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Abstract

In this paper, we consider the situation under a life test, in which the failure time of

the test units are not related deterministically to an observable stochastic time varying co-

variate. In such a case, the joint distribution of failure time and a marker value would be

useful for modeling the step stress life test. The problem of accelerating such an experiment

is considered as the main aim of this paper. We present a step stress accelerated model

based on a bivariate Wiener process with one component as the latent (unobservable) degra-

dation process, which determines the failure times and the other as a marker process, the

degradation values of which are recorded at times of failure. Parametric inference based on

the proposed model is discussed and the optimization procedure for obtaining the optimal

time for changing the stress level is presented. The optimization criterion is to minimize the

approximate variance of the maximum likelihood estimator of a percentile of the products’

lifetime distribution.

Keywords: Bivariate normal, Fisher information matrix, Inverse Gaussian distribution.

AMS subject classification: 62N05, 60K10

1 Introduction

The lifetime experiments have received attention recently, partly because the high reliability of

the manufactured products is important in the current intense economical competition between

trading firms. Over time, several lifetime tests for assessing the lifetime probability distribution

of the products are developed, ranging from simple Constant Stress Life Test (CSLT) to the

Step Stress Accelerated Degradation Test (SSADT). Two useful survey of available results are

given in the books of Nelson ,1990 and Bagdonavicius and Nikulin, 2010. For some recent papers
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concerning the lifetime experiments see Pan and Balakrishnan, 2010, Pan et al., 2011, Jin, 2011,

Simino et al., 2012 and Wang et al., 2012.

Life tests usually deal with models for which failure occurs when an observable degradation

process crosses a threshold level. However, there are practical situations in which the failure

time of the test units are not related deterministically to an observable marker covariate. In

such a case, the joint distribution of the failure time and a marker process would be useful for

modeling the step stress life test. Joint models for marker evolution and failure are proposed in

the literature under the simple constant stress life tests, including Jewell and Kalbfleisch, 1996,

who examine jump processes for markers and an additive relationship between the marker and

the failure time hazard function, and Yashin and Manton, 1997, who consider diffusion processes

for markers along with a quadratic relationship between the hazard function and markers.

In most cases, the information about the latent (unobservable) degradation path can only

be obtained using the related marker(s) and the fact that a failure occurs when the latent

degradation process crosses a known threshold. Whitmore et al., 1998, proposed a constant

stress bivariate Wiener model in which one component represents the marker and the second,

which is latent, determines the failure time.

The constant stress life tests are usually very costly, since they require destroying a con-

siderable number of products for testing at each level of stress. To handle this problem, Step

Stress Accelerated Life Tests (SSALT) were proposed as an economic alternative to the constant

stress life tests. In a SSALT framework, each product is first tested, subject to a pre-determined

stress level for a specified duration, and the failure data are collected. A product which survived

until the end of the first step was again tested at a higher stress level and for a different time

duration. The experiment is repeated for a specified number of stress levels and terminated at a

pre-determined censoring time. The constant stress bivariate Wiener model proposed by Whit-

more et al., 1998 is as well a costly experiment. Although censoring in this model decreases the

total time of the experiment it does not solve the problem of efficiency. To handle this problem,

we consider a SSALT design under the bivariate Wiener model.

An essential problem in an SSALT design is to determine the optimal time for changing

the stress level by the experimenter. The problem of optimizing the test design have been

extensively studied in recent years. Three commonly used optimization criteria are the minimum

Approximated variance (Avar) of the Maximum Likelihood Estimators (MLE) of reliability,

Mean Time To Failure (MTTF) and the quantiles of the population. For surveys of recent

results in optimization of life test designs, see in particular Tang et al., 2004, Liao and Tseng,

2006 and Tseng et al., 2009.

In this paper, we reconstruct the model proposed by Whitmore et al., 1998 in a SSALT

framework. Such a generalized model is clearly more economic than the constant stress model

of Whitmore et al., 1998, since constant stress experiment requires destroying a considerable

number of products at each level of stress. The Maximum likelihood and Bayesian estimation

of the parameters of the proposed model are discussed. Next, we determine the optimal stress

changing time by minimizing the Avar of the MLE of the 100pth percentile of the products’ life
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time distribution.

The rest of this paper is organized as follows. In Section 2, we introduce the SSALT model

with a bivariate Wiener process and derive the joint distribution of failure times and the marker

process. Parametric Inference based on the proposed model is discussed in Section 3. The

optimization criterion is described in Section 4. Finally an illustrative example is presented in

Section 5.

2 The Model

Consider a two-dimensional Wiener diffusion process {(X(r), Y (r))}, for r ≥ 0 with (X(0), Y (0)) =

(0, 0) (see Cox and Miller, 1965). In other words, under the normal stress level S0

(X(r), Y (r))|S0 ∼ N2(rµX0, rµY 0, rσ
2
X , rσ2

Y , ρ),

where N2 stands for the bivariate normal distribution. Assume further that µX0 ≥ 0, which

guarantees the degradation process X(r) to be stochastically increasing in r.

The component X(r) assumed to be a degradation process that represents the level of de-

terioration of an item. An item fails as soon as X(r) reaches a threshold D > 0. This first

passage time of the degradation process through the threshold is denoted by a random variable

T , namely

T = inf{t|X(t) ≥ D}. (2.1)

The failure time T follows an inverse Gaussian distribution (see for instance, Chhikara and Folks,

1989), with the cumulative distribution function (cdf) under the normal stress level S0 as follows

G0(t) = Φ

(√

1

σ2
Xt

(µX0t−D)

)

+ exp

{

2µX0D

σ2
X

}

Φ

(

−
√

1

σ2
Xt

(µX0t+D)

)

, (2.2)

where Φ is the cdf of the standard normal distribution.

The degradation process X(r) is assumed to be unobservable. The component Y (r) repre-

sents a marker process that is correlated with the degradation process and tracks its progress.

Thus, results of the experiment are based on observations on the marker process, supplemented

by failure times of failed items. We focus on the situation where marker measurements are taken

only at the failure or censoring times.

Consider the above bivariate process to model a SSALT problem. Under a SSALT, each

item is first tested subject to a stress level S1 (S1 > S0) for a specified duration [0, τ1). If the

item does not fail, it is tested again at a higher stress level S2 (S2 > S1) for another specified

duration [τ1, τ2). The experiment is continued until the time C, under m ≥ 2 stress levels

Sm > Sm−1 > · · · > S2 > S1. The stress level of the experiment is then defined as

S =























S1 for 0 ≤ t < τ1

S2 for τ1 ≤ t < τ2
...

