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Abstract. In this paper we study Lipschitz contact equivalence of continuous function

germs in the plane definable in a polynomially bounded o-minimal structure, such as

semialgebraic and subanalytic functions. We partition the germ of the plane at the

origin into zones where the function has explicit asymptotic behavior. Such a partition

is called a pizza. We show that each function germ admits a minimal pizza, unique up to

combinatorial equivalence. We show then that two definable continuous function germs

are definably Lipschitz contact equivalent if and only if their corresponding minimal

pizzas are equivalent.

1. Introduction

Lipschitz geometry of maps is a rapidly growing subject in contemporary Singularity

Theory. Recent progress in this area is due to the tameness theorems proved by several

researchers (see, for example, [5], [3], [8], [6]). However description of a set of invariants is

barely developed. This paper presents a classification of the germs of continuous function

germs at the origin of R2 definable in a polynomially bounded o-minimal structure (e.g.,

semialgebraic or subanalytic functions) with respect to the definable Lipschitz contact

equivalence. This classification is tame, unlike the Lipschitz R-equivalence (see [3] and

[8]). The most important ingredient of the invariant constructed here is the so-called

width function. Let f be (the germ at the origin of R2 of) a continuous definable function

with f(0) = 0. The width µ∗(γ) of (the germ at the origin of) a definable arc γ with

respect to f is the minimal order of contact of the “nearby” definable arcs along which f

has the same order as along γ. For any exponent q of the field of exponents F of the given

o-minimal structure, we define µ(q) to be the (possibly empty) set of the widths µ∗(γ) of

all arcs γ along which f has order q. We show that the multifunction q 7→ µ(q) is finite.

The neighborhood of the origin can be divided into finitely many zones so that in each

zone µ(q) is a well defined (single valued) function. Moreover, this partition can be done so

that in each zone µ(q) is an affine function with coefficients in F. This partition into zones,
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with the data specifying the sign of f and the affine function µ(q) for each zone, is called a

pizza. A pizza is not unique, but a simplification procedure described in Section 4 provides

a “minimal” pizza for the given function f , which is unique up to natural combinatorial

equivalence. The minimal pizza provides a complete invariant for the definable contact

Lipschitz equivalence class of f . Our construction is based on the Preparation Theorem

for definable functions in polynomially bounded o-minimal structures (van den Dries and

Speissegger [4]). Our width function is related to the Newton Boundary of a function on

an analytic arc constructed by Koike and Parusinski [7].

2. Basic definitions

Definition 2.1. We say that two continuous map germs f, g : (Rn, 0) −→ (Rp, 0) are

Lipschitz contact equivalent if there exist two germs of bi-Lipschitz homeomorphisms h :

(Rn, 0) −→ (Rn, 0) and H : (Rn×Rp, 0) −→ (Rn×Rp, 0) such that H(Rn×{0}) = Rn×{0}
and the following diagram is commutative:

(1)

(Rn, 0)
(id, f)−→ (Rn × Rp, 0)

πn−→ (Rn, 0)

h ↓ H ↓ h ↓
(Rn, 0)

(id, g)−→ (Rn × Rp, 0)
πn−→ (Rn, 0)

where id : Rn −→ Rn is the identity mapping and πn : Rn × Rp −→ Rn is the canonical

projection.

In this paper we consider the case p = 1, thus the maps f, g are functions. There

is a more convenient way to work with the contact equivalence of functions, due to the

following

Theorem 2.2 ([3]). Let f and g be two Lipschitz contact equivalent continuous func-

tion germs (Rn, 0) → (R, 0). Then there exists a germ at the origin of a bi-Lipschitz

homeomorphism Φ : (Rn, 0) −→ (Rn, 0) such that

(?) either af ≤ g ◦ Φ ≤ bf , or af ≤ −g ◦ Φ ≤ bf , for some positive constants a and b.

If f and g are Lipschitz and satisfy (?) then they are Lipschitz contact equivalent.

For the rest of the paper, we assume n = 2.

In this paper, we consider a polynomially bounded o-minimal structure A over R, with

the field of exponents F. We denote F+ the set of positive exponents in F. All functions

are assumed to be definable in A, and the Lipschitz contact equivalence is assumed to

be definable. This means that h and H in (1) are definable in A. A function f(x, y) is

always identified with its germ at the origin of R2.

