NUMBER OF MINIMAL CYCLIC CODES WITH GIVEN LENGTH AND DIMENSION

F. E. BROCHERO MARTÍNEZ

Abstract. In this article, we count the quantity of minimal cyclic codes of length n and dimension k over a finite field \mathbb{F}_q , in the case when the prime factors of n satisfy a special condition. This problem is equivalent to count the quantity of irreducible factors of $x^n - 1 \in \mathbb{F}_q[x]$ of degree k.

1. INTRODUCTION

Let \mathbb{F}_q be a finite field with q elements. A linear $[n,k;q]$ code $\mathcal C$ is a linear subspace of \mathbb{F}_q^n of dimension k. C is called a *cyclic code* if C is invariant by a shift permutation, i.e., if $(a_0, a_1, \ldots, a_{n-1}) \in \mathcal{C}$ then $(a_{n-1}, a_0, a_1, \ldots, a_{n-2}) \in \mathcal{C}$. It is known that every cyclic code can be seen as an ideal of the ring $\frac{\mathbb{F}_q[x]}{(x^n-1)}$. In addition, since $\frac{\mathbb{F}_q[x]}{(x^n-1)}$ is a principal ring, every ideal is generated by a polynomial $g(x)$ such that g is a divisor of $xⁿ - 1$. Thus, the polynomial g is called *generator* of the code and the polynomial $h(x) = \frac{x^{n}-1}{g(x)}$ is called the *parity-check* polynomial of C. Observe that $\{g, xg, \ldots x^{k-1}g\}$, where $k = \deg(h)$, is a basis of the linear space $(g) \in \frac{\mathbb{F}_q[x]}{(x^n-1)}$, then the dimension of the code is the degree of the parity-check polynomial. A cyclic code C is called *minimal cyclic code* if h is an irreducible polynomial in $\mathbb{F}_q[x]$. Thus, the number of irreducible factors of $x^n - 1 \in \mathbb{F}_q[x]$ corresponds to the number of minimal cyclic codes of length n in \mathbb{F}_q . Specifically, there exists a bijection between the minimal cyclic codes of dimension k and length n over \mathbb{F}_q , that we denote by $[n, k; q]$, and the irreducible factors of $x^n - 1 \in \mathbb{F}_q[x]$ of degree k.

Irreducible cyclic codes are very interesting by its applications in communication, storage systems like compact disc players, DVDs, disk drives, two-dimensional bar codes, etc. (see [\[5,](#page-6-0) Section 5.8 and 5.9]). The advantage of the cyclic codes, with respect to other linear codes, is that they have efficient encoding and decoding algorithms (see [\[5,](#page-6-0) Section 3.7]). For these facts, cyclic codes have been studied for the last decades and many progress has been found (see [\[8\]](#page-6-1)).

A natural question is how many minimal cyclic codes of length n and dimension k over \mathbb{F}_q does there exist? In other words, the quations is: given n, k and \mathbb{F}_q , find an explicit formula for the number of minimal cyclic $[n, k; q]$ -codes. This question is in general unknown, and how to construct all of them too.

In this article, we determine the number of minimal cyclic $[n, k; q]$ -codes assuming that the order of q modulo each prime factor of n satisfies some special relation.

Date: September 16, 2021.

²⁰¹⁰ Mathematics Subject Classification. 20C05 (primary) and 16S34(secondary).

Key words and phrases. minimal cyclic codes, cyclotomic classes.

2 **F.E. BROCHERO MARTÍNEZ**

2. Preliminaries

Throughout this article, \mathbb{F}_q denotes a finite field of order q, where q is a power of a prime. For each $a \in \mathbb{F}_l^*$, ord (a) denotes the order of a in a multiplicative group \mathbb{F}_l^* , i.e. ord(*a*) is the least positive integer k such that $a^k = 1$. In the same way, we denote by $\text{ord}_n b$, the order of b in a multiplicative group \mathbb{Z}_n^* and $\nu_p(m)$ is the maximal power of p that divides m . In addition, for each irreducible polynomial $P(x) \in \mathbb{F}_q[x]$, ord $(P(x))$ denotes the order of some root of $P(x)$ in some extension of \mathbb{F}_q .