Sm for τm−1 ≤ t < C,
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where the pre-specified values 0 < τ1 < τ2 < · · · < τm−1 < C are called the stress changing

times.

time

De
gr
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at

io
n

C
2nd stress level1st stress level

Threshold D

Figure 1: A sampler degradation path. Three different paths are showed: a failed item under the first stress level (dashed

line), a failed item under the second stress level (dotted line) and a survived (censored) item (dash-dotted line).

Under a SSALT model, each item has two possible observation outcomes during the period

(0, C]:

• Surviving (Censored) item: The item survives to the censoring time C at which a

marker level of Y (C) = y(C) is recorded. This occurrence constitutes a censored observa-

tion of failure time with T > C.

• Failing item: The items fails at some time T = t during the period (0, C] and a marker

level of Y (T ) = y(t) is recorded at the moment of failure.

2.1 The distribution of failure time and marker covariate

For the aforementioned plan, under the stress Sj, for j = 1, 2, . . . ,m, we have

(X(r), Y (r))|Sj ∼ N2(rµXj
, rµYj

, rσ2
X , rσ2

Y , ρ).

Assume further that the Arrhenius reaction model is used to model the relationship between

the location parameters µXj
and µYj

and the temperature stress Sj, that is

µXj
= exp

(

a+
b

273 + Sj

)

, µYj
= exp

(

c+
d

273 + Sj

)

, j = 0, 1, . . . ,m. (2.3)

Consider any sample path of the component X, under stress Sj, over a time interval (0, r]

and partition this sample path at arbitrary time points 0 = r0 < r1 · · · < rk = r, k ≥ 1. Let
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∆ri = ri−ri−1 and ∆xi = x(ri)−x(ri−1), for i = 1, · · · , k. Denote the set of realized increments

{∆x1, . . . ,∆xk} by P . Then we have clearly

Y (r)|P ∼ N(µy.x(r), rσ
2
Y (1− ρ2)), (2.4)

where for j = 1, . . . ,m,

µy.x(r) = µj(y, r) + ρ
σY
σX

[x(r)− µj(x, t)], τj−1 ≤ r < τj,

µj(y, t) = µYj
(t− τj−1) +

j−1
∑

k=1

µYk
(τk − τk−1),

µj(x, t) = µXj
(t− τj−1) +

j−1
∑

k=1

µXk
(τk − τk−1),

τ0 = 0 and τm = C.

The conditional distribution in (2.4) is the same as the conditional distribution Y (r)|x(r).
Hence (2.4) holds for any sample path of X.

Therefore, for a surviving path, the conditional distribution of the marker given the degra-

dation at the censoring time C is as follows

Y (C)|X(C) ∼ N(µy.x(C), Cσ2
Y (1− ρ2)).

The resulting conditional probability density function (p.d.f) of the surviving path then is

p1(y|x; θ) = C−1/2σ−1
Y (1− ρ2)−1/2φ

(

C−1/2σ−1
Y (1− ρ2)−1/2(y − µy.x(C))

)

, (2.5)

where φ is the pdf of the standard normal distribution and

θ = (µX1, . . . , µXm, µY 1, . . . , µY m, σ2
X , σ2

Y , ρ).

For a failing item at time t, the distribution of Y (t)|x(t) is equal to (2.4) with r replaced by

t and x(r) replaced by x(t) = D. The corresponding p.d.f then is

p2(y|t; θ) = t−1/2σ−1
Y (1−ρ2)−1/2φ

(

t−1/2σ−1
Y (1− ρ2)−1/2

(

y − µj(y, t) + ρ
σY
σX

[D − µj(x, t)]

))

.

A similar argument to that in Lu, 1995 can be used to derive the p.d.f. of a surviving item,

that is P(X(C) = x, T > C), as follows

p3(x) =
1− exp(−2D(D−x)

σ2
X
C

)

σX
√
C

φ(
x− µm(x,C)

σX
√
C

), −∞ < x < D. (2.6)

It is easy to verify that the p.d.f. of T in (2.1) of a failing item is

fT (t|T < C) =

m
∑

j=1

D
√

(2πσ2
X t3)

exp(−
(D − µXj

t)2

2σ2
X t

)I(τj−1,τj)(t),
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where

IA(t) =

{

1 if t ∈ A

0 if t /∈ A,

τ0 = 0 and τm = C.

We combine the preceding results to obtain the p.d.f. for each type of observation outcome,

as follows:

For a censored item which survives beyond time C, the joint p.d.f. of the marker Y (C) and

the latent degradation X(C) is given by p1(y|x; θ)p3(x; θ), where p1 and p3 are given in (2.5)

and (2.6), respectively. Since the X(C) = x is not observed, we integrate it out of the joint

density to obtain

PCm(y; θ) = P (Y (C) = y, T > C) =

∫ D

−∞

p1(y|x; θ)p3(x; θ)dx. (2.7)

For a failing item, the joint p.d.f of Y (T ) and T equals

Pf (y, t; θ) = P (Y (T ) = y, T = t < C) = p2(y|t; θ)fT (t; θ). (2.8)

2.2 The likelihood

Assume that n items are on test subject to SSADT over the observation period (0, C]. The

sample log-likelihood then is given by

logL(θ) =
n
∑

i=1

m
∑

j=1

I(τj−1,τj)(ti) log Pf (yi, ti; θ) + (1− I(0,C)(ti)) log PCm(yi; θ)

=
m
∑

j=1

ξj
∑

i=ξj−1+1

logPfj (yi, ti; θ) +
n
∑

i=ξm−1+1

log PCm(yi; θ). (2.9)

ξj =
∑j

k=0 νk and ν0 = 0, in which νj is the number of failed items under stress Sj , for

j = 1, . . . ,m, (yk, tk), for k = ξj−1+1, . . . , ξj, denote the sample failing items for the stress level

Sj, j = 1, . . . ,m, yk, for k = ξm−1 + 1, . . . , n, denote the sample surviving (censored) items,

