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CIRCLE ACTIONS ON UHF-ABSORBING C∗-ALGEBRAS

EUSEBIO GARDELLA

Abstract. We study circle actions with the Rokhlin property, in relation
to their restrictions to finite subgroups. We construct examples showing the
following: the restriction of a circle action with the Rokhlin property (even
on a real rank zero C∗-algebra), need not have the Rokhlin property; and
even if every restriction of a given circle action has the Rokhlin property, the
circle action itself need not have it. As a positive result, we show that the
restriction of a circle action with the Rokhlin property to the subgroup Zn has
the Rokhlin property if the underlying algebra absorbs Mn

∞ . The condition
on the algebra is also necessary in most cases of interest.

Despite the fact that there are no circle actions with the Rokhlin property
on UHF-algebras, we construct many such actions on certain UHF-absorbing
simple AT-algebras. Additionally, we show that circle actions with the Rokhlin
property on O2-absorbing C∗-algebras are generic, in a suitable sense.
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1. Introduction

The interplay between C∗-algebras and dynamics has a long and rich history.
Crossed products have provided some of the most interesting examples of C∗-
algebras. Some algebraic properties are preserved under formation of crossed prod-
ucts in great generality. For example, crossed products of type I C∗-algebras by
compact groups are type I, and crossed products of nuclear C∗-algebras by amenable
groups are nuclear, regardless of the action. On the other hand, for preservation of
other (usually stronger) properties, one must assume some kind of freeness condition
on the action. This is best seen in the commutative setting, where the Atiyah-Segal
completion theorem (specifically as in the statement of Theorem 1.1.1 in [Phi87])
shows how free actions on compact spaces enjoy a number of nice analytic and
algebraic properties.

In the noncommutative setting, there are several different notions of freeness
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for actions, and many of them are surveyed in [Phi09]. For finite groups, and in
roughly decreasing order of strength, there are: the Rokhlin property (see [Izu04a]),
the tracial Rokhlin property (see [Phi11]), pointwise outerness, and hereditary sat-
uration (see [Phi87]), just to mention a few. Among these, the Rokhlin property is
the strongest one, and is therefore less common than the other notions of freeness.
For example, the Rokhlin property for finite groups implies that the underlying al-
gebra has non-trivial projections, ruling out the existence of such actions on many
C∗-algebras of interest, such as the Jiang-Su algebra Z. There are also less obvious
K-theoretic obstructions to the Rokhlin property. See Theorem 3.13 in [Izu04a].
On the other hand, the Rokhlin property implies very strong structure preserva-
tion results for crossed products (see Theorem 2.3 in [Phi09] for a list of properties
that are preserved by Rokhlin actions, and see [HW07], [OP12] and [Phi11] for the
proofs of most of them), and it is the hypothesis in most theorems on classifica-
tion of group actions (see Theorems 3.4 and 3.5 in [Izu04b], and see Theorem 4.7
in [Gar14a]). These have been the main uses of the Rokhlin property: obtaining
structure results for the crossed product, and classification of actions.

Besides finite groups, the Rokhlin property has been extensively studied for auto-
morphisms (see [HO84] and [Kis95]) and flows (see [Kis96]). In [HW07], Hirshberg
and Winter introduced the Rokhlin property for an action of a second-countable
compact group on a unital C∗-algebra, and they proved that absorption of a strongly
self-absorbing C∗-algebra and approximate divisibility pass to crossed products by
such actions.

It is natural to try to generalize the results on the structure of the crossed product
in [OP12] to arbitrary compact groups. This will be done in [Gar14c]. Another nat-
ural direction is to explore the classification of Rokhlin actions of compact groups
on certain classes of classifiable C∗-algebras, generalizing or at least complementing
Izumi’s work for finite group actions with the Rokhlin property. As a first step in
this direction, we study Rokhlin actions of the circle on C∗-algebras that absorb a
UHF-algebra, specifically in relation to their restrictions to finite subgroups. One
of our main results, Theorem 3.19, asserts that under suitable assumptions on the
UHF-algebra, all such restrictions have the Rokhlin property. This fact, together
with Izumi’s classification of finite group actions with the Rokhlin property, will be
used in subsequent work to classify circle actions on UHF-absorbing C∗-algebras.

Similarly to what happens with finite groups, Rokhlin actions of compact groups
are rare, and there are C∗-algebras that do not have any action of any non-trivial
compact group with the Rokhlin property, such as the Cuntz algebra O∞ or the
Jiang-Su algebra Z. In this sense, C∗-algebras that absorb O2 form a distinguished
class since they have many actions with the Rokhlin property. In fact, the set of
circle actions with the Rokhlin property on a separable O2-absorbing C

∗-algebra is
a dense Gδ-set in the space of all circle actions. See Theorem 2.25.

This paper is organized as follows. We establish the notation that will be used
throughout in the rest of the Introduction. In Section 2, we introduce the definition
of the Rokhlin property for circle actions on unital C∗-algebra, and derive some of
its basic properties which will be frequently used in the later sections. We also
provide a number of examples of circle actions on C∗-algebras with the Rokhlin
property, mostly on simple C∗-algebras. In contrast, we show in Theorem 2.17
that no direct limit action of the circle on a UHF-algebra can have the Rokhlin
property. In Subsection 2.2, we specialize to circle actions on C∗-algebras that
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absorb the Cuntz algebra O2, a class of C∗-algebras which is special from the point
of view of the Rokhlin property. We show in Theorem 2.25 that circle actions with
the Rokhlin property are generic on separable, unital, O2-absorbing C

∗-algebras, a
fact that should be contrasted with Theorem 2.17.

Section 3 is devoted to showing the following: if A is a separable, unital C∗-
algebra that absorbs the UHF-algebra Mn∞ , and if α : T → Aut(A) is an action
with the Rokhlin property, then the restriction of α to the finite cyclic group Zn ⊆ T

has the Rokhlin property. See Theorem 3.19. The condition that A absorb Mn∞

is shown to be necessary in most cases of interest; see Theorem 3.20. We also give
examples of circle actions with the Rokhlin property such that no restriction to any
finite cyclic group has the Rokhlin property; see Example 3.8 and Example 3.10.
Additionally, Example 3.22 and Example 3.23 show that even if a circle action has
the property that every restriction to a finite subgroup has the Rokhlin property,
the action itself need not have the Rokhlin property, even on Kirchberg algebras
satisfying the UCT.

Acknowledgements. The author is grateful to his advisor Chris Phillips for a
number of helpful conversations, as well as for feedback on an earlier draft of this
work. He also wishes to thank the annonymous referee for a number of suggestions
that improved the quality of the present paper.

1.1. Notation and preliminaries. We adopt the convention that {0} is not a
unital C∗-algebra, that is, we require that 1 6= 0 in a unital C∗-algebra. We
take N = {1, 2, . . .}. For a separable C∗-algebra A, we denote by Aut(A) the
automorphism group of A, which is equipped with the topology of pointwise norm
convergence. In this topology, a sequence (ϕn)n∈N converges to ϕ ∈ Aut(A) if and
only if for every ε > 0 and every compact set F ⊆ A, there exists m ∈ N such that
‖ϕm(a)− ϕ(a)‖ < ε for all a ∈ F .

If A is moreover unital, then U(A) denotes the unitary group of A, and two
automorphisms ϕ and ψ of A are said to be approximately unitarily equivalent if
ϕ ◦ ψ−1 is approximately inner.

For a locally compact group G, an action of G on a C∗-algebra A is always
assumed to be a continuous group homomorphism from G into Aut(A), unless
otherwise stated. If α : G→ Aut(A) is an action of G on A, then we will denote by
Aα the fixed-point subalgebra of A under α.

For a C∗-algebra A, we set

ℓ∞(N, A) =

{
(an)n∈N ∈ AN : sup

n∈N

‖an‖ <∞
}
;

c0(N, A) =
{
(an)n∈N ∈ ℓ∞(N, A) : lim

n→∞
‖an‖ = 0

}
;

A∞ = ℓ∞(N, A)/c0(N, A).

We identify A with the constant sequences in ℓ∞(N, A) and with their image in
A∞. We write A∞ ∩ A′ for the central sequence algebra of A, that is, the relative
commutant of A ∈ A∞. For a bounded sequence (an)n∈N ∈ A, we denote by

(an)n∈N
its image in A∞. We have

A∞ ∩ A′ =
{
(an)n∈N

∈ A∞ : lim
n→∞

‖ana− aan‖ = 0 for all a ∈ A
}
.

If α : G → Aut(A) is an action of G on A, then there are actions of G on A∞
and on A∞ ∩ A′, both denoted by α∞. Note that unless the group G is discrete,
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these actions will not be continuous in general.
Given n ∈ {2, 3, . . . ,∞}, we denote by On the Cuntz algebra with canonical

generators {sj}nj=1 satisfying the usual relations (see for example Section 4.2 in

[Rør02]).
We denote the circle group by T, and identify it with the set of complex numbers

of modulus 1. The finite cyclic group of order n will be denoted by Zn, and we will
usually identify Zn with the n-th roots of unity in T, and in this fashion we will
regard Zn as a subgroup of the circle.