It is a classical result (see, for instance, [\[4\]](#page-6-2)) to determine the number of factors of $x^n - 1$ and its degree, when the order is given.

Theorem 2.1. Let n be a positive integer such that $gcd(n, q) = 1$, then each factor *of* x^n −1 ∈ $\mathbb{F}_q[x]$ *has order* m*, where* m *is a divisor of* n. In addition, for each m|n, *there exist* $\frac{\varphi(m)}{\text{ord}_m q}$ *irreducible factors and each of these factors has degree* ord_{*m*} q.

As a consequence of this theorem (see proposition 2.1 in [\[1\]](#page-6-3)), the number of factors of degree k of $x^n - 1$ is $\sum_{\substack{m|n \text{ord}_m q=k}}$ $\varphi(m)$ $\frac{m}{k}$ and then the total number of irreducible

factors is Σ $m|n$ $\varphi(m)$ $\frac{\varphi(m)}{\sigma \sigma d_m q}$. So, the number of irreducible factors of degree k is zero if any m divisor of n satisfies $\text{ord}_m q = k$. Clearly, this formula is not really explicit,

because it depends on the calculation of the orders $\text{ord}_m q$ for every divisor of n. An equivalent approach is to use the technique of q -cyclotomic classes (see [\[11\]](#page-6-4)

page 157 or [\[9\]](#page-6-5) Chapter 8). In fact, the q-cyclotomic class of j modulo n is the set ${j, jq, jq^2, \ldots, jq^{k-1}}$ whose elements are distinct modulo *n* and $jq^k \equiv j \pmod{n}$. This q-cyclotomic class determines one irreducible factor of $xⁿ - 1$ of degree k.

If we denote by \mathcal{C}_k the set of numbers j, with $1 \leq j \leq n$ that have q-cyclotomic class with k elements, then

 $\mathcal{C}_k = \{j \leq n; k \text{ is the minimum positive integer such that } jq^k \equiv j \pmod{n}\}$ $=\left\{j\leq n;\;k\;\text{is the minimum positive integer such that}\;q^k\equiv 1\pmod{\frac{n}{\gcd(n,j)}}\right\}$ $=\left\{j\leq n;\;k=\text{ord}_{\frac{n}{\gcd(n,j)}}q\right\}.$

Since each q-cyclotomic class determines a minimal cyclic code, then the number of minimal cyclic $[n, k; q]$ -codes is $\frac{|\mathcal{C}_k|}{k}$.

Using this technique, in [\[10\]](#page-6-6) and [\[6\]](#page-6-7) are shown explicit formulas for the total of minimal cyclic codes for some special cases.

Theorem 2.2 ([\[10\]](#page-6-6)). Suppose that $n = p_1^{\alpha_1} p_2$ satisfies that $d = \gcd(\varphi(p_1^{\alpha_1}), \varphi(p_2)),$ $p_1 \nmid (p_2 - 1)$ and q *is a primitive root* mod $p_1^{\alpha_1}$ as well as mod p_2 . Then the *number of minimal cyclic codes of length* n *over* \mathbb{F}_q *is* $\alpha_1(d+1) + 2$ *.*

Theorem 2.3 ([\[6,](#page-6-7) Theorem 2.6]). Suppose that $n = p_1^{\alpha_1} \cdots p_l^{\alpha_l}$ satisfies that $\text{ord}_{p_j^{\alpha_j}} q =$ $\varphi(p_j^{\alpha_j})$ for every j, and $gcd(p_j-1, p_i-1)=2$ for every $i \neq j$. Then the number of *minimal cyclic codes of length* n *over* \mathbb{F}_q *is*

$$
\frac{(2\alpha_1+1)(2\alpha_2+1)\cdots(2\alpha_k+1)+1}{2}.
$$

Besides, some explicit formulas for the number of $[n, k; q]$ -codes for some particular values of n and q are known

Theorem 2.4 ([\[3,](#page-6-8) Corollary 3.3 and 3.6]). *Suppose that* n *and* q *are numbers such that every prime factor of* n *divides* $q - 1$ *. Then*