Pfj(yi, ti; θ) = I(τj−1,τj)(ti) D(2πσXσY )
−1(1− ρ2)−1/2t−2

i e−t−1
i Qj(yi,ti) , j = 1, . . . ,m,

Qj(y, t) = η1(qj(t, y)− η2Pj(t))
2 + σ−2

X (D − µXjt)
2/2, , j = 1, . . . ,m,

qj(t, y) = y − µj(y, t), Pj(t) = D − µj(x, t), j = 1, . . . ,m,

in which

η1 = σ−2
Y (1− ρ2)−1/2, and η2 = ρσY σ

−1
X . (2.10)

Furthermore, integrating (2.7) results in

PCm(yi; θ) = cy

2
∑

k=1

(−1)k−1e(k−1)βmΦ(cm(y; k, 1))φ(cm(y; k, 2)),
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where

cy = σ−1
Y C−1/2, βm = 2D(D − Pm(C))σ−2

X C−1,

cm(y; 1, 1) = η3(Pm(C)− ρσXσ−1
Y qm(C, y)), cm(y; 1, 2) = cyqm(C, y),

cm(y; 2, 1) = η3(Pm(C)−ρσXσ−1
Y qm(C, y)−2D(1−ρ2)), cm(y; 2, 2) = cy(qm(C, y)−2η2D),

and

η3 = σ−1
X (1− ρ2)−1/2C−1/2. (2.11)

3 Parametric Inference

In this section, we develop the parametric inferential procedures based on the proposed mod-

els. The maximum likelihood and Bayesian estimation methods are considered for inferential

purpose. From Section 2, it is apparent that the models are analytically intractable. Thus,

the finite sample performance of the maximum likelihood and Bayesian estimators could be

examined through a simulation study. To perform a simulation study, we set m = 2, D = 1,

C = 700, S1 = 1200, S2 = 1400, and τ = 300, 400, 500. Because of the invariance property of

the maximum likelihood estimators, the maximum likelihood estimates of the parameter vector

θ = (µX1 , µX2 , µY1 , µY2 , σ
2
X , σ2

Y , ρ) and those of the transformed parameter vector

θ∗ = (a, b, c, d, σ2
X , σ2

Y , ρ)

can be obtained from each other. In the following, we assume the transformed parameter vector

θ∗ as in Table 1.

Table 1: Parameter of model used for the simulation
θ∗ a b c d σ2

X σ2
Y ρ

-2.817991 -4996.008 -1.644788 -4995.996 0.001729986 0.0020806801 0.5893698756

Using (2.3) we have (µX1 , µX2 , µY1 , µY2) = (0.002009813, 0.00301472, 0.006496424, 0.009744636).

3.1 Maximum likelihood

First, we deal with maximum likelihood estimation of the model parameters. Suppose n = 30

independent items are tested subject to SSALT over the observation period (0, C]. The maximum

likelihood estimators (MLEs) of the model parameters can be obtained by maximizing the log-

likelihood (2.9). It is not possible to obtain the MLEs of the parameters in a closed form. Thus,

numerical computational methods are used for obtaining the MLEs. A Monté Carlo simulation

with 10,000 iterations is conducted using software R 2.14.2 to obtain the estimated relative root

of mean square error (RRMSE) and estimated relative bias (Rbias) of the ML estimators of the

parameters. These results are summarized in Table 2. One can observe from Table 2 that the

performance of the estimates are quite satisfactory in terms of RRMSE and Rbias.
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Table 2: Parameter estimates for τ = 300, 400, 500, n = 30

τ µX1
µX2

µY1
µY2

σ2
X σ2

Y ρ

MLE 0.001544 0.002315 0.006268 0.009401 0.001755 0.002020 0.591156

300 Rbias -0.231723 -0.154533 -0.035092 -0.035226 0.014603 -0.029246 0.003031

RRMSE 0.263621 0.175785 0.063134 0.063224 0.271781 0.245912 0.204330

MLE 0.001536 0.002303 0.006277 0.009415 0.001839 0.002045 0.596587

400 Rbias -0.236005 -0.157394 -0.033721 -0.033851 0.062744 -0.017047 0.012246

RRMSE 0.275125 0.183462 0.063961 0.064030 0.271558 0.248880 0.203052

MLE 0.001599 0.002396 0.006324 0.009484 0.001850 0.002050 0.596866

500 Rbias -0.204660 -0.13650 -0.026547 -0.026784 0.069158 -0.014685 0.012720

RRMSE 0.262404 0.174980 0.063265 0.064235 0.273821 0.246177 0.204354

3.2 Bayesian approach

The Bayesian approach is appealing to statisticians and reliability engineers, since it provides a

method of using their past experiences and/or prior convictions for inference. From a Bayesian

point of view, we can treat the unknown parameters as a random variable with a known prior

probability distribution. Then, we can combine information from the random sample and prior

probability distribution to obtain the Bayesian estimators for the parameters of the model.

However, in most practical applications, where the Bayesian approach is used, it is difficult

to compute analytically the posterior distribution. The Markov chain Monté Carlo (MCMC)

method uses to generate a sample from the posterior distribution large enough so that any desired

feature of the posterior distribution can be accurately obtained. Because of the restrictions

µX1 < µX2 and µY1 < µY2 , we have to consider joint priors for the vectors (µX1 , µX2) and

(µY1 , µY2), while we can consider independent priors for the transformed parameters a, b, c and

d. To simplify the calculations, we perform the Bayesian approach for the transformed parameter

vector θ∗ = (a, b, c, d, σ2
X , σ2

Y , ρ).

Table 3 presents simulated data sets by using the parameters in Table 1 for τ = 300, 400, 500.

We consider the Bayes estimation of the transformed parameter vector, θ∗, based on data sets

in Table 3, under the square error and absolute error loss functions. An analytic calculation of

estimators and their risks for comparison is far from reach. To carry out an empirical comparison,

a simulation study was conducted using software R 2.14.2 to generate a sequence of parameter

values from the posterior density of θ∗ given the generated data set of Table 3 by making use of

the random walk Metropolis-Hasting algorithm.

To facilitate the Bayesian approach, we assume independent prior distributions for the model

parameters, that is

π(a, b, c, d, σ2
X , σ2

Y , ρ) ∝ π1(a)π2(b)π3(c)π4(d)π5(σ
2
X)π6(σ

2
Y )π7(ρ),

where π1(a), π2(b), π3(c) and π4(d) are assumed to be the low informative normal densities

with zero mean and the variance equal to 104, π5(σ
2
X) and π6(σ

2
Y ) are assumed to be the

non-informative Jeffrey’s priors π(σ2
X) ∝ 1

σ2
X

, π(σ2
Y ) ∝ 1

σ2
Y

and π7(ρ) is taken to be the non-

8
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Figure 2: The empirical posterior densities of the model parameters for τ = 400.
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Figure 3: Two dimensional plots of the generated model parameters (a, b, c, d) for τ = 400.
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Table 3: Thirty simulated observation for parameter set of Table 1.

