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COMPLEX GEOMETRY OF QUANTUM CONES

TOMASZ BRZEZIŃSKI

Abstract. The algebras obtained as fixed points of the action of the cyclic group
ZN on the coordinate algebra of the quantum disc are studied. These can be under-
stood as coordinate algebras of quantum or non-commutative cones. The following
observations are made. First, contrary to the classical situation, the actions of ZN

are free and the resulting algebras are homologically smooth. Second, the quantum
cone algebras admit differential calculi that have all the characteristics of calculi on
smooth complex curves. Third, the corresponding volume forms are exact, indicating
that the constructed algebras describe manifolds with boundaries.

1. Introduction

Recent studies of deformed orbifolds or manifolds with singularities revealed an
intriguing phenomenon: many classical surfaces Σ with singular points admit non-
commutative or q-versions Σq that are smooth. Smoothness can be understood on
several levels. Most naively, one observes that the multiple roots of the defining poly-
nomial relations become separated upon the quantization [6], [3]. Furthermore, the
classically non-free action of a finite group on a smooth surface that gives rise to the
singularity becomes free once the surface and the action are quantized [4]. On a more
sophisticated level, the deformed coordinate algebras O(Σq) are homologically smooth,
i.e. they fit into a finite exact sequence of finitely generated and projective O(Σq)-
bimodules [4]. Often, O(Σq) is a (twisted) Calabi-Yau algebra of dimension two, i.e
O(Σq) is not only homologically smooth, but also its Hochschild cohomology with
values in the enveloping algebra of O(Σq) is trivial except in degree two, where it is
isomorphic to O(Σq) with the bimodule structure twisted by an automorphism [15].
This last observation can be interpreted as an existence of the volume form, and is
tantamount to the Poincaré duality [21].

Every two-dimensional orbifold is obtained by glueing cones, hence quantum cones
seem to be a natural point to start. In this note we carry out parts of the programme
of differential smoothing initiated in [9] and discuss differential structures on quantum
cones that allow one to view them as complex curves. We define coordinate algebras
of quantum cones O(CN

q,γ) as fixed points of the action of cyclic groups ZN on the non-

commutative disc algebra O(Dq,γ) [13]. This action turns out to be free and O(CN
q,γ)

are (twisted) Calabi-Yau algebras. We derive differential calculi on O(CN
q,γ) from that

on O(Dq,γ) and show that they define holomorphic structures on O(CN
q,γ) in the sense

of [12]. The resulting volume forms on O(CN
q,γ) are exact, which might indicate that

quantum cones have boundaries.
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2. Quantum cones are smooth

The coordinate algebra O(Dq,γ) of the quantum disc is defined as the complex ∗-
algebra generated by z, z∗ subject to relation

(1) z∗z − qzz∗ = γ,

where q, γ ∈ R, q 6= 0 are parameters. This is obviously a deformation of the plane
(or the unit disc), which corresponds to q, γ = 0. O(Dq,0) is the quantum or Manin’s
plane, and the case O(D0,1) is the quantum oscillator algebra. In fact, if γ 6= 0, then
the generators can be rescaled, so that γ can be eliminated from (1). If q ∈ (0, 1),
the algebra O(Dq,1−q) can be completed to the C∗-algebra isomorphic to the Toeplitz
algebra [13]. For an accessible introduction to geometry of the quantum disc we refer
to [20, Chapter 1].

O(Dq,γ) admits an action of the cyclic group ZN , which can be described in terms
of the ZN -grading on generators as deg(z) = 1, deg(z∗) = N − 1 = −1 mod N . The
fixed point subalgebra of this action or the degree-zero part of O(Dq,γ) is generated by
a = zz∗, b = zN , b∗ = z∗N . These satisfy the relations

(2) ab = qNba + γ[N ]qb, bb∗ =
N−1
∏

l=0

(q−la+ γ[−l]q), b∗b =
N
∏

l=1

(qla+ γ[l]q),

where [n]q = (1 − qn)/(1 − q) are q-integers. The complex ∗-algebra generated by a
selfadjoint a and b, b∗ subject to relations (2) is called the coordinate algebra of the
quantum N-cone and is denoted by O(CN

q,γ). In case q = γ = 0, a, b, b∗ can be thought
of as coordinates and then relations (2) describe a cone in C × R, hence the name.
The polynomials in a on the right-hand sides of the last two equations in (2) have no
repeated roots as long as γ 6= 0. One might therefore expect that in this case the
algebras O(CN

q,γ) describe smooth non-commutative surfaces.
An action of a (finite) group G on a quantum space Σq is free if and only if the

corresponding coordinate algebra O(Σq) is strongly G-graded. This means that for all
g ∈ G, one can find finite number of elements Xi of G-degree g and Yi of degree g−1

such that
∑

i XiYi = 1. In the case of the cyclic group ZN suffices it to find such Xi of
degree 1 and Yi of degree N − 1; see [17, Section AI.3.2].