2. The Rokhlin property: rigidity and genericity

We begin this section by recalling the definition of the Rokhlin property for a
finite group action on a unital C∗-algebra.

Definition 2.1. Let A be a unital C∗-algebra, let G be a finite group, and let
α : G→ Aut(A) be an action. We say that α has the Rokhlin property if for every
ε > 0 and for every finite set F ⊆ A there exist orthogonal projections eg ∈ A for
g ∈ G such that

(1) ‖αg(eh)− egh‖ < ε for all g and h ∈ G
(2) ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F
(3)

∑
g∈G

eg = 1.

The definition of the Rokhlin property for finite group actions on C∗-algebras
was originally introduced by Izumi in [Izu04a], although a similar notion has been
studied by Herman and Jones in [HJ82] for Z2 actions on UHF-algebras, and by
Herman and Ocneanu in [HO84] for integer actions. The Rokhlin property also
played a crucial role in the classification of finite group actions on von Neumann
algebras.

The following is part of Proposition 2.14 in [Phi09], and we include the proof for
the convenience of the reader. This result should be compared with Example 3.8
and Example 3.10.

Proposition 2.2. Let A be a unital C∗-algebra, let G be a finite group, and let
α : G → Aut(A) be an action with the Rokhlin property. If H ⊆ G is a subgroup,
then α|H has the Rokhlin property.

Proof. Set n = card(G/H). Given ε > 0 and a finite subset F ⊆ A, choose
projections eg for g ∈ G as in the definition of the Rokhlin property for F and ε

n .
We claim that the projections fh =

∑
x∈G/H

ehx for h ∈ H , form a family of Rokhlin

projections for the action α|H , the finite set F and tolerance ε.
Given h and k ∈ H , we have

‖αk(fh)− fkh‖ =

∥∥∥∥∥∥
∑

x∈G/H

αk(ehx)− ekhx

∥∥∥∥∥∥

≤
∑

x∈G/H

‖αk(ehx)− ekhx‖ ≤ card(G/H)
ε

n
= ε.

Finally, for a ∈ F and h ∈ H , we have

‖afh − fha‖ ≤
∑

x∈G/H

‖aehx − ehxa‖ < ε.
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Hirshberg and Winter defined the Rokhlin property for an arbitrary action of a
compact, second countable group in [HW07]. In the case of the circle, and using
semiprojectivity of C(T), one can show that their definition is equivalent to the
following.

Definition 2.3. Let A be a unital C∗-algebra and let α : T → Aut(A) be a contin-
uous action. Then α is said to have the Rokhlin property if for every finite subset
F ⊆ A and every ε > 0, there exists a unitary u ∈ U(A) such that

(1) ‖αζ(u)− ζu‖ < ε for all ζ ∈ T and
(2) ‖ua− au‖ < ε for all a ∈ F .

Remark 2.4. In order to check condition (2) in Definition 2.3, it is enough to
consider finite subsets of any set of generators of A. It is also immediate to show
that if in Definition 2.3 one allows the set F to be compact instead of finite, one
obtains an equivalent definition. These easy observations will be used repeatedly
and without reference.

We present some basic properties of circle actions with the Rokhlin property,
some of which resemble those of free actions on spaces. For instance, the proposition
below is the analog of the fact that a diagonal action on a product space is free if
one of the factors is free.

Proposition 2.5. Let A be a unital C∗-algebra, and let α : T → Aut(A) have the
Rokhlin property. If β : T → Aut(B) is any action of T on a unital C∗-algebra,
then the tensor product action ζ 7→ αζ ⊗ βζ of T on Aut(A⊗B), for any C∗-tensor
product on which it is defined, has the Rokhlin property.

Proof. Let ε > 0 and let F ′ ⊆ A and F ′′ ⊆ B be finite subsets of the respective
unit balls of A and B. Set

F = {a⊗ b : a ∈ F ′, b ∈ F ′′},
which is a finite subset of A ⊗ B. Using the Rokhlin property for α, choose a
unitary u ∈ A such that the conditions in Definition 2.3 are satisfied for ε and F ′.
Set v = u⊗ 1 ∈ U(A ⊗B). For x = a⊗ b ∈ F , we have

‖vx− xv‖ = ‖(ua− au)⊗ b‖ ≤ ‖ua− au‖‖b‖ < ε.

On the other hand,

‖(α⊗ β)ζ(v)− ζv‖ = ‖(αζ(u)⊗ βζ(1))− ζ(u⊗ 1)‖ = ‖αζ(u)− ζu‖ < ε,

for all ζ ∈ T, which finishes the proof. �

We point out that a tensor product action may have the Rokhlin property with-
out any of the tensor factors having the Rokhlin property, even if one of the actions
is the trivial action. This is analogous to the fact that a diagonal action on a
product space may be free without any of the factors being free, except that such
examples with the trivial action as one of the factors do not exist in the commuta-
tive setting.

The proposition below is the analog of the fact that an equivariant inverse limit
of free actions is free.
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Proposition 2.6. If A = lim−→(An, ιn) is a direct limit of C∗-algebras with unital

maps, and α : T → Aut(A) is an action obtained as the direct limit of actions
α(n) : T → Aut(An), such that α(n) has the Rokhlin property for all n, then α has
the Rokhlin property.

Proof. Let F ⊆ A be a finite set, and let ε > 0. Write F = {a1, . . . , aN}. Since⋃
n∈N

ιn,∞(An) is dense in A, there exist n ∈ N and F ′ = {b1, . . . , bN} ⊆ An such

that ‖aj − ιn,∞(bj)‖ < ε
3 for j = 1, . . . , N . Since α(n) has the Rokhlin property,

there exists a unitary u ∈ An such that
∥∥∥α(n)

ζ (u)− ζu
∥∥∥ < ε

3 for all ζ ∈ T and

‖bju − ubj‖ < ε
3 for all j = 1, . . . , N . Notice that ιn,∞(u) is a unitary in A, since

the connecting maps are unital. Moreover, if ζ ∈ T, then

‖αζ(ιn,∞(u))− ζιn,∞(u)‖ =
∥∥∥ιn,∞(α

(n)
ζ (u))− ιn,∞(ζu)

∥∥∥ < ε

3
< ε.

Finally,

‖ιn,∞(u)aj − ajιn,∞(u)‖
≤ ‖ιn,∞(u)aj − ιn,∞(u)ιn,∞(bj)‖ + ‖ιn,∞(u)ιn,∞(bj)− ιn,∞(bj)ιn,∞(u)‖

+ ‖ιn,∞(bj)ιn,∞(u)− ajιn,∞(u)‖
≤ ‖aj − ιn,∞(bj)‖ + ‖ubj − bju‖+ ‖ιn,∞(bj)− aj‖
<
ε

3
+
ε

3
+
ε

3
= ε.

Hence ιn,∞(u) is the desired unitary for F and ε, and thus α has the Rokhlin
property. �

We have the following convenient result, which turns out to be crucial in some
proofs, in particular in the classification of Rokhlin actions of the circle on Kirchberg
algebras; see [Gar14a] and [Gar14b]. In the present work, we will use Proposition 2.7
in the proof of Proposition 2.22.

Proposition 2.7. Let A be a unital C∗-algebra, let α : T → Aut(A) be an action
with the Rokhlin property, let ε > 0 and let F ⊆ A be a finite subset. Then there
exists a unitary u ∈ A such that

(1) αζ(u) = ζu for all ζ ∈ T.
(2) ‖ua− au‖ < ε for all a ∈ F .

The definition of the Rokhlin property differs from the conclusion of this propo-
sition in that in condition (1), one only requires ‖αζ(u)− ζu‖ < ε for all ζ ∈ T.

Proof. One can normalize F so that ‖a‖ ≤ 1 for all a ∈ F . Set ε0 = min
{

1
3 ,

ε
7+2ε

}
.

Choose a unitary v ∈ A such that conditions (1) and (2) in Definition 2.3 are
satisfied for the finite set F with ε0 in place of ε. Denote by µ the normalized Haar
measure on T, and set

x =

∫

T

ζαζ(v) dµ(ζ).

Then ‖x‖ ≤ 1 and ‖x − v‖ ≤ ε0. One checks that ‖x∗x − 1‖ ≤ 2ε0 < 1 and that
αζ(x) = ζx for all ζ ∈ T. In particular, x∗x is invertible.

We have ∥∥(x∗x)−1
∥∥ ≤ 1

1− ‖1− x∗x‖ ≤ 1

1− 2ε0
,
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and thus
∥∥∥(x∗x)− 1

2

∥∥∥ ≤ 1√
1−2ε0

.

Set u = x(x∗x)−
1
2 , which is a unitary in A. Using that ‖x‖ ≤ 1 at the first step,

and that 0 ≤ 1− (x∗x)
1
2 ≤ 1− x∗x at the third step, we get

‖u− x‖ ≤
∥∥∥(x∗x)− 1

2 − 1
∥∥∥

≤
∥∥∥(x∗x)− 1

2

∥∥∥
∥∥∥1− (x∗x)

1
2

∥∥∥

≤ 1√
1− 2ε0

‖1− x∗x‖ ≤ 2ε0√
1− 2ε0

.

