∂ν

)ξ
= aξηij ∂xjw

ηνi, ξ = 1, . . . , ℓ,

for all solutions w to 



∂tw + Lw = 0, in Ω× (0, T ),

w = 0, on ∂Ω× (0, T ),

w(T ) = wT , in Ω.

with wT in L2(Ω)ℓ. Hence, from the latter and the local energy bound for the
system (1.5), we can derive the following.

Lemma 7. There is N = N(Ω, ̺, δ) ≥ 1 such that the inequality

‖u(T )‖L2(Ω)ℓ ≤
(
eN/[(ǫ2−ǫ1)T ]‖∂u

∂ν ‖L2(∂Ω×(ǫ1T,ǫ2T ))

)1/2
‖u0‖1/2L2(Ω)ℓ ,

holds for any 0 ≤ ǫ1 < ǫ2 ≤ 1 and for all solutions u to (1.5).

The Lemmas 3 and 7 imply now with similar reasonings to the ones we used in
[3, Theorem 11], in the proof of Lemma 6, as well as in the proofs of Theorem 3
and Theorem 4, that Theorems 5 and 6 hold.

To prove Theorem 8 we need to complete first the proof of Lemma 2. With this
purpose, we begin with the following lemma.

Lemma 8. Let f : [0, 1] → R be an analytic function verifying

(4.5) ‖f (m)‖L∞(0,1) ≤Mρ−mm!, when m ≥ 0,

for some M > 0 and 0 < ρ ≤ 1/2. Then

(4.6) ‖f (j)‖L∞(0,1) ≤
(
8M(j + 1)!ρ−j−1

)1− 1

2j ‖f‖
1

2j

L∞(0,1) , when j ≥ 0.

Proof. We prove it by induction and we assume that (4.6) holds for (k − 1), i.e.,

(4.7) ‖f (k−1)‖L∞(0,1) ≤ (8Mk!ρ−k)1−
1

2k−1 ‖f‖
1

2k−1

L∞(0,1)

and we show that it is valid for k. Let then x ∈ [0, 1]. For 0 < ε ≤ 1/2 take either
I = [x, x + ε] or [x− ε, x], so that always I ⊂ [0, 1]. Then,

f (k)(x) = f (k)(y) +

∫ x

y

f (k+1)(s) ds, for all y ∈ I.

Integrating the above identity with respect to y over the interval I, by (4.5) and
the arbitrariness of x in [0, 1], we obtain that

(4.8) ‖f (k)‖L∞(0,1) ≤ εM(k + 1)!ρ−k−1 +
2

ε
‖f (k−1)‖L∞(0,1),

when k ≥ 1 and 0 < ε ≤ 1/2. Choose now

ε =
(2‖f (k−1)‖L∞(0,1)

M(k + 1)!ρ−k−1

)1/2
.

It can be checked by (4.5) that ε ≤ 1/2. Hence, it follows from (4.8) that

‖f (k)‖L∞(0,1) ≤
(
8M(k + 1)!ρ−k−1

)1/2‖f (k−1)‖1/2L∞(0,1).

This, together with (4.7), leads to (4.6) and completes the proof. �
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The rescaled and translated version of Lemma 8, along with [3, Lemma 13],
imply the following.

Lemma 9. Let f be real-analytic in [a, a+L] with a in R, L > 0 and E ⊂ [a, a+L]
be a measurable set with positive measure. Assume there are constants M > 0 and

0 < ρ ≤ 1/2 such that

|f (m)(x)| ≤M(2ρL)−mm!, for m ≥ 0 and a ≤ x ≤ a+ L.

Then, there are N = N(ρ, |E|/L) and θ = θ(ρ, |E|/L) with 0 < θ < 1, such that

‖f (k)‖L∞(a,a+L) ≤ N
(
8(k + 1)!(ρL)−(k+1)

)
M1− θ

2k

(
—

∫

E

|f | dx
) θ

2k

, when k ≥ 0.

Next, we derive the multi-dimensional analogs of Lemmas 8 and 9.

