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NUMBER OF MINIMAL CYCLIC CODES WITH GIVEN
LENGTH AND DIMENSION

F. E. BROCHERO MARTINEZ

ABSTRACT. In this article, we count the quantity of minimal cyclic codes of
length n and dimension k over a finite field [y, in the case when the prime
factors of n satisfy a special condition. This problem is equivalent to count
the quantity of irreducible factors of ™ — 1 € Fy[z] of degree k.

1. INTRODUCTION

Let F, be a finite field with ¢ elements. A linear [n,k;q] code C is a linear
subspace of Fy of dimension k. C is called a cyclic code if C is invariant by a

shift permutation, i.e., if (ag,a1,...,an—1) € C then (ay—1,a9,a1,...,an-2) € C.
Fy[x]
@0

is a principal ring, every ideal is generated by a polynomial

In

It is known that every cyclic code can be seen as an ideal of the ring
Fq[x]
(zn-1)
g(x) such that g is a divisor of 2™ — 1. Thus, the polynomial g is called generator

of the code and the polynomial h(z) = % is called the parity-check polynomial

addition, since

of C. Observe that {g,zg,...2*"1g}, where k = deg(h), is a basis of the linear
space (g) € (;FZ [f]l), then the dimension of the code is the degree of the parity-check
polynomial. A cyclic code C' is called minimal cyclic code if h is an irreducible
polynomial in Fg[z]. Thus, the number of irreducible factors of 2™ — 1 € Fy[z]
corresponds to the number of minimal cyclic codes of length n in IF,. Specifically,
there exists a bijection between the minimal cyclic codes of dimension k and length
n over Fy, that we denote by [n, k; ¢], and the irreducible factors of ™ — 1 € F[z]
of degree k.

Irreducible cyclic codes are very interesting by its applications in communication,
storage systems like compact disc players, DVDs, disk drives, two-dimensional bar
codes, etc. (see [Bl Section 5.8 and 5.9]). The advantage of the cyclic codes, with
respect to other linear codes, is that they have efficient encoding and decoding
algorithms (see [5, Section 3.7]). For these facts, cyclic codes have been studied for
the last decades and many progress has been found (see []).

A natural question is how many minimal cyclic codes of length n and dimension
k over IF, does there exist? In other words, the quations is: given n, k and Iy, find
an explicit formula for the number of minimal cyclic [n, k; g]-codes. This question
is in general unknown, and how to construct all of them too.

In this article, we determine the number of minimal cyclic [n, k; g]-codes assuming
that the order of ¢ modulo each prime factor of n satisfies some special relation.
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2. PRELIMINARIES

Throughout this article, Iy denotes a finite field of order ¢, where ¢ is a power
of a prime. For each a € F}, ord(a) denotes the order of a in a multiplicative group
F;, i.e. ord(a) is the least positive integer k such that af = 1. In the same way,
we denote by ord,, b, the order of b in a multiplicative group Z; and v,(m) is the
maximal power of p that divides m. In addition, for each irreducible polynomial
P(x) € F4lz], ord(P(x)) denotes the order of some root of P(x) in some extension
of Fy.

It is a classical result (see, for instance, [4]) to determine the number of factors
of ™ — 1 and its degree, when the order is given.

Theorem 2.1. Let n be a positive integer such that ged(n,q) = 1, then each factor
of x™ —1 € F,[z] has order m, where m is a divisor of n. In addition, for each m|n,

Ofém)q irreducible factors and each of these factors has degree ord,, q.

there exist

As a consequence of this theorem (see proposition 2.1 in [I]), the number of

factors of degree k of 2" —1is > @ and then the total number of irreducible

m|n
ordy, q=k
Of'g:)q. So, the number of irreducible factors of degree k is zero if any

factors is >
m|n

m divisor of n satisfies ord,, ¢ = k. Clearly, this formula is not really explicit,
because it depends on the calculation of the orders ord,, ¢ for every divisor of n.

