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Analytic theory of finite asymptotic expansions

in the real domain. Part II:

the factorizational theory for Chebyshev asymptotic

scales.
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Abstract. This paper contains a general theory for asymptotic expansions of type

(∗) f(x) = a1φ1(x) + · · ·+ anφn(x) + o(φn(x)), x → x0, n ≥ 3,

where the asymptotic scale

φ1(x) ≫ φ2(x) ≫ · · · ≫ φn(x), x → x0,

is assumed to be an extended complete Chebyshev system on a one-sided neighborhood of x0.

“Factorizational theory” refers to proofs being based on various types of factorizations of a dif-

ferential operator associated to (φ1, · · · , φn), and it is necessary to clearly understand the rela-

tionships between the nonvanishingness of the Wronskians W (φ1, . . . , φi), that of the Wronskians

W (φn, . . . , φn−i) and the so-called canonical factorizations of disconjugate operators. Next we fo-

cus on the guiding thread of our theory, which is the property of formal differentiation, aiming at

characterizing some n-tuples of asymptotic expansions formed by (∗) and n−1 expansions obtained

by formal applications of suitable linear differential operators of orders 1, 2, . . . , n− 1. Whereas for

n = 2 there are only two such operators “naturally” suggested by the structure of the scale and

the theory is comparatively simple, for n ≥ 3 a result by Levin on the hierarchies of the Wron-

skians highlights a large class of operators which preserve the hierarchy of the φi’s and, as such,

are a-priori candidates to be formally applicable to (*). Our second preliminary step will be that of

noticing that the restricted class of the operators naturally associated to “canonical factorizations”

seems to be the most meaningful to be used in a context of formal differentiation. This gives rise

to conjectures whose proofs build an analytic theory of finite asymptotic expansions in the real

domain which, though not elementary, parallels the familiar results about Taylor’s formula. One

of the results states that to each scale of the type under consideration it remains associated an

important class of functions (namely that of generalized convex functions) enjoying the property

that the expansion (∗), if valid, is automatically formally differentiable n − 1 times in two special

senses.
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sions, factorizations of ordinary differential operators, Chebyshev asymptotic scales.
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1. Introduction

In this paper we develop a general analytic theory of asymptotic expansions of
type

(1.1) f(x) = a1φ1(x) + · · ·+ anφn(x) + o
(
φn(x)

)
, x→ x0; n ≥ 3,

where

(1.2) φ1(x) >> φ2(x) >> · · · >> φn(x), x→ x0.

Though asymptotic expansions are since long a very useful tool in pure and ap-
plied mathematics, as far as asymptotic expansions in the real domain are concerned
the general theory lacks basic results paralleling, for instance, (i) the classical Tay-
lor’s formula for polynomial expansions at a point x0 ∈ R; (ii) the theory of poly-
nomial expansions at ∞ systematized in [4]; (iii) the (not-too-trivial) case n = 2
thoroughly investigated in [7]. Here we have in mind characterizations of (1.1) via
integro-differential conditions useful for applications unlike the trivial characteriza-
tion of (1.1) by means of the existence (as finite numbers) of the following n limits
defining the coefficients ai:
(1.3)

a1 := lim
x→x0

f(x)/φ1(x), ai := lim
x→x0

[f(x)−a1φ1(x)−...−ai−1φi−1(x)]
φi(x)

