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NUMBER OF MINIMAL CYCLIC CODES WITH GIVEN

LENGTH AND DIMENSION

F. E. BROCHERO MARTÍNEZ

Abstract. In this article, we count the quantity of minimal cyclic codes of
length n and dimension k over a finite field Fq, in the case when the prime
factors of n satisfy a special condition. This problem is equivalent to count
the quantity of irreducible factors of xn − 1 ∈ Fq[x] of degree k.

1. Introduction

Let Fq be a finite field with q elements. A linear [n, k; q] code C is a linear
subspace of Fn

q of dimension k. C is called a cyclic code if C is invariant by a
shift permutation, i.e., if (a0, a1, . . . , an−1) ∈ C then (an−1, a0, a1, . . . , an−2) ∈ C.

It is known that every cyclic code can be seen as an ideal of the ring
Fq [x]

(xn−1) . In

addition, since
Fq[x]

(xn−1) is a principal ring, every ideal is generated by a polynomial

g(x) such that g is a divisor of xn − 1. Thus, the polynomial g is called generator

of the code and the polynomial h(x) = xn−1
g(x) is called the parity-check polynomial

of C. Observe that {g, xg, . . . xk−1g}, where k = deg(h), is a basis of the linear

space (g) ∈
Fq [x]

(xn−1) , then the dimension of the code is the degree of the parity-check

polynomial. A cyclic code C is called minimal cyclic code if h is an irreducible
polynomial in Fq[x]. Thus, the number of irreducible factors of xn − 1 ∈ Fq[x]
corresponds to the number of minimal cyclic codes of length n in Fq. Specifically,
there exists a bijection between the minimal cyclic codes of dimension k and length
n over Fq, that we denote by [n, k; q], and the irreducible factors of xn − 1 ∈ Fq[x]
of degree k.

Irreducible cyclic codes are very interesting by its applications in communication,
storage systems like compact disc players, DVDs, disk drives, two-dimensional bar
codes, etc. (see [5, Section 5.8 and 5.9]). The advantage of the cyclic codes, with
respect to other linear codes, is that they have efficient encoding and decoding
algorithms (see [5, Section 3.7]). For these facts, cyclic codes have been studied for
the last decades and many progress has been found (see [8]).

A natural question is how many minimal cyclic codes of length n and dimension
k over Fq does there exist? In other words, the quations is: given n, k and Fq, find
an explicit formula for the number of minimal cyclic [n, k; q]-codes. This question
is in general unknown, and how to construct all of them too.

In this article, we determine the number of minimal cyclic [n, k; q]-codes assuming
that the order of q modulo each prime factor of n satisfies some special relation.
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2. Preliminaries

Throughout this article, Fq denotes a finite field of order q, where q is a power
of a prime. For each a ∈ F∗

l , ord(a) denotes the order of a in a multiplicative group
F∗
l , i.e. ord(a) is the least positive integer k such that ak = 1. In the same way,

we denote by ordn b, the order of b in a multiplicative group Z∗
n and νp(m) is the

maximal power of p that divides m. In addition, for each irreducible polynomial
P (x) ∈ Fq[x], ord(P (x)) denotes the order of some root of P (x) in some extension
of Fq.

It is a classical result (see, for instance, [4]) to determine the number of factors
of xn − 1 and its degree, when the order is given.

Theorem 2.1. Let n be a positive integer such that gcd(n, q) = 1, then each factor
of xn−1 ∈ Fq[x] has order m, where m is a divisor of n. In addition, for each m|n,

there exist ϕ(m)
ordm q

irreducible factors and each of these factors has degree ordm q.

As a consequence of this theorem (see proposition 2.1 in [1]), the number of

factors of degree k of xn−1 is
∑

m|n
ordm q=k

ϕ(m)
k

and then the total number of irreducible

factors is
∑

m|n

ϕ(m)
ordm q

. So, the number of irreducible factors of degree k is zero if any

m divisor of n satisfies ordm q = k. Clearly, this formula is not really explicit,
because it depends on the calculation of the orders ordm q for every divisor of n.

An equivalent approach is to use the technique of q-cyclotomic classes (see [11]
page 157 or [9] Chapter 8). In fact, the q-cyclotomic class of j modulo n is the set
{j, jq, jq2, . . . , jqk−1} whose elements are distinct modulo n and jqk ≡ j (mod n).
This q-cyclotomic class determines one irreducible factor of xn − 1 of degree k.