(1) If $8 \nmid n$ *or* $q \not\equiv 3 \pmod{4}$ *then the number of minimal cyclic* $[n, d; q]$ *-codes is*

$$
\begin{cases} \frac{\varphi(d)}{d} \cdot \gcd(n, q-1) & \text{if } d \mid \frac{n}{\gcd(n, q-1)} \\ 0 & \text{otherwise} \end{cases}
$$

The total number of minimal cyclic codes of length n *is*

$$
\gcd(n, q-1) \cdot \prod_{p \mid m \atop p \text{ prime}} \left(1 + \nu_p(m) \frac{p-1}{p}\right),
$$

where φ *is the Euler Totient function.*

(2) If 8|n and $q ≡ 3 \pmod{4}$ *then the number of minimal cyclic* [n, d; q]-codes *is*

$$
\begin{cases}\n\frac{\varphi(d)}{d} \cdot \gcd(n, q-1) & \text{if } d \text{ is odd and } d \mid \frac{n}{\gcd(n, q^2-1)} \\
\frac{\varphi(k)}{2k} \cdot (2^r - 1) \gcd(n, q-1) & \text{if } d = 2k, k \text{ is odd and } k \mid \frac{n}{\gcd(n, q^2-1)} \\
\frac{\varphi(k)}{k} \cdot 2^{r-1} \gcd(n, q-1) & \text{if } d = 2k, k \text{ is even and } k \mid \frac{n}{\gcd(n, q^2-1)} \\
0 & \text{otherwise}\n\end{cases}
$$

where $r = \min\{\nu_2(n/2), \nu_2(q+1)\}\$ *. The total number of minimal cyclic codes of length* n *is*

$$
\gcd(n, q - 1) \cdot \left(\frac{1}{2} + 2^{r-2}(2 + \nu_2(m))\right) \cdot \prod_{\substack{p \mid m \\ p \text{ odd prime}}} \left(1 + \nu_p(m) \frac{p-1}{p}\right).
$$

3. Codes with power of a prime length

In this section, we are going to suppose that n is a power of a prime. In order to determine the number of irreducible codes of length n , we need the following lemma, that it is pretty well-known in the Mathematical Olympiads folklore and it is attributed to E. Lucas and R. D. Carmichael (see [\[7\]](#page-6-9)).

Lemma 3.1 (Lifting-the-exponent Lemma). Let p be a prime. For all $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$ *, such that* $p \nmid ab$ *and* $p | (a - b)$ *, the following proprieties are satisfied*

- *(i)* If $p \ge 3$, then $\nu_p(a^n b^n) = \nu_p(a b) + \nu_p(n)$.
- *(ii)* If $p = 2$ *and n is odd then* $\nu_2(a^n b^n) = \nu_2(a b)$ *.*
- *(iii)* If $p = 2$ and n is even then $\nu_2(a^n b^n) = \nu_2(a^2 b^2) + \nu_2(n) 1$.

As a consequence of the previous lemma we obtain

Corollary 3.2. *Let* p *be a prime and* $\rho = \text{ord}_p q$ *.*

(1) If $q \not\equiv 3 \pmod{4}$ *or* $p \not\equiv 2$ *then*

$$
\operatorname{ord}_{p^{\theta}} q = \begin{cases} 1 & \text{if } \theta = 0 \\ \rho & \text{if } \theta \leq \beta \\ \rho p^{\theta - \beta} & \text{if } \theta > \beta. \end{cases}
$$

where $\beta = \nu_p(q^{\rho} - 1)$ *.*

(2) If $q \equiv 3 \pmod{4}$ *and* $p = 2$ *, then*

$$
\operatorname{ord}_{2^{\theta}} q = \begin{cases} 1 & \text{if } \theta = 0 \text{ or } 1. \\ 2 & \text{if } \theta \leq \beta \\ 2^{\theta - \beta + 1} & \text{if } \theta > \beta. \end{cases}
$$

where $\beta = \nu_2(q^2 - 1)$ *.*

Proof: (1) Clearly, ord_p $q = \rho$ if $1 \leq \theta \leq \beta$. In the case $\theta > \beta$, since ord_p q divides $\text{ord}_{p^{\theta}}$ then, by Lemma [3.1](#page-2-0) item *(i)*, we have

$$
\theta = \nu_p(q^k - 1) = \nu_p(q^{\rho} - 1) + \nu_p\left(\frac{k}{\rho}\right) = \beta + \nu_p\left(\frac{k}{\rho}\right).
$$

In addition to the minimality of k, we obtain that $\frac{k}{\rho} = p^{\theta-\beta}$.