τ = 300 τ = 400 τ = 500

δ t y δ t y δ t y

1 206 2.9043836 1 125 1.3302026 1 72 0.8630739

1 204 2.2834415 1 347 2.0791452 3 700 5.7413420

2 358 2.0369846 2 409 2.8987105 1 257 0.5140461

2 424 2.2286551 3 700 4.3707818 2 627 3.7818455

2 528 3.3882536 1 321 4.2948213 1 265 2.5664485

1 293 1.0765821 2 664 5.1428573 3 700 2.3397970

2 433 3.4253562 2 413 2.1084361 2 588 4.4356021

2 367 2.7105020 2 575 3.8347019 1 261 2.2925127

2 481 2.7411018 3 700 4.3353895 1 152 1.5052757

1 74 0.4584009 1 61 1.4195226 1 203 2.2968604

1 232 1.4229018 2 443 4.7402742 3 700 5.2271200

2 563 2.0737839 1 74 0.9594538 1 205 2.4270830

2 524 4.6559941 3 700 6.6440064 2 500 3.9215091

2 398 3.0469754 2 439 2.2434726 3 700 4.2650212

1 83 1.1645206 2 543 3.6592403 2 521 2.0058003

1 288 1.5370298 3 700 3.9542721 1 321 3.1932579

2 518 2.8000903 1 238 0.4759539 1 435 3.1052309

2 558 4.4736314 1 104 1.2579545 1 160 2.6871790

1 106 1.3271670 2 413 2.6969144 1 329 3.0110215

1 699 7.4817986 2 429 1.5348759 2 687 5.7361510

2 538 4.5781005 1 231 0.9987282 1 249 1.9830004

1 98 0.3647197 1 205 2.1099217 2 578 2.8660246

1 184 1.5738009 3 700 6.1866970 1 335 2.4279700

2 379 2.8413248 1 146 1.8776734 1 273 2.3275245

1 102 1.1580797 3 700 4.6567010 1 143 1.3927807

1 165 1.6696197 1 375 1.5709192 1 161 2.3288032

2 584 3.6045384 2 541 2.8358232 2 692 5.5437838

2 371 2.4435304 2 600 4.1900476 1 175 0.7888585

2 538 4.4705936 2 623 3.8115301 1 199 1.0319427

2 303 2.8150623 1 274 2.0937201 3 700 3.1902784

informative uniform(−1, 1) prior.

The random walk Metropolis-Hasting algorithm is executed 50000 times and the last 40000

were used for the sake of convergency. The empirical posterior densities of the model parameters

and two dimensional plots of the generated model parameters (a, b, c, d) are shown in Figures 2

and 3, respectively, for τ = 400. Using these empirical densities we estimate the mean, standard

deviation (Std), MCMC error (MC-er), the median and other critical quantiles of parameters.

These numerical results are summarized in Table 4.

For the sake of brevity, only the values of the Bayse estimates (BEs) based on the square

error loss, as well as their Rbias, MC-er were typically given in Table 5 to be compared with

the corresponding values of the ordinary MLEs. Similar comparisons can be made between BEs

10



Table 4: Parameter estimation results for τ = 300, 400, 500, n = 30

τ = 300

Mean Std MC-er 2.5% Medain 97.5%

a -3.21803700 0.1809108 0.0009045538 -3.562406 -3.185069 -2.991624

b -4100.17100 317.9782 1.589891 -4624.464 -4109.659 -3580.026

c -2.24168800 0.2151238 0.001075619 -2.586862 -2.256567 -1.897493

d -4085.98400 353.0725 1.765363 -4670.439 -4076.054 -3539.374

σ2
X 0.001651598 0.00001052115 5.260574×10−8 0.001635779 0.001649452 0.001679365

σ2
Y 0.002155083 0.00007563872 3.781936×10−7 0.00203197 0.002152928 0.002293804

ρ 0.594830600 0.03566883 1.783442×10−4 0.5374839 0.5871186 0.6582097

τ = 400

Mean Std MC-er 2.5% Medain 97.5%

a -3.318978 0.1811505 0.0009057527 -3.599276 -3.355476 -3.028328

b -4070.080 300.5802 1.502901 -4603.892 -4046.055 -3633.086

c -2.245963 0.1760872 0.0008804360 -2.539122 -2.250249 -1.975724

d -4102.815 301.8582 1.509291 -4586.286 -4105.338 -3627.138

σ2
X 0.001817105 5.632395×10−5 2.816198×10−7 0.001746018 0.001798002 0.001932355

σ2
Y 0.001924476 3.424275×10−5 1.712138×10−7 0.001872394 0.001920889 0.001980292

ρ 0.5896328 0.01278770 6.393848×10−5 0.5574416 0.5901468 0.6118633

τ = 500

Mean Std MC-er 2.5% Medain 97.5%

a -3.204618 0.1443177 0.0007215886 -3.447255 -3.158764 -2.968463

b -4151.146 312.5983 1.562992 -4692.574 -4130.741 -3667.357

c -2.250095 0.1716518 0.0008582590 -2.545561 -2.212597 -1.971093

d -4090.401 288.7204 1.443602 -4581.323 -4123.713 -3607.695

σ2
X 0.001729962 0.00005117870 2.558935×10−7 0.001638141 0.001740245 0.001804733

σ2
Y 0.002047766 0.00003888018 1.944009×10−7 0.001976453 0.002049934 0.002135915

ρ 0.5792594 0.01128655 5.643275×10−5 0.5586604 0.5785074 0.6028768

Table 5: Parameter estimates for non informative prior τ = 300, 400, 500, n = 30

n = 30

τ µX1
µX2

µY1
µY2

σ2
X σ2

Y ρ

BE 0.002479 0.003456 0.006636 0.009242 0.001652 0.002155 0.594831

300 Rbias 0.233561 0.146273 0.021469 -0.05154 -0.045311 0.035759 0.009265

MC-er 7.27×10−7 8.05×10−7 8.73×10−7 1.31×10−5 1.05×10−5 7.56×10−5 0.000178

BE 0.002285 0.003178 0.006534 0.009112 0.001817 0.001924 0.589633

400 Rbias 0.136740 0.054138 0.005756 -0.064964 0.050358 -0.075074 0.000446

MC-er 3.80×10−7 3.61×10−7 1.08×10−6 1.29×10−5 2.82×10−7 1.71×10−6 6.39×10−5

BE 0.002430 0.003399 0.006568 0.009141 0.001730 0.002048 0.579259

500 Rbias 0.209242 0.127457 0.009893 -0.006195 -0.000014 -0.015819 -0.017155

MC-er 9.35×10−7 9.50×10−7 8.70×10−7 1.29×10−5 2.56×10−7 1.94×10−7 5.64×10−5

based on the absolute error loss and the MLEs.
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4 Optimal test plan

