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A-MANIFOLDS ON A PRINCIPAL TORUS BUNDLE OVER AN

A-MANIFOLD BASE

GRZEGORZ ZBOROWSKI

Abstract. We construct new examples of manifolds with cyclic-parallel Ricci
tensor, so called A-manifolds, on a r-torus bundle over a product of almost
Hodge A-manifolds.

1. Introduction

One of the most extensively studied objects in mathematics and physics are
Einstein manifolds (see for example [Be]), i.e. manifolds whose Ricci tensor is a
constant multiple of the metric tensor. In his work [Gra] A. Gray defined a con-
dition which generalize the concept of an Einsten manifold. This condition states
that the Ricci tensor Ric of the Riemannian manifold (M,g) is cyclic parallel, i.e.

∇XRic(Y,Z) + ∇YRic(Z,X) + ∇ZRic(X,Y ) = 0,

where ∇ denotes the Levi-Civita connection of the metric g and X,Y,Z are arbi-
trary vector fields onM . A Riemannian manifold satisfying this condition is called
an A-manifold. It is obvious that if the Ricci tensor of (M,g) is parallel, then it
satisfies the above condition. On the other hand if Ric is cyclic-parallel, but not
parallel then we call (M,g) a strict A-manifold. A. Gray gave in [Gra] first exam-
ple of such strict A-manifold, which was the sphere S3 with appropriately defined
homogeneous metric. A first example of a non-homogeneous A-manifold was given
in [Jel1]. This example is a S1-bundle over some Kähler-Einstein manifold. This
result was generalized in [Jel2] to K-contact manifolds. Namely, over every almost
Hodge A-manifold with J-invariant Ricci tensor we can construct a Riemannian
metric such that the total space of the bundle is an A-manifold. In the present
paper we take a next step in the generalization process and we prove that there ex-
ist an A-manifold structure on every r-torus bundle over product of almost Hodge
A-manifolds. Our result and that of Jelonek are based on the existence of almost
Hodge A-manifolds, which was proven in [Jel3].

2. Conformal Killing tensors

Let (M,g) be any Riemannian manifold. We call a symmetric tensor field of
type (0,2) on M a conformal Killing tensor field iff there exists a 1-form P such
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2 G. ZBOROWSKI

that for any X ∈ Γ(TM)

(1) ∇XK(X,X) = P (X)g(X,X),

where ∇ is the Levi-Civita connection of g. The above condition is clearly equiv-
alent to the following

(2) CX,Y,Z∇XK(Y,Z) = CX,Y,ZP (X)g(Y,Z)

for all X,Y,Z ∈ Γ(TM) where CX,Y,Z denotes the cyclic sum over X,Y,Z. It is
easy to prove that the 1-form P is given by

P (X) =
1

n + 2
(2divK(X) + d trK(X)) ,

where X ∈ Γ(TM) and divS and trS are the divergence and trace of the tensor
field S with respect to g.

If the 1-form P vanishes, then we call K a Killing tensor. Of particular interest
in this work is a situation when the Ricci tensor of the metric g is a Killing tensor.
We call such a manifold an A-manifold. In the more general situation, when the
Ricci tensor is a conformal tensor we call (M,g) a AC⊥-manifold.

We will use a following easy property of conformal Killing tensors.

Proposition 1. Suppose that (M,g) is a Riemannian product of (Mi, gi), i =
1,2. Moreover, let Ki be conformal tensors on (Mi, gi). Then K = K1 +K2 is a

conformal tensor for (M,g).

A conformal Killing form or a twistor form is a differential p-form ϕ on (M,g)
satisfying the following equation

(3) ∇Xϕ =
1

p + 1
X ⌟ dϕ −

1

n − p + 1
X ∧ δϕ.

An extensive description of conformal Killing forms can be found in a series of
articles by Semmelmann and Moroianu ([Sem],[S-M]).

It is known that if ϕ is a co-closed conformal Killing form (also called a Killing

form) then the (0,2)-tensor field Kϕ defined by

Kϕ(X,Y ) = g(X ⌟ ϕ,Y ⌟ ϕ)

is a Killing tensor.
We can prove even more.

Theorem 2. Let ϕ and ψ be conformal Killing p-forms. Then the tensor field

Kϕ,ψ defined by

Kϕ,ψ = g(X ⌟ ϕ,Y ⌟ ψ) + g(Y ⌟ ϕ,X ⌟ ψ)

is a conformal Killing tensor field.
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Proof. Let X be any vector field and ϕ, ψ conformal Killing p-forms. We will
check that Kϕ,ψ as defined above satisfies (1).