Lemma 10. Let n ≥ 1 and f : Q ⊂ Rn → R, with Q = [0, 1] × · · · × [0, 1], be a

real-analytic function verifying

(4.9) ‖∂β1
x1

· · · ∂βn
xn
f‖L∞(Q) ≤Mρ−|β|β1! · · ·βn!, ∀β = (β1, . . . , βn) ∈ N

n,

for some M > 0 and 0 < ρ ≤ 1/2. Then,

(4.10) ‖∂α1
x1

· · ·∂αn
xn
f‖L∞(Q) ≤

(
8Mρ−|α|−1

n∏

i=1

(αi + 1)!
)1− 1

2|α| ‖f‖
1

2|α|

L∞(Q).

holds for each α = (α1, . . . , αn) ∈ Nn.

Proof. First, notice that Lemma 8 corresponds to Lemma 10, when n = 1. Let
now n ≥ 2 and α = (α1, . . . , αn) be in Nn. For (x1, . . . , xn−1) in [0, 1]× · · · × [0, 1],
define the function gn : [0, 1] → R by

gn(xn) , ∂α1
x1

· · · ∂αn−1
xn−1

f(x1, · · · , xn−1, xn).

It follows from (4.9) that

‖∂βn
xn
gn‖L∞([0,1]) ≤

(
Mα1! · · ·αn−1!ρ

−
∑n−1

j=1 αj

)
βn!ρ

−βn , for all βn ≥ 0,

and Lemma 8 yields that

‖∂α1
x1

· · · ∂αn
xn
f‖L∞(Q)

≤
(
8Mα1! · · ·αn−1!ρ

−
∑n−1

j=1 αj (αn + 1)!ρ−αn−1
)1− 1

2αn ‖∂α1
x1

· · · ∂αn−1
xn−1

f‖
1

2αn

L∞(Q).

Similarly, we can show that ‖∂α1
x1

· · ·∂αn−1
xn−1 f‖L∞(Q) is less or equal than

(
8Mα1! · · ·αn−2!ρ

−
∑n−2

j=1 αj (αn−1 + 1)!ρ−αn−1−1
)1− 1

2
αn−1 ‖∂α1

x1
· · · ∂αn−2

xn−2
f‖

1

2
αn−1

L∞(Q).

The iteration of the above arguments n times leads to the desired estimates in
(4.10). �

The rescaled and translated versions of Lemma 10 and of Lemma 1 (when Ω
is the unit ball or cube in Rn) and the fact that a ball in Rn contains a cube of
comparable diameter and vice versa are seen to impy Lemma 2 .

Finally, we give the proof of Theorem 8, where we use Lemma 9 with k = 1 and
Lemma 2 with |α| ≤ 2.
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Proof of Theorem 8. Since b(·) 6≡ 0 in Ω and b is real-analytic in Ω, we may assume
without loss of generality, that |b(x)| ≥ 1 over some ball BR(x0) ⊂ Ω and that
D ⊂ BR(x0)× (0, T ). By Lemma 3, for x in Ω and 0 ≤ s < t,

(4.11) |∂αx ∂pt u(x, t)|+ |∂αx ∂pt v(x, t)|
≤ e1/ρ(t−s)|α|! p! ρ−|α|−p (t− s)

−p [‖u(s)‖L2(Ω) + ‖v(s)‖L2(Ω)

]
,

for all α ∈ Nn and p ∈ N, with ρ = ρ(δ), 0 < ρ ≤ 1. Hence, we can get from (4.1)
that

‖u(t)‖L2(Ω) + ‖v(t)‖L2(Ω) ≤
(∫

BR(x0)

|u(x, t)|+ |v(x, t)| dx
)θ(

NeN/(t−s)
(
‖u(s)‖L2(Ω) + ‖v(s)‖L2(Ω)

))1−θ

,

with N = N(Ω, ρ, R) and θ = θ(Ω, ρ, R), 0 < θ < 1. This, together with the fact
that |b(x)| ≥ 1 over BR(x0) and the first equation in (1.10), yield that

(4.12) ‖u(t)‖L2(Ω) + ‖v(t)‖L2(Ω)

≤
(∫

BR(x0)

|u(x, t)|+ |∂tu(x, t)|+ |∆u(x, t)| dx
)θ

×
(
NeN/(t−s)

(
‖u(s)‖L2(Ω) + ‖v(s)‖L2(Ω)

))1−θ

, when 0 ≤ s < t.

Next, let η ∈ (0, 1) and 0 ≤ t1 < t2. Also, assume that E ⊂ (0, T ) is a measurable
set with |E ∩ (t1, t2)| ≥ η(t2 − t1), for some η ∈ (0, 1), and that for each t ∈ E,

|Dt| , |{x ∈ Ω : (x, t) ∈ D}| ≥ γ|D|, for some γ > 0. Set then

τ = t1 +
η

10
(t2 − t1) and F = [τ, t2] ∩ E.