For m = 2 stress levels, we have

µX0 = exp

(

log µX1 − α log µX2

1− α

)

and µY 0 = exp

(

log µY 1 − α log µY 2

1− α

)

, (4.1)

where

α =
S1 − S0(273 + S2)

S2 − S0(273 + S1)

is called the stress ratio.

The optimization criterion considered in this paper has to find the optimal stress changing

time 0 < τ∗ < C which minimizes the Approximate variance (Avar) of the ML estimate of the

100pth percentile of the distribution of T , ξ̂p, under the normal stress level S0. The Avar of ξ̂p is

a function of the stress changing time τ and the parameter vector θ. Hence, before performing

the optimization procedure, one have to estimate the parameter vector θ using a lifetime data in

normal conditions. This is done via the ML estimation using (2.9) and based on a pilot study.

The Avar of ξ̂p can be obtained as a function of the approximated variance of the MLE of θ

( the inverse of the Fisher information matrix, I(θ)), using the delta method as

Avar(ξ̂p) = H ′I−1(θ)H/(fT0(ξ̂p))
2,

where fT0(t) is the corresponding pdf of G0(t) in (2.2) and

H ′ =

[

∂Ĝ0(ξ̂p)

∂µ̂X1
,
∂Ĝ0(ξ̂p)

∂µ̂X2
, 0, 0,

∂Ĝ0(ξ̂p)

∂σ̂2
X

, 0, 0

]

.

Note that G0(s) is not a function of µY 1, µY 2, σ
2
Y , and ρ.

We have

∂Ĝ0(ξ̂p)

∂µ̂X1

=
ξ̂pµ̂X0φ (c1x)

µ̂X1(1− α)
√

σ̂2
X ξ̂p

+
2Dµ̂X0e

β3

µ̂X1σ̂
2
X(1− α)

Φ {c2x} −
ξ̂pµ̂X0e

β3

µ̂X1(1− α)
√

σ̂2
X ξ̂p

φ {c2x} ,

∂Ĝ0(ξ̂p)

∂µ̂X2

= −α
µ̂X1

µ̂X2

∂Ĝ0(ξ̂p)

∂µ̂X1

,

and

∂Ĝ0(ξ̂p)

∂σ̂2
X

= −

[

µ̂X0 ξ̂p −D
]

φ (c1x)

2σ̂3
X

√

ξ̂p

− 2Dµ̂X0e
β3Φ {c2x}
σ̂4
X

+

[

µ̂X0 ξ̂p +D
]

eβ3φ {c2x}

2σ̂3
X

√

ξ̂p

.

where

c1x =

√

1

σ̂2
X ξ̂p

[

µ̂X0 ξ̂p −D
]

, c2x = −
√

1

σ̂2
X ξ̂p

[

µ̂X0 ξ̂p +D
]

,

β3 =
2D

σ̂2
X

µ̂X0 , µ̂X0 = exp

(

log µ̂X1 − α log µ̂X2

1− α

)

12



and µ̂X1, µ̂X2 and σ̂2
X are the MLEs of µX1, µX2 and σ2

X , respectively, which are computed

numerically using the log-likelihood in (2.9).

In order to calculate the estimate of the Fisher information matrix of the data at θ, that

is I(θ) = ((Ir,s(θ))), first let θ = (µX1, µX2, µY 1, µY 1, σ
2
X , σ2

Y , ρ) = (θ1, θ2, . . . , θ7). The random

vector (ν1, ν2) in (2.9) follows a multi-nomial distribution with parameters n, p1 = G1(τ1), p2 =

G2(C) − G2(τ1), where Gj(t), j = 1, 2 are as in (2.2) with µX0 replaced by µXj
, j = 1, 2

respectively. We have

Îr,s(θ̂) = E

(

E

(−∂2 logL(θ)

∂θr∂θs

∣

∣

∣

∣

ν1, ν2

))
∣

∣

∣

∣

θ̂

=

n
∑

ν1=0

n−ν1
∑

ν2=0

(

n

ν1

)(

n− ν1
ν2

)

pν11 pν22 (1− p1 − p2)
n−ν1−ν2 E

(−∂2 logL(θ)

∂θr∂θs

∣

∣

∣

∣

ν1, ν2

)∣

∣

∣

∣

θ̂

.

One may write

E

(−∂2 logL(θ)

∂θr∂θs
|ν1, ν2

)

= (ν1G1(τ) + ν2(G2(c)−G2(τ)))αr,s + ν1ζ1(r, s) + ν2ζ2(r, s)

+ (n− ν1 − ν2)ϕ(r, s),

where

αr,s =
−∂2

∂θr∂θs
log[(σXσY )

−1(1− ρ2)−1/2],

ζj(r, s) =

∫ ∞

−∞

∫ ∞

0
t−1∂

2Qj(y, t)

∂θr∂θs
Pfj (y, t; θ) dt dy

= EPfj
(T−1 ∂

2Qj(Y, T )

∂θr∂θs
), j = 1, 2, say,

ϕ(r, s) =

∫ ∞

−∞

h(y; r, s) dy +

∫ ∞

−∞

[g(y; r)g(y; s)]/[PC2(y; θ)] dy

and

h(y; r, s) =
−∂2PC2(y; θ)

∂θr∂θs
, g(y; r) =

∂PC2(y; θ)

∂θr
.