We deduce that

‖u− v‖ ≤ 2ε0√
1− 2ε0

+ ε0.

For ζ ∈ T, we have αζ(x
∗x) = x∗x and hence αζ(u) = ζu, so u satisfies condition

(1) of the statement. Finally, for a ∈ F , we have

‖ua− au‖ ≤ ‖ua− va‖+ ‖va− av‖+ ‖av − au‖
< ‖u− v‖‖a‖+ ε0 + ‖a‖‖v − u‖

≤ 4ε0√
1− 2ε0

+ 3ε0 <
4ε0

1− 2ε0
+ 3ε0

<
7ε0

1− 2ε0
< ε,

as desired. �

Remark 2.8. In the language of [PST14], the proof of Proposition 2.7 shows that
the action of T on C(T) induced by group multiplication, is equivariantly semipro-
jective. This fact seems not to have been known before.

We now turn to examples of circle actions with the Rokhlin property. As in the
finite group case, the Rokhlin property is rare, and it is challenging to construct
many examples on simple C∗-algebras. We will give an explicit construction of a
family of circle actions with the Rokhlin property on simple AT-algebras, and also
on the Cuntz algebra O2. For more examples on purely inifinite C∗-algebras, see
[Gar14b] (the construction of the examples there is not explicit).

Example 2.9. This is an example of a circle action on a simple, unital AT-algebra
with the Rokhlin property. For n ∈ N, set An = C(T) ⊗Mn!. Consider the action

α(n) : T → Aut(An) given by α
(n)
ζ (f)(w) = f(ζ−1w) for ζ and w ∈ T and for

f ∈ An
∼= C(T,Mn!). In other words, α(n) is the tensor product of the action of left

translation of T, with the trivial action onMn!. Then α
(n) has the Rokhlin property

by Proposition 2.5, since the action of left translation of T on itself trivially has the
Rokhlin property.

We construct a direct limit algebra A = lim−→(An, ιn) as follows. Fix a countable

dense subset X = {x1, x2, x3, . . .} ⊆ T, and assume that x1 = 1. With fx(ζ) =
f(x−1ζ) for f ∈ An, for x ∈ X and for ζ ∈ T, define maps ιn : An → An+1 for
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n ∈ N, by

ιn(f) =




f1 0 · · · 0
0 fx2 · · · 0
...

...
. . .

...
0 0 · · · fxn




for every f ∈ An.Then ιn is unital and injective, for all n ∈ N. The limit algebra
A = lim−→(An, ιn) is a unital AT-algebra.

It is easy to check that

ιn ◦ α(n)
ζ = α

(n+1)
ζ ◦ ιn

for all n ∈ N and all ζ ∈ T, so that
(
α(n)

)
n∈N

induces a direct limit action α =

lim−→α(n) of T on A. Then α has the Rokhlin property by Proposition 2.6. Simplicity

of A follows from Proposition 2.1 in [DNNP92], since X is assumed to be dense in
T.

In the example above, the universal UHF-pattern can be replaced by any other
UHF or (simple) AF-pattern, and the resulting C∗-algebra is also a (simple) AT-
algebra.

Using the absorption properties of O2, we can construct an action of the circle
on O2 with the Rokhlin property.

Example 2.10. Let A and α be as in the example above. Then A is a sepa-
rable, unital, nuclear, simple C∗-algebra. Use Theorem 3.8 in [KP00] to choose
an isomorphism ϕ : A ⊗ O2 → O2, and define an action γ : T → Aut(O2) by
γζ = ϕ ◦ (αζ ⊗ idO2) ◦ ϕ−1 for ζ ∈ T. Since α has the Rokhlin property, it follows
from Proposition 2.5 that γ has the Rokhlin property as well.

Example 2.11. If A is any unital C∗-algebra such that A⊗O2
∼= A, then one can

construct a circle action on A with the Rokhlin property by tensoring the trivial
action on A with any action on O2 with the Rokhlin property, such as the one
constructed in Example 2.10.

2.1. Nonexistence of actions with the Rokhlin property. Our next goal is to
prove that UHF-algebras do not admit any direct limit action of the circle with the
Rokhlin property; see Theorem 2.17. We begin with an easy lemma which already
rules out such actions on matrix algebras; see Corollary 2.13.

Lemma 2.12. Let A be a unital C∗-algebra and let α : T → Aut(A) be an action
with the Rokhlin property. Then αζ is not inner for all ζ ∈ T with ζ 6= 1.

Proof. Let ζ ∈ T \ {1}, and assume that there exists a unitary v ∈ A such that

αζ = Ad(v). Let ε > 0 satisfy ε < |1−ζ|
2 . Using the Rokhlin property for α, find a

unitary u ∈ A such that ‖αζ(u)− ζu‖ < ε and ‖uv − vu‖ < ε. Then

ε > ‖αζ(u)− ζ(u)‖ = ‖vuv∗ − ζu‖ ≥ |‖u− ζu‖ − ‖vuv∗ − u‖|

= |1− ζ| − ‖vu− uv‖ > |1− ζ|
2

> ε,

which is a contradiction. This shows that αζ is not inner. �

Corollary 2.13. Let n ∈ N. Then there are no actions of the circle on Mn with
the Rokhlin property.
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Proof. This is an immediate consequence of Lemma 2.12, since every automorphism
of Mn is inner. �

We will generalize the corollary above in Theorem 2.17 below, where we show
that there are no direct limit actions of the circle with the Rokhlin property on
UHF-algebras. We need a series of preliminary results.

Notation 2.14. Let n ∈ N. We denote by Un(C) the unitary group ofMn. Identify
T with the center Z(Un(C)) of Un(C) via the map ζ 7→ diag(ζ, . . . , ζ), and denote
by PUn(C) the quotient group PUn(C) = Un(C)/T.

Proposition 2.15. Let n ∈ N and let γ : T → Aut(Mn) be a continuous action.
Then there exists a continuous map v : T → Un(C) such that γζ = Ad(v(ζ)) for all
ζ ∈ T.

Proof. Recall that every automorphism of Mn is inner, so that for every ζ ∈ T

there exists a unitary u(ζ) ∈ Un(C) such that αζ = Ad(u(ζ)). Moreover, u(ζ)
is uniquely determined up to multiplication by elements of T = Z(Un(C)) and
hence γζ determines a continuous group homomorphism u : T → PUn(C). Denote
by ρ : Un(C) → PUn(C) the canonical projection. We want to solve the following
lifting problem:

Un(C)

ρ

��
T

v

;;
①

①

①

①

①

u
// PUn(C).

The map u determines an element [u] ∈ π1(PUn(C)) and ρ induces a group ho-
momorphism π1(ρ) : π1(Un(C)) → π1(PUn(C)). The quotient map ρ : Un(C) →
PUn(C) is actually a fiber bundle, since Un(C) is a manifold and the action of T on
Un(C) is free. See the theorem in Section 4.1 of [Pal61]. The long exact sequence
in homotopy for this fiber bundle is

· · · // π1(T) // π1(Un(C))
π1(ρ)

// π1(PUn(C)) // π0(T).

Recall that π1(Un(C)) ∼= Z, and that π0(T) ∼= 0. The map π1(T) → π1(Un(C)) is
induced by ζ 7→ diag(ζ, . . . , ζ), which on π1 corresponds to multiplication by n. In
other words, the above exact sequence is

· · · // Z
·n // Z

π1(ρ)
// π1(PUn(C)) // 0,

which implies that π1(PUn(C)) ∼= Zn and that the map π1(ρ) is surjective. It
follows that u is homotopic to a map û : T → PUn(C) that is liftable. The homotopy
lifting property for fiber bundles implies that u itself is liftable, that is, there exists
a continuous map v : T → Un(C) such that u(ζ) = ρ(v(ζ)) for all ζ ∈ T. (See
the paragraph below Theorem 4.41 in [Hat00] for the definition of the homotopy
lifting property. Proposition 4.48 in [Hat00] shows that every fiber bundle has this
property.) This concludes the proof. �

Lemma 2.16. Let n ∈ N and let v : T → Un(C) be a continuous map. Then for
every u ∈ Un(C), there exists ζ ∈ T such that

‖v(ζ)uv(ζ)∗ − ζu‖ ≥ 2.
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Proof. Assume that there exists u ∈ Un(C) such that ‖v(ζ)uv(ζ)∗ − ζu‖ < 2 for all
ζ ∈ T. Define w ∈ C(T,Mn) by w(ζ) = ζv(ζ)uv(ζ)∗u∗ for all ζ ∈ T. Then w is a
unitary in C(T,Mn) and

∥∥w − 1C(T,Mn)

∥∥ < 2. It follows that the spectrum of w is
not the whole circle, and a standard functional calculus argument using a branch
of the logarithm shows that w is an exponential, that is, there is a self-adjoint
element x ∈ C(T,Mn) with w = eix (namely x = log(w)). Then the path t 7→ eitx,
for t ∈ [0, 1], defines a homotopy between w and 1C(T,Mn). Define now a continuous
function f : T → T by f = det ◦w. Then f is homotopic to the constant map, and
thus its winding number is zero.