Theorem 2.1. For all γ 6= 0, the ZN -action on Dq,γ is free. Consequently, O(CN
q,γ)

are homologically smooth algebras for all values of N > 1, q and γ 6= 0.

Proof. Set X0 = α0z
∗N−1, Xi = αia

i−1z, Y0 = zN−1 and Yi = z∗, i = 1, . . . , N − 1,
where all the αr ∈ C are to be determined. By equations (1),

z∗N−1zN−1 =
N−1
∏

l=1

(qla+ γ[l]q) =:
N−1
∑

r=0

βra
r.

The comparison of the coefficients of the powers of a in the condition
∑N−1

i=0 XiYi = 1,
yields the system of N equations for the αr: α0β0 = 1 and α0βi + αi = 0, for i =
1, 2, . . . , N − 1, whose determinant is β0 = γN−1

∏N−1
l=1 [l]q 6= 0. Hence the required Xi

and Yi can be found.
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Since the enveloping algebra of O(Dq,γ) is left Noetherian of finite global dimension
and since the ZN -actions defining the cones are free if γ 6= 0, the algebras O(CN

q,γ) are
homologically smooth by [14, Corollary 6] or [4, Criterion 1]. �

The freeness of the action of ZN on Dq,γ is equivalent to the statement that the
quantum disc is the total space of a ZN -principal quantum bundle over the quantum
cone CN

q,γ [8], [7]. This bundle is non-trivial, i.e. O(Dq,γ) is not isomorphic to O(CN
q,γ)⊗

CZN as a ZN -graded left O(CN
q,γ)-module. The triviality would require the existence

of invertible elements in O(Dq,γ) of degree n, for all n ∈ ZN . However, only non-zero
scalar multiples of the identity are invertible in O(Dq,γ), and these have degree zero.

Theorem 2.2. For all γ 6= 0, O(CN
q,γ) are (twisted) Calabi-Yau algebras.

Proof. Define x := 1 + γ−1(q − 1)a. The relations (2) yield
(3)

xb = qNbx, bb∗ =

(

γ

1− q

)N N−1
∏

l=0

(

1− q−lx
)

, b∗b =

(

γ

1− q

)N N
∏

l=1

(

1− qlx
)

.

Since the change of variables a 7→ x is reversible, equations (3) simply give a different
presentation of O(CN

q,γ). This presentation allows one to view O(CN
q,γ) as a generalized

Weyl algebra over the polynomial ring in the variable x [1]. Since the polynomials
on the right hand side of (3) have no repeated roots, O(CN

q,γ) are twisted Calabi-Yau
algebras by [15, Theorem 4.5]. �

The inspection of relations (3) makes it clear that, for γ 6= 0 and N odd, the algebras
O(CN

q,γ) are isomorphic to coordinate algebras of quantum real weighted projective

spaces O(RP2
q(N ; +)) [3].

3. Differential and complex geometry of quantum cones

By a differential calculus over an algebra A we mean a pair (Ω(A), d), where Ω(A) =
⊕n∈NΩ

n(A) is an N-graded algebra such that Ω0(A) = A, and d : Ωn(A) → Ωn+1(A) is
the degree-one linear map that satisfies the graded Leibniz rule, is such that d ◦ d = 0
and, for all n ∈ N, Ωn(A) = Ad(A)d(A) · · ·d(A) (d(A) appears n-times). If A is
a complex ∗-algebra, then it is often requested that Ω(A) be a ∗-algebra and that
∗ ◦ d = d ◦ ∗. In this situation one refers to Ω(A) as to a ∗-differential calculus. In this
case, following [12], a complex structure on A is the bi-grading decomposition of Ω(A),

Ωn(A) =
⊕

k+l=n

Ω(k,l)(A),

such that ∗ : Ω(k,l)(A) → Ω(l,k)(A), and the decomposition d = δ + δ̄ into differentials
δ : Ω(k,l)(A) → Ω(k+1,l)(A), δ̄ : Ω(k,l)(A) → Ω(k,l+1)(A), such that δ(a)∗ = δ̄(a∗), for all
a ∈ Ω(A).

