NUMBER OF MINIMAL CYCLIC CODES WITH GIVEN LENGTH AND DIMENSION

F. E. BROCHERO MARTÍNEZ

ABSTRACT. In this article, we count the quantity of minimal cyclic codes of length n and dimension k over a finite field \mathbb{F}_q , in the case when the prime factors of n satisfy a special condition. This problem is equivalent to count the quantity of irreducible factors of $x^n - 1 \in \mathbb{F}_q[x]$ of degree k.

1. INTRODUCTION

Let \mathbb{F}_q be a finite field with q elements. A linear [n, k; q] code \mathcal{C} is a linear subspace of \mathbb{F}_q^n of dimension k. \mathcal{C} is called a *cyclic code* if \mathcal{C} is invariant by a shift permutation, i.e., if $(a_0, a_1, \ldots, a_{n-1}) \in \mathcal{C}$ then $(a_{n-1}, a_0, a_1, \ldots, a_{n-2}) \in \mathcal{C}$. It is known that every cyclic code can be seen as an ideal of the ring $\frac{\mathbb{F}_q[x]}{(x^n-1)}$. In addition, since $\frac{\mathbb{F}_q[x]}{(x^n-1)}$ is a principal ring, every ideal is generated by a polynomial g(x) such that g is a divisor of $x^n - 1$. Thus, the polynomial g is called *generator* of the code and the polynomial $h(x) = \frac{x^n-1}{g(x)}$ is called the *parity-check* polynomial of \mathcal{C} . Observe that $\{g, xg, \ldots x^{k-1}g\}$, where $k = \deg(h)$, is a basis of the linear space $(g) \in \frac{\mathbb{F}_q[x]}{(x^n-1)}$, then the dimension of the code is the degree of the parity-check polynomial. A cyclic code C is called *minimal cyclic code* if h is an irreducible polynomial in $\mathbb{F}_q[x]$. Thus, the number of irreducible factors of $x^n - 1 \in \mathbb{F}_q[x]$ corresponds to the number of minimal cyclic codes of length n in \mathbb{F}_q . Specifically, there exists a bijection between the minimal cyclic codes of dimension k and length n over \mathbb{F}_q , that we denote by [n, k; q], and the irreducible factors of $x^n - 1 \in \mathbb{F}_q[x]$ of degree k.

Irreducible cyclic codes are very interesting by its applications in communication, storage systems like compact disc players, DVDs, disk drives, two-dimensional bar codes, etc. (see [5, Section 5.8 and 5.9]). The advantage of the cyclic codes, with respect to other linear codes, is that they have efficient encoding and decoding algorithms (see [5, Section 3.7]). For these facts, cyclic codes have been studied for the last decades and many progress has been found (see [8]).

A natural question is how many minimal cyclic codes of length n and dimension k over \mathbb{F}_q does there exist? In other words, the quations is: given n, k and \mathbb{F}_q , find an explicit formula for the number of minimal cyclic [n, k; q]-codes. This question is in general unknown, and how to construct all of them too.

In this article, we determine the number of minimal cyclic [n, k; q]-codes assuming that the order of q modulo each prime factor of n satisfies some special relation.

Date: September 16, 2021.

²⁰¹⁰ Mathematics Subject Classification. 20C05 (primary) and 16S34(secondary).

Key words and phrases. minimal cyclic codes, cyclotomic classes.

F.E. BROCHERO MARTÍNEZ

2. Preliminaries

Throughout this article, \mathbb{F}_q denotes a finite field of order q, where q is a power of a prime. For each $a \in \mathbb{F}_{l}^{*}$, $\operatorname{ord}(a)$ denotes the order of a in a multiplicative group \mathbb{F}_{l}^{*} , i.e. $\operatorname{ord}(a)$ is the least positive integer k such that $a^{k} = 1$. In the same way, we denote by $\operatorname{ord}_n b$, the order of b in a multiplicative group \mathbb{Z}_n^* and $\nu_p(m)$ is the maximal power of p that divides m. In addition, for each irreducible polynomial $P(x) \in \mathbb{F}_q[x]$, $\operatorname{ord}(P(x))$ denotes the order of some root of P(x) in some extension of \mathbb{F}_q .