On the other hand,

f(ζ) = det(w(ζ)) = det(ζv(ζ)uv(ζ)∗u∗) = ζ
n
,

so the winding number is actually −n. This is a contradiction, and the result
follows. �

Theorem 2.17. Assume that A = lim−→(Mkn , ιn) is an unital UHF-algebra with

unital connecting maps. If α = lim−→α(n) is a direct limit action of the circle on A,
then α does not have the Rokhlin property.

Proof. Assume that α has the Rokhlin property. Take ε = 2 and F = ∅. A standard
approximation argument shows that there exist n ∈ N and u ∈ Ukn(C) such that

∥∥∥α(n)
ζ (u)− ζu

∥∥∥ < 2

for all ζ ∈ T. By Proposition 2.15, there is a continuous map v : T → Ukn(C) such

that α
(n)
ζ = Ad(v(ζ)) for all ζ ∈ T. Now, Lemma 2.16 implies that there exist

ζ0 ∈ T such that ‖v(ζ0)uv(ζ0)∗ − ζ0u‖ ≥ 2. Therefore, 2 >
∥∥∥α(n)

ζ0
(u)− ζ0u

∥∥∥ ≥ 2,

which is a contradiction. Thus, α does not have the Rokhlin property. �

2.2. Genericity on O2-absorbing algebras. In this subsection, we specialize to
circle actions with the Rokhlin property on O2-absorbing C

∗-algebras. This class of
C∗-algebras is special in our context. Indeed, circle actions with the Rokhlin prop-
erty are generic on separable, unital, O2-absorbing C

∗-algebras; see Theorem 2.25.
This fact should be contrasted with Theorem 2.17. Additionally, since O2 absorbs
every UHF-algebra, Theorem 3.19 applies to algebras that absorb O2, so the re-
striction of every circle action with the Rokhlin property to a finite subgroup, again
has the Rokhlin property.

This subsection is devoted to proving the first of the two results mentioned above.
Throughout, A will be a separable, unital C∗-algebra.

Definition 2.18. Given an enumeration S = {a1, a2, . . .} of a countable dense
subset of the unit ball of A, define metrics on Aut(A) by

ρ
(0)
S (α, β) =

∞∑

k=1

‖α(ak)− β(ak)‖
2k

and ρS(α, β) = ρ
(0)
S (α, β) + ρ

(0)
S (α−1, β−1).

Denote by ActT(A) the set of all circle actions on A. For any enumeration
S = {a1, a2, . . .} as above, define a metric on ActT(A) by

ρT,S(α, β) = max
ζ∈T

ρS(αζ , βζ).
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Lemma 2.19. For any S as above, the function ρT,S is a complete metric on
ActT(A).

Proof. Let
(
α(n)

)
n∈N

be a Cauchy sequence in ActT(A), that is, for every ε > 0

there is n0 ∈ N such that for every n,m ≥ n0, we have ρT,S
(
α(n), α(m)

)
< ε. We

want to show that there is α ∈ ActT(A) such that lim
n→∞

ρT,S
(
α, α(n)

)
= 0.

Given ζ ∈ T, we have ρS

(
α
(n)
ζ , α

(m)
ζ

)
≤ ρT,S

(
α(n), α(m)

)
, and hence

(
α
(n)
ζ

)
n∈N

is Cauchy in Aut(A). By Lemma 3.2 in [Phi12], the pointwise norm limit of the

sequence
(
α
(n)
ζ

)
n∈N

exists, and we denote it by αζ . It also follows from Lemma 3.2

in [Phi12] that αζ is an automorphism of A, with inverse αζ−1 . Moreover, the map
α : T → Aut(A) given by ζ 7→ αζ is a group homomorphism, since it is the pointwise
norm limit of group homomorphisms. It remains to check that it is continuous, and

this follows from an ε
3 argument from lim

n→∞

∥∥∥α(n)
ζ (ak)− αζ(ak)

∥∥∥ = 0 for all k ∈ N,

and the fact that α(n) : T → Aut(A) is continuous for all n ∈ N. �

Notation 2.20. Given a finite subset F ⊆ A and ε > 0, let WT(F, ε) be the set of
all actions α ∈ ActT(A) such that there exists u ∈ U(A) with ‖ua− au‖ < ε for all
a ∈ F and ‖αζ(u)− ζu‖ < ε for all ζ ∈ T.

It is easy to check that an action α ∈ ActT(A) has the Rokhlin property if and
only if α ∈ WT(F, ε) for all finite subsets F ⊆ A and all positive numbers ε > 0.

Lemma 2.21. Let S be a countable dense subset of the unit ball of A, and let F
be the set of all finite subsets of S. Then α ∈ ActT(A) has the Rokhlin property if
and only if

α ∈
⋂

F∈F

∞⋂

n=1

WT

(
F,

1

n

)
.

Proof. One just needs to approximate any finite set by scalar multiples of elements
in a finite subset of S. We omit the details. �

Using the notation of the lemma above, observe that the family F is countable.

Proposition 2.22. Let A and D be unital, separable C∗-algebras, such that there
is an action γ : T → Aut(D) with the Rokhlin property. Suppose that there exists
an isomorphism ϕ : A⊗D → A such that a 7→ ϕ(a⊗ 1D) is approximately unitarily
equivalent to idA. Then for every finite subset F ⊆ A and every ε > 0, the set
WT(F, ε) is open and dense.

Proof. We first check that WT(F, ε) is open. Fix an enumeration S = {a1, a2, . . .}
of a countable dense subset of the unit ball of A. Let α ∈ WT(F, ε), and choose
u ∈ U(A) such that ‖ua− au‖ < ε for all a ∈ F and ‖αζ(u)− ζu‖ < ε for all ζ ∈ T.
Set

ε0 = max
ζ∈T

‖αζ(u)− ζu‖,
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so that ε1 = ε − ε0 > 0. Choose k ∈ N such that ‖ak − u‖ < ε1
3 . Now, we claim

that if α′ ∈ ActT(A) satisfies ρT,S(α
′, α) < ε1

2k3 , then α
′ ∈ WT(F, ε). Indeed,

‖α′
ζ(u)− ζu‖ ≤ ‖α′

ζ(u)− αζ(u)‖+ ‖α′
ζ(u)− ζu‖

≤ 2ε1
3

+ ‖α′
ζ(ak)− αζ(ak)‖+ ε0

≤ 2ε1
3

+ 2kρT,S(α, α
′) + ε0

= ε1 + ε0 = ε.

This proves that WT(F, ε) is open.
We will now show that WT(F, ε) is dense in ActT(A). Let α be an arbitrary

action in ActT(A), let T ⊆ A be a finite set, and let δ > 0. We want to find
β ∈ ActT(A) such that β ∈WT(F, ε) and ρT,S(α, β) < δ.

Choose δ′ > 0 such that δ′ < min{δ, ε}. Since α is continuous, there is δ0 > 0

such that whenever ζ, ζ′ ∈ T and |ζ − ζ′| < δ0, then ‖αζ(a) − αζ′(a)‖ < δ′

4 for
all a ∈ T . Choose m ∈ N and ζ1, . . . , ζm ∈ T such that for every ζ ∈ T there is
j ∈ N with 1 ≤ j ≤ m and such that |ζ − ζj | < δ0. Choose w ∈ U(A) such that

‖wϕ(1 ⊗ a)w∗ − a‖ < δ′

2 for all a ∈ T ∪
m⋃
j=1

αζj (T ). Set ψ = Ad(w) ◦ ϕ and for

ζ ∈ T, define an action β ∈ ActT(A) by

βζ = ψ ◦ (γζ ⊗ αζ) ◦ ψ−1.