An equivalent approach is to use the technique of g-cyclotomic classes (see [11]
page 157 or [9] Chapter 8). In fact, the g-cyclotomic class of 5 modulo n is the set
{4,94,34>,...,jq" '} whose elements are distinct modulo n and j¢* = j (mod n).
This g-cyclotomic class determines one irreducible factor of ™ — 1 of degree k.

If we denote by Cj, the set of numbers j, with 1 < j < n that have g-cyclotomic
class with k elements, then

Cr = {j < n; k is the minimum positive integer such that j¢* =j (mod n)}

)

= {j < n; k is the minimum positive integer such that ¢* =1 (mod

:{]Sn; kzorqu}'

Since each g-cyclotomic class determines a minimal cyclic code, then the number

|Ck|

of minimal cyclic [n, k; ¢]-codes is ——.
Using this technique, in [I0] and [6] are shown explicit formulas for the total of
minimal cyclic codes for some special cases.

Theorem 2.2 ([I0]). Suppose that n = p{*p2 satisfies that d = ged(p(pT), ©(P2)),
p1 1 (p2 — 1) and q is a primitive oot mod p{* as well as mod pa. Then the
number of minimal cyclic codes of length n over Fy is ai(d+ 1) + 2.

Theorem 2.3 ([0, Theorem 2.6]). Suppose thatn = p{™* ---p;"* satisfies that ord o; ¢ =
i
cp(p?j) for every j, and ged(p; — 1,p; — 1) = 2 for every i # j. Then the number of

minimal cyclic codes of length n over Fy is
(20[1 + 1)(20&2 + 1) s (204k + 1) +1
> .
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Besides, some explicit formulas for the number of [n, k; ¢]-codes for some partic-
ular values of n and ¢ are known

Theorem 2.4 ([3 Corollary 3.3 and 3.6] ). Suppose that n and q are numbers such
that every prime factor of n divides ¢ — 1. Then
(1) If 8¢ n or ¢ £ 3 (mod 4) then the number of minimal cyclic [n,d; q]-codes

8
d . n
£l . ged(n,q — 1) ifd| e
0 otherwise

The total number of minimal cyclic codes of length n is

edtng =1 T[ (140 1),

p|m
p prime

where @ is the Fuler Totient function.
(2) If 8|n and ¢ = 3 (mod 4) then the number of minimal cyclic [n,d; q]-codes
18

ﬁ

eld) ~ged(n,qg — 1) if d is odd and d |

d FICREY
&0 (2r —1)ged(n,qg— 1) if d =2k, k is oddandk|m
@ 2" teed(n,q — 1) if d =2k, k is even and k | AT
0 otherwise

where r = min{ve(n/2),v2(q + 1)}. The total number of minimal cyclic
codes of length n is

ged(n,q—1) - (% +2772(2 + I/Q(’ITL))) -] <1 + up(m)p%l) .

p|m
p odd prime

3. CODES WITH POWER OF A PRIME LENGTH

In this section, we are going to suppose that n is a power of a prime. In order
to determine the number of irreducible codes of length n, we need the following
lemma, that it is pretty well-known in the Mathematical Olympiads folklore and it
is attributed to E. Lucas and R. D. Carmichael (see [T]).

Lemma 3.1 (Lifting-the-exponent Lemma). Let p be a prime. For all a,b € Z and
n € N, such that p1 ab and p|(a — b), the following proprieties are satisfied

(i) If p > 3, then vy(a™ — ") = vp(a — b) 4+ v, (n).

(i) If p=2 and n is odd then vo(a™ — b™) = va(a — b).

(iii) If p=2 and n is even then va(a™ — b") = vo(a? — b%) + vo(n) — 1.