An arc γ is a continuous definable mapping γ : [0, ε)→ R2 such that γ(0) = 0. Unless

explicitly stated otherwise, an arc is parameterized by the distance to the origin, i.e.,
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|γ(t)| = t. We always consider γ as a germ at the origin of R2. When it does not lead to

confusion, we use the same notation for an arc and its image in R2.

Definition 2.3. The order of tangency tord(γ1, γ2) of two distinct arcs γ1 and γ2, is the

exponent β ∈ F, β ≥ 1, defined in the following equation

|γ1(t)− γ2(t)| = btβ + o(tβ), b 6= 0.

Definition 2.4. Let f : (R2, 0)→ (R, 0) be a continuous function, and γ an arc in R2. If

f |γ 6≡ 0, the order of f along γ, denoted by ordγ(f), is defined as the exponent α ∈ F+ in

f(γ(t)) = atα + o(tα), a 6= 0.

If f |γ ≡ 0, we set ordγ(f) =∞.

Definition 2.5. Two arcs γ1 and γ2 divide the germ of R2 at the origin into two compo-

nents. If β = tord(γ1, γ2) > 1 then the closure of the smaller (not containing a half-plane)

component is called a β-Hölder triangle. If tord(γ1, γ2) = 1 then the closure of each of the

two components is called a 1-Hölder triangle. The number β ∈ F is called the exponent

of the Hölder triangle. The arcs γ1 and γ2 are called the sides of the Hölder triangle. We

denote by T (γ1, γ2) a Hölder triangle bounded by γ1 and γ2.

Let T ⊂ (R2, 0) be a Hölder triangle, and let f : T → (R, 0) be a continuous function.

Define

(2) Qf (T ) =
⋃
γ⊂T

ordγ(f).

Proposition 2.6. For a Hölder triangle T , Qf (T ) is a segment in F+ ∪ {∞}.

Proof. Suppose that q1, q2 ∈ Qf (T ) and let q ∈ (q1, q2)∩ F+. Let h : (R2, 0)→ (R, 0) be a

continuous function defined by h(x, y) = (x2 + y2)q/2. Since the intersection of the graphs

of f|T and h|T , as a germ at 0 ∈ R3, does not reduce to the origin, the arc-selection lemma

implies that there exists an arc γ in T such that ordγ(f) = q. �

We will show later that Qf (T ) is a closed segment.

Definition 2.7. A Hölder triangle T is called elementary with respect to the function f

if, for any two disjoint arcs γ1 and γ2 in T such that ordγ1(f) = ordγ2(f) = q, the order of

f is q on any arc in the Hölder triangle T (γ1, γ2) ⊂ T .

Definition 2.8. Let f : (R2, 0) → (R, 0) be a continuous function. For each arc γ, the

width of γ with respect to f is the infimum µ∗(γ, f) of the exponents of Hölder triangles

T̃ containing γ such that Qf (T̃ ) is a point.

Let T be a Hölder triangle. The relative width of an arc γ ⊂ T , with respect to f and

T , is the infimum µ∗T (γ, f) of the exponents of Hölder triangles T̃ such that γ ⊂ T̃ ⊂ T

and Qf (T̃ ) is a point.
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The multivalued width function µT,f : Qf (T )→ F∪{∞}, µT,f ≥ β, is defined as follows.

For q ∈ Qf (T ), we define µT,f (q) as the (finite) set of exponents µ∗T (γ, f), where γ is any

arc in T such that ordγ(f) = q.

We will show (see Lemma 3.3 below) that these infima µ∗(γ, f) and µ∗T (γ, f) are both

minima and belong to F+ ∪ {∞}.

Remark 2.9. Let f, g : (R2, 0) → (R, 0) be two continuous function germs which are

Lipschitz contact equivalent. Let Φ be the bi-Lipschitz homeomorphism of Theorem 2.2.

For any arc γ, let γ̃ = Φ(γ). Then, ordγ̃(g) = ordγ(f) and µ∗(γ̃, g) = µ∗(γ, f).

Notation. When the function germ f is fixed, we write µ∗(γ) and µ∗T (γ) instead of

µ∗(γ, f) and µ∗T (γ, f), respectively. We also write µT instead of µT,f .

Remark 2.10. If T is an elementary triangle then µT is single valued.