To construct a complex structure on O(CN
q,γ) start with the differential ∗-calculus

Ω(Dq,γ) on O(Dq,γ) generated by one-forms dz and dz∗ subject to relations

(4) zdz = q−1dzz, z∗dz = qdzz∗, dz ∧ dz∗ = −q−1dz∗ ∧ dz, dz ∧ dz = 0;

see e.g. [19]. Note that Ω(Dq,γ) = O(Dq,γ) ⊕ Ω1(Dq,γ) ⊕ Ω2(Dq,γ), where Ω1(Dq,γ) is
a a free left and right O(Dq,γ)-module with free generators dz and dz∗, and Ω2(Dq,γ)
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is a free O(Dq,γ)-module generated by dz ∧ dz∗. We define the differential ∗-calculus
Ω(CN

q,γ) on O(CN
q,γ) as the differential ∗-subalgebra of Ω(Dq,γ) generated by a = zz∗,

b = zN and their differentials da, db. Set

ω0 := dzz∗, ω1 := db = [N ]qz
N−1dz, ω := dz ∧ dz∗.

Theorem 3.1. Assume that γ 6= 0. Let Ω(1,0)(CN
q,γ) be the submodule of Ω1(CN

q,γ)

generated by ω0, ω1, let Ω
(0,1)(CN

q,γ) be the submodule of Ω1(CN
q,γ) generated by ω∗

0, ω
∗

1,

and let Ω(1,1)(CN
q,γ) = Ω2(CN

q,γ). Set Ω(k,l)(CN
q,γ) = 0 if k > 1 or l > 1. Let δ be the

projection of d onto Ω(1,0)(CN
q,γ) and let δ̄ be the projection of d onto Ω(0,1)(CN

q,γ). Then

the above bi-grading decomposition of Ω(CN
q,γ) defines a complex structure on O(CN

q,γ).

Furthermore, Ω2(CN
q,γ) = O(CN

q,γ)ω = ωO(CN
q,γ).

Proof. The only non-trivial statement to be proven here is that both ω0 and ω∗

0 belong
to Ω1(CN

q,γ) (there sum is in Ω1(CN
q,γ), since it is equal to da). If this is established, then

the bi-graded decomposition of Ω1(CN
q,γ) and maps δ, δ̄ are well-defined. Also, since

ω = −dω0, the last assertion will follow. We start by proving the following

Lemma 3.2. For all q ∈ (0, 1) and positive n ∈ N, if an ideal in the polynomial ring
C[w] contains both Xn(w) =

∏n−1
l=1 (1 + q−lw) and Yn(w) =

∏n−1
l=1 (1 + qlw), then it also

contains the identity.

Proof. By induction in n. Clearly, the statement is true for n = 1. Assume it is true for
k, i.e. there exist polynomials f(w) and g(w) such that f(w)Xk(w) + g(w)Yk(w) = 1.
Let J be an ideal containing Xk+1(w) and Yk+1(w). Then

(1 + q−kw)(1 + qkw) = (f(w)Xk(w) + g(w)Yk(w))(1 + q−kw)(1 + qkw)

= f(w)Xk+1(w)(1 + qkw) + g(w)Yk+1(w)(1 + q−kw) ∈ J.

Similarly, by considering (f(qw)Xk(qw)+g(qw)Yk(qw))(1+qw)(1+q−k+1w)(1+q−kw)
one finds that (1+qw)(1+q−kw)(1+q−k+1w) ∈ J , and hence also (1+q−1w)(1+qkw)(1+
qk−1w) ∈ J , by symmetry. By comparing powers of w, one easily finds that there exist
complex numbers α0, α1, α2 such that (α0+α1w)(1+qkw)+α2(1+qw)(1+q−k+1w) = 1.
Multiplying this by 1+q−kw we find that 1+q−kw ∈ J . Again, by symmetry 1+qkw ∈

J , and clearly there exists a linear combination of these that makes up 1. �

Define w := γ−1(1− q)qa− q. Using relations (1) and (4) one finds
(5)

b∗db = q[N ]q

(

γ

1− q

)N−1 N−1
∏

l=1

(1+qlw)ω0, bdb∗ = [N ]q

(

q−1γ

1− q

)N−1 N−1
∏

l=1

(1+q−lw)ω0.