It is a classical result (see, for instance, [4]) to determine the number of factors of $x^n - 1$ and its degree, when the order is given.

Theorem 2.1. Let n be a positive integer such that gcd(n,q) = 1, then each factor of $x^n - 1 \in \mathbb{F}_q[x]$ has order m, where m is a divisor of n. In addition, for each m|n, there exist $\frac{\varphi(m)}{\operatorname{ord}_m q}$ irreducible factors and each of these factors has degree $\operatorname{ord}_m q$.

As a consequence of this theorem (see proposition 2.1 in [1]), the number of factors of degree k of $x^n - 1$ is $\sum_{\substack{m|n \\ \text{ord}_m q = k}} \frac{\varphi(m)}{k}$ and then the total number of irreducible factors is $\sum_{m|n} \frac{\varphi(m)}{\text{ord}_m q}$. So, the number of irreducible factors of degree k is zero if any

m divisor of n satisfies $\operatorname{ord}_m q = k$. Clearly, this formula is not really explicit,

because it depends on the calculation of the orders $\operatorname{ord}_m q$ for every divisor of n.

An equivalent approach is to use the technique of q-cyclotomic classes (see [11] page 157 or [9] Chapter 8). In fact, the q-cyclotomic class of j modulo n is the set $\{j, jq, jq^2, \dots, jq^{k-1}\}$ whose elements are distinct modulo n and $jq^k \equiv j \pmod{n}$. This q-cyclotomic class determines one irreducible factor of $x^n - 1$ of degree k.

If we denote by C_k the set of numbers j, with $1 \leq j \leq n$ that have q-cyclotomic class with k elements, then

 $\mathcal{C}_k = \{ j \le n; k \text{ is the minimum positive integer such that } jq^k \equiv j \pmod{n} \}$ $=\left\{j \le n; \ k \text{ is the minimum positive integer such that } q^k \equiv 1 \pmod{\frac{n}{\gcd(n,j)}}\right\}$ $=\left\{j \leq n; \ k = \operatorname{ord}_{\frac{n}{\operatorname{gcd}(n,j)}} q\right\}.$

Since each q-cyclotomic class determines a minimal cyclic code, then the number of minimal cyclic [n, k; q]-codes is $\frac{|\mathcal{C}_k|}{k}$. Using this technique, in [10] and [6] are shown explicit formulas for the total of

minimal cyclic codes for some special cases.

Theorem 2.2 ([10]). Suppose that $n = p_1^{\alpha_1} p_2$ satisfies that $d = \text{gcd}(\varphi(p_1^{\alpha_1}), \varphi(p_2))$, $p_1 \nmid (p_2 - 1)$ and q is a primitive root mod $p_1^{\alpha_1}$ as well as mod p_2 . Then the number of minimal cyclic codes of length n over \mathbb{F}_q is $\alpha_1(d+1)+2$.

Theorem 2.3 ([6, Theorem 2.6]). Suppose that $n = p_1^{\alpha_1} \cdots p_l^{\alpha_l}$ satisfies that $\operatorname{ord}_{p_i^{\alpha_j}} q =$ $\varphi(p_j^{\alpha_j})$ for every j, and $gcd(p_j - 1, p_i - 1) = 2$ for every $i \neq j$. Then the number of minimal cyclic codes of length n over \mathbb{F}_q is

$$\frac{(2\alpha_1+1)(2\alpha_2+1)\cdots(2\alpha_k+1)+1}{2}.$$

Besides, some explicit formulas for the number of [n, k; q]-codes for some particular values of n and q are known

Theorem 2.4 ([3, Corollary 3.3 and 3.6]). Suppose that n and q are numbers such that every prime factor of n divides q - 1. Then

(1) If $8 \nmid n \text{ or } q \not\equiv 3 \pmod{4}$ then the number of minimal cyclic [n, d; q]-codes is

$$\begin{cases} \frac{\varphi(d)}{d} \cdot \gcd(n, q-1) & \text{if } d \mid \frac{n}{\gcd(n, q-1)} \\ 0 & \text{otherwise} \end{cases}$$

The total number of minimal cyclic codes of length n is

$$gcd(n,q-1) \cdot \prod_{\substack{p \mid m \\ p \text{ prime}}} \left(1 + \nu_p(m) \frac{p-1}{p}\right),$$

where φ is the Euler Totient function.