Definition 2.11. A Hölder complex on R2 is a (definable) triangulation of the germ of

R2 at the origin. Two Hölder complexes are combinatorially equivalent when there exists

a bijection between their sets of triangles that either preserves or reverses their cyclic

order, and preserves their Hölder exponents (see [1]). A combinatorial type of a Hölder

complex can be defined as a finite sequence of exponents βi ∈ F; βi ≥ 1, considered with

the cyclic order. At least one of the exponents βi is equal to 1. The sequence {βi} is

called an abstract Hölder complex. A Hölder complex {Ti} corresponds to an abstract

Hölder complex {βi} if the exponent of Ti is equal to βi, for all i.

Definition 2.12. An abstract pizza is a finite collection H = {βi, Qi, si, µi}i∈I , where

I = {1, . . . , k} mod k is considered with the cyclic order, and

(1) {βi} is an abstract Hölder complex on R2 at the origin;

(2) each Qi is a closed directed segment of F+ ∪ {∞}, where “directed” means that

Qi = [ai, bi] with either ai < bi or ai > bi (or ai = bi when Qi is a point) satisfying

the continuity condition ai+1 = bi for all i;

(3) each si is a sign +, − or 0, with si = si+1 unless bi = ai+1 =∞;

(4) µi : Qi → F∪{∞} is an affine function, such that min(µi(ai), µi(bi)) = βi for each

i.

Definition 2.13. A pizza H = {βi, Qi, si, µi}i∈I is associated with a continuous function

germ f : (R2, 0) → (R, 0) if there exists a Hölder complex {Ti}i∈I on R2 where each

Ti = T (γi, γi+1) is a βi-Hölder triangle elementary with respect to f , and the arcs γi are

either counterclockwise or clockwise oriented with respect to the cyclic order on I, such

that

(1) Qi = Q(Ti);

(2) for each arc γ ⊂ Ti, µ
∗
Ti

(γ) = µi(ordγ(f));
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Figure 1. Equivalence of pizzas.

(3) the sign of f on the interior of Ti is si.

Definition 2.14. Two pizzas H = {βi, Qi, si, µi}ki=1 and H′ = {β′j, Q′j, s′j, µ′j}k
′
j=1 (see

Fig. 1) are called combinatorially equivalent (or simply equivalent) if k = k′ and there is

a combinatorial equivalence i 7→ j(i) of the corresponding Hölder complexes associating

T ′j(i) to Ti, such that

(1) either s′j(i) = si or s′j(i) = −si for all i;

(2) Q′j(i) = Qi for all i if i 7→ j(i) preserves the cyclic order, or Q′j(i) = −Qi for all i

(where −Qi means Qi with the opposite direction) if the cyclic order is reversed;

(3) µ′j(i) = µi for all i.

3. Main theorem.

Theorem 3.1. For any continuous definable function germ f : (R2, 0) → (R, 0), there

exists a pizza associated with f .

Proof. The existence of a pizza associated with f uses a special case of the Preparation

Theorem of van den Dries and Speissegger [4]. Namely,

Theorem 3.2 ([4]). Let f : (R2, 0)→ (R, 0) be a definable and continuous function. There

exists a finite decomposition C of R2, as a germ at 0, and for each T ∈ C there exists an

exponent λ ∈ F and definable functions θ, a : (R, 0) → R and u : (R2, 0) → R, such that

for (x, y) ∈ T we have

(3) f(x, y) = (y − θ(x))λa(x)u(x, y), |u(x, y)− 1| < 1

2
.

Up to refining, we can further require that the set {y = θ(x)} is either outside T or on its

boundary.

The Preparation Theorem 3.2 specifies a special direction, that of the variable y, with

respect to which we can prepare the function of interest in the form given in Equation
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(3), mimicking the classical Weierstrass Preparation for a complex function germ. Thus

we get the decomposition Cy into definable cells. Preparing the function with respect to

the direction of the variable x is also possible, but gives rise to a second decomposition

Cx, different from Cy. Nevertheless we can refine Cy so that each cell of the refined

decomposition C is contained in a cell of Cx. Thus the function f may be prepared with

respect to both x-direction and y-direction in each cell of C.
We may further assume that each cell C of C satisfies the following property: either

there is no arc contained in C tangent to the y-axis, or there is no arc contained in C

tangent to the x-axis.