The proof of part *(2)* is similar by using items *(ii)* and *(iii)* of Lemma [3.1](#page-2-0). \Box

Theorem 3.3. *Suppose that* $n = p^{\alpha}$, where p is a prime and ρ and β as in the *previous lemma. Then*

(1) If $p \neq 2$ *or* $q \not\equiv 3 \pmod{4}$ *then the number of minimal cyclic* $[n, d; q]$ *-codes is*

$$
\begin{cases}\n\gcd(n, q - 1) & \text{if } d = 1 \\
\frac{p^{\min\{\alpha, \beta\}} - 1}{\beta} & \text{if } d = \rho \neq 1 \\
\frac{p^{\beta} - p^{\beta - 1}}{\rho} & \text{if } d = \rho \cdot p^j \text{ and } 1 \leq j \leq \alpha - \beta \\
0 & \text{otherwise}\n\end{cases}
$$

(2) If $n = 2^{\alpha}$ and $q \equiv 3 \pmod{4}$ *then the number of minimal cyclic* $[n, d; q]$ *codes is*

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ 2 *if* $d = 1$ 1 *if* $d = 2$ *and* $\alpha = 2$ 3 *if* $d = 2$ *and* $\alpha \ge 3$ 2 *if* $d = 2^j$ *and* $2 \le j \le \alpha - 2$ 0 *otherwise*

Proof: (1) In the case when $k = 1$, the number of $[n, 1 : q]$ -codes is equivalent to the number of roots of the polynomial $x^n - 1$ in \mathbb{F}_q^* . Since every element of \mathbb{F}_q^* is root of $x^{q-1} - 1$, and $gcd(x^n - 1, x^{q-1} - 1) = x^{gcd(n,q-1)} - 1$, we conclude that the number of minimal $[n, 1; q]$ -codes is $gcd(n, q - 1)$.

Now, suppose that $d \neq 1$. Since ρ divides ord_{ps} q for every $s \geq 1$ and $\frac{\text{ord}_{p^s} q}{\rho}$ is a power of p, it follows that if $\frac{k}{\rho}$ is not a power of p, then there not exist $[n, k; q]$ -codes.

In the case when $d = \rho$, by Corollary [3.2,](#page-2-1) we know that ord_{ps} $q = \rho$ if and only if $1 \leq s \leq \beta$ and then the number of $[n, \rho; q]$ -codes is

$$
\sum_{s=1}^{\min\{\alpha,\beta\}} \frac{\varphi(p^s)}{\rho} = \sum_{s=1}^{\min\{\alpha,\beta\}} \frac{p^s - p^{s-1}}{\rho} = \frac{p^{\min\{\alpha,\beta\}} - 1}{\rho}
$$

Finally, in the case $d = \rho p^j$, since ord_{ps} $q = \rho p^j$ if and only if $s = j + \beta$, and $s \leq \alpha$, we conclude that $j \leq \alpha - \beta$ and the number of $[n, \rho p^j; q]$ -codes is

$$
\frac{\varphi(p^s)}{\operatorname{ord}_{p^s} q} = \frac{\varphi(p^{j+\beta})}{\rho p^j} = \frac{p^{\beta} - p^{\beta-1}}{\rho}.
$$

So, this identity concludes the proof of (1).