(2) If $8|n \text{ and } q \equiv 3 \pmod{4}$ then the number of minimal cyclic [n, d; q]-codes is

$$\begin{cases} \frac{\varphi(d)}{d} \cdot \gcd(n, q-1) & \text{if } d \text{ is odd and } d \mid \frac{n}{\gcd(n, q^2-1)} \\ \frac{\varphi(k)}{2k} \cdot (2^r - 1) \gcd(n, q-1) & \text{if } d = 2k, k \text{ is odd and } k \mid \frac{n}{\gcd(n, q^2-1)} \\ \frac{\varphi(k)}{k} \cdot 2^{r-1} \gcd(n, q-1) & \text{if } d = 2k, k \text{ is even and } k \mid \frac{n}{\gcd(n, q^2-1)} \\ 0 & \text{otherwise} \end{cases}$$

where $r = \min\{\nu_2(n/2), \nu_2(q+1)\}$. The total number of minimal cyclic codes of length n is

$$\gcd(n, q-1) \cdot \left(\frac{1}{2} + 2^{r-2}(2 + \nu_2(m))\right) \cdot \prod_{\substack{p \mid m \\ p \text{ odd prime}}} \left(1 + \nu_p(m) \frac{p-1}{p}\right).$$

3. Codes with power of a prime length

In this section, we are going to suppose that n is a power of a prime. In order to determine the number of irreducible codes of length n, we need the following lemma, that it is pretty well-known in the Mathematical Olympiads folklore and it is attributed to E. Lucas and R. D. Carmichael (see [7]).

Lemma 3.1 (Lifting-the-exponent Lemma). Let p be a prime. For all $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$, such that $p \nmid ab$ and p|(a-b), the following proprieties are satisfied

- $\begin{array}{ll} (i) \ \ If \ p \geq 3, \ then \ \nu_p(a^n b^n) = \nu_p(a b) + \nu_p(n). \\ (ii) \ \ If \ p = 2 \ and \ n \ is \ odd \ then \ \nu_2(a^n b^n) = \nu_2(a b). \\ (iii) \ \ If \ p = 2 \ and \ n \ is \ even \ then \ \nu_2(a^n b^n) = \nu_2(a^2 b^2) + \nu_2(n) 1. \end{array}$

As a consequence of the previous lemma we obtain

Corollary 3.2. Let p be a prime and $\rho = \operatorname{ord}_p q$.

(1) If $q \not\equiv 3 \pmod{4}$ or $p \neq 2$ then

$$\operatorname{ord}_{p^{\theta}} q = \begin{cases} 1 & \text{if } \theta = 0\\ \rho & \text{if } \theta \leq \beta\\ \rho p^{\theta - \beta} & \text{if } \theta > \beta. \end{cases}$$

where $\beta = \nu_p (q^{\rho} - 1)$.

(2) If $q \equiv 3 \pmod{4}$ and p = 2, then

$$\operatorname{ord}_{2^{\theta}} q = \begin{cases} 1 & \text{if } \theta = 0 \text{ or } 1\\ 2 & \text{if } \theta \leq \beta\\ 2^{\theta - \beta + 1} & \text{if } \theta > \beta. \end{cases}$$

where $\beta = \nu_2(q^2 - 1)$.