Let C be a cell of C. Up to permuting the x and y coordinates, we can assume that the

function f is prepared in C with respect to the y-direction, there is no arc in C tangent

to the y-axis, and the curve β = {y = θ(x)} is not tangent to the y-axis. A simple but

important consequence of this property of C is that there is a positive constant K such

that for (x, y) ∈ C, we have

|(x, y)| � 1 =⇒ |(x, y)| ≤ K|x|.

Then, for any arc t→ γ(t) = (x(t), y(t)) ∈ C, we have |x(t)| ≤ t ≤ K|x(t)|.

Since there is no arc in C tangent to the y-axis, we can assume that C is contained in

the half-plane {x ≥ 0}.
Let T be the closure of C, and γ an arc in T . Then γ = {y = θ(x) + b xtord(γ,β) +

o(xtord(γ,β))}. Since a(x) = c xr + o(xr), Equation (3) implies

(4) ordγ(f) = λ · tord(γ, β) + r.

Let R(T ) := [tord(γ1, β), tord(γ2, β)] ∩ (F ∪ {+∞}), where γ1 and γ2 are the boundary

arcs of T . If R(T ) consists of a single point, or if λ = 0, then Qf (T ) is a single point.

Otherwise, we define the function ρ : R(T ) → F ∪ {+∞} as ρ(q) := (q − r)/λ. It is

an affine function on Qf (T ). Note that ρ(q) = tord(γ, β) for any arc γ ⊂ T such that

ordγ(f) = q.

Lemma 3.3. The following equality holds: ρ(q) = µT (q) for all q ∈ Qf (T ).

Proof. Suppose that µT (q) < ρ(q) (see Fig. 2a). Let γ be an arc in T such that ordγ(f) = q

and µ∗T (γ) < tord(γ, γ1), where γ1 is the side of T closest to β.

Then, there exists an arc γ̃, such that tord(γ, γ̃) = µ∗T(γ), ordγ̃(f) = q and tord(γ̃, γ1) 6=
tord(γ, γ1). It contradicts the fact that ρ(q) is single valued.

Suppose that µT (q) > ρ(q) (see Fig. 2b). Let γ be an arc in T such that ordγ(f) = q

and µ∗T (γ) > tord(γ, γ1).

Then, one can consider an arc γ̃ in T such that tord(γ̃, γ) = tord(γ̃, γ1) = tord(γ, γ1).

Since T is an elementary triangle, one cannot have ordγ̃(f) = ordγ(f). But this also

contradicts the fact that ρ(q) is single valued. �
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Figure 2. Arcs γ and γ̃ in the proof of Lemma 3.3. a) Case µT (q) < ρ(q).

b) Case µT (q) > ρ(q).

In Lemma 3.3 we constructed a Hölder complex such that each triangle T is elementary

with respect to the function f , the width function µT : F ∪ {∞} → F ∪ {∞}, referred to

as ρ in the proof of Lemma 3.3, is affine, µT ≥ β where β is the exponent of T . The sign

of f inside T is clearly fixed. If Qf (T ) is not a point then µT is not constant. If T = Ti is

bounded by the arcs γ1 and γ2 so that the pair γ1, γ2 is counterclockwise oriented, we set

ai = ordγ1(f) and bi = ordγ2(f), Qi = [ai, bi]. The continuity condition ai+1 = bi follows

from the continuity of f . This completes the proof of Theorem 3.1. �

Remark 3.4. The proof of Lemma 3.3 shows that the width µ∗T (γ, f) is a minimum, i.e.,

there exists an arc γ′ in T such that µ∗T (γ, f) = tord(γ, γ′).

Theorem 3.5. Let f, g : (R2, 0)→ (R, 0) be germs of continuous definable functions. If f

is Lipschitz contact equivalent to g, then for each pizza H = {βi, Qi, si, µi}ki=1 associated

with f there is a pizza H′ associated with g, and equivalent to Π.

Proof of Theorem 3.5. Let {Ti} be a triangulation of the germ of R2 at zero corresponding

to Definition 2.13. Let (H, h) be a pair of bi-Lipschitz homeomorphisms defining the

Lipschitz contact equivalence between f and g. We have the relation H((x, y), f(x, y)) =

(h(x, y), g(h(x, y))). Since h is a bi-Lipschitz map, T ′i = h(Ti) is also a βi-Hölder triangle.