∇XKϕ,ψ(X,X) = 2X (g(X ⌟ ϕ,X ⌟ ψ)) − 2g(∇XX ⌟ ϕ,X ⌟ψ)

−2g(∇XX ⌟ψ,X ⌟ ϕ)

= 2g(∇X(X ⌟ ϕ),X ⌟ψ) + 2g(X ⌟ ϕ,∇X(X ⌟ ψ))

−2g(∇XX ⌟ ϕ,X ⌟ ψ) − 2g(∇XX ⌟ ψ,X ⌟ ϕ)

= 2g(X ⌟∇Xϕ,X ⌟ ψ) + 2g(X ⌟ϕ,X ⌟∇Xψ).

From the fact that ϕ satisfies (3) we have

g(X ⌟∇Xϕ,X ⌟ ψ) =
1

p + 1
g(X ⌟ (X ⌟ dϕ),X ⌟ ψ)

−
1

n − p + 1
g(X ⌟ (X ∧ δϕ),X ⌟ψ)

= −
1

n − p + 1
(g(X,X)g(δϕ,X ⌟ ψ) − g(X ∧ (X ⌟ δϕ),X ⌟ ψ))

= −
1

n − p + 1
g(X,X)g(δϕ,X ⌟ ψ).

The same is valid for ψ with

g(X ⌟∇Xψ,X ⌟ϕ) = −
1

n − p + 1
g(X,X)g(δψ,X ⌟ ϕ).

Hence we have

∇XKϕ,ψ(X,X) = −
2

n − p + 1
g(X,X) (g(δϕ,X ⌟ ψ) + g(δψ,X ⌟ϕ))

�

3. Torus bundles

Let (M,h) be a Riemannian manifold and suppose that βi are closed 2-forms
on M for i = 1, . . . , r such that their cohomology classes [βi] are integral. In [Ko]
it was proven that to each such cohomology class there corresponds a principal
circle bundle pi ∶ Pi →M with a connection form θi such that

(4) dθi = 2πp
∗

i βi.

Taking the Whitney sum of bundles (pi, Pi,M) we obtain a principal r-torus bundle
p ∶ P →M classified by cohomology classes of βi, i = 1, . . . , r. The connection form
θ is a vector valued 1-form with coefficients θi, where θi are as before. For each
connection form θi we define a vector field ξi by θi(ξi) = 1. This vector field is just
the fundamental vector field for θi corresponding to 1 in the Lie algebra of i-th
S1-factor of the bundle (p,P,M).
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It is easy to check that the tensor field g given by

(5) g =
r∑

i,j=1

bijθi ⊗ θj + p
∗h

is a Riemannian metric on P if [bij]ri,j=1 is some symmetric, positive definite r × r
matrix with real coefficients. This Riemannian metric makes the projection p ∶(P, g)→ (M,h) a Riemannian submersion (see [ON]).

Lemma 3. Each vector field ξi for i = 1, . . . , r is Killing with respect to the metric

g. Moreover, define a tensor field Ti of type (1,1) by TiX = ∇Xξi for X ∈ Γ(TP ),
where ∇ is the Levi-Civita connection of g. Then we have

Tiξ
j = 0, LξiTj = 0,

for i ≠ j.

Proof. To prove that ξs is a Killing vector field for s = 1, . . . , r observe that

Lξsg =
r∑

i,j=1

bij ((Lξsθi)⊗ θj + θi ⊗ (Lξsθj)) .
Hence we only have to check that Lξsθi = 0 for any i, s = 1, . . . , r. Using Cartan’s
magic formula for Lie derivative we have

Lξsθi = d (θi(ξs)) + ξs ⌟ dθi
and it is immediate that the first term is zero, since θi(ξs) = δsi , where δsi is the
Kronecker delta. For the second term we have

(6) dθi(ξs,X) = ξs (θi(X)) −X (θi(ξs)) − θi ([ξs,X]) ,
where X is arbitrary. We will consider two cases, namely when X is a horizontal or
vertical vector field. In both cases the first two components vanish, hence we only
have to look at the third. In the first case we notice that [ξs,X] is a horizontal
vector field, since ξs is a fundamental vector field on P . This gives us the vanishing
of ξs ⌟dθi on horizontal vector fields. When X is vertical we can take it to be just
ξk and we immediately see that [ξs, ξk] = 0 since the fields ξj come from the action
of a torus on P .