We note that the proof of (2) is essencially the same of (1) and we omit. \square

Remark 3.4. *In* [\[2\]](#page-6-10)*, we show one way to construct the primitive idempotents of the ring* $\frac{\mathbb{F}_q[x]}{(x^n-1)}$ *where* $n = p^{\alpha}$ *and it is known that each primitive idempotent is a generator of one minimal cyclic code of length* n*.*

4. The number of cyclic codes given an special condition

Throughout this section, $n = p_1^{\alpha_1} \cdots p_l^{\alpha_l}$ is the factorization in primes of n, where *n* is odd or $q \not\equiv 3 \pmod{4}$. Moreover, we put $\rho_i = \text{ord}_{p_i} q$ and $\beta_i = \nu_{p_i} (q^{\rho_i} - 1)$.

Definition 4.1. *The pair* (n, q) *satisfies the* homogeneous order condition *(H.O.C.) if* $gcd(\rho_i, n) = 1$, for every *i*, and there exists $\rho \in \mathbb{N}$ such that $\rho = gcd(\rho_i, \rho_j)$, for *every* $i \neq j$ *.*

Observe that every pair (n, q) considered in Theorems [2.2,](#page-1-0) [2.3,](#page-1-1) [2.4](#page-2-2) and [3.3](#page-3-0) satisfies H.O.C.. Furthermore, if (n, q) satisfies H.O.C then

$$
R := \text{lcm}(\rho_1, \rho_2, \dots, \rho_k) = \frac{\rho_1 \rho_2 \cdots \rho_k}{\rho^{k-1}}
$$

and, by Lemma [3.1,](#page-2-0) we have

$$
\nu_{p_i}(q^R - 1) = \nu_{p_i}(q^{\rho_i} - 1) + \sum_{\substack{1 \le j \le k \\ j \ne i}} \nu_{p_i}\left(\frac{\rho_j}{\rho}\right) = \beta_i.
$$

Lemma 4.2. Let (n,q) be a pair which satisfies H.O.C. and $d = p_1^{\theta_1} \cdots p_l^{\theta_l}$ be a *divisor of* n *other than* 1*. Then*

$$
\operatorname{ord}_d q = \frac{\rho d}{\gcd(d, q^R - 1)} \prod_{\substack{1 \le i \le l \\ \theta_i \neq 0}} \frac{\rho_i}{\rho}.
$$

Proof: Observe that if $\theta_i \neq 0$ then

$$
\operatorname{ord}_{p_i^{\theta_i}} q = \rho_i \frac{p_i^{\theta_i}}{\gcd(p_i^{\theta_i}, q^{\rho_i} - 1)} = \rho_i \frac{p_i^{\theta_i}}{\gcd(p_i^{\theta_i}, q^R - 1)}.
$$

Thus, in the case when $d = p_{i_1}^{\theta_{i_1}} \cdots p_{i_s}^{\theta_{i_s}}$, where $\theta_{i_j} \neq 0$, we have

$$
\operatorname{ord}_d q = \operatorname{lcm}(\operatorname{ord}_{p_{i_1}^{a_{i_1}}} q, \dots \operatorname{ord}_{p_{i_s}^{a_{i_s}}} q)
$$
\n
$$
= \rho \cdot \operatorname{lcm}\left(\frac{\operatorname{ord}_{p_{i_1}^{a_{i_1}}} q}{\rho}, \dots, \frac{\operatorname{ord}_{p_{i_s}^{a_{i_s}}} q}{\rho}\right)
$$
\n
$$
= \rho \prod_{j=1}^s \frac{\rho_{i_j}}{\rho} \frac{p_{i_j}^{\theta_{i_j}}}{\gcd(p_{i_j}^{a_{i_j}}, q^R - 1)}
$$
\n
$$
= \rho \frac{d}{\gcd(d, q^R - 1)} \prod_{p_i \mid d} \frac{\rho_i}{\rho}.
$$

Corollary 4.3. *Let* (n, q) *be a pair which satisfies H.O.C.. If there exist minimal cyclic* [n, k; q]*-codes then*

 \Box

(1) $gcd(k, \rho_i) = 1$ *or* ρ_i *, for every i. (2)* If p_i *divides* gcd (n, k) *, then* ρ_i *divides* k *.* $\frac{n}{\gcd(n, q^R - 1)}$ *.*