Let γ be a definable arc in Ti. Since H is also bi-Lipschitz, ordγ(f) = ordh(γ)(f). Let γ1

and γ2 be two arcs in Ti. Since H is a bi-Lipschitz homeomorphism, ordγ1(f) = ordh(γ1)(g)

and ordγ2(f) = ordh(γ2)(g). Thus Qf (Ti) = Qg(T
′
i ) (as directed segments). If Ti is an

elementary triangle with respect to f , then T ′i is an elementary triangle with respect to

g, and µi is the width function for T ′i . Note that, if the map H preserves (respectively,

reverses) the sign of f on some triangle, then it has to preserve (respectively, to reverse)

the sign on each triangle. Thus there exists a pizza H′ associated with g having all
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elements same as H except, possibly, all signs si reversed. This completes the proof of

Theorem 3.5. �

4. Simplification of Pizzas

Let H = {βi, Qi, si, µi} be an abstract pizza. A simplification of H is a pizza H̃
obtained from H using the following operations:

1. Let βi and βi+1 be two consecutive numbers of the formal Hölder complex of H.

Suppose that Qi and Qi+1 are not single points, and the following holds:

(1) si = si+1;

(2) Qi = [ai, bi], Qi+1 = [ai+1, bi+1] and either ai < bi = ai+1 < bi+1 or ai > bi =

ai+1 > bi+1;

(3) There exists an affine function µ̃ : F→ F such that µj := µ̃|Qj
for j = i, i+ 1.

Then, we define a new pizza as follows:

- For j ≤ i− 1 we set β̃j := βj, µ̃j := µj, s̃j := sj ;

- For i+ 2 ≤ j ≤ k we set β̃j := βj+1, µ̃j := µj+1, s̃j := sj+1 ;

- We define β̃i := min{βi, βi+1}, s̃i := si = si+1 and µ̃i := µ̃|Qi∪Qi+1
.

The new abstract pizza now has only k − 1 triangles instead of k.

Remark 4.1. Notice that if ai < bi and ai+1 > bi+1 or ai > bi and ai+1 < bi+1, then we

do not apply the simplification procedure.

2. Let βi and βi+1 be a pair of consecutive numbers in the formal Hölder complex of H
such that at least one of the segments Qi and Qi+1 is a point. Suppose that Qi = [a, a],

Qi+1 = [a, b] and βi ≥ µi+1(a). Then, we define β̃j, s̃j and µ̃j for j 6∈ {i, i+1}, in the same

way as in the previous case, and set β̃i = βi+1, s̃i := si = si+1, Q̃i = Qi+1 and µ̃i = µi+1.

If Qi = [a, b] and Qi+1 = [b, b], the procedure is almost the same as before, the only

difference is that we set β̃i = βi, Q̃i = Qi and µ̃i = µi.

A pizza is called simplified if none of the operations above can be applied. Any pizza

can be simplified applying the operations 1 and 2.

Proposition 4.2. The combinatorial equivalence class of a resulting simplified pizza does

not depend on the order of simplifications.

Proof. If we apply the simplification procedure until it cannot be applied, any two con-

secutive elements indexed by i and i+ 1 must have one of the following properties.

(1) The affine functions µi and µi+1 are non-constant and they are not restrictions of

the same affine function to two adjacent segments;

(2) Qi = [a, a] is a point, Qi+1 = [a, b] is not a point, and µi(a) < µi+1(a);

(3) Qi = [a, b] is not a point, Qi+1 = [b, b] is a point, and µi(b) > µi+1(b).
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The corresponding maximal segments are unique. Their order depends only on the

initial pizza, and does not depend on the simplification procedure. �

The pizza H̃ obtained fromH by the operations described above is called a simplification

of H. The pizza H is called a refinement of H̃.

In geometric terms, the simplification procedure can be described as follows. Let us

consider the germ of a definable continuous function f and an abstract pizza associated

with f . Let {Ti} be the corresponding triangulation of the germ (R2, 0). Suppose that the

width functions of two consecutive Hölder triangles Ti and Ti+1 is same affine function, let

us say µ̃ : F→ F, restricted to adjacent segments Q(Ti) and Q(Ti+1). Then, one considers

a union of these Hölder triangles as a Hölder triangle with the minimal exponent. The

width function of the new triangle is the restriction of µ to Q(Ti) ∪Q(Ti+1). This proves

the following result.