The functions αr,s and ζj(r, s) for j = 1, 2 are simplified and given in the Appendix. It is

straightforward that if T−1 ∂
2Qj(Y,T )
∂θr∂θs

is a function of T only, the expectation can be taken on fT

instead of Pfj . The functions h(y; r, s) and g(y; r) are simplified as

g(y; r) =

2
∑

k=1

1
∑

j1=0

2−j1
∑

j2=1

(−1)k−1e(k−1)β2λ(y; r, k, j1, j2)Φ
(j1)(c2(y; k, 1))Φ

(j2)(c2(y; k, 2)),

and

h(y; r, s) =

2
∑

k=1

2
∑

j1=0

3−j1
∑

j2=1

(−1)ke(k−1)β2γ(y; r, s, k, j1, j2)Φ
(j1)(c2(y; k, 1))Φ

(j2)(c2(y; k, 2)),

where, Φ(j) is the jth derivative of Φ and the coefficients λ(y; r, k, j1, j2) and γ(y; r, s, k, j1, j2)

are given in the Appendix.
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Table 6: Data on failure age and horizontal distortion of the box as a marker for aluminum

reduction cells.

Cell 1 2 3 4 5 6 7 8 9 10

Stress level S2 S2 S1 S2 S2 S1 S2 S1 S1 S2

Failure Age 573 447 365 412 508 385 611 235 395 471

(in days)

Horiz. Distort. 4.16 2.71 2.17 3.89 4.22 4.14 4.66 2.53 2.73 1.91

(in inches)

Cell 11 12 13 14 15 16 17 18 19 20

Stress level S2 S2 S2 S1 S2 S1 S2 S2 S1 S2

Failure Age 604 509 653 341 441 392 447 486 341 666

(in days)

Horiz. Distort. 4.40 4.61 2.57 3.65 2.82 3.00 3.05 3.33 1.82 4.02

(in inches)

Cell 21 22 23 24 25 26 27 28 29

Stress level S2 S1 S2 S2 S2 S2 S2 S2 S2

Failure Age 589 347 588 577 567 468 564 435 504

(in days)

Horiz. Distort. 4.11 2.41 3.27 4.36 2.95 2.90 3.58 1.75 3.95

(in inches)

5 Illustrative example

In order to illustrate the results of previous sections, let us study a numerical example. Whitmore

et al., 1998 presents a real data set on failure age and three potential markers for aluminum

reduction cells in a Canadian aluminum smelter. The production process of Aluminum consists

of electrolysis of molten alumina and cryolite in reduction cells. Cryolite lowers the melting

point of alumina to S0 =950◦C. The cell’s cathode is a carbon-lined steel box which is subject to

severe thermal, chemical and mechanical stresses. The degradation of these cells can be marked

by physical distortion of the steel box. Suppose that n = 29 reduction cells are subjected to

a step stress accelerated life test with m = 2 stress levels S1 =1200◦C and S2 =1400◦C. Table

6 provides an example of marker and failure data for 29 cells of a particular design that were

operated to failure under uniform conditions in the Aluminum smelter. The censoring time is

set to C = 700 days. The table shows the failure age (in days of service) and the values at failure

age of a marker for each cell, namely, the horizontal distortion of the steel box (in inches). For

these data the threshold is taken to be D = 1, the stress changing time is τ = 400 days and

no item is censored. We use these data to illustrate the theoretical results of the optimization

procedure.

Using these data, one can obtain the ML estimates of the parameters using the likelihood in

14
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Figure 4: Values of τ∗ for different values of p.

Table 7: Optimal SSALT plan for minimizing Avar(ξ̂p) for different values of p.

p ξ̂p minimum C.V. τ∗ G1(τ
∗) G2(C)−G2(τ

∗)

0.1 286.0 1.102 570.66 0.3197 0.0775

0.2 442.1 1.556 572.53 0.3208 0.0763

0.3 630.4 2.050 575.02 0.3222 0.0747

0.4 878.6 2.620 577.30 0.3235 0.0732

0.5 1227.6 3.304 579.29 0.3247 0.0719

0.6 1753.1 4.155 581.03 0.3257 0.0708

0.7 2618.5 5.257 582.56 0.3266 0.0698

0.8 4256.4 6.775 583.93 0.3274 0.0689

0.9 8350.1 9.110 585.21 0.3281 0.0681
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Figure 5: The optimized approximated coefficient of variation of ξ̂p for different values of p.

(2.9) as µ̂X1 = 0.0005, µ̂X2 = 0.0007, µ̂Y 1 = 0.0005, µ̂Y 2 = 0.0006, σ̂X = 0.0011, σ̂Y = 0.0188

and ρ̂ = 0.9422.

The optimization process for minimizing Avar(ξ̂p) is performed using the optimization pro-

cedures of software R.2.14.1. The results including ξ̂p, the optimized approximated coefficient of

variation of ξ̂p (minimum C.V.), the optimized time τ∗, the probability of failure under the stress

level S1 that isG1(τ
∗) and the probability of failure under the stress level S2, i.e. G2(C)−G2(τ

∗),

are obtained for p = 0.1(0.1)0.9 and tabulated in Table 7.

Figure 4 shows the plot of τ∗ as a function of p. The values of the optimized approximated

coefficient of variation of ξ̂p are also plotted for different values of p in Figure 5. As it can be

seen from Figures 4 and 5, the optimal time τ∗ is an increasing function of p. It is legal to

have such a result, since under a higher stress level the items fail more rapidly and such failures

contain more information about lower quantiles of the lifetime distribution of the products. As

one can observe from Figure 5, the precision of the optimal estimate of ξ̂p decreases for the

upper percentiles of the products’ lifetime distribution.
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Appendix A. Fisher information matrix

Denoting ∂f
∂θr

and ∂2f
∂θr∂θs

by f [r] and f [r,s], respectively, we have

λ(y; r, 1, 0, 1) = c[r]y , λ(y; r, 1, 1, 1) = cyc
[r]
2 (y; 1, 1), λ(y; r, 1, 0, 2) = cyc

[r]
2 (y; 1, 2),

λ(y; r, 2, 0, 1) = c[r]y + β
[r]
2 cy, λ(y; r, 2, 1, 1) = cyc

[r]
2 (y; 2, 1), λ(y; r, 2, 0, 2) = cyc

[r]
2 (y; 2, 2),

γ(y; r, s, 1, 0, 1) = c[r,s]y , γ(y; r, s, 1, 1, 1) = cyc
[r,s]
2 (1, 1) + c[r]y c