For the second part of the lemma observe that g(ξi, ξj) is constant. For any
vector field X this gives us

0 =Xg(ξi, ξj) = g(∇Xξi, ξj) + g(ξi,∇Xξj) = −g(X,∇ξjξi) − g(∇ξiξj,X).
Now, since [ξi, ξj] = 0 we have ∇ξiξj = ∇ξjξi which proves that Tiξj = 0.

Recall that for any Killing vector field we have

Lξ∇XY = ∇LξXY +∇X(LξY ),
where X and Y are arbitrary vector fields. In our situation we have

(LξiTj)X = Lξi(TjX) − Tj(LξiX) = ∇[ξi,X]ξj +∇X[ξi, ξj] −∇[ξi,X]ξj = 0,
which ends the proof. �
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Hence tensor fields Ti are horizontal, i.e. for each i there exists a tensor field T̃i
on M such that p∗ ○ Ti = T̃i ○ p∗.

We now compute the O’Neill tensors ([ON]) of the Riemannian submersion
p ∶ P →M .

Proposition 4. The O’Neill tensor T is zero. The O’Neill tensor A is given by

(7) AEF =
r∑

i,j=1

bij (g(E,TiF )ξj + g(ξi, F )TjE) ,
where bij are the coefficients of the inverse matrix of [bij]ri,j=1 and E,F ∈ Γ(TP ).

Observe that from the fact that θi(ξi) = 1 for E ∈ Γ(TP ) we get that

g(ξi,E) = r∑
j=1

bijθj(E)
hence

θj(E) = r∑
i=1

bjig(ξi,E).
Taking the exterior differential we get

(8) dθj(E,F ) = 2 r∑
i=1

bjig(TiE,F ),
where E,F ∈ Γ(TP ).

Using formulae from [Be] Chapter 9 and the fact that the fibre of the Riemannian
submersion (p,P,M) is totally geodesic and flat, we see that the Ricci tensor on
the total space of Riemannian submersion is given by

Ric(U,V ) = m∑
i=1

g(AEi
U,AEi

V ),(9)

Ric(X,U) = − m∑
i=1

g ((∇Ei
A)Ei

X,U) ,(10)

Ric(X,Y ) = RicM(X,Y ) − 2 m∑
i=1

g(AXEi,AYEi).(11)

Here Ei is an element of the orthonormal basis of the horizontal distribution H,
RicM is a lift of the Ricci tensor of the base (M,h), X,Y are horizontal vector
fields and U,V any vertical vector fields. Using the formula (7) for the O’Neill
tensor A we can compute all components of the Ricci tensor Ric. We obtain

Ric(U,V ) = m∑
i=1

g
⎛
⎝

r∑
s,t=1

bstg(ξs, U)TtEi, r∑
k,l=1

bklg(ξk, V )TlEi⎞⎠ ,(12)

Ric(X,Y ) = RicM(X,Y ) − 1

2

r∑
s,t=1

bstg(TsX,TtY ).(13)
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As for the value of Ric(X,U) we compute the covariant derivative

(∇Ei
A)Ei

X = ∇Ei
( r∑
s,t=1

bstg (Ei, TsX) ξt) − r∑
s,t=1

bstg (∇Ei
Ei, TsX) ξt

−
r∑

s,t=1

bst (g (Ei, Ts∇Ei
X) ξt + g (ξs,∇Ei

X)TtEi)
=

r∑
s,t=1

bstg (Ei, (∇Ei
Ts)X) ξt,

where we used the fact that g(ξs,∇Ei
X) = −g(TsEi,X) which follows from AX

being anti-symmetric with respect to g for any horizontal vector field X . Now
since tensors Ts are anti-symmetric with respect to g so is ∇XTs, hence

(∇Ei
A)Ei

X = −
r∑

s,t=1

bstg ((∇Ei
Ts)Ei,X) ξt = r∑

t=1

δdθt(X)ξt.
As a result we have

Ric(X,U) = r∑
t=1

δdθt(X)g(ξt, U).

4. Torus bundle over a product of almost Hodge manifolds

Recall that an almost complex manifold is a pair (M,J) where M is a some
differential manifold and J is an endomorphism of TM such that J2 = −idTM .
On such manifolds we can single out particular Riemannian metrics which we call
compatible with the almost complex structure J . The compatibility condition for
a metric g is g(JX,JY ) = g(X,Y ). We call such metrics almost Hermitian and
the triple (M,g,J) an almost Hermitian manifold. We can define a differential
2-form ω by ω(X,Y ) = g(JX,Y ). We call ω a Kähler form of (M,g,J). If
the complex structure J is integrable and the Kähler form is closed we call such
complex manifold a Kähler manifold. Such manifolds are of no use in this work,
since by a result of Sekigawa and Vanhecke ([S-V]) every Kähler A-manifold has
parallel Ricci tensor.