We claim that β ∈ WT(F, ε). Choose w′ ∈ A ⊗ D of the form w′ =
r∑

ℓ=1

xℓ ⊗ dℓ for

some d1, . . . , dr ∈ D and some x1, . . . , xr ∈ A, such that ‖w−w′‖ < δ
3 . Since γ has

the Rokhlin property, use Proposition 2.7 to choose u ∈ U(D) such that γζ(u) = ζu
for all ζ ∈ T and ‖udℓ − dℓu‖ < ε

4 for all ℓ = 1, . . . , r. Then

‖(1A ⊗ u)w′ − w′(1A ⊗ u)‖ < δ

3

and hence ‖(1A ⊗ u)w − w(1A ⊗ u)‖ < δ. Set v = ϕ(1A ⊗ u). Then

‖βζ(v)− ζv‖ = ‖wϕ
(
(αζ ⊗ γζ)(ϕ

−1(w∗ϕ(1A ⊗ u)w))
)
w∗ − ζϕ(1A ⊗ u)‖

≤ ‖wϕ
(
(αζ ⊗ γζ)(ϕ

−1(w∗ϕ(1A ⊗ u)w))
)
w∗ − wϕ ((αζ ⊗ γζ)(1A ⊗ u))w∗‖

+ ‖wϕ ((αζ ⊗ γζ)(1A ⊗ u))w∗ − ζϕ(1A ⊗ u)‖

<
δ′

2
+ ‖wϕ (ζ1A ⊗ u)w∗ − ζϕ(1A ⊗ u)‖

<
δ′

2
+
δ′

2
= δ′ < ε
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for all ζ ∈ T, and thus ‖βζ(u) − ζv‖ < ε for all ζ ∈ T. On the other hand, given
a ∈ F , we have

‖va− av‖ = ‖ϕ(1A ⊗ u)a− aϕ(1A ⊗ u)‖
≤ ‖ϕ(1A ⊗ u)a− ϕ(1A ⊗ u)wϕ(a ⊗ 1D)w

∗‖
+ ‖ϕ(1A ⊗ u)wϕ(a ⊗ 1D)w

∗ − wϕ(a ⊗ 1D)w
∗ϕ(1A ⊗ u)‖

+ ‖wϕ(a⊗ 1D)w
∗ϕ(1A ⊗ u)− aϕ(1A ⊗ u)‖

<
δ′

2
+ 0 +

δ′

2
= δ′ < ε

because a⊗ 1D and 1A ⊗ u commute. This proves the claim.
It remains to prove that ‖βζ(a) − αζ(a)‖ < δ for all a ∈ T and all ζ ∈ T. For

fixed ζ ∈ T and a ∈ T , we have

‖βζ(a)− αζ(a)‖ = ‖wϕ
(
(αζ ⊗ γζ)(ϕ

−1(w∗aw))
)
− αζ(a)‖

≤ ‖wϕ
(
(αζ ⊗ γζ)(ϕ

−1(w∗aw))
)
− wϕ ((αζ ⊗ γζ)(a⊗ 1D)) ‖

+ ‖wϕ ((αζ ⊗ γζ)(a⊗ 1D))− αζ(a)‖

<
δ′

2
+ ‖wϕ(αζ(a)⊗ 1D)w

∗ − αζ(a)‖

≤ δ′

2
+ ‖wϕ(αζ(a)⊗ 1D)w

∗ − wϕ(αζj (a)⊗ 1D)w
∗‖

+ ‖wϕ(αζj (a)⊗ 1D)w
∗ − αζj (a)‖ + ‖αζj (a)− αζ(a)‖

<
δ′

2
+
δ′

4
+
δ′

4
= δ′ < δ.

This finishes the proof. �

Theorem 2.23. Let A and D be unital, separable C∗-algebras, such that there is
an action γ : T → Aut(D) with the Rokhlin property. Suppose that there exists an
isomorphism ϕ : A ⊗ D → A such that a 7→ ϕ(a ⊗ 1D) is approximately unitarily
equivalent to idA. Then the set of all circle actions with the Rokhlin property on
A is a dense Gδ-set in ActT(A).

Proof. By Lemma 2.21, the set of all circle actions on A that have the Rokhlin
property is precisely the countable intersection

⋂

F∈F

⋂

n∈N

WT

(
F.

1

n

)
.

By Proposition 2.22, each WT

(
F, 1

n

)
is open and dense in ActT(A), which is a

complete metric space by Lemma 2.19, so the result follows from the Baire Category
Theorem. �

Recall that a unital, separable C∗-algebra D is said to be strongly self-absorbing
if it is infinite-dimensional and the map D → D ⊗ D given by d 7→ d ⊗ 1 is ap-
proximately unitarily equivalent to an isomorphism. (Strongly self-absorbing C∗-
algebras are always nuclear, so there is no ambiguity when talking about tensor
products.) The only known examples are the Jiang-Su algebra Z, the Cuntz alge-
bras O2 and O∞, UHF-algebras of infinite type, and tensor products of O∞ by such
UHF-algebras. See [TW07] for more details and results on strongly self-absorbing
C∗-algebras.
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Remark 2.24. In the context of Theorem 2.23, suppose additionally that D is a
unital, separable strongly self-absorbing C∗-algebra. Then, according to Theorem
7.2.2 in [Rør02], the following are equivalent:

(1) There exists an isomorphism ϕ : A ⊗ D → A such that a 7→ ϕ(a ⊗ 1D) is
approximately unitarily equivalent to idA;

(2) There exists some isomorphism ψ : A⊗D → A.

Theorem 2.25. Let A be a separable unital C∗-algebra such that A ⊗ O2
∼= A.

Then the set of all circle actions on A with the Rokhlin property is a dense Gδ-set
in ActT(A).

Proof. By Example 2.10, there is an action γ : T → Aut(O2) with the Rokhlin
property. Since A absorbs O2 tensorially, the hypotheses of Theorem 2.23 are met
by Remark 2.24, and the result follows. �

It is a consequence of the theorem above that the Rokhlin property is generic
for circle actions on O2. Nevertheless, we do not know of any such action for which
it is possible to describe what the images of the canonical generators of O2 are. In
particular, we do not have a model action on O2.

3. Restrictions to finite cyclic groups

This section is devoted to proving that for n ∈ N, the restriction of a circle action
with the Rokhlin property on aMn∞ -absorbing C∗-algebra to the finite cyclic group
Zn again has the Rokhlin property. See Theorem 3.19. This phenomenon cannot
be expected to hold in full generality since the Rokhlin property for a circle action
does not guarantee the existence of any non-trivial projections. Even more, there
are serious K-theoretical obstructions to the Rokhlin property for finite groups.
See Example 3.8 and Example 3.10 below.

On the other hand, this result will be used in subsequent work to classify circle
actions with the Rokhlin property on unital C∗-algebras that absorb some UHF-
algebra of infinite type.

We give a rough outline of what our strategy will be. We will first focus on cyclic
group actions which are restrictions of circle actions with the Rokhlin property.
These have what we call the “unitary Rokhlin property”, which is a weakening of
the Rokhlin property of Definition 2.1, that asks for a unitary instead of projections;
see Definition 3.5. Dual actions of actions with the unitary Rokhlin property can
be completely characterized, and we do so in Proposition 3.13. The relevant notion
is that of “strong approximate innerness”; see Definition 3.1. We will later show in
(the proof of) Theorem 3.19 that, under a number of assumptions, every strongly
approximately inner action of Zn is approximately representable, which is the notion
dual to the Rokhlin property, as was shown by Izumi in [Izu04a]. The conclusion is
then that the original restriction, which a priori had the unitary Rokhlin property,
actually has the Rokhlin property.

The following is Definition 3.6 in [Izu04a].

Definition 3.1. Let B be a unital C∗-algebra, and let β be an action of a finite
abelian group G on B.

(1) We say that β is strongly approximately inner if there exist unitaries u(g) ∈
(Bβ)∞, for g ∈ G, such that

βg(b) = u(g)bu(g)∗
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for b ∈ B and g ∈ G.
(2) We say that β is approximately representable if β is strongly approximately

inner and the unitaries u(g) for g ∈ G as in (1) above, can be chosen to
form a representation of G ∈ (Bβ)∞.

Notation 3.2. Let B be a C∗-algebra, let G be a cyclic group (that is, either Z or
Zn for some n ∈ N), and let β : G→ Aut(B) be action of G on B. We will usually
make a slight abuse of notation and also denote by β the generating automorphism
β1.

If G is a finite cyclic group, we have the following characterization of strong
approximate innerness in terms of elements in B, rather than in (Bβ)∞.

Lemma 3.3. Let B be a separable, unital C∗-algebra, let n ∈ N, and let β be
an action of Zn on B. Then β is strongly approximately inner if and only if for
every finite subset F ⊆ B and every ε > 0, there is a unitary w ∈ U(B) such that
‖β(w)−w‖ < ε and ‖β(b)−wbw∗‖ < ε for all b ∈ F . Moreover, β is approximately
representable if and only if the unitary w above can be chosen so that wn = 1.

Proof. Assume that β is strongly approximately inner. Use a standard pertur-
bation argument to choose a sequence (um)m∈N of unitaries in Bβ that repre-
sents u(1) ∈ (Bβ)∞. Then lim

m→∞
‖β(um) − um‖ = 0, and for b ∈ B, we have

lim
m→∞

‖β(b)− umbu
∗
m‖ = 0.

Given a finite set F ⊆ B and ε > 0, choose M ∈ N such that ‖β(uM )−uM‖ < ε
and ‖β(b)− uMbu

∗
M‖ < ε for all b ∈ F , and set w = uM .

Conversely, let (Fm)m∈N be an increasing sequence of finite subsets of B satis-

fying
⋃

m∈N

Fm = B. For m ∈ N, set εm = 1
m and let wm be as in the statement for

εm and Fm. Then
u = (wm)m∈N

∈ (Bβ)∞

satisfies β(b) = ubu∗ for all b ∈ Fm, and hence β is strongly approximately inner.
For the second statement, observe that a unitary of order n ∈ (Bβ)∞ can be

lifted to a sequence unitaries of order n in Bβ . First, observe that a unitary in
(Bβ)∞ can always be lifted to a sequence of unitaries in B. Second, a standard
functional calculus argument shows that if v is a unitary in Bβ such that ‖vn−1‖ is
small, then v is close to a unitary ṽ ∈ Bβ such that ṽn = 1. We omit the details. �

The following is Lemma 3.8 in [Izu04a].