Proof: (1) Clearly, $\operatorname{ord}_{p^{\theta}} q = \rho$ if $1 \leq \theta \leq \beta$. In the case $\theta > \beta$, since $\operatorname{ord}_{p} q$ divides $\operatorname{ord}_{p^{\theta}}$ then, by Lemma 3.1 item (i), we have

$$\theta = \nu_p(q^k - 1) = \nu_p(q^\rho - 1) + \nu_p\left(\frac{k}{\rho}\right) = \beta + \nu_p\left(\frac{k}{\rho}\right)$$

In addition to the minimality of k, we obtain that $\frac{k}{\rho} = p^{\theta - \beta}$.

The proof of part (2) is similar by using items (ii) and (iii) of Lemma 3.1. \Box

Theorem 3.3. Suppose that $n = p^{\alpha}$, where p is a prime and ρ and β as in the previous lemma. Then

(1) If $p \neq 2$ or $q \not\equiv 3 \pmod{4}$ then the number of minimal cyclic [n, d; q]-codes is

$$\begin{cases} \gcd(n, q-1) & \text{if } d = 1\\ \frac{p^{\min\{\alpha, \beta\}} - 1}{\rho} & \text{if } d = \rho \neq 1\\ \frac{p^{\beta} - p^{\beta-1}}{\rho} & \text{if } d = \rho \cdot p^{j} \text{ and } 1 \leq j \leq \alpha - \beta\\ 0 & \text{otherwise} \end{cases}$$

(2) If $n = 2^{\alpha}$ and $q \equiv 3 \pmod{4}$ then the number of minimal cyclic [n, d; q]codes is

 $\begin{cases} 2 & if \ d = 1 \\ 1 & if \ d = 2 \ and \ \alpha = 2 \\ 3 & if \ d = 2 \ and \ \alpha \ge 3 \\ 2 & if \ d = 2^j \ and \ 2 \le j \le \alpha - 2 \\ 0 & otherwise \end{cases}$

Proof: (1) In the case when k = 1, the number of [n, 1:q]-codes is equivalent to the number of roots of the polynomial $x^n - 1$ in \mathbb{F}_q^* . Since every element of \mathbb{F}_q^* is root of $x^{q-1} - 1$, and $\gcd(x^n - 1, x^{q-1} - 1) = x^{\gcd(n, q-1)} - 1$, we conclude that the number of minimal [n, 1; q]-codes is $\gcd(n, q - 1)$.

Now, suppose that $d \neq 1$. Since ρ divides $\operatorname{ord}_{p^s} q$ for every $s \geq 1$ and $\frac{\operatorname{ord}_{p^s} q}{\rho}$ is a power of p, it follows that if $\frac{k}{\rho}$ is not a power of p, then there not exist [n, k; q]-codes.

In the case when $d = \rho$, by Corollary 3.2, we know that $\operatorname{ord}_{p^s} q = \rho$ if and only if $1 \leq s \leq \beta$ and then the number of $[n, \rho; q]$ -codes is

$$\sum_{s=1}^{\min\{\alpha,\beta\}} \frac{\varphi(p^s)}{\rho} = \sum_{s=1}^{\min\{\alpha,\beta\}} \frac{p^s - p^{s-1}}{\rho} = \frac{p^{\min\{\alpha,\beta\}} - 1}{\rho}$$

Finally, in the case $d = \rho p^j$, since $\operatorname{ord}_{p^s} q = \rho p^j$ if and only if $s = j + \beta$, and $s \leq \alpha$, we conclude that $j \leq \alpha - \beta$ and the number of $[n, \rho p^j; q]$ -codes is

$$\frac{\varphi(p^s)}{\operatorname{ord}_{p^s} q} = \frac{\varphi(p^{j+\beta})}{\rho p^j} = \frac{p^\beta - p^{\beta-1}}{\rho}.$$

4

So, this identity concludes the proof of (1).

We note that the proof of (2) is essencially the same of (1) and we omit.

Remark 3.4. In [2], we show one way to construct the primitive idempotents of the ring $\frac{\mathbb{F}_q[x]}{(x^n-1)}$ where $n = p^{\alpha}$ and it is known that each primitive idempotent is a generator of one minimal cyclic code of length n.