If we denote by Ck the set of numbers j, with 1 ≤ j ≤ n that have q-cyclotomic
class with k elements, then

Ck = {j ≤ n; k is the minimum positive integer such that jqk ≡ j (mod n)}

=

{

j ≤ n; k is the minimum positive integer such that qk ≡ 1 (mod
n

gcd(n, j)
)

}

=
{

j ≤ n; k = ord n
gcd(n,j)

q
}

.

Since each q-cyclotomic class determines a minimal cyclic code, then the number

of minimal cyclic [n, k; q]-codes is
|Ck|

k
.

Using this technique, in [10] and [6] are shown explicit formulas for the total of
minimal cyclic codes for some special cases.

Theorem 2.2 ([10]). Suppose that n = pα1
1 p2 satisfies that d = gcd(ϕ(pα1

1 ), ϕ(p2)),
p1 ∤ (p2 − 1) and q is a primitive root mod pα1

1 as well as mod p2. Then the
number of minimal cyclic codes of length n over Fq is α1(d+ 1) + 2.

Theorem 2.3 ([6, Theorem 2.6]). Suppose that n = pα1
1 · · · pαl

l satisfies that ord
p
αj
j

q =

ϕ(p
αj

j ) for every j, and gcd(pj − 1, pi− 1) = 2 for every i 6= j. Then the number of
minimal cyclic codes of length n over Fq is

(2α1 + 1)(2α2 + 1) · · · (2αk + 1) + 1

2
.
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Besides, some explicit formulas for the number of [n, k; q]-codes for some partic-
ular values of n and q are known

Theorem 2.4 ([3, Corollary 3.3 and 3.6] ). Suppose that n and q are numbers such
that every prime factor of n divides q − 1. Then

(1) If 8 ∤ n or q 6≡ 3 (mod 4) then the number of minimal cyclic [n, d; q]-codes
is

{

ϕ(d)
d

· gcd(n, q − 1) if d | n
gcd(n,q−1)

0 otherwise

The total number of minimal cyclic codes of length n is

gcd(n, q − 1) ·
∏

p|m
p prime

(

1 + νp(m)
p− 1

p

)

,

where ϕ is the Euler Totient function.
(2) If 8|n and q ≡ 3 (mod 4) then the number of minimal cyclic [n, d; q]-codes

is






















ϕ(d)
d

· gcd(n, q − 1) if d is odd and d | n
gcd(n,q2−1)

ϕ(k)
2k · (2r − 1) gcd(n, q − 1) if d = 2k, k is odd and k | n

gcd(n,q2−1)
ϕ(k)
k

· 2r−1 gcd(n, q − 1) if d = 2k, k is even and k | n
gcd(n,q2−1)

0 otherwise

where r = min{ν2(n/2), ν2(q + 1)}. The total number of minimal cyclic
codes of length n is

gcd(n, q − 1) ·

(

1

2
+ 2r−2(2 + ν2(m))

)

·
∏

p|m
p odd prime

(

1 + νp(m)
p− 1

p

)

.

3. Codes with power of a prime length

In this section, we are going to suppose that n is a power of a prime. In order
to determine the number of irreducible codes of length n, we need the following
lemma, that it is pretty well-known in the Mathematical Olympiads folklore and it
is attributed to E. Lucas and R. D. Carmichael (see [7]).

Lemma 3.1 (Lifting-the-exponent Lemma). Let p be a prime. For all a, b ∈ Z and
n ∈ N, such that p ∤ ab and p|(a− b), the following proprieties are satisfied

(i) If p ≥ 3, then νp(a
n − bn) = νp(a− b) + νp(n).

(ii) If p = 2 and n is odd then ν2(a
n − bn) = ν2(a− b).

(iii) If p = 2 and n is even then ν2(a
n − bn) = ν2(a

2 − b2) + ν2(n)− 1.

As a consequence of the previous lemma we obtain

Corollary 3.2. Let p be a prime and ρ = ordp q.

(1) If q 6≡ 3 (mod 4) or p 6= 2 then

ordpθ q =











1 if θ = 0

ρ if θ ≤ β

ρpθ−β if θ > β.

where β = νp(q
ρ − 1).
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(2) If q ≡ 3 (mod 4) and p = 2, then

ord2θ q =











1 if θ = 0 or 1.

2 if θ ≤ β

2θ−β+1 if θ > β.

where β = ν2(q
2 − 1).

Proof: (1) Clearly, ordpθ q = ρ if 1 ≤ θ ≤ β. In the case θ > β, since ordp q
divides ordpθ then, by Lemma 3.1 item (i), we have

θ = νp(q
k − 1) = νp(q

ρ − 1) + νp

(

k

ρ

)

= β + νp

(

k

ρ

)

.