Lemma 3.4. Let B be a separable unital C∗-algebra, and let β be an action of a
finite abelian group G on B.

(1) The action β has the Rokhlin property if and only if the dual action β̂ is
approximately representable.

(2) The action β is approximately representable if and only if the dual action

β̂ has the Rokhlin property.

The lemma above should be regarded as the assertion that for finite abelian group
actions, the Rokhlin property and approximate representability are dual notions.
It is therefore natural to ask what condition on β is equivalent to its dual action
being strongly approximately inner, rather than approximately representable. Such
a condition will necessarily be weaker than the Rokhlin property. We define the
relevant property below.
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Definition 3.5. Let B be a unital C∗-algebra, let n ∈ N and let β : Zn → Aut(B)
be an action. We say that β has the unitary Rokhlin property if for every ε > 0
and for every finite subset F ⊆ B, there exists u ∈ U(B) such that ‖ub − bu‖ < ε
for all b ∈ F and

∥∥βk(u)− e2πik/nu
∥∥ < ε for all k ∈ Zn.

Let A be a unital C∗-algebra. Given a continuous action α : T → Aut(A), and
n ∈ N, we denote by α|n the restriction α|Zn : Zn → Aut(A) of α to

{1, e2πi/n, . . . , e2πi(n−1)/n} ∼= Zn.

Recall that if v is the canonical unitary in A⋊α|n Zn implementing α|n, then the
dual action

α̂|n : Zn
∼= Ẑn → Aut(A⋊α|n Zn)

of α|n is given by
(
α̂|n

)
k
(a) = a for all a ∈ A and

(
α̂|n

)
k
(v) = e2πik/nv for all

k ∈ Zn.
The following easy lemmas provide us with many examples of cyclic group actions

with the unitary Rokhlin property.

Lemma 3.6. If α : T → Aut(A) has the Rokhlin property, then α|n has the unitary
Rokhlin property for all n ∈ N.

Proof. Given ε > 0 and a finite subset F ⊆ A, choose a unitary u ∈ U(A) such that
‖ua− au‖ < ε for all a ∈ F and ‖αζ(u)− ζu‖ < ε for all ζ ∈ T. If n ∈ N, then

∥∥∥(α|n)k(u)− e2πik/nu
∥∥∥ =

∥∥∥αe2πik/n(u)− e2πik/nu
∥∥∥ < ε

for all k ∈ Zn, as desired. �

Lemma 3.7. If β : Zn → Aut(B) has the Rokhlin property, then it has the unitary
Rokhlin property.

Proof. Given ε > 0 and a finite subset F ⊆ B, choose projections e0, . . . , en−1 as
in the definition of the Rokhlin property for the tolerance ε

n and the finite set F ,

and set u =
n−1∑
j=0

e−2πij/nej. Then u is a unitary in B. Moreover, ‖ub− bu‖ < ε for

all b ∈ F and

∥∥∥βk(u)− e2πik/nu
∥∥∥ =

∥∥∥∥∥∥

n−1∑

j=0

e2πij/nβk(ej)− e2πik/n
n−1∑

j=0

e−2πij/nej

∥∥∥∥∥∥
< ε

since ‖βk(ej) − ej+k‖ < ε
n for all j, k ∈ Zn, and the projections e0, . . . , en−1 are

pairwise orthogonal. �

The converse of the preceding lemma is not in general true, since the unitary
Rokhlin property does not ensure the existence of any non-trivial projections on
the algebra. We present two examples of how this can fail.

Example 3.8. Consider the action of left translation of T on C(T). It has the
Rokhlin property, so its restriction to any Zn ⊆ T has the unitary Rokhlin property.
However, no non-trivial finite group action on C(T) can have the Rokhlin property
since C(T) has no non-trivial projections.
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Besides merely the lack of projections, there are less obvious K-theoretic ob-
structions for the restrictions of an action of the circle with the Rokhlin property
to have the Rokhlin property. See Example 3.10.

We need a lemma first.

Proposition 3.9. Let G be a connected metric group, let A be a unital C∗-algebra,
and let α : G → Aut(A) be a continuous action (not necessarily with the Rokhlin
property). Then K∗(αg) = idK∗(A) for all g ∈ G.

Proof. We just prove it for K0; the proof for K1 is similar, or follows by replacing
(A,α) with (A ⊗B,α ⊗ idB), where B is any C∗-algebra satisfying the UCT such
that K0(B) = 0 and K1(B) = Z, and using the Künneth formula. (For example,
B = C0(R) will do.)

Denote the metric on G by d. Let n ∈ N and let p be a projection in Mn(A).
Set α(n) = α ⊗ idMn , the augmentation of α to Mn(A). Since α(n) is continuous,

there exists δ > 0 such that
∥∥∥α(n)

g (p)− α
(n)
h (p)

∥∥∥ < 1 whenever g and h ∈ G satisfy

d(g, h) < δ. Since α
(n)
g (p) and α

(n)
h (p) are projections in Mn(A), it follows that

α
(n)
g (p) and α

(n)
h (p) are homotopic, and hence their classes in K0(A) agree, that is,

K0(αg)([p]0) = K0(αh)([p]0). Denote by e the unit of G. Since g and h satisfying
d(g, h) < δ are arbitrary, and since G is connected, it follows that

K0(αg)([p]0) = K0(αe)([p]0) = [p]0

for any g ∈ G. Since p is an arbitrary projection in A⊗K, it follows that K0(αg) =
idK0(A) for all g ∈ G, as desired. �

Example 3.10. This is an example of a purely infinite simple separable nuclear
unital C∗-algebra (in particular, with many projections), and an action of the circle
on it satisfying the Rokhlin property, such that no restriction to a finite subgroup
of T has the Rokhlin property.

Let {pn}n∈N be an enumeration of the prime numbers, and for every n ∈ N,
set qn = p1 · · · pn. Fix a countable dense subset X = {x1, x2, x3, . . .} of T with
x1 = 1. For x ∈ X and f ∈ C(T), denote by fx the function in C(T) given by
fx(ζ) = f(x−1ζ) for ζ ∈ T. For n ∈ N, define a unital injective map

ιn : Mqn(C(T)) →Mqn+1(C(T))

by ιn(f) = diag
(
f1, fx2, . . . , fxpn

)
for f ∈ Mqn(C(T)). The direct limit A =

lim−→(Mqn(C(T)), ιn) is a unital AT-algebra, and an argument similar to the one

exhibited in Example 2.9 shows that A is simple. For n ∈ N, let α(n) : T →
Aut(Mqn(C(T))) be the tensor product of the trivial action on Mqn with the ac-

tion coming from left translation on C(T). Then α(n) has the Rokhlin property

by Proposition 2.5. Since ιn ◦ α(n)
ζ = α

(n+1)
ζ ◦ ιn for all n ∈ N and all ζ ∈ T, the

sequence
(
α(n)

)
n∈N

induces a direct limit action α = lim−→α(n) of T on A, which has
the Rokhlin property by Proposition 2.6.

Now set B = A⊗O∞ and define β : T → Aut(B) by β = α⊗ idO∞
. Then B is a

purely infinite, simple, separable, nuclear unital C∗-algebra, and β has the Rokhlin
property, again by Proposition 2.5. We claim that for every m > 1, the restriction
β|m : Zm → Aut(B) does not have the Rokhlin property.

Fix m > 1, and assume that β|m has the Rokhlin property. By Proposition 3.9,
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we have K∗(βζ) = idK∗(B) for all ζ ∈ T. By Theorem 3.4 in [Izu04b], it follows that
every element of K0(B) is divisible by m. On the other hand,

(K0(B), [1B]) ∼= (K0(A), [1A])

∼=
({a

b
: a ∈ Z, b = pk1 · · · pkn : n, k1, . . . , kn ∈ N, kj 6= kℓ for j 6= ℓ

}
, 1
)
,

where not every element is divisible by m. This is a contradiction.

We will nevertheless show that the restriction of an action of the circle with the
Rokhlin property to any finite cyclic subgroup again has the Rokhlin property if the
algebra is separable and absorbs the universal UHF-algebra Q. See Corollary 3.21
below.

Lemma 3.11. Let A be a separable unital C∗-algebra, let n ∈ N and let α : Zn →
Aut(A) be an action of Zn on A. Regard Zn ⊆ T as the n-th roots of unitry, and
let γ : Zn → Aut(C(T)) be the restriction of the action by left translation of T on
C(T). Let α∞ : Zn → Aut(A∞ ∩A′) be the action on A∞ ∩A′ induced by α. Then
α has the unitary Rokhlin property if and only if there exists a unital equivariant
homomorphism

ϕ : (C(T), γ) → (A∞ ∩ A′, α∞).