, 2 ≤ i ≤ n,

the φi’s being supposed non-vanishing on a deleted neighborhood of x0. The three
mentioned cases show that a proper approach to a satisfying theory consists in
studying (1.1) not by itself but matched to other expansions obtained by formal
application of certain differential operators. For this we need some preliminary ma-
terial: a first part concerning factorizations of a linear ordinary differential operator
and nonvanishingness of various Wronskians involving a basis of its kernel, a second
part concerning those operators which act on the vector space “span (φ1, . . . , φn)”
preserving asymptotic scales. The scale of comparison functions (φ1, . . . , φn) is prac-
tically assumed to form an extended Chebyshev system on some left deleted neigh-
borhood of x0 and two special types of factorizations, called canonical factorizations,
are used: this is the content of §2 where various related properties are systematized
about the concept of Chebyshev asymptotic scale.
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Now our theory revolves around the idea of formal differentiation of an asymp-
totic expansion and, in general, applying an arbitrary differential operator to an
asymptotic expansion yields a meaningless result; so it is necessary to have some
a-priori information on the differential operators which are most likely to be for-
mally applicable to (1.1) in the sense of generating a new asymptotic expansion. A
possible approach to obtain such an information consists in investigating the case of
an asymptotic expansion with an identically-zero remainder and this is done in §3.
For this case a deep result by Levin, already used in §2, highlight certain differential
operators, defined by means of Wronskians involving the φi’s, which preserve the
hierarchy of the φi’s and, as such, are a-priori candidates to be formally applicable
to (1.1). These operators may be too many (for n ≥ 3) to be included in a useful
theory whereas canonical factorizations automatically define two (n − 1)-tuples of
differential operators, of orders 1, 2, . . . , n−1, which are practically more meaningful
than a generic Levin’s Wronskian. Their investigation gives rise to certain “natu-
ral” conjectures whose proofs are the core of our theory called “the factorizational
theory” and developed in §§4,5,6. All proofs are collected in §7. The main features
of this theory are:

(i) It yields applicable analytic characterizations of an expansion (1.1) matched
to other asymptotic relations obtained by formal differentiations in suitable senses.

(ii) For each Chebyshev asymptotic scale there are at least two well-defined
(n− 1)-tuples of linear differential operators (L1, . . . , Ln−1) and (M1, . . . ,Mn−1), of
orders 1, 2, . . . , n− 1 respectively, which can be formally applied to (1.1) under suit-
able integrability conditions. In one of the two circumstances useful representations
of the remainders are also available.

(iii) A special family of functions is associated to each Chebyshev asymptotic
scale namely that of generalized convex functions, for which the validity of the sole
relation (1.1) automatically implies its formal differentiability (n−1) times in the two
senses involving the above-mentioned operators (L1, . . . , Ln−1) and (M1, . . . ,Mn−1).

The introductions in [4] and [7] contain other comments but the general theory to
be developed in this paper is independent of any previous results in these references:
only the line of thought is the same.

In the appendix (§8) we present two algorithms, admitting of asymptotic inter-
pretations, for constructing canonical factorizations of disconjugate operators.

Occasionally an asymptotic expansion

(1.4) f(x) = a1φ1(x) + · · ·+ aiφi(x) + o
(
φi(x)

)
, x→ x0, i < n,

will be called “incomplete” — with respect to the given scale (φ1 . . . , φn), of course
— whereas (1.1) will be called “complete”, and these locutions refer to the speci-
fied growth-order of the remainder and not to the terms effectively present in the
expansion i.e. those with non-zero coefficients.

Notations

— f ∈ AC0(I) ≡ AC(I) ⇐⇒ f is absolutely continuous on each compact
subinterval of I; f ∈ ACk(I) ⇐⇒ f (k) ∈ AC(I);

— For f ∈ ACk(I) we write limx→x0
f (k+1)(x) meaning that x runs through

the points wherein f (k+1) exists as a finite number. Applying L’Hospital’s rule in
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such a context means using Ostrowski’s version [11] valid for absolutely continuous
functions.

— R := R ∪ {±∞} denotes the extended real line.
— If no ambiguity arises we use the following shorthand notations or similar

ones:





∫ x

T
f1

∫ t1

T
f2 . . .

∫ tn−2

T
fn−1

∫ tn−1

T
fn(t) dt :=

:=

∫ x

T
f1(t1)dt1

∫ t1

T
f2(t2)dt2 . . .

∫ tn−2

T
fn−1(tn−1)dtn−1

∫ tn−1

T
fn(tn) dtn;





∫ x0

x
f1

∫ x0

t1

f2 . . .

∫ x0

tn−2

fn−1

∫ x0

tn−1

fn(t) dt :=

:=

∫ x0

x
f1(t1)dt1

∫ x0

t1

f2(t2)dt2 . . .