Clearly, |F | ≥ η
2 (t2 − t1). Hence, it follows from (4.11) that when t ∈ [τ, t2] and x

is in Ω

|∂pt u(x, t)| ≤
p!NeN/η(t2−t1)

(η(t2 − t1)/20)p
(
‖u(t1)‖L2(Ω) + ‖v(t1)‖L2(Ω)

)
, for all p ∈ N,

with N = N(Ω, ρ). By Lemma 9, we have that for each x in Ω

‖∂tu(x, ·)‖L∞([τ,t2]) ≤
(∫

F

|u(x, s)| ds
)θ(

NeN/(t2−t1)
(
‖u(t1)‖L2(Ω) + ‖v(t1)‖L2(Ω)

))1−θ

,

with N = N(Ω, ρ, η) and θ = θ(Ω, ρ, η), 0 < θ < 1. Hence, by Hölder’s inequality

(4.13)

∫

BR(x0)

|∂tu(x, t)| dx ≤
(
NeN/(t2−t1)

(
‖u(t1)‖L2(Ω) + ‖v(t1)‖L2(Ω)

))1−θ( ∫

F

∫

BR(x0)

|u(x, s)| dxds
)θ

when τ ≤ t ≤ t2. It also follows from (4.11) that when τ ≤ t ≤ t2 and x is in Ω, we
have

|∂αx u(x, t)| ≤ |α|!ρ−|α|NeN/(t2−t1)
(
‖u(s)‖L2(Ω) + ‖v(s)‖L2(Ω)

)
, for all α ∈ N

n,
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with N = N(Ω, ρ, η). Now, it holds that for each t ∈ F , |Dt| ≥ γ|D|, and it follows
from Theorem 2 that

(4.14)

∫

BR(x0)

|u(x, t)| dx ≤
(∫

Dt

|u(x, t)| dx
)θ(

NeN/(t2−t1)
(
‖u(t1)‖L2(Ω) + ‖v(t1)‖L2(Ω)

))1−θ

and

(4.15)

∫

BR(x0)

|∆u(x, t)| dx ≤
(∫

Dt

|u(x, t)| dx
)θ(

NeN/(t2−t1)
(
‖u(t1)‖L2(Ω) + ‖v(t1)‖L2(Ω)

))1−θ

.

with N = N(Ω, |D|, R, ρ, η) and θ = θ(Ω, |D|, R, ρ, η), 0 < θ < 1. Hence, (4.13) and
(4.14), as well as Hölder’s inequality imply that

∫

BR(x0)

|∂tu(x, t)| dx ≤
( ∫ t2

t1

χE(s)‖u(s)‖L1(Ds) ds
)θ(

NeN/(t2−t1)
(
‖u(t1)‖L2(Ω) + ‖v(t1)‖L2(Ω)

))1−θ

,

when t ∈ F . This, together with the inequalities (4.12), (4.14), (4.15) and Hölder’s
inequality, yield that the inequality

‖u(t)‖L2(Ω) + ‖v(t)‖L2(Ω) ≤
( ∫ t2

t1

χE(s)‖u(s)‖L1(Ds) ds+

∫

Dt

|u(x, t)| dx
)θ

×
(
NeN/(t2−t1)‖u(t1)‖L2(Ω) + ‖v(t1)‖L2(Ω)

)1−θ

,

holds for t ∈ F . Integrating the above inequality with respect to time over the set
F , recalling that |F | ≥ η

2 (t2 − t1), using the energy estimate for solutions to the
equations (1.10) and Hölder’s inequality, we find that

‖u(t2)‖L2(Ω) + ‖v(t2))‖L2(Ω) ≤
( ∫ t2

t1

χE(t)‖u(t)‖L1(Dt) dt
)θ(

NeN/(t2−t1)
(
‖u(t1)‖L2(Ω) + ‖v(t1))‖L2(Ω)

))1−θ

,

with N = N(Ω, |D|, R, ρ, η) and θ = θ(Ω, |D|, R, ρ, η), 0 < θ < 1.
Finally, by Fubini’s theorem and following the reasonings within the second part

of the proof of Theorem 2 (i.e., the telescoping series method) we can also derive
the desired observability estimate in Theorem 8. �

5. Applications to control theory

In this Section, we show several applications of Theorems 1, 2, 4 and 8 in control
theory. One can also obtain analogous applications of Theorems 3, 5, 6 and 7.