4. The number of cyclic codes given an special condition

Throughout this section, $n = p_1^{\alpha_1} \cdots p_l^{\alpha_l}$ is the factorization in primes of n, where n is odd or $q \not\equiv 3 \pmod{4}$. Moreover, we put $\rho_i = \operatorname{ord}_{p_i} q$ and $\beta_i = \nu_{p_i}(q^{\rho_i} - 1)$.

Definition 4.1. The pair (n, q) satisfies the homogeneous order condition (H.O.C.) if $gcd(\rho_i, n) = 1$, for every *i*, and there exists $\rho \in \mathbb{N}$ such that $\rho = gcd(\rho_i, \rho_j)$, for every $i \neq j$.

Observe that every pair (n, q) considered in Theorems 2.2, 2.3, 2.4 and 3.3 satisfies H.O.C.. Furthermore, if (n, q) satisfies H.O.C then

$$R := \operatorname{lcm}(\rho_1, \rho_2, \dots, \rho_k) = \frac{\rho_1 \rho_2 \cdots \rho_k}{\rho^{k-1}}$$

and, by Lemma 3.1, we have

$$\nu_{p_i}(q^R - 1) = \nu_{p_i}(q^{\rho_i} - 1) + \sum_{\substack{1 \le j \le k \\ j \ne i}} \nu_{p_i}\left(\frac{\rho_j}{\rho}\right) = \beta_i.$$

Lemma 4.2. Let (n,q) be a pair which satisfies H.O.C. and $d = p_1^{\theta_1} \cdots p_l^{\theta_l}$ be a divisor of n other than 1. Then

$$\operatorname{ord}_d q = \frac{\rho d}{\gcd(d, q^R - 1)} \prod_{\substack{1 \le i \le l \\ \theta_i \neq 0}} \frac{\rho_i}{\rho}.$$

Proof: Observe that if $\theta_i \neq 0$ then

$$\operatorname{ord}_{p_i^{\theta_i}} q = \rho_i \frac{p_i^{\theta_i}}{\gcd(p_i^{\theta_i}, q^{\rho_i} - 1)} = \rho_i \frac{p_i^{\theta_i}}{\gcd(p_i^{\theta_i}, q^R - 1)}.$$

Thus, in the case when $d = p_{i_1}^{\theta_{i_1}} \cdots p_{i_s}^{\theta_{i_s}}$, where $\theta_{i_j} \neq 0$, we have $\operatorname{ord}_d q = \operatorname{lcm}(\operatorname{ord}_{\theta_{i_s}} q, \dots \operatorname{ord}_{\theta_{i_s}} q)$

$$= \rho \cdot \operatorname{lcm}\left(\operatorname{ord}_{\substack{\theta_{i_{1}}\\p_{i_{1}}}}^{\theta_{i_{1}}}q, \dots \operatorname{ord}_{\substack{p_{i_{s}}\\p_{i_{s}}}}^{\theta_{i_{s}}}q\right)$$
$$= \rho \prod_{j=1}^{s} \frac{\rho_{i_{j}}}{\rho} \frac{p_{i_{j}}^{\theta_{i_{j}}}}{\gcd(p_{i_{j}}^{\theta_{i_{j}}}, q^{R} - 1)}$$
$$= \rho \frac{d}{\gcd(d, q^{R} - 1)} \prod_{p_{i} \mid d} \frac{\rho_{i}}{\rho}.$$

Corollary 4.3. Let (n,q) be a pair which satisfies H.O.C.. If there exist minimal cyclic [n, k; q]-codes then

(1) $\operatorname{gcd}(k, \rho_i) = 1$ or ρ_i , for every *i*. (2) If p_i divides $\operatorname{gcd}(n, k)$, then ρ_i divides *k*. (3) $\operatorname{gcd}(n, k)$ divides $\frac{\cdot n}{\operatorname{gcd}(n, q^R - 1)}$.