There are however manifolds very close to being Kähler which are more suitable
for us. Let (M,g,J) be an almost complex manifold with closed Kähler form. We
call such manifolds almost Kähler manifolds. If the almost complex structure J is
not integrable then (M,g,J) is sometimes called a strictly almost Kähler manifold.
In addition to being closed the Kähler form of an almost Kähler manifold is also
coclosed, hence harmonic with respect to g.

In [Jel3] Jelonek constructed a strictly almost Kähler A-manifold with non-
parallel Ricci tensor. Moreover the Kähler form of such a manifold has a useful
property. It is a constant multiple of some differential 2-form that belongs to an
integral cohomology class i.e. a differential form in H2(M ;Z). An almost Kähler
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manifold whose Kähler form satisfies this condition is called an almost Hodge
manifold.

Returning to our construction suppose that (Mi, gi, Ji), i = 1, . . . , n are almost
Hodge manifolds such that Kähler forms ωi are constant multiples of 2-forms αi and
their cohomology classes are integral, i.e. [αi] ∈ H2(Mi;Z). Denote by (M,g,J)
the product manifold with the product metric and product almost complex struc-
ture and let pri be the projection on the i-th factor. From our earlier discussion we
know that there exists a principal r-torus bundle classified by the forms β1, . . . , βr
given by

βj =
n∑
i=1

ajipr
∗

i αi,

where [aji] is some r × n matrix with integer coefficients. By (4) the coefficients
θj of the connection form of (p,P,M) satisfy

dθj = 2πp
∗βj = 2π

n∑
i=1

ajip
∗ (pr∗i αi)

for every j = 1, . . . , r. Since αi’s and Kähler forms ωi of (Mi, gi, Ji) are connected
by ωi = ciαi for some constants ci, i = 1, . . . , n we have

(14) dθj = 2π
n∑
i=1

aji

ci
ω∗i ,

where by ω∗i we denote the 2-form obtained from lifting ωi to P . Comparing this

with (8) we get a formula for each tensor field T̃i

(15) T̃iX = π
r∑
j=1

bij

n∑
k=1

ajk

ck
J∗kX

where J∗
k
is the almost complex structure tensor of (Mk, gk, Jk) lifted to the product

manifold M .
We will now compute the Ricci tensor of (P, g) using (9)-(11), computations

that follows those formulas and above observations. We begin with

Ric(U,V ) = π2

m∑
i=1

h( r∑
s=1

g(ξs, U) n∑
k=1

ask

ck
J∗kEi,

r∑
l=1

g(ξl, U) n∑
h=1

alh

ch
J∗hEi)(16)

= π2

r∑
s,l=1

g(ξs, U)g(ξl, V ) m∑
i=1

h( n∑
k=1

ask

ck
J∗kEi,

n∑
h=1

alh

ch
J∗hEi)

= π2

r∑
s,l=1

g(ξs, U)g(ξl, V ) m∑
i=1

n∑
k=1

gk (ask
ck
JkEi,

alk

ck
JkEi) .

We used the fact that for k ≠ h images of Jk and Jh are orthogonal. It is easy to
see that

m∑
i=1

n∑
k=1

gk (ask
ck
JkEi,

alk

ck
JkEi)
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are constants for each s, l = 1, . . . , r. Hence the Ricci tensor of (P, g) on vertical
vector fields is a symmetrized product of Killing vector fields.

Next, since the Kähler form of each almost Hodge manifold (Mk, gk, Jk) is co-
closed we see from (14) that

(17) Ric(X,U) = 0
for any horizontal vector field X and vertical vector field U .

The last component of the Ricci tensor of (P, g) is the horizontal one. First
observe that RicM is the Ricci tensor of the product metric h = g1 + . . . + gn and
Ricci tensors Rick are Jk-invariant Killing tensors. We have

Theorem 5. Let Ki be a Killing tensor on (Mi, gi, Ji) for i = 1, . . . , n. Then the

lift K∗ of K =K1 + . . . +Kn to P is a Killing tensor iff each Ki is Ji-invariant.