First of all, we can apply Theorem 1 to get the bang-bang property of the time
optimal control problems for the higher order parabolic equations (1.2): let Ω be
a bounded domain with analytic boundary and ω ⊂ Ω a non-empty open set (or a
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measurable set with positive measure). Define for each M > 0 a control constraint
set

U
M
1 ,

{
f : Ω× R

+ → R measurable : |f(x, t)| ≤M, a.e. in Ω× R
+
}
.

For each u0 in L2(Ω) \ {0}, consider the time optimal control problem

(TP )M1 : TM
1 , inf

UM
1

{
t > 0; u(t;u0, f) = 0

}
,

where u(· ;u0, f) is the solution to the controlled problem




∂tu+ (−1)m∆mu = χωf, in Ω× (0,+∞),

u = ∇u = · · · = ∇m−1u = 0, on ∂Ω× (0,+∞),

u(0) = u0. in Ω.

According to Theorem 1 and [33, Theorem 3.3], TM
1 is a positive minimum. A

control function f in UM
1 associated to TM

1 is called an optimal control to this
problem. Then, the methods in [3, §5] (See also [35] or [32]), and the fact that
standard duality (HUM method) and Theorem 1 imply the null controllability at
all times T > 0 of the system (1.2) with bounded controls acting over measurable
sets within ω × (0, T ), give the following result.

Corollary 1. Problem (TP )M1 has the bang-bang property: any time optimal control

f satisfies, |f(x, t)| =M , for a.e. (x, t) in ω × (0, TM
1 ). Consequently, the problem

has a unique time optimal control.

Theorem 2 implies a weak bang-bang property for the time optimal boundary
control problems for the fourth order parabolic equation (1.4): let Ω be as above
and Γ ⊂ ∂Ω be a non-empty open subset (or a measurable set in ∂Ω with positive
surface measure). Define for each M > 0 the control constraint set

U
M
2 ,

{
(g1, g2) : ∂Ω× R

+ → R
2 measurable ;

max
{
|g1(x, t)|, |g2(x, t)|

}
≤M, a.e. (x, t) ∈ Ω× R

+
}
.

For each u0 in L2(Ω) \ {0} consider the time optimal boundary control problem

(TP )M2 : TM
2 , inf

UM
2

{
t > 0; u(t;u0, g1, g2) = 0

}
,

where u(· ;u0, g1, g2) denotes the solution to the boundary controlled parabolic
equation

(5.1)





∂tu+∆2u = 0, in Ω× (0, T ),

u = g1χΓ,
∂u
∂ν = g2χΓ, on ∂Ω× (0, T ),

u(0) = u0, in Ω.

From Theorem 2 and arguments as those in the proof of [3, Lemma 15], TM
2 is a

positive minimum. A control pair of functions (g1, g2) associated to TM
2 is called

an optimal control to this problem. From Theorem 2 and similar methods to those
in [3, §5], give the following non-standard bang-bang property:

Corollary 2. Problem (TP )M2 has the weak bang-bang property: any time optimal

control (g1, g2) satisfies that max
{
|g1(x, t)|, |g2(x, t)|

}
= M , for a.e. (x, t) in Γ ×

(0, TM
2 ).
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To carry out the technical details for Corollary 2 we must first solve (5.1) for u0
in L2(Ω) and with lateral Dirichlet data gi, i = 1, 2, in L∞(∂Ω × (0, T )). For this
reason by the solution to

(5.2)





∂tu+∆2u = 0, in Ω× (0, T ),

u = g1,
∂u
∂ν = g2, on ∂Ω× (0, T ),

u(0) = u0, in Ω,

with gi, i = 1, 2, in L2(∂Ω× (0, T )) and u0 in C∞
0 (Ω), we mean the unique function

u over Ω×(0, T ) such that v = u−et(−∆2)u0 is the solution defined by transposition
[20, p. 209] to

(5.3)