Theorem 4.4. Let \mathbb{F}_q be a finite field and n be a positive integer such that the pair (n,q) satisfies H.O.C. and suppose that n is odd or $q \not\equiv 3 \pmod{4}$. Let k be a positive integer satisfying the conditions of the corollary 4.3. Then the number of minimal cyclic [n, k; q]-codes is

$$\begin{cases} \gcd(n, q-1) & \text{if } k=1\\ \gcd(n, q^R-1) \frac{\varphi(\gcd(k, n))}{k} & \text{if } k \neq 1. \end{cases}$$

The total number of minimal cyclic codes of length n is

$$\frac{\rho - 1 + \prod_{i=1}^{l} \left(\frac{\rho}{\rho_i} \left(\varphi(p_i^{\beta_i}) \max\{\alpha_i - \beta_i, 0\} + p^{\min\{\alpha_i, \beta_i\}} - 1\right) + 1\right)}{\rho}$$

Proof: We are going to suppose that $k \neq 1$, because the case k = 1 has been proved in Theorem 3.3. Let \mathcal{I} be the set of indices i such that $\frac{\rho_i}{\rho}$ divides k, $\mathcal{J} = \{i \in \mathcal{I} | p_i \text{ divides } k\}$ and $\mathcal{I}_0 = \mathcal{I} \setminus \mathcal{J}$.

Let d be a divisor of n such that $\operatorname{ord}_d q = k$. By Lemma 4.2, it follows that $d|n_{\mathcal{I}}$ and $k = tR_{\mathcal{I}}$ where

$$t = \operatorname{gcd}(k, n) = \frac{d}{\operatorname{gcd}(d, q^R - 1)}$$
 and $R_{\mathcal{I}} = \rho \prod_{i \in \mathcal{I}} \frac{\rho_i}{\rho}.$

Since $t = \prod_{i \in \mathcal{I}} p_i^{\theta_i}$, then

$$\theta_i = \nu_{p_i}(d) - \min\{\nu_{p_i}(d), \beta_i\} = \max\{0, \nu_{p_i}(d) - \beta_i\} \quad \text{for all } i \in \mathcal{I}.$$

Observe that $\theta_i \leq \max\{0, \alpha_i - \beta_i\}$ for all $i \in \mathcal{I}$ and then t divides $\frac{n_{\mathcal{I}}}{\gcd(n_{\mathcal{I}}, q^R - 1)}$. Furthermore, if $\theta_i \neq 0$, then $\nu_{p_i}(d) = \theta_i + \beta_i \leq \alpha_i$, and in the case $\theta_i = 0$, we have $\nu_{p_i}(d) \leq \alpha_i \leq \beta_i$. If follows that $d = d_0 d_1$, where

$$d_1 = \prod_{i \in J} p_i^{\theta_i + \beta_j} = \gcd(k, n) \cdot \gcd(n_1, q^R - 1), \quad \text{with} \quad n_1 = \prod_{i \in \mathcal{J}} p_i^{\alpha}$$

and d_0 is a divisor of $n_0 = \prod_{i \in \mathcal{I}_0} p_i^{\alpha_i}$. Therefore, the number of [n, k; q]-codes is

$$\begin{split} \frac{1}{k} \sum_{\substack{d \mid n \\ \operatorname{ord}_d n = k}} \varphi(d) &= \frac{1}{k} \sum_{d_0 \mid n_0} \varphi(d_0 d_1) = \frac{n_0 \cdot \varphi(d_1)}{k} \\ &= \frac{n_0 \cdot \operatorname{gcd}(k, n) \cdot \operatorname{gcd}(n_1, q^R - 1)}{k} \prod_{i \in \mathcal{J}} \left(1 - \frac{1}{p_i} \right). \end{split}$$

By using the fact that $n_0 = \gcd(n_0, q^R - 1)$ and $\prod_{i \in \mathcal{J}} \left(1 - \frac{1}{p_i}\right) = \frac{\varphi(\gcd(k, n))}{\gcd(k, n)}$, we conclude that the number of irreducible cyclic [n, k; q]-codes is

$$\frac{\gcd(n, q^R - 1)\varphi(\gcd(k, n))}{k}.$$

 $\mathbf{6}$

On the other hand, by Lemma 4.2, the function $f(d) = \begin{cases} 1 & \text{if } d = 1 \\ \frac{\rho \cdot \varphi(d)}{\operatorname{ord}_d q} & \text{if } d \neq 1 \end{cases}$ is multiplicative for every d divisor of n. So, the total number of minimal cyclic codes of length n is

$$\sum_{d|n} \frac{\varphi(d)}{\operatorname{ord}_d q} = 1 - \frac{1}{\rho} + \frac{1}{\rho} \sum_{d|n} f(d).$$