Proof. Choose an increasing sequence (Fm)m∈N of finite subsets of A such that⋃
m∈N

Fm = A. For each m ∈ N, there exists a unitary um ∈ A such that

‖uma− aum‖ < 1

m
and

∥∥∥αj(um)− e2πij/num

∥∥∥ < 1

m

for every a ∈ Fm and for every j ∈ Zn. Denote by u = (um)m∈N
the image of the

sequence of unitaries (um)m∈N in A∞. Then u belongs to the relative commutant
of A ∈ A∞. Consider the unital map ϕ : C(T) → A∞ ∩ A′ given by ϕ(f) = f(u)
for f ∈ C(T). One checks that

αj(ϕ(f)) = ϕ(γe2πij/n (f))

for all j ∈ Zn and all f ∈ C(T), so ϕ is equivariant.
Conversely, assume that there is an equivariant unital homomorphism

ϕ : C(T) → A∞ ∩A′.

Let z ∈ C(T) be the unitary given by z(ζ) = ζ for all ζ ∈ T, and let v = ϕ(z).
By semiprojectivity of C(T), we can choose a representing sequence (vm)m∈N ∈
ℓ∞(N, A) consisting of unitaries. It follows that

lim
m→∞

∥∥∥αj(vm)− e2πij/nvm

∥∥∥ = 0 = lim
m→∞

‖vma− avm‖

for every a ∈ A, and this is clearly equivalent to α having the unitary Rokhlin
property. �

The following result is analogous to Proposition 2.7, and so is its proof.

Proposition 3.12. Let B be a separable, unital C∗-algebra, let n ∈ N and let
β : Zn → Aut(B) be an action on B. Then β has the unitary Rokhlin property if
and only if for every finite set F ⊆ B and every ε > 0, there is a unitary u ∈ U(B)
such that

(1) βk(u) = e2πik/nu for all k ∈ Zn;
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(2) ‖ub− bu‖ < ε for all b ∈ F .

Similarly to what was pointed out after the statement of Proposition 2.7, the
definition of the unitary Rokhlin property differs in that in condition (1), one only
requires ‖βk(u)− e2πik/nu‖ < ε for all k ∈ Zn.

Proof. Recall that (C(T),T, Lt) is equivariantly semiprojective by Remark 2.8.
Since the quotient T/Zn is compact, it follows from Theorem 3.11 in [PST14] that
the restriction (C(T),Zn, Lt) is equivariantly semiprojective as well. The result now
follows using an argument similar to the one used in the proof of Proposition 2.7.
The details are left to the reader. �

Proposition 3.13. Let n ∈ N and let β : Zn → Aut(B) be an action of Zn on a
unital separable C∗-algebra B.

(1) The action β has the unitary Rokhlin property if and only if its dual action

β̂ is strongly approximately inner.
(2) The action β is strongly approximately inner if and only if its dual action

β̂ has the unitary Rokhlin property.

Proof. Part (1). Assume that β has the unitary Rokhlin property. Use Lemma 3.11
to choose a unital equivariant homomorphism ϕ : C(T) → B∞ ∩ B′. Denote by
u ∈ B∞ ∩ B′ the image under this homomorphism of the unitary z ∈ C(T) given
by z(ζ) = ζ for ζ ∈ T, and denote by λ the implementing unitary representation of
Zn ∈ B ⋊β Zn for β. In (B ⋊β Zn)∞, we have u∗λju = e2πij/nλj for all j ∈ Zn,
and ub = bu (f, ubu∗ = b) for all b ∈ B. Therefore, if β has the unitary Rokhlin

property, then β̂ is implemented by u∗, and thus it is strongly approximately inner.

The converse follows from the same computation, as we have (B ⋊β Zn)
β̂ = B.

Part (2). Denote by v the canonical unitary in the crossed product, and assume
that β is strongly approximately inner. Let F ⊆ B⋊β Zn be a finite subset, and let
ε > 0. Since B and v generate B⋊β Zn, we can assume that there is a finite subset
F ′ ⊆ B such that F = F ′ ∪ {v}. Choose w ∈ U(B) such that ‖β(w) − w‖ < ε
and ‖β(b) − wbw∗‖ < ε for all b ∈ F ′. Since β(b) = vbv∗ for every b ∈ B, if we
let u = w∗v, the first of these conditions is equivalent to ‖vu − uv‖ < ε, while
the second one is equivalent to ‖ub − bu‖ < ε for all b ∈ F ′. On the other hand,

β̂k(u) = β̂k(w
∗v) = w∗(e2πik/nv) = e2πik/nu for k ∈ Zn. Thus, u is the desired

unitary, and β̂ has the unitary Rokhlin property.

Conversely, assume that β̂ has the unitary Rokhlin property. Let F ′ ⊆ B be
a finite subset, and let ε > 0. Set F = F ′ ∪ {v}. Use Proposition 3.12 to choose
u in the unitary group of A ⋊β Zn such that ‖ub − bu‖ < ε for all b ∈ F , and

β̂k(u) = e2πik/nu for all k ∈ Zn. Set w = vu∗. Then w ∈ B since

β̂k(w) = e2πik/nve2πik/nu∗ = vu∗ = w

for all k ∈ Zn and (B ⋊β Zn)
Zn = B. On the other hand,

‖β(b)− wbw∗‖ = ‖vbv∗ − vu∗buv∗‖ = ‖b− u∗bu‖ = ‖ub− bu‖ < ε,

for all b ∈ F . Hence w is an implementing unitary for F ′ and ε, and β is strongly
approximately inner. �

Corollary 3.14. Let α : T → Aut(A) be an action with the Rokhlin property, and

let n ∈ N. Then α̂|n : Zn → Aut(A⋊α|n Zn) is strongly approximately inner.
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Proof. The restriction α|n has the unitary Rokhlin property by Lemma 3.6, and by

part (1) of Proposition 3.13, its dual α̂|n is strongly approximately inner. �

The next ingredient needed is showing that crossed products by restrictions of
Rokhlin actions of compact groups preserve absorption of strongly self-absorbing
C∗-algebras. For Rokhlin actions, this was shown by Hirshberg and Winter in
[HW07]. The more general statement is proved using similar ideas.

Proposition 3.15. Let A be a separable unital C∗-algebra, let G be a compact
Hausdorff second countable group, and let α : G→ Aut(A) be an action satisfying
the Rokhlin property. Let H be a closed subgroup of G. If B is a unital separable
C∗-algebra which admits a central sequence of unital homomorphisms into A, then
B admits a unital homomorphism into the fixed point subalgebra of α|H ∈ A∞∩A′.

Proof. Notice that (A∞ ∩A′)α is a subalgebra of (A∞ ∩ A′)α|H . The result now
follows from Theorem 3.3 in [HW07]. �

Remark 3.16. In the proposition above, if B is moreover assumed to be simple,
for example if it is strongly self-absorbing, it follows that the unital homomorphism
obtained is actually an embedding, since it is not zero.

Recall the following result by Hirshberg and Winter.

Lemma 3.17. (Lemma 2.3 of [HW07].) Let A and D be unital separable C∗-
algebras. Let G be a compact group and let α : G → Aut(A) be a continuous
action. If there is a unital homomorphism D → (A∞ ∩A′)G, then there is a unital
homomorphism

D → (M(A⋊α G))∞ ∩ (A⋊α G)
′.

Theorem 3.18. Let D be a strongly self-absorbing C∗-algebra, let A be a D-
absorbing, separable unital C∗-algebra, and let α : T → Aut(A) be an action with
the Rokhlin property. Then, for every n ∈ N, the crossed product A ⋊α|n Zn is a
unital separable D-absorbing C∗-algebra.

Proof. By Theorem 7.2.2 in [Rør02], there exists a unital embedding of D into A∞∩
A′, which is equivalent to the existence of a central sequence of unital embeddings
of D into A. Use Proposition 3.15 to obtain a unital homomorphism of D into the
fixed point subalgebra of α|Zn ∈ A∞ ∩ A′. It follows that this homomorphism is
actually an embedding, since it is not zero and D is simple, by Theorem 1.6 in
[TW07]. Lemma 2.3 in [HW07] (here reproduced as Lemma 3.17) provides us with
a unital embedding of D into (A ⋊α Zn)∞ ∩ (A ⋊α Zn)

′, which again by Theorem
7.2.2 in [Rør02] is equivalent to A ⋊α Zn being D-absorbing, since D is strongly
self-absorbing. �

The following is the main theorem of this section.

Theorem 3.19. Let A be a separable unital C∗-algebra, let n ∈ N and let α : T →
Aut(A) be an action with the Rokhlin property. Suppose that A absorbs Mn∞ .
Then α|n has the Rokhlin property.

Proof. By Lemma 3.4, it is enough to show that α̂|n : Zn → Aut(A⋊α|n Zn) is ap-

proximately representable. Recall that by Corollary 3.14, the action α̂|n is strongly
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approximately inner. In view of Lemma 3.10 in [Izu04a], to show that it is in fact
approximately representable, it is enough to show that there is a unital map

Mn →
(
(A⋊α|n Zn)

α̂|n
)
∞

∩ (A⋊α|n Zn)
′,

where the relative commutant is taken in (A⋊α|n Zn)∞.