∂tv +∆2v = 0, in Ω× (0, T ),

v = g1,
∂v
∂ν = g2, on ∂Ω× (0, T ),

v(0) = 0, in Ω,

i.e.; the unique v in L2(Ω× (0, T )) verifying
∫

Ω×(0,T )

v
(
−∂tϕ+∆2ϕ

)
dxdt =

∫

∂Ω×(0,T )

g1
∂∆ϕ
∂ν − g2 ∆ϕdσdt,

for all ϕ in C∞(Ω × [0, T ]), with ϕ(T ) ≡ 0 in Ω and ϕ = ∇ϕ = 0 in ∂Ω × (0, T ).
One can make sense of v because for each h in C∞(Ω× [0, T )) there is a unique ϕ
in C∞(Ω× [0, T ]) verifying





−∂tϕ+∆2ϕ = h, in Ω× (0, T ),

ϕ = ∂ϕ
∂ν = 0, in ∂Ω× (0, T ),

ϕ(T ) = 0, in Ω,

and

‖ϕ‖L∞((0,T ),L2(Ω))∩L2((0,T ),H4(Ω)∩H2
0 (Ω)) ≤ N‖h‖L2(Ω×(0,T )),

with N = N(Ω, T ) [10, p. 140, Theorem 10.2]. The above estimate on ϕ, standard
traces inequalities [7, p. 258] and duality imply the bound

(5.4) ‖v‖L2(Ω×(0,T )) ≤ N
[
‖g1‖L2(∂Ω×(0,T )) + ‖g2‖L2(∂Ω×(0,T ))

]
,

with N as above. For given T > 0, u0 in L2(Ω) and J ⊂ ∂Ω× (0, T ), a measurable
set with positive measure, we may assume that J ⊂ Ω× (0, T − 2δ) for some small
0 < δ < T/2. Then, the existence of two bounded boundary control functions gi,
i = 1, 2, verifying

‖g1‖L∞(J) + ‖g2‖L∞(J) ≤ N‖u0‖L2(Ω),

with N the constant in (1.3) for the new set J and such that the solution u to

(5.5)





∂tu+∆2u = 0, in Ω× (0, T ),

u = g1χJ,
∂u
∂ν = g2χJ, on ∂Ω× (0, T ),

u(0) = u0, in Ω.

verifies u(T ) ≡ 0, can be proved by means of a standard duality argument (Hahn
Banach Theorem) based on the observability inequality (1.3) [3, Corollary 1] with
the purpose to obtain the existence of two functions gi in L

∞(J), i = 1, 2, verifying

(5.6)

∫

Ω

u0ϕ(0) dx+

∫

J

g1
∂∆ϕ
∂ν − g2 ∆ϕdσdt = 0,
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for all ϕT in C∞
0 (Ω) and with ϕ(t) = e(t−T )∆2

ϕT . Recall that the unique weak
solution v to (5.3) is in fact in C∞(Ω × [0,+∞)), when gi are both in C∞

0 (∂Ω ×
[0,+∞)); and that there is N = N(Ω, δ) such that the estimate

‖v‖C2,1(Ω×[T− δ
2 ,T ]) ≤ N‖v‖L2(Ω×(0,T )),

holds when supp(gi) ⊂ ∂Ω × [0, T − δ], i = 1, 2 [10, p.141]. The latter and (5.4)
yield the bound

(5.7) ‖v‖C2,1(Ω×[T− δ
2 ,T ]) ≤ N(Ω, T, δ)

[
‖g1‖L2(∂Ω×(0,T )) + ‖g2‖L2(∂Ω×(0,T ))

]
,

when supp(gi) ⊂ ∂Ω × [0, T − δ], i = 1, 2. Finally, letting uǫ denote the C∞(Ω ×
[0,+∞)) solution to (5.2), when u0 and gi are replaced respectively by uǫ0 and gǫi ,
with uǫ0 in C∞

0 (Ω), gǫi in C∞
0 (∂Ω × (0, T − δ)) for i = 1, 2, and in such a way that

uǫ0 converges to u0 in L2(Ω) and gǫi converges to giχJ in L2(∂Ω× (0, T − δ)), with

‖gǫi‖L∞(∂Ω×[0,T−δ]) ≤ 2‖gi‖L∞(J), for i = 1, 2,

integration by parts shows that
∫

Ω

uǫ(T )ϕT dx =

∫

Ω

uǫ0ϕ(0) dx+

∫

J

gǫ1
∂∆ϕ
∂ν − gǫ2 ∆ϕdσdt,

when ϕ = e(t−T )∆2

ϕT , ϕT is in C∞
0 (Ω). Letting then ǫ → 0+ together with (5.7)

and (5.6) show that the solution u to (5.5) verifies u ≡ 0 for t ≥ T . The proof of
Corollary 2 is now standard.