As a consequence of the previous lemma we obtain

Corollary 3.2. Let p be a prime and p = ord, q.
(1) If ¢ £ 3 (mod 4) or p # 2 then

1 if0=0
ordy g= 4 p if0<p
op®=P if 6> p.

where 8 =vp(q° —1).
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(2) If g =3 (mod 4) and p = 2, then
1 if =0 orl.
ordge g = ¢ 2 if0<p
20-B+1 it 9 > 3.
where B = vy(q* — 1).

Proof: (1) Clearly, ord,e g = pif 1 < 0 < 3. In the case § > 3, since ord, g
divides ord,s then, by Lemma B.Ilitem (i), we have

0=l =1 = =) 4wy (5) =5, (£)

In addition to the minimality of k, we obtain that % =p? A,
The proof of part (2) is similar by using items (%) and (%i) of Lemma BI. O

Theorem 3.3. Suppose that n = p“, where p is a prime and p and B as in the
previous lemma. Then

(1) If p#£ 2 or g £ 3 (mod 4) then the number of minimal cyclic [n,d; q]-codes
18
ged(n,g—1) ifd=1

pmin{a,ﬂ}71 Zf d _ p # 1
T | |
; ifd=p-p? andl1 <j<a-p
0 otherwise
(2) If n = 2% and ¢ = 3 (mod 4) then the number of minimal cyclic [n,d;q]-
codes s

2 ifd=1
1 ifd=2and a=2
3 ifd=2anda>3
2 ifd=2 and2<j<a—2
0 otherwise

Proof: (1) In the case when k = 1, the number of [n, 1 : g]-codes is equivalent to
the number of roots of the polynomial 2" — 1 in F;. Since every element of F} is
root of 247! — 1, and ged(a™ — 1,2971 — 1) = 28ed(ma=1) _ 1 we conclude that the
number of minimal [n, 1; ¢]-codes is ged(n,q — 1).
ord,s q

P
power of p, it follows that if £ is not a power of p, then there not exist [n, k; g]-codes.

In the case when d = p, by Corollary B.2] we know that ord,s ¢ = p if and only
if 1 < s < S and then the number of [n, p; ¢]-codes is

Now, suppose that d # 1. Since p divides ord,s g for every s > 1 and is a

in{a,8) in{a,5} - i
mlri (p(ps) _ mlri ps _ ps 1 _ pmm{a,ﬁ} -1
s=1 p s=1 p P

Finally, in the case d = pp’, since ord,: ¢ = pp’ if and only if s = j + 3, and
s < a, we conclude that j < o — 8 and the number of [n, pp’; g]-codes is

p* @) pf —pf !
ordps g pp’ p
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So, this identity concludes the proof of (1).
We note that the proof of (2) is essencially the same of (1) and we omit. O

Remark 3.4. In [2], we show one way to construct the primitive idempotents of
Fq[z]

the ring =1 where n = p® and it is known that each primitive idempotent is a

generator of one minimal cyclic code of length n.

4. THE NUMBER OF CYCLIC CODES GIVEN AN SPECIAL CONDITION

Throughout this section, n = p{* - - - p;* is the factorization in primes of n, where
n is odd or ¢ # 3 (mod 4). Moreover, we put p; = ord,, ¢ and 8; = v, (¢” — 1).
Definition 4.1. The pair (n, q) satisfies the homogeneous order condition (H.0.C.)
if ged(pi,n) = 1, for every i, and there exists p € N such that p = ged(ps, p;), for
every i % j.

Observe that every pair (n,q) considered in Theorems 2.2 23] 2.4 and B3] sat-
isfies H.O.C.. Furthermore, if (n,q) satisfies H.O.C then

102
R:= lcm(p17p27"'7pk) pppkilp

and, by Lemma [B.I] we have
Vpi(qR —1)=wp,(¢" = 1)+ Z Vpi (p_pj) =

1<j<k
Jj#i

Lemma 4.2. Let (n,q) be a pair which satisfies H O.C. and d = p?l o -p?l be a
divisor of n other than 1. Then

ordgq = H pl
gcd d gt

1<i<l
6; 70

Proof: Observe that if 6; # 0 then
pz' _ Py
ged(pl', g —1) | ged(pl, gt — 1)’