Lemma 4.3. Let H be a pizza associated with a function f . If H̃ is a simplification of

H, then H̃ is also a pizza associated with f .

The last Lemma allows us to define a notion of a minimal pizza associated with a

function f as a simplification of any pizza associated with f .

Example 4.4. Let us define f as f = x4 + y2 if x ≥ 0 and f = x2 + y2 if x ≤ 0.

For α ≥ 1, let γ = {y = axα + o(xα), x ≥ 0} be an arc parameterized by x. If

α ≥ 2 then ordγ(f) = 4, otherwise ordγ(f) = 2α. This implies that Qf (T ) = [4, 4] and

µT (4) = 2 for any Hölder triangle T bounded by γ1 = {y = a1x
2 + o(x2), x ≥ 0} and

γ2 = {y = a2x
2 + o(x2), x ≥ 0}, and Qf (T

′) = [2, 2] and µT ′(2) = 1 for any Hölder

triangle T3 bounded by two arcs not tangent to the positive x-axis and containing the

negative x-axis.

Any Hölder triangle T1 bounded by an arc γ1 = {y = axα + o(xα), x ≥ 0, α ≥ 2}
and an arc γ2 not tangent to the positive x-axis is elementary, with Qf (T1) either [2, 4]

or [4, 2], and µT1(q) = q/2. The minimal pizza for f consists of any such triangle T1 and

its complementary triangle T2 bounded by the same two arcs, with Qf (T2) = −Qf (T1)

(the two segments have opposite directions) and µT2(q) = q/2. Any two such pizzas are

equivalent.

Example 4.5. Let us define f as f = x4 + y2 if y ≥ 0, and f = x4 + y4 if y ≤ 0.

Any Hölder triangle T1 bounded by an arc γ1 = {y = axα+o(xα), x ≥ 0, α ≥ 2} and an

arc γ2 in the upper half plane not tangent to the x-axis is elementary, with Qf (T1) = [4, 2]

and µT1(q) = q/2. The minimal pizza for f consists of any such triangle T1, a triangle T2 in

the upper half plane bounded by γ2 and an arc γ3 = {y = b|x|α + o(|x|α), x ≤ 0, α ≥ 2},
with Qf (T2) = [4, 2] and µT2(q) = q/2, and a triangle T3 bounded by the arcs γ3 and

γ1 and containing the negative y-axis, with Qf (T3) = [4, 4] and µT3(4) = 1. Note that

µT1(4) 6= µT3(4) 6= µT2(4). Any two such pizzas are equivalent.
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Example 4.6. Let us define f as f = y2 − x3 for x ≥ 0 and x2 + y2 for x ≤ 0. The

function f is invariant under the symmetry (x, y) → (x,−y). For simplicity, we define a

decomposition of the upper half-plane {y ≥ 0} and complete it using the symmetry.

Let γ1 = {y = x3/2, x ≥ 0} be the zero set of f in the upper half-plane. Let T

(resp., T ′) be the Hölder triangle in the upper half-plane bounded by γ1 and the positive

(resp., negative) x-axis. Then Qf (T ) = [3,∞] and Qf (T
′) = [∞, 2]. Both T and T ′ are

elementary triangles, with f < 0 in T and f > 0 in T ′. If γ = {y = x3/2+axα+o(xα), x ≥
0, a 6= 0} where α ≥ 3/2, then q = ordγ(f) = 3/2+α. If, however, a > 0 and 1 ≤ α ≤ 3/2,

then q = ordγ(f) = 2α. This implies that µT (q) = q − 3/2, but µT ′(q) is not affine. If we

partition T ′ by an arc γ2 = {y = ax3/2+o(x3/2), a > 1, x ≥ 0} into triangles, T2 bounded

by γ1 and γ2, and T3 bounded by γ2 and the negative x-axis, then Qf (T2) = [∞, 3],

µT2(q) = q − 3/2, Qf (T3) = [3, 2] and µT3(q) = q/2, thus µ(q) is affine in both T2 and

T3. The minimal pizza for f consists of triangles T1 = T, T2, T3 and their symmetric

triangles in the lower half-plane. Note that the positive x-axis in this decomposition can

be replaced by any arc γ = {y = axα, x ≥ 0} where either α > 3/2 or α = 3/2 and

|a| < 1, and the negative x-axis can be replaced by any arc that is not tangent to the

positive x-axis.