Theorem 4.4. Let \mathbb{F}_q be a finite field and n be a positive integer such that the *pair* (n, q) *satisfies H.O.C. and suppose that n is odd or* $q \not\equiv 3 \pmod{4}$ *. Let* k *be a positive integer satisfying the conditions of the corollary [4.3.](#page-4-0) Then the number of minimal cyclic* [n, k; q]*-codes is*

$$
\begin{cases} \gcd(n, q - 1) & \text{if } k = 1\\ \gcd(n, q^R - 1) \frac{\varphi(\gcd(k, n))}{k} & \text{if } k \neq 1. \end{cases}
$$

The total number of minimal cyclic codes of length n *is*

$$
\frac{\rho - 1 + \prod_{i=1}^{l} \left(\frac{\rho}{\rho_i} \left(\varphi(p_i^{\beta_i}) \max\{\alpha_i - \beta_i, 0\} + p^{\min\{\alpha_i, \beta_i\}} - 1 \right) + 1 \right)}{\rho}
$$

Proof: We are going to suppose that $k \neq 1$, because the case $k = 1$ has been proved in Theorem [3.3.](#page-3-0) Let $\mathcal I$ be the set of indices i such that $\frac{\rho_i}{\rho}$ divides k, $\mathcal{J} = \{i \in \mathcal{I} | p_i \text{ divides } k \} \text{ and } \mathcal{I}_0 = \mathcal{I} \setminus \mathcal{J}.$

Let d be a divisor of n such that $\text{ord}_d q = k$. By Lemma [4.2,](#page-4-1) it follows that $d|n_\mathcal{I}$ and $k = tR_{\mathcal{I}}$ where

$$
t = \gcd(k, n) = \frac{d}{\gcd(d, q^R - 1)}
$$
 and $R_{\mathcal{I}} = \rho \prod_{i \in \mathcal{I}} \frac{\rho_i}{\rho}$.

Since $t = \prod_{i \in \mathcal{I}} p_i^{\theta_i}$, then

$$
\theta_i = \nu_{p_i}(d) - \min{\{\nu_{p_i}(d), \beta_i\}} = \max{\{0, \nu_{p_i}(d) - \beta_i\}} \quad \text{for all } i \in \mathcal{I}.
$$

Observe that $\theta_i \le \max\{0, \alpha_i - \beta_i\}$ for all $i \in \mathcal{I}$ and then t divides $\frac{n_{\mathcal{I}}}{\gcd(n_{\mathcal{I}}, q^R - 1)}$. Furthermore, if $\theta_i \neq 0$, then $\nu_{p_i}(d) = \theta_i + \beta_i \leq \alpha_i$, and in the case $\theta_i = 0$, we have $\nu_{p_i}(d) \leq \alpha_i \leq \beta_i$. If follows that $d = d_0 d_1$, where

$$
d_1 = \prod_{i \in J} p_i^{\theta_i + \beta_j} = \gcd(k, n) \cdot \gcd(n_1, q^R - 1), \quad \text{with} \quad n_1 = \prod_{i \in J} p_i^{\alpha_i}
$$

and d_0 is a divisor of $n_0 = \prod_{i \in \mathcal{I}_0} p_i^{\alpha_i}$. Therefore, the number of $[n, k; q]$ -codes is

$$
\frac{1}{k} \sum_{\substack{d|n \text{odd } n=k}} \varphi(d) = \frac{1}{k} \sum_{d_0|n_0} \varphi(d_0 d_1) = \frac{n_0 \cdot \varphi(d_1)}{k}
$$
\n
$$
= \frac{n_0 \cdot \gcd(k, n) \cdot \gcd(n_1, q^R - 1)}{k} \prod_{i \in J} \left(1 - \frac{1}{p_i}\right).
$$