Thus, in the case when d = pifl .- -pfs’s, where 6;; # 0, we have

ordpgi q=pi

ordgq = lcm(ordpei1 q, - ord 0. q)

i1 is

ord o;, ¢ ord o, q
=p-lem LS
p p
91-].
— 0 Pi; pz‘j
=1 P gcd( ;0= 1)
pi.
gcd d gt H

O

Corollary 4.3. Let (n,q) be a pair which satisfies H.O.C.. If there exist minimal
cyclic [n, k; q]-codes then
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(1) ged(k, pi) =1 or p;, for every i.
(2) If p; divides ged(n, k), then p; divides k.
(3) ng(TL,kJ) divides WQR—]_)

Theorem 4.4. Let ', be a finite field and n be a positive integer such that the
pair (n,q) satisfies H.O.C. and suppose that n is odd or ¢ Z3 (mod 4). Let k be a
positive integer satisfying the conditions of the corollary[f-3 Then the number of
mianimal cyclic [n, k; q]-codes is

ged(n,g—1) ifk=1
ged(n, gf — 1)2Edbm) g o,

The total number of minimal cyclic codes of length n is

—1+H( () maxfas — i, 0} 4 printes 5} — 1) 4 1)

p

Proof: We are going to suppose that k # 1, because the case £ = 1 has been
proved in Theorem B3l Let Z be the set of indices 7 such that % divides k,
J ={i €Ilp; divides k} and Zp =7 \ J.

Let d be a divisor of n such that ords ¢ = k. By Lemma [£2] it follows that d|nz
and k = tRz where

d

Pi
B d Rr= —.
sddgroy  Er=ell

i€l

t =ged(k,n) =

Since ¢ = [[,.7p}*, then
0; = vp,(d) — min{w,, (d), 8;} = max{0,vp,(d) — B;} foralli € Z.

nz

ng(nI, qR - 1) '
Furthermore, if 6; # 0, then v, (d) = 6; + §; < «;, and in the case 6; = 0, we have
Up, (d) < oy < B;. If follows that d = dody, where

dq —Hpe B = ged(k,n) - ged(ng, ¢ — 1), with ng = Hp
ieJ ieJ

Observe that 0; < max{0,«; — 8;} for all i € T and then ¢ divides

and dy is a divisor of ng = [[;c7, pi"*. Therefore, the number of [n, k; g]-codes is

Ly LS pldody) = )

k
d|n do"n,()

ordy n=k
no - ged(k, n) - ged(ny, ¢ — 1) 11 (1 _ i)

k Di

=4
. d(k,n
By using the fact that ng = ged(ng, ¢t — 1) and [Lics (1 - pl) = %7 we
conclude that the number of irreducible cyclic [n, k; g]-codes is

ged(n, ¢ — 1)p(ged(k,n))
- .
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1 ifd=1
On the other hand, by Lemma 2] the function f(d) = ¢ )., %f Q41 is
ordg q 1

multiplicative for every d divisor of n. So, the total number of minimal cyclic codes
of length n is
(d)

11
1=+ fa).
d|n0rddq p p; @

In order to calculate the sum, observe that

S (@)= 1+§:p-(pf —pfpffl)

dlpd s=1 Pi ged(ps,qft—1)

1) &
- ];) S ged(pf, g — 1)

s=1

min{a,,B: }
1 .
—14+ 2 (1_ 17) E p; + max{0,a; — B;}p}"

s=1

. 1 )
—1+2 (pim‘“{““ﬂi} -1+ (1 — ;) max {0, o; — Bi}pﬁ)

Pi )
- § (pimin{ai’ﬂi} — 14 max{0, o — Bi}@(pfi)) :
Then, by using the fact that ) ajn f(d) is a multiplicative function, we conclude
the proof. O
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