Example 4.7. Although the function q 7→ µ(q) in Examples 4.4-4.6 is always increasing

in q, that is not always the case. Consider, for example, g(x, y) = (x6 + y6)/f(x, y) where

f(x, y) is the function from Example 4.4. Since ordγ(x
6 + y6) = 6 for any arc γ, we have

ordγ(g) = 6− ordγ(f) for any γ. This implies that a pizza for g can be obtained from the

pizza for f by replacing µT (q) with µT (6 − q) for any triangle T . In particular, for any

of the two triangles T1 and T2 in Example 4.4, the function µ = q/2 should be replaced

with µ = 3− q/2.

Although we just saw that a pizza associated with a function germ can never be unique,

the next section ensures that a minimal pizza is unique up to combinatorial equivalence.

The procedure of geometric refinement may be described by the same way as geometric

simplification. We take a pizza H̃ associated with the germ of a definable continuous

function f . Suppose that {T̃i} is a Hölder complex associated with H̃. Let {Tj} be a

refinement of {T̃i}. Since T̃i are elementary triangles, the same is true for the triangles Tj.

The structure of the pizza associated with the new triangulation can be obtained using

the procedure described in Section 2. It is clear that H is a refinement of H̃.

Theorem 4.8. A minimal pizza associated with the germ of a definable continuous func-

tion f is unique up to combinatorial equivalence.

Proof. Let H̃1 and H̃2 be two minimal pizzas corresponding to the same germ of a de-

finable continuous function f . Let {T̃1,i} and {T̃2,k} be two Hölder complexes associated

with H̃1 and H̃2, respectively. Consider a new Hölder complex {Ts} obtained as a com-

mon refinement of {T̃1,i} and {T̃2,k}. Using the geometric refinement procedure, one can
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construct a pizza H corresponding to the triangulation {Ts}. Then, the pizzas H̃1 and

H̃2 are simplifications of the same pizza. Since the combinatorial equivalence class of a

minimal pizza does not depend on the order of simplification operations, H̃1 and H̃2 are

combinatorially equivalent. �

Theorem 4.9. Two definable function germs f, g : (R2, 0) → R are contact Lipschitz

equivalent if, and only if, their minimal pizzas are combinatorially equivalent.

Proof. If f and g are contact Lipschitz equivalent, then by Theorem 3.5 and Lemma 4.3,

a minimal pizza of f is a minimal pizza of g. Indeed if the pizza of g (obtained from

Theorem 3.5) were not minimal, any simplification would also result in a simplification of

the minimal pizza of f , which contradicts the definition. Thus respective minimal pizzas

of f and g are combinatorially equivalent.

If the minimal pizza of f is combinatorially equivalent to the minimal pizza of g,

then there exists a definable bi-Lipschitz map h : (R2, 0) → (R2, 0) transforming the tri-

angulation {Ti}, associated with f , to the triangulation {T ′i}, associated with g. Let

H : (R3, 0)→ (R3, 0) defined by H(x, y, z) = (h(x, y), z) if the signs si of the minimal pizza

of f are the same as the signs s′i of the minimal pizza of g, and H(x, y, z) := (h(x, y),−z)

if the signs are opposite. The mapping H transforms the graph of f into the graph

of a function f̃ . We are going to show that f̃(x, y)/g(x, y) is bounded away from zero

and infinity on the set of points where the functions are not zero. Notice that, by the

construction of H, the zero-sets of f̃ and g are the same.

Let us suppose that f̃/g is unbounded or tends to zero. Since f̃ and g are definable, there

exists an arc γ such that f̃/g on γ is unbounded or tends to zero. But, by construction

of the map H, the width of the arc γ with respect to the functions f̃ and g is equal to

tord(γ, γi), where γi is the marked boundary arc of the simplex Ti such γ ⊂ Ti. That is why

ordγ (̃f) = ordγ(g), so that f̃/g is bounded below and above along γ. This contradiction

completes the proof. �

5. Geometric realization of abstract pizzas

Remind that we fixed a polynomially bounded o-minimal structure. In this section,

we show that any abstract pizza can be realized as a geometric pizza associated with the

germ of a definable function f : (R2, 0)→ (R, 0).