In addition to the minimality of k, we obtain that k
ρ
= pθ−β.

The proof of part (2) is similar by using items (ii) and (iii) of Lemma 3.1 . �

Theorem 3.3. Suppose that n = pα, where p is a prime and ρ and β as in the
previous lemma. Then

(1) If p 6= 2 or q 6≡ 3 (mod 4) then the number of minimal cyclic [n, d; q]-codes
is























gcd(n, q − 1) if d = 1
pmin{α,β}−1

ρ
if d = ρ 6= 1

pβ−pβ−1

ρ
if d = ρ · pj and 1 ≤ j ≤ α− β

0 otherwise

(2) If n = 2α and q ≡ 3 (mod 4) then the number of minimal cyclic [n, d; q]-
codes is































2 if d = 1

1 if d = 2 and α = 2

3 if d = 2 and α ≥ 3

2 if d = 2j and 2 ≤ j ≤ α− 2

0 otherwise

Proof: (1) In the case when k = 1, the number of [n, 1 : q]-codes is equivalent to
the number of roots of the polynomial xn − 1 in F∗

q . Since every element of F∗
q is

root of xq−1 − 1, and gcd(xn − 1, xq−1 − 1) = xgcd(n,q−1) − 1, we conclude that the
number of minimal [n, 1; q]-codes is gcd(n, q − 1).

Now, suppose that d 6= 1. Since ρ divides ordps q for every s ≥ 1 and
ordps q

ρ
is a

power of p, it follows that if k
ρ
is not a power of p, then there not exist [n, k; q]-codes.

In the case when d = ρ, by Corollary 3.2, we know that ordps q = ρ if and only
if 1 ≤ s ≤ β and then the number of [n, ρ; q]-codes is

min{α,β}
∑

s=1

ϕ(ps)

ρ
=

min{α,β}
∑

s=1

ps − ps−1

ρ
=

pmin{α,β} − 1

ρ

Finally, in the case d = ρpj , since ordps q = ρpj if and only if s = j + β, and
s ≤ α, we conclude that j ≤ α− β and the number of [n, ρpj; q]-codes is

ϕ(ps

ordps q
=

ϕ(pj+β)

ρpj
=

pβ − pβ−1

ρ
.
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So, this identity concludes the proof of (1).
We note that the proof of (2) is essencially the same of (1) and we omit. �

Remark 3.4. In [2], we show one way to construct the primitive idempotents of

the ring
Fq[x]

(xn−1) where n = pα and it is known that each primitive idempotent is a

generator of one minimal cyclic code of length n.

4. The number of cyclic codes given an special condition

Throughout this section, n = pα1
1 · · · pαl

l is the factorization in primes of n, where
n is odd or q 6≡ 3 (mod 4). Moreover, we put ρi = ordpi

q and βi = νpi
(qρi − 1).

Definition 4.1. The pair (n, q) satisfies the homogeneous order condition (H.O.C.)
if gcd(ρi, n) = 1, for every i, and there exists ρ ∈ N such that ρ = gcd(ρi, ρj), for
every i 6= j.

Observe that every pair (n, q) considered in Theorems 2.2, 2.3, 2.4 and 3.3 sat-
isfies H.O.C.. Furthermore, if (n, q) satisfies H.O.C then

R := lcm(ρ1, ρ2, . . . , ρk) =
ρ1ρ2 · · · ρk

ρk−1

and, by Lemma 3.1, we have

νpi
(qR − 1) = νpi

(qρi − 1) +
∑

1≤j≤k
j 6=i

νpi

(

ρj
ρ

)

= βi.

Lemma 4.2. Let (n, q) be a pair which satisfies H.O.C. and d = pθ11 · · · pθll be a
divisor of n other than 1. Then

ordd q =
ρd

gcd(d, qR − 1)

∏

1≤i≤l
θi 6=0

ρi
ρ
.

Proof: Observe that if θi 6= 0 then

ord
p
θi
i

q = ρi
pθii

gcd(pθii , qρi − 1)
= ρi

pθii
gcd(pθii , qR − 1)

.

Thus, in the case when d = p
θi1
i1

· · · p
θis
is

, where θij 6= 0, we have

ordd q = lcm(ord
p
θi1
i1

q, . . . ord
p
θis
is

q)

= ρ · lcm





ord
p
θi1
i1

q

ρ
, . . . ,

ord
p
θis
is

q

ρ





= ρ

s
∏

j=1

ρij
ρ

p
θij
ij

gcd(p
θij
ij

, qR − 1)

= ρ
d

gcd(d, qR − 1)

∏

pi|d

ρi
ρ
.