Proof. We need to check the cyclic sum condition (2) for different choices of vector
fields. It is easy to see that if all three vector fields are vertical then each component
of the cyclic sum vanishes, since K∗ is non-vanishing only on horizontal vector
fields. If only two of the vector fields are vertical then again all components
vanish, since ∇ξiξj = 0. For three horizontal vector fields we again see that the
cyclic sum vanish, since the covariant derivative of K∗ with respect to metric g
on P is the same as that of K with respect to the product metric h on M . By
Proposition 1 K is a Killing tensor for (M,h). The remaining case is when only
one vector field is vertical. Let us put Z = ξi and X,Y be basic horizontal vector
fields. We compute

∇ξiK
∗(X,Y ) = −K∗(∇ξiX,Y ) −K∗(X,∇ξiY ) = −K∗(AXξi, Y ) −K∗(X,AY ξi)

= −K∗(∇Xξi, Y ) −K∗(X,∇Y ξi),
where the before last equality is due to the fact that X and Y are basic (see [ON])
and the last one follows from the definition of the O’Neill tensor A. Next we have

∇XK
∗(ξi, Y ) = −K∗(∇Xξi, Y ).

Summing up we have

Cξi,X,Y∇ξiK
∗(X,Y ) = −2 (K∗(∇Xξi, Y ) +K∗(X,∇Y ξi))

= −2 (K(T̃iX,Y ) +K(X, T̃iY )) .
Now we use the formula (15) for the tensor T̃i

Cξi,X,Y∇ξiK
∗(X,Y ) = −2π r∑

j=1

bij

n∑
k=1

ajk

ck
(K(J∗kX,Y ) +K(X,J∗k Y )) .

Since each Ji projects vector fields on TMk we see from the definition of K that

K(J∗kX,Y ) +K(X,J∗k Y ) =Kk(JkX,Y ) +Kk(X,JkY ).
By Jk-invariance of Kk for k = 1, . . . , n we have completed the proof. �
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Remark. It is worth noting, that we cannot lift in that way a conformal Killing
tensor with non-vanishing P . In fact taking three vertical vector fields we see
that P vanishes on vertical distribution. On the other hand for two vertical vector
fields U,V and one horizontal vector fieldX the left-hand side of (2) vanish and the
right-hand side reads P (X)g(U,V ), hence P has to vanish also on the horizontal
distribution.

Corollary 1. An r-torus bundle with metric defined by (5) can not be an AC⊥-
manifold. Especially there are no AC⊥ structures on K-contact and Sasakian man-
ifolds.

Next we show that the second component of the horizontal part of the Ricci
tensor (13) is just a sum of lifts of metrics gk, k = 1, . . . , n.

r∑
s,t=1

bstg(TsX,TtY ) = π2

r∑
s,t=1

h( r∑
j=1

bsj

n∑
k=1

ajk

ck
J∗kX,

r∑
i=1

bti

n∑
l=1

ail

cl
J∗l Y ) .

Since Jk and Jl are orthogonal for different k, l = 1, . . . , n we obtain

r∑
s,t=1

bstg(TsX,TtY ) = π2

r∑
s,t=1

n∑
k=1

h( r∑
j=1

bsj
ajk

ck
J∗kX,

r∑
i=1

bti
aik

ck
J∗kY )(18)

= π2

r∑
j,l=1

bjl

r∑
k=1

ajkalk

c2k
gk(X,Y ).

From the above Theorem we infer that, since a Riemannian metric is a Killing
tensor and each gk is Jk-invariant, the tensor field K(X,Y ) =∑rs,t=1 bstg(TsX,TtY )
is a Killing tensor field.

Now we can prove the following theorem

Theorem 6. Let P be a r-torus bundle over a Riemannian product (M,h) of

almost Hodge A-manifolds (Mk, gk, Jk), k = 1, . . . n with metric g defined by (5).
Then (P, g) is itself an A-manifold.

Proof. Since distributions H and V are orthogonal with respect to the Ricci tensor
Ric of (P, g) by (17) we can write it as

Ric(E,F ) = π2

r∑
s,l=1

g(ξs,E)g(ξl, F ) m∑
i=1

n∑
k=1

gk (ask
ck
JkEi,

alk

ck
JkEi)

+RicM(E,F ) − 1

2
π2

r∑
j,l=1

bjl

r∑
k=1

ajkalk

c2k
gk(E,F )

using (18) and (16).The first component is a Killing tensor as a symmetrized
product of Killing vector fields by Theorem 2. The second and third components
are Killing tensors by Theorem 5. Since a sum of Killing tensors with constant
coefficients is again a Killing tensor we have proved the theorem. �
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Remark. Observe that if at least one of the manifolds (Mk, gk) has non-parallel
Ricci tensor, then the Ricci tensor Ric of (P, g) is also non-parallel with respect
to the metric g. Thus we have constructed a large number of strict A-manifolds.
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