Theorem 4 implies the null controllability of the system (1.5) with controls re-
stricted over ℓ different non-empty open sets (or measurable sets of positive mea-
sure): assume that ωj ⊂ Ω, j = 1, . . . , ℓ, are non-empty open sets verifying,
ωj ∩ ωk = ∅, for 1 ≤ j 6= k ≤ ℓ. Consider the system

(5.8)





∂tu− L∗u = f , in Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),

u(0) = u0, in Ω,

with f = (χω1f1, . . . , χωl
fl) ,

fξ in L∞(Ω × (0, T )), ξ = 1, . . . , ℓ, are the controls, u0 in L2(Ω)ℓ and L and its
coefficients are as in (1.5). Then, from Theorem 4 and the classical duality argument
(cf., e.g., [5] or [3, Corollary 1]) we have

Corollary 3. For each T > 0 and u0 in L2(Ω)ℓ, there are bounded controls f =
(f1, . . . , fℓ), with

‖f‖L∞(Ω×(0,T )) ≤ N‖u0‖L2(Ω)ℓ ,

such that the solution u(· ;u0, f) to (5.8) verifies, u(T ;u0, f) = 0. Here, the con-

stant N = N(T,Ω, ω1, . . . , ωℓ) is independent of u0.

Finally, Theorem 8 implies the bang-bang property of the time optimal controls
for some systems of two parabolic equations with only one control force. For this
connection we refer the readers to [1], [36] and the references therein: let T > 0 and
Ω be a as above. Suppose that a(·), b(·), c(·) and d(·) are real-analytic in Ω and
b(·) 6≡ 0. Let ω ⊂ Ω be a non-empty open set (or a measurable set with positive
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measure). Consider the controlled parabolic system

(5.9)





∂tu−∆u+ a(x)u + b(x)v = 0, in Ω× (0,+∞),

∂tv −∆v + c(x)u + d(x)v = χωf, in Ω× (0,+∞),

u = 0, v = 0, on ∂Ω× (0,+∞),

u(·, 0) = u0, v(·, 0) = v0, in Ω,

where f is a control force taken in the constraint set

UM
3 ,

{
f : Ω× R

+ → R measurable : |f(x, t)| ≤M, a.e. in Ω× R
+
}
,

withM > 0. For each (u0, v0) in L
2(Ω)×L2(Ω)\{(0, 0)}, we study the time optimal

control problem

(TP )M3 : TM
3 , inf

UM
3

{
t > 0;

(
u(t;u0, v0, f), v(t;u0, v0, f)

)
= (0, 0)

}
,

where
(
u(· ;u0, v0, f), v( ; , u0, v0, f)

)
is the solution to (5.9) corresponding to the

control f and the initial datum (u0, v0). Then, the methods in [3, §5] and Theorem
8 give the following consequence.

Corollary 4. The problem (TP )M3 has the bang-bang property: any time optimal

control f satisfies, |f(x, t)| = M for a.e. (x, t) in ω × (0, TM
3 ). Moreover, it is

unique.
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[21] E. Malinnikova. Propagation of smallness for solutions of generalized Cauchy-Riemann sys-

tems. P. Edinburgh Math. Soc. 47 (2004) 191–204.
[22] F. J. Massey III. Analyticity of solutions of nonlinear evolution equations. J. Differ. Equations

22 (1976) 416–427.
[23] K. Masuda. On the holomorphic evolution operators. J. Math. Anal. Appl. 39 (1972) 706–711.
[24] L. Miller. A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups.

AIMS 14, 4 (2010) 1465–1485.
[25] C. B. Morrey. Multiple Integrals in the Calculus of Variations. Springer, 1966.
[26] C. B. Morrey. L. Nirenberg, On the analyticity of the solutions of linear elliptic systems of

partial differential equations. Commun. Pur. Appl. Math. X (1957) 271–290.
[27] N. S. Nadirashvili. A generalization of Hadamard’s three circles theorem. Moscow Univ.

Math. Bull. 31, 3 (1976) 30–32.
[28] N. S. Nadirashvili. Estimation of the solutions of elliptic equations with analytic coefficients

which are bounded on some set. Moscow Univ. Math. Bull. 34, 2 (1979) 44–48.
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(Santiago Montaner) Universidad del Páıs Vasco/Euskal Herriko Unibertsitatea, Dpto.
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