In order to calculate the sum, observe that

d

$$\begin{split} \sum_{|p_i^{\alpha_i}|} f(d) &= 1 + \sum_{s=1}^{\alpha_i} \frac{\rho \cdot (p_i^s - p_i^{s-1})}{\rho_i \frac{p_i^s}{\gcd(p_i^s, q^R - 1)}} \\ &= 1 + \frac{\rho}{\rho_i} \left(1 - \frac{1}{p_i} \right) \sum_{s=1}^{\alpha_i} \gcd(p_i^s, q^R - 1) \\ &= 1 + \frac{\rho}{\rho_i} \left(1 - \frac{1}{p_i} \right) \left[\sum_{s=1}^{\min\{\alpha_i, \beta_i\}} p_i^s + \max\{0, \alpha_i - \beta_i\} p_i^{\beta_i} \right] \\ &= 1 + \frac{\rho}{\rho_i} \left(p_i^{\min\{\alpha_i, \beta_i\}} - 1 + \left(1 - \frac{1}{p_i} \right) \max\{0, \alpha_i - \beta_i\} p_i^{\beta_i} \right) \\ &= 1 + \frac{\rho}{\rho_i} \left(p_i^{\min\{\alpha_i, \beta_i\}} - 1 + \max\{0, \alpha_i - \beta_i\} \varphi(p_i^{\beta_i}) \right). \end{split}$$

Then, by using the fact that $\sum_{d|n} f(d)$ is a multiplicative function, we conclude the proof.

References

- Agou, S., Factorisation sur un Corps Fini F_{pⁿ} des Polynômes Composés f(x^s) lorque f(x) est un Polynôme Irréductible de F_{pⁿ}[x], L'Enseignement mathém. 22 (1976) 305-312
- Brochero Martínez, F.E., Giraldo Vergara, C.R., Explicit Idempotents of Finite Group Algebra Finite Fields Appl. 28 (2014) 123-131
- [3] Brochero Martínez, F.E., Giraldo Vergara, C.R., Batista de Oliveira, L., *Explicit Factoriza*tion of $x^n - 1 \in \mathbb{F}_q[x]$, submitted for publication in Designs, Codes and Cryptography.
- [4] Butler, M.C.R., The Irreducible factors of f(x^m) over a finite field, J. London Math. Soc, 2nd Ser. 30 (1955) 480-482.
- [5] Farrell, P. G., Castieira Moreira, J., Essentials of Error-Control Coding John Wiley & Sons Ltd (2006).
- [6] Kumar P, Arora, S.K. λ -Mapping and Primitive Idempotents in semi simple ring \mathcal{R}_m . Comm. Algebra **41** (2013) 3679-3694
- [7] R. D. Carmichael, On the Numerical Factors of Certain Arithmetic Forms, Amer. Math. Monthly, 16,10 (1909), 153-159.
- [8] Huffman, W.C., Pless, V., Fundamentals of Error-Correcting Codes, Cambridge University Press, (2003).
- [9] MacWilliams, F.J., Sloane, N.J.A., Theory of Error-Correcting Codes, North-Holland (1977).
- [10] Sahni, A., Sehgal, P. Minimal cyclic codes of length $p^n q$, Finite Fields Appl. 18 (2012), no. 5, 1017-1036.
- [11] Xambo-Descamps, S. Block Error-Correcting Codes Universitext, Springer (2003)

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE FEDERAL DE MINAS GERAIS, UFMG, BELO HORIZONTE, MG, 30123-970, BRAZIL,

E-mail address: fbrocher@mat.ufmg.br