[s]
2 (y; 1, 1) + c[s]y c

[r]
2 (y; 1, 1),

γ(y; r, s, 1, 0, 2) = cyc
[r,s]
2 (y; 1, 2) + c[r]y c

[s]
2 (y; 1, 2) + c[s]y c

[r]
2 (y; 1, 2),

γ(y; r, s, k, 1, 2) = cy[c
[r]
2 (y; k, 1)c

[s]
2 (y; k, 2) + c

[s]
2 (y; k, 1)c

[r]
2 (y; k, 2)], k = 1, 2,

γ(y; r, s, k, 2, 1) = cyc
[r]
2 (y; k, 1)c

[s]
2 (y; k, 1), γ(y; r, s, k, 0, 3) = cyc

[r]
2 (y; k, 2)c

[s]
2 (y; k, 2), , k = 1, 2,

γ(y; r, s, 2, 0, 1) = c[r,s]y + β
[s]
2 c[r]y + β

[r]
2 c[s]y + cyβ

[r]
2 β

[s]
2 + cyβ

[r,s]
2 ,

γ(y; r, s, 2, 1, 1) = β
[s]
2 c

[r]
2 (y; 2, 1)cy+c

[r,s]
2 (y; 2, 1)cy+c

[r]
2 (y; 2, 1)c[s]y +c

[s]
2 (y; 2, 1)c[r]y +β

[r]
2 c

[s]
2 (y; 2, 1)cy ,

γ(y; r, s, 2, 0, 2) = β
[s]
2 c

[r]
2 (y; 2, 2)cy+c

[r,s]
2 (y; 2, 2)cy+c

[r]
2 (y; 2, 2)c[s]y +c

[s]
2 (y; 2, 2)c[r]y +β

[r]
2 c

[s]
2 (y; 2, 2)cy ,

Letting η4 = ρ(1− ρ2)−1, η5 = ρ−1 + η4 and η6 = ρ−1 + 2η4, we have

c[6]y = −σ−2
Y cy/2, c

[6,6]
y = 3σ−4

Y cy/4, c[r,s]y = c[r]y = 0, for r 6= 6, s 6= 6,

c
[1]
2 (y; 1, 1) = c

[1]
2 (y; 2, 1) = −τη3, c

[2]
2 (y; 1, 1) = c

[2]
2 (y; 2, 1) = −(C − τ)η3,

c
[3]
2 (y; 1, 1) = c

[3]
2 (y; 2, 1) = τη2η3, c

[4]
2 (y; 1, 1) = c

[4]
2 (y; 2, 1) = (C − τ)η2η3,

c
[5]
2 (y; 1, 1) = η3σ

−2
X [η2q2(C, y)−P2(C)/2], c

[5]
2 (y; 2, 1) = η3σ

−2
X [η2q2(C, y)−(P2(C)−2D(1−ρ2))/2],

c
[6]
2 (y; 1, 1) = c

[6]
2 (y; 2, 1) = −σ−2

Y η2η3q2(C, y)/2,

c
[7]
2 (y; 1, 1) = η3[η4P2(C)− η2η5q2(C, y)], c

[7]
2 (y; 2, 1) = η3[η4P2(C)− η2η5q2(C, y) + 2Dρ],
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c
[1,5]
2 (y; 1, 1) = c

[1,5]
2 (y; 2, 1) =

τ

2
σ−2
X η3, c

[1,7]
2 (y; 1, 1) = c

[1,7]
2 (y; 2, 1) = −τη3η4,

c
[2,5]
2 (y; 1, 1) = c

[2,5]
2 (y; 2, 1) =

(C − τ)

2
σ−2
X η3, c

[2,7]
2 (y; 1, 1) = c

[2,7]
2 (y; 2, 1) = −(C − τ)η3η4,

c
[3,5]
2 (y; 1, 1) = c

[3,5]
2 (y; 2, 1) = −τσ−2

X η3η2, c
[3,6]
2 (y; 1, 1) = c

[3,6]
2 (y; 2, 1) =

τ

2
σ−2
Y η3η2,

c
[3,7]
2 (y; 1, 1) = c

[3,7]
2 (y; 2, 1) = τη3η2η5, c

[4,5]
2 (y; 1, 1) = c

[4,5]
2 (y; 2, 1) = −(C − τ)σ−2

X η3η2,

c
[4,6]
2 (y; 1, 1) = c

[4,6]
2 (y; 2, 1) =

(C − τ)

2
σ−2
Y η3η2, c

[4,7]
2 (y; 1, 1) = c

[4,7]
2 (y; 2, 1) = (C−τ)η3η2η5,

c
[5,5]
2 (y; 1, 1) = η3σ

−4
X [

3

4
P2(C)−2η2q2(C, y)], c

[5,5]
2 (y; 2, 1) = η3σ

−4
X [

3

4
(P2(C)−2D(1−ρ2))−2η2q2(C, y)],

c
[5,6]
2 (y; 1, 1) = c

[5,6]
2 (y; 2, 1) =

1

2
σ−2
X σ−2

Y η3η2q2(C, y), c
[5,7]
2 (y; 1, 1) = σ−2

X η3[η2η5q2(C, y)−
1

2
η4P2(C)],

c
[5,7]
2 (y; 2, 1) = σ−2

X η3[η2η5q2(C, y)−
1

2
η4P2(C)−ρD], c

[6,6]
2 (y; 1, 1) = c

[6,6]
2 (y; 2, 1) =

1

4
σ−4
Y η3η2q2(C, y),

c
[6,7]
2 (y; 1, 1) = c

[6,7]
2 (y; 2, 1) = −1

2
σ−2
Y η3η2η5q2(C, y),

c
[7,7]
2 (y; 1, 1) = η3[(1 + 2ρ2)(1− ρ2)−2P2(C)− 3η2(1− ρ2)−2q2(C, y)],

c
[7,7]
2 (y; 2, 1) = η3[(1 + 2ρ2)(1− ρ2)−2P2(C)− 3η2(1− ρ2)−2q2(C, y) + 2D(1− ρ2)−1],

and c
[r,s]
2 (y; 1, 1) = c

[r,s]
2 (y; 2, 1) = 0 otherwise r, s. Also,

c
[3]
2 (y; 1, 2) = c

[3]
2 (y; 2, 2) = −τcy, c

[4]
2 (y; 1, 2) = c

[4]
2 (y; 2, 2) = −(C − τ)cy ,

c
[5]
2 (y; 1, 2) = 0, c

[5]
2 (y; 2, 2) = DρC−1/2σ−3

X ,

c
[6]
2 (y; 1, 2) = c

[6]
2 (y; 2, 2) = −1

2
σ−2
Y q2(C, y)cy , c

[7]
2 (y; 1, 2) = 0, c

[7]
2 (y; 2, 2) = −2DC−1/2σ−1

X ,

c
[r]
2 (y; 1, 2) = c

[r]
2 (y; 2, 2) = 0, r = 1, 2,

c
[3,6]
2 (y; 1, 2) = c

[3,6]
2 (y; 2, 2) =

τ

2
σ−2
Y cy, c

[4,6]
2 (y; 1, 2) = c

[4,6]
2 (y; 2, 2) =

(C − τ)