Hence
∏N−1

l=1 (1 + qlw)ω0,
∏N−1

l=1 (1 + q−lw)ω0 ∈ Ω1(CN
q,γ) and, by Lemma 3.2, ω0 ∈

Ω1(CN
q,γ). Since the calculus is closed under the ∗-operation also ω∗

0 ∈ Ω1(CN
q,γ). Now

the theorem follows. �

The existence of relations such as (5) means that the generators ω0 and ω1 of the
left (or right) O(CN

q,γ)-module Ω(1,0)(CN
q,γ) are not independent. That Ω(1,0)(CN

q,γ) is a

finitely generated and projective O(CN
q,γ)-module may be argued as follows. Ω(1,0)(CN

q,γ)

is a submodule of the free O(Dq,γ)-module O(Dq,γ) dz, generated by zN−1dz and z∗dz,
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hence it can be identified with the O(CN
q,γ)-submodule of O(Dq,γ) generated by zN−1

and z∗. This is exactly the O(CN
q,γ)-module consisting of all elements in O(Dq,γ) of

degree N − 1. By Theorem 2.1, O(Dq,γ) is strongly graded, hence any submodule of
elements of a fixed degree is projective by [17, A I.3.3 Corollary]. Therefore Ω(1,0)(CN

q,γ)
can be seen as module of sections of a non-commutative vector bundle over the quantum
cone. Furthermore, since O(Dq,γ) has no invertible elements of degree 1 or N−1, by the
same arguments as those following the proof of Theorem 2.1, the module Ω(1,0)(CN

q,γ) is

not free. This is in full agreement with the identification of O(C2
q,1−q) as the quantum

equatorial sphere; holomorphic cotangent bundle over the sphere is not trivial. The
employment of the ∗-conjugation yields similar statements for Ω(0,1)(CN

q,γ).

Perhaps it is no too surprising that the quantum cones CN
q,γ admit natural complex

structures, for the considerations of Section 2 substantiate the claim that they are
smooth quantum manifolds. The exactness of the volume form might indicate that
quantum cones correspond to non-commutative manifolds with boundaries. The non-
triviality of the cotangent bundle indicates that CN

q,γ correspond to non-parallelizable
manifolds. For these reasons one might think about the non-commutatrve smoothing
of the cone as of blowing up the singular point into a balloon with a neck rather than
as of rounding it.

4. Outlook and speculations

My motivation for writing this note was to draw the reader’s attention to unex-
pected results of actions of finite groups on quantum spaces. The classically non-free
actions are freed upon quantization, singularities are removed, and the geometric and
topological natures of the spaces of fixed points are transformed. This opens up an
exciting possibility of deploying the full power of differential geometry in areas in which
it could not be utilized previously. Already the study of one of the simplest examples
leads to surprises, poses new questions and opens up avenues for further research. An
immediate direction of studies would be to try and understand quantum cones as Rie-
mannian surfaces, whether from the spectral point of view [11] or in a more algebraic
setup [16], [2]. Once these aspects are understood in sufficient depth, one can attempt
to build physical models based on quantum cones. In another direction the differential
smoothness of quantum cones in the sense of [9], i.e. the existence of an isomorphism
between complexes of differential and integral forms [5], should be investigated. The
lessons thus learnt should be applied to other deformations of orbifolds including those
that can be obtained by glueing of quantum cones.

Hitherto we discussed only algebraic aspects of quantum cones, leaving aside topo-
logical issues. In view of relations (3), the C∗-algebra completions of the O(CN

q,γ) to

algebras of continuous functions C(CN
q,γ) can be carried out in the same way as for the

quantum real weighted projective spaces [3]. Consequently, C(CN
q,γ) is a pullback of

N -copies of the Toeplitz algebra along the symbol maps or the algebra of continuous
functions on the N -copies of quantum discs glued along their circular boundaries; see
[10]. In particular C(C2

q,γ) is isomorphic to the algebra of continuous functions on the

quantum equatorial or generic Podleś sphere [18]. This identifies C2
q,γ as a deformation

of a compact manifold without a boundary. Classically, volume forms for such mani-
folds are never exact, yet the volume forms described in Theorem 3.1 are exact! The
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exactness of the volume form is compatible with the interpretation of C2
q,γ as the cone

but not as the sphere. On the other hand, the interpretation of C2
q,γ as a sphere is

compatible with the non-triviality of cotangent bundles.
The identification of C2

q,γ leads to another question: how is it possible for the sphere
to arise from an action of a finite group on the disc? A possible heuristic answer might
be to think about the quantum disc as having an internal structure: the quantum disc
is composed of layers of quantum discs. The Z2-action does not bulge the disc into
a cone, but rather it gently separates two internal layers, which are still joint at the
common circle, thus forming a sphere or a balloon. Speculatively, one might interpret
the classical circle that the equatorial Podleś sphere contains as the rim of the neck
of the balloon (rather than as the equator), and thus reconcile this point of view with
the interpretation of the differential smoothing offered at the end of Section 3. For the
action of ZN , N internal layers are separated.
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