By using the fact that $n_0 = \gcd(n_0, q^R - 1)$ and $\prod_{i \in \mathcal{J}} \left(1 - \frac{1}{p_i}\right) = \frac{\varphi(\gcd(k,n))}{\gcd(k,n)}$ $\frac{\left(\gcd(\kappa,n)\right)}{\gcd(k,n)}$, we conclude that the number of irreducible cyclic $[n, k; q]$ -codes is

$$
\frac{\gcd(n, q^R - 1)\varphi(\gcd(k, n))}{k}.
$$

On the other hand, by Lemma [4.2,](#page-4-1) the function $f(d)$ = 1 if $d = 1$ $\rho\!\cdot\!\varphi(d)$ $\operatorname{ord}_d q$ if $d \neq 1$ is multiplicative for every d divisor of n . So, the total number of minimal cyclic codes of length n is

$$
\sum_{d|n} \frac{\varphi(d)}{\operatorname{ord}_d q} = 1 - \frac{1}{\rho} + \frac{1}{\rho} \sum_{d|n} f(d).
$$

In order to calculate the sum, observe that

$$
\sum_{d|p_i^{\alpha_i}} f(d) = 1 + \sum_{s=1}^{\alpha_i} \frac{\rho \cdot (p_i^s - p_i^{s-1})}{p_i^s} \n= 1 + \frac{\rho}{\rho_i} \left(1 - \frac{1}{p_i} \right) \sum_{s=1}^{\alpha_i} \gcd(p_i^s, q^R - 1) \n= 1 + \frac{\rho}{\rho_i} \left(1 - \frac{1}{p_i} \right) \left[\sum_{s=1}^{\min\{\alpha_i, \beta_i\}} p_i^s + \max\{0, \alpha_i - \beta_i\} p_i^{\beta_i} \right] \n= 1 + \frac{\rho}{\rho_i} \left(p_i^{\min\{\alpha_i, \beta_i\}} - 1 + \left(1 - \frac{1}{p_i} \right) \max\{0, \alpha_i - \beta_i\} p_i^{\beta_i} \right) \n= 1 + \frac{\rho}{\rho_i} \left(p_i^{\min\{\alpha_i, \beta_i\}} - 1 + \max\{0, \alpha_i - \beta_i\} \varphi(p_i^{\beta_i}) \right).
$$

Then, by using the fact that $\sum_{d|n} f(d)$ is a multiplicative function, we conclude the proof. \Box

REFERENCES

- [1] Agou, S., Factorisation sur un Corps Fini \mathbb{F}_{p^n} des Polynômes Composés $f(x^s)$ lorque $f(x)$ est un Polynôme Irréductible de $\mathbb{F}_{p^n}[x]$, L'Enseignement mathém. 22 (1976) 305-312
- [2] Brochero Martínez, F.E., Giraldo Vergara, C.R., Explicit Idempotents of Finite Group Algebra Finite Fields Appl. 28 (2014) 123-131
- [3] Brochero Martínez, F.E., Giraldo Vergara, C.R., Batista de Oliveira, L., Explicit Factorization of $x^n - 1 \in \mathbb{F}_q[x]$, submitted for publication in Designs, Codes and Cryptography.
- [4] Butler, M.C.R., The Irreducible factors of $f(x^m)$ over a finite field, J. London Math. Soc, 2nd Ser. 30 (1955) 480-482.
- [5] Farrell, P. G., Castieira Moreira, J., Essentials of Error-Control Coding John Wiley & Sons Ltd (2006).
- [6] Kumar P, Arora, S.K. λ -Mapping and Primitive Idempotents in semi simple ring \mathcal{R}_m . Comm. Algebra 41 (2013) 3679-3694
- [7] R. D. Carmichael, On the Numerical Factors of Certain Arithmetic Forms, Amer. Math. Monthly, 16,10 (1909), 153-159.
- [8] Huffman, W.C., Pless, V., Fundamentals of Error-Correcting Codes, Cambridge University Press, (2003).
- [9] MacWilliams, F.J., Sloane,N.J.A. , Theory of Error-Correcting Codes, North-Holland (1977).
- [10] Sahni, A., Sehgal, P. Minimal cyclic codes of length p^nq , Finite Fields Appl. 18 (2012), no. 5, 1017-1036.
- [11] Xambo-Descamps, S. Block Error-Correcting Codes Universitext, Springer (2003)

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE FEDERAL DE MINAS GERAIS, UFMG, BELO Horizonte, MG, 30123-970, Brazil,

E-mail address: fbrocher@mat.ufmg.br