2
σ−2
Y cy,

c
[5,5]
2 (y; 1, 2) = 0, c

[5,5]
2 (y; 2, 2) = −3

2
Dσ−5

X C−1/2ρ, c
[5,7]
2 (y; 1, 2) = 0, c

[5,7]
2 (y; 2, 2) = Dσ−3

X C−1/2,

c
[6,6]
2 (y; 1, 2) = c

[6,6]
2 (y; 2, 2) =

3

4
σ−4
Y q2(C, y)cy ,

and c
[r,s]
2 (y; 1, 2) = c

[r,s]
2 (y; 2, 2) = 0 otherwise r, s. Furthermore

β
[1]
2 = 2Dτσ−2

X C−1, β
[2]
2 = 2D(C − τ)σ−2

X C−1, β
[5]
2 = −2D(D − P2(C))σ−4

X C−1,

β
[r]
2 = 0, r = 3, 4, 6, 7,

β
[1,5]
2 = −2Dτσ−4

X C−1, β
[2,5]
2 = −2D(C − τ)σ−4

X C−1, β
[5,5]
2 = 4D(D − P2(C))σ−6

X C−1,

19



and β
[r,s]
2 = 0, otherwise r, s.

α5,5 = − 1

2σ4
X

, α6,6 = − 1

2σ4
Y

, α7,7 = − (1 + ρ2)

(1− ρ2)2
, αr,s = 0

otherwise r, s. Also, for j = 1, 2,

ζj(1, 1) = (1−ρ2)−1σ−2
X E(T 3−2j)τ2j−2, ζ1(1, 2) = 0, ζ2(1, 2) = (1−ρ2)−1σ−2

X τ(1−τE(T−1)),

ζj(1, 3) = −2η1η2E(T
3−2j)τ2j−2, , ζ1(1, 4) = 0, ζ2(1, 4) = −2η1η2τ(1− τE(T−1)),

ζj(1, 5) =
1

2
σ−4
X (1− ρ2)−1[2E(T 1−jPj(T ))− ρσXσ−1

Y EPfj
(T 1−jqj(T, Y ))]τ j−1,

ζj(1, 6) = −σ−2
Y η1η2EPfj

(T 1−jqj(T, Y ))τ j−1,

ζj(1, 7) = 2η2η1[η6EPfj
(T 1−jqj(T, Y ))− 2η2η4E(T

1−jPj(T ))]τ
j−1,

ζ1(2, 2) = ζ1(2, 3) = · · · = ζ1(2, 7) = 0,

ζ2(2, 2) = (1− ρ2)−1σ−2
X E(T−1(T − τ)2), ζ2(2, 3) = −2η1η2τ(1− τE(T−1)),

ζ2(2, 4) = −2η1η2E(T
−1(T − τ)2),

ζ2(2, 5) =
1

2
σ−4
X (1− ρ2)−1[2(E(P2(T ))− τE(T−1P2(T )))

−ρσXσ−1
Y (EPf2

(q2(T, Y ))− τEPf2
(T−1q2(T, Y )))],

ζ2(2, 6) = −σ−2
Y η1η2(EPf2

(q2(T, Y ))− τEPf2
(T−1q2(T, Y ))),

ζ2(2, 7) = 2η2η1[η6(EPfj
(qj(T, Y ))− τEPfj

(T−1qj(T, Y )))

−2η2η4(E(Pj(T ))− τE(T−1Pj(T )))],

ζj(3, 3) = 2η1E(T
3−2j)τ2j−2,

ζ1(3, 4) = 0, ζ2(3, 4) = 2η1τ(1− τE(T−1)), ζj(3, 5) = −σ−2
X η2η1E(T

1−jPj(T ))τ
j−1,

ζj(3, 6) = σ−2
Y η1[2EPfj

(T 1−jqj(T, Y ))− η2E(T
1−jPj(T ))]τ

j−1,

ζj(3, 7) = 2η1[η2η6E(T
1−jPj(T ))− 2η4EPfj

(T 1−jqj(T, Y ))]τ j−1,

ζ1(4, 4) = ζ1(4, 5) = ζ1(4, 6) = ζ1(4, 7) = 0, ζ2(4, 4) = 2η1E(T
−1(T − τ)2),

ζ2(4, 5) = −σ−2
X η2η1(E(P2(T ))− τE(T−1P2(T ))),

ζ2(4, 6) = σ−2
Y η1[2(EPf2

(q2(T, Y ))− τEPf2
(T−1q2(T, Y )))− η2(E(P2(T ))− τE(T−1P2(T )))],
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ζ2(4, 7) = 2η1[η2η6(E(P2(T ))−τE(T−1P2(T )))−2η4(EPf2
(q2(T, Y ))−τEPf2

(T−1q2(T, Y )))],

ζj(5, 5) = σ−4
X η1η2[2η2E(T

−1P 2
j (T ))− 3EPfj

(T−1Pj(T )qj(T, Y )))/2] + σ−6
X E(T−1P 2

j (T )),

ζj(5, 6) =
−1

2
σ−2
X σ−2

Y η1η2EPfj
(T−1Pj(T )qj(T, Y ))),

ζj(5, 7) = σ−2
X η1η2[η6EPfj

(T−1Pj(T )qj(T, Y ))) − 2η5η2E(T
−1P 2

j (T ))],

ζj(6, 6) = η1σ
−4
Y [2EPfj

(T−1q2j (T, Y )))− 3

2
η2EPfj

(T−1Pj(T )qj(T, Y )))],

ζj(6, 7) = −η1σ
−2
Y [2η4EPfj

(T−1q2j (T, Y )))− η2η6EPfj
(T−1Pj(T )qj(T, Y )))],

ζj(7, 7) = 2η1η
2
4((3 + ρ−2)EPfj

(T−1q2j (T, Y ))) + (3ρ−2 + ρ−4)(η2E(T
−1P 2

j (T )))

−2(1 + 3ρ−2)η2EPfj
(T−1Pj(T )qj(T, Y )))).
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