Claim:
(
(A⋊α|n Zn)

α̂|n
)
∞

∩ (A⋊α|n Zn)
′ = (A∞ ∩ A′)(α|n)∞ .

Since (A⋊α|n Zn)
α̂|n = A, we have

(
(A⋊α|n Zn)

α̂|n
)
∞

∩ (A⋊α|n Zn)
′ = A∞ ∩ (A⋊α|n Zn)

′

=
{
(am)m∈N

∈ A∞ : lim
m→∞

‖amx− xam‖ = 0 for all x ∈ A⋊α|n Zn

}
.

Let v be the canonical unitary in A⋊α|n Zn that implements α|n in the crossed
product. Then for a bounded sequence (am)m∈N ∈ A, the condition lim

m→∞
‖amx −

xam‖ = 0 for all x ∈ A⋊α|n Zn is equivalent to lim
m→∞

‖ama−aam‖ = 0 for all a ∈ A

and lim
m→∞

‖amv − vam‖ = 0. The above set is therefore equal to

{
(am)m∈N

∈ A∞ :
lim

m→∞
‖ama− aam‖ = 0 for all a ∈ A and

lim
m→∞

‖(α|n)(am)− am‖ = 0

}
,

which is precisely the same as the subset of A∞ ∩A′ that is fixed under the action
on A∞ ∩ A′ induced by α|n. This proves the claim.

Since A absorbs the UHF-algebra Mn∞ , it follows that there is a unital em-
bedding ι : Mn → A∞ ∩ A′. By Proposition 3.15, there is a unital homomorphism
Mn → (A∞ ∩ A′)(α|n)∞ . Using the claim above, we conclude that there is a unital
homomorphism

Mn →
(
(A⋊α|n Zn)

α̂|n
)
∞

∩ (A⋊α|n Zn)
′.

This homomorphism is necessarily an embedding, since it is not zero. Apply Lemma

3.10 in [Izu04a] to the action α̂|n : Zn → Aut(A ⋊α|n Zn) to conclude that α̂|n is
approximately representable, and hence that α|n has the Rokhlin property, thanks
to Lemma 3.4. �

The following partial converse to Theorem 3.19 holds. The same result is likely
to be true for a larger class of C∗-algebras.

Recall that if A is a stably finite C∗-algebra, then its Murray-von Neumann
semigroup V (A) can be naturally identified with the subsemigroup of its Cuntz
semigroup Cu(A) consisting of compact elements. Additionally, if A has real rank
zero, then every element in Cu(A) is the supremum of an increasing sequence in
V (A) ⊆ Cu(A).

Theorem 3.20. Let A belong to one of the following classes of C∗-algebras:

(1) Unital Kirchberg algebras satisfying the UCT;
(2) Simple, nuclear, separable unital C∗-algebras with tracial rank zero satis-

fying the UCT;
(3) Unital real rank zero direct limits of one-dimensional noncommutative CW-

complexes with trivial K1-group (this includes all AF-algebras).
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Let α : T → Aut(A) be a continuous action and let n ∈ N. If α|n has the Rokhlin
property, then A absorbs Mn∞ .

Proof. Assume that α|n has the Rokhlin property. Since α induces the trivial
action on K-theory by Proposition 3.9, so does α|n. For algebras in the first two
classes, the result follows from Theorem 3.4 in [Izu04b] and Theorem 3.5 in [Izu04b],
respectively. For algebras in the third class, it follows that α|n acts trivially on
the Murray-von Neumann semigroup V (A). Since every element in Cu(A) is the
supremum of an increasing sequence in V (A), it follows that α|n acts trivially on
Cu(A) as well. The result now follows from Theorem 4.2 in [GS15]. �

Denote by Q the universal UHF-algebra, that is, the unique, up to isomorphism,
UHF-algebra with K-theory

(K0(Q), [1Q]) ∼= (Q, 1).

It is well-known that Q⊗Mn∞
∼= Q for all n ∈ N, and that Q⊗O2

∼= O2.

Corollary 3.21. Let A be a separable, Q-absorbing unital C∗-algebra, let α : T →
Aut(A) be an action with the Rokhlin property and let n ∈ N. Then α|n has the
Rokhlin property. In particular, restrictions to finite subgroups of circle actions
with the Rokhlin property on separable, unital O2-absorbing C

∗-algebras, again
have the Rokhlin property.

We finish this work by showing that the Rokhlin property for a circle action can-
not in general be determined just by looking at its restrictions to finite subgroups.

Example 3.22. There are a unital C∗-algebra A and a circle action on A such that
its restriction to every proper subgroup has the Rokhlin property, but the action
itself does not.

Let A be the universal UHF-algebra, that is, A = lim−→(Mn!, ιn) where ιn : Mn! →
M(n+1)! is given by ιn(a) = diag(a, . . . , a) for all a ∈ Mn!. For every n ∈ N, let

α(n) : T → Aut(Mn!) be given by

α
(n)
ζ = Ad(diag(1, ζ, . . . , ζn!−1))

for all ζ ∈ T. Then ιn ◦ α(n)
ζ = α

(n+1)
ζ ◦ ιn for all n ∈ N and all ζ ∈ T, and hence

there is a direct limit action α = lim−→α(n) of T on A. This action does not have the
Rokhlin property by Theorem 2.17.

On the other hand, we claim that given m ∈ N, the restriction α|m : Zm →
Aut(A) has the Rokhlin property. So fix m ∈ N. Then α|m is the direct limit of
the actions

(
α(n)|m

)
n∈N

, whose generating automorphisms are

α
(n)

e2πi/m = Ad(diag(1, e2πi/m, . . . , e2πi(n!−1)/m)).

Let F ⊆ A be a finite subset and let ε > 0. Write F = {a1, . . . , aN}. Since ⋃
n∈N

Mn!

is dense in A, there are k ∈ N and a finite subset F ′ = {b1, . . . , bN} ⊆ Mk! such
that ‖aj − bj‖ < ε

2 for all j = 1, . . . , N .

Let n ≥ max{k,m}. Then the Zm-action α(n)|m on Mn! is generated by the
automorphism

α
(n)

e2πi/m = Ad(1, e2πi/m, . . . , e2πi(m−1)/m, . . . , 1, e2πi/m, . . . , e2πi(m−1)/m).
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(There are n!/m repetitions.) Denote by e0 the projection

1M(n−1)!
⊗




1
m

1
m · · · 1

m 0 · · · 0 0 0 · · · 0
1
m

1
m · · · 1

m 0 · · · 0 0 0 · · · 0
...

...
. . .

...
... · · ·

...
...

... · · ·
...

1
m

1
m · · · 1

m 0 · · · 0 0 0 · · · 0
0 0 · · · 0 1

m · · · 0 0 0 · · · 0
...

... · · ·
...

...
. . .

...
...

... · · ·
...

0 0 · · · 0 0 · · · 1
m 0 0 · · · 0

0 0 · · · 0 0 · · · 0 1
m

1
m · · · 1

m
0 0 · · · 0 0 · · · 0 1

m
1
m · · · 1

m
...

... · · ·
...

... · · ·
...

...
...

. . .
...

0 0 · · · 0 0 · · · 0 1
m

1
m · · · 1

m




in Mn! ⊆ A, and for j = 1, . . . ,m − 1, set ej = α
(n)

e2πij/m (e0) ∈ A. One checks

that e0, . . . , em−1 are orthogonal projections with
m−1∑
j=0

ej = 1, and moreover that

α
(n)

e2πi/m(em−1) = e0.
By construction, these projections are cyclically permuted by the action α|m and

they sum up to one, so we only need to check that they almost commute with the
given finite set. The projections e0, . . . , em−1 exactly commute with the elements
of F ′. Thus, if k ∈ {1, . . . , N} and j ∈ {0, . . . ,m− 1}, then

‖akej − ejak‖ ≤ ‖akej − bkej‖+ ‖bkej − ejbk‖+ ‖ejbk − ejak‖
<
ε

2
+
ε

2
= ε,

and hence α|m has the Rokhlin property.

The phenomenon exhibited in the example above is not special to UHF-algebras:

Example 3.23. If A and α are as in Example 3.22, set B = A ⊗ O∞ and let
β : T → Aut(B) be given by βζ = αζ ⊗ idO∞

for all ζ ∈ T. Then B is a unital
Kirchberg algebra satisfying the UCT. We claim that the action β does not have
the Rokhlin property. To see this, observe first that the fixed point algebra Aα can

be written as an inductive limit Aα = lim−→Mα(n)

n! , and that

Mα(n)

n! = {a ∈Mn! : a commutes with diag(1, ζ, . . . , ζn!−1) ∀ ζ ∈ T} = Cn! ⊆Mn!,

the last embedding being as diagonal matrices. In particular, the fixed point algebra
Bβ = Aα⊗O∞ is purely infinite but not simple, and thus the Rokhlin property for
β would contradict Theorem 6.3 in [Gar14a].

On the other hand, for every m ∈ N, the restriction β|m : Zm → Aut(B) has the
Rokhlin property by part (i) of Theorem 2 in [San15], being a tensor product of an
action with the Rokhlin property (namely α|m) and another action.
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