Lemma 5.1. Let T be a germ at the origin of a definable Hölder triangle with sides γ1

and γ2. Let f1, f2 : T, 0 → R, 0 be two nonnegative definable continuous functions such

that ordγ1(f1) = ordγ2(f2) = q ≥ 0. There exists a nonnegative, definable, continuous in

T \ {0} function f such that its restriction to γi coincides with fi, for i = 1, 2. Moreover,

ordγ(f) = q for any arc γ ⊂ T . If q > 0 then the limit of f at the origin is zero, thus f is

continuous in T . If q = 0 then f is a unit, i.e., its values in T \ {0} are separated from 0

and ∞.
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Proof. We may assume, by a definable bi-Lipschitz transformation, that T is bounded by

the positive x-axis and a curve y = γ(x) where γ(x) ∼ xβ for small x > 0. We define f

by linear interpolation: f(x, y) = (1− s)f1(x, 0) + sf2(x, γ(x)) where s = y/γ(x) ∈ [0, 1].

One can easily check that this function satisfies conditions of Lemma 5.1. �

Lemma 5.2. Let µ : [q1, q2]→ F∩ [1,∞] be an affine function with the image [β, β̃], where

0 < q1 ≤ q2, β ≤ β̃ and β < β̃ ⇔ q1 < q2. Let T be a definable β-Hölder triangle. Then,

there exists a definable continuous function f : (T, 0) → (R, 0) such that µ is the width

function of T associated with f .

Proof. We may assume, by a definable bi-Lipschitz transformation, that T is bounded by

the positive x-axis and a curve y = γ(x) where γ(x) ∼ xβ for small x > 0.

If q1 = q2 and β = β̃, we define f(x, y) = a(x) where a(x) is any definable function

such that a(x) ∼ xq1 for small x > 0.

Suppose now that q1 < q2 and β < β̃. Note that β̃ = ∞ ⇔ q2 = ∞. In that case,

f(x, y) = b(y)a(x) where λ = dµ/dq, b(y) ∼ yλ, for small y > 0, and a(x) ∼ xq1−λβ for

small x > 0.

If q1 < q2 < ∞ and β < β̃ < ∞, let ρ(x) be a definable function such that ρ(x) ∼ xβ̃

for small x > 0. If dµ/dq > 0 then f(x, y) = b(y+ ρ(x))a(x) where λ = (q2− q1)/(β̃−β),

b(z) ∼ zλ, for small z > 0, and a(x) ∼ xr with r = (q1β̃−q2β)/(β̃−β) satisfies conditions

of Lemma 5.2.

If dµ/dq < 0 then f(x, y) = b(y+ ρ(x))a(x) where λ = (q1− q2)/(β̃− β), b(z) ∼ zλ, for

small z > 0 and a(x) ∼ xr with r = (q2β̃ − q1β)/(β̃ − β) satisfies conditions of Lemma

5.2. �

Theorem 5.3 (Theorem of Realization). Let H = {βi, Qi, si, µi}i∈I be an abstract pizza

(see Definition 2.12). Then, there exists the germ of a definable continuous function

ψ : (R2, 0)→ (R, 0) such that H is associated with ψ.

Proof. Consider the Hölder complex associated with H and let us realize it in R2 at 0. Let

{Ti}i be the set of the Hölder triangles from that realization, and let γi be the common

boundary of Ti and Ti+1. Lemma 5.2 allows us to construct definable continuous functions

fi on each Ti such that µi : Qi = [ai, bi]→ F∩ {∞} is the width function associated with

fi on Ti, the sign of fi inside Ti is si, ordγi−1
(fi) = ai and ordγi(fi) = bi. If bi = ai+1 <∞

then the function ρi = (fi+1|γi)/(fi|γi) is positive and ordγi(ρi) = 0. Lemma 5.1 implies

that there exists a continuous in Ti \ {0} definable function gi such that ordγ(gi) = 0 on

each arc γ in Ti, such that gi|γi−1
≡ 1 and gi|γi ≡ ρi. Then ψi = figi is a continuous

in Ti definable function such that µi is the width function associated with ψi in Ti, and

ψi|γi ≡ ψi+1|γi . Thus the function ψ such that ψ|Ti = ψi is continuous, and H is associated

with ψ. �
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