�

Corollary 4.3. Let (n, q) be a pair which satisfies H.O.C.. If there exist minimal
cyclic [n, k; q]-codes then
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(1) gcd(k, ρi) = 1 or ρi, for every i.
(2) If pi divides gcd(n, k), then ρi divides k.

(3) gcd(n, k) divides
·n

gcd(n, qR − 1)
.

Theorem 4.4. Let Fq be a finite field and n be a positive integer such that the
pair (n, q) satisfies H.O.C. and suppose that n is odd or q 6≡ 3 (mod 4). Let k be a
positive integer satisfying the conditions of the corollary 4.3. Then the number of
minimal cyclic [n, k; q]-codes is

{

gcd(n, q − 1) if k = 1

gcd(n, qR − 1)ϕ(gcd(k,n))
k

if k 6= 1.

The total number of minimal cyclic codes of length n is

ρ− 1 +
l
∏

i=1

(

ρ
ρi

(

ϕ(pβi

i )max{αi − βi, 0}+ pmin{αi,βi} − 1
)

+ 1
)

ρ

Proof: We are going to suppose that k 6= 1, because the case k = 1 has been
proved in Theorem 3.3. Let I be the set of indices i such that ρi

ρ
divides k,

J = {i ∈ I|pi divides k} and I0 = I \ J .
Let d be a divisor of n such that ordd q = k. By Lemma 4.2, it follows that d|nI

and k = tRI where

t = gcd(k, n) =
d

gcd(d, qR − 1)
and RI = ρ

∏

i∈I

ρi
ρ
.

Since t =
∏

i∈I pθii , then

θi = νpi
(d)−min{νpi

(d), βi} = max{0, νpi
(d)− βi} for all i ∈ I.

Observe that θi ≤ max{0, αi− βi} for all i ∈ I and then t divides
nI

gcd(nI , qR − 1)
.

Furthermore, if θi 6= 0, then νpi
(d) = θi + βi ≤ αi, and in the case θi = 0, we have

νpi
(d) ≤ αi ≤ βi. If follows that d = d0d1, where

d1 =
∏

i∈J

p
θi+βj

i = gcd(k, n) · gcd(n1, q
R − 1), with n1 =

∏

i∈J

pαi

i

and d0 is a divisor of n0 =
∏

i∈I0
pαi

i . Therefore, the number of [n, k; q]-codes is

1

k

∑

d|n
ordd n=k

ϕ(d) =
1

k

∑

d0|n0

ϕ(d0d1) =
n0 · ϕ(d1)

k

=
n0 · gcd(k, n) · gcd(n1, q

R − 1)

k

∏

i∈J

(

1−
1

pi

)

.

By using the fact that n0 = gcd(n0, q
R − 1) and

∏

i∈J

(

1− 1
pi

)

= ϕ(gcd(k,n))
gcd(k,n) , we

conclude that the number of irreducible cyclic [n, k; q]-codes is

gcd(n, qR − 1)ϕ(gcd(k, n))

k
.
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On the other hand, by Lemma 4.2, the function f(d) =

{

1 if d = 1
ρ·ϕ(d)
ordd q

if d 6= 1
is

multiplicative for every d divisor of n. So, the total number of minimal cyclic codes
of length n is

∑

d|n

ϕ(d)

ordd q
= 1−

1

ρ
+

1

ρ

∑

d|n

f(d).

In order to calculate the sum, observe that

∑

d|p
αi
i

f(d) = 1 +

αi
∑

s=1

ρ · (psi − ps−1
i )

ρi
ps
i

gcd(ps
i
,qR−1)

= 1+
ρ

ρi

(

1−
1

pi

) αi
∑

s=1

gcd(psi , q
R − 1)

= 1 +
ρ

ρi

(

1−
1

pi

)





min{αi,βi}
∑

s=1

psi +max{0, αi − βi}p
βi

i





= 1+
ρ

ρi

(

pi
min{αi,βi} − 1 +

(

1−
1

pi

)

max{0, αi − βi}p
βi

i

)

= 1+
ρ

ρi

(

pi
min{αi,βi} − 1 + max{0, αi − βi}ϕ(p

βi

i )
)

.

Then, by using the fact that
∑

d|n f(d) is a multiplicative function, we conclude

the proof. �
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