∫ x0

tn−2

fn−1(tn−1)dtn−1

∫ x0

tn−1

fn(tn) dtn;

wherein each integral
∫ x0 ≡

∫→x0 is to be understood as an improper integral.
— The acronyms we systematically use are:
T.A.S. := Chebyshev asymptotic scale: Def. 2.1;
C.F. := canonical factorization: Proposition 2.1-(iv) and (v).
— Propositions are numbered consecutively in each section irrespective of their

labelling as lemma, theorem and so on.
For later references we report here a classic fundamental formula for Wronskians:

(1.5) W
(
φ(x)φ1(x), . . . , φ(x)φn(x)

)
=
(
φ(x)

)n ·W
(
φ1(x), . . . , φn(x)

)
,

valid under the required order of differentiability regardless of the sign of φ.

2. Canonical factorizations of disconjugate operators and
Chebyshev asymptotic scales

Our theory is built upon appropriate integral representations stemming from a
special structure of the asymptotic scale (φ1, . . . , φn): practically it forms a funda-
mental system of solutions of a disconjugate equation on a one-sided neighborhood
of x0 such that certain Wronskians do not vanish thereon, a property granted by a
result by Levin [9] which justifies our definition of Chebyshev asymptotic scale. We
preliminarly recall some facts about factorizations of differential operators.

In this section Ln, n ≥ 2, denotes a linear ordinary differential operator of type

(2.1)1 Lnu := u(n) + αn−1(x)u
(n−1) + . . .+ α0(x)u ∀ u ∈ ACn−1(J),

(2.1)2 αi ∈ L1
loc(J), 0 ≤ i ≤ n− 1, J a generic interval of R,
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where L1
loc(J) denotes the class of functions Lebesgue-summable on every compact

subinterval of J . The matters to be discussed depend on the property of disconju-
gacy and several characterizations involving factorizations are collected in the next
proposition where special locutions are defined in the statement itself. For general
properties about disconjugacy we refer to the book by Coppel [1] and the paper
by Levin [9], whereas for facts concerning canonical factorizations we refer to the
papers by Trench [14] and the author [2; 3].

Proposition 2.1 (Disconjugacy on an open interval via factorizations). For an
operator Ln of type (2.1)1,2, n ≥ 2, on an open interval ]a, b[, bounded or not, the
following properties are equivalent:

(i) Ln is disconjugate on ]a, b[ in the sense that: every nontrivial solution of
Lnu = 0 has at most (n − 1) zeros on ]a, b[ counting multiplicities or, equivalently,
has at most (n− 1) distinct zeros on ]a, b[.

(ii) Lnu = 0 has a fundamental system of solutions on ]a, b[, (u1, . . . , un), satis-
fying Pólya’s W-property:

(2.2) W
(
u1(x), . . . , ui(x)

)
> 0 ∀ x ∈]a, b[ , 1 ≤ i ≤ n;

or equivalently Lnu = 0 has solutions u1, . . . , un−1 satisfying (2.2) for 1 ≤ i ≤ n−1.
(iii) Ln has a Pólya-Mammana factorization on ]a, b[ i.e.

(2.3) Lnu ≡ rn[rn−1(. . . (r1(r0)′)′ . . . )′]′ ∀ u ∈ ACn−1]a, b[,

where the ri’s are suitable functions such that:

(2.4)

{
ri(x) > 0 ∀ x ∈]a, b[; ri ∈ ACn−1−i]a, b[ , 0 ≤ i ≤ n− 1;

rn ∈ AC0]a, b[.

(iv) Ln has a “canonical factorization (C.F. for short ) of type (I) at the endpoint
a”, i.e. a factorization of type (2.3)-(2.4) with the additional conditions:

(2.5)a

∫

→a
(1/ri) = +∞, 1 ≤ i ≤ n− 1,

and a similar “C.F. of type (I) at the endpoint b”, i.e. with the ri’s satisfying

(2.5)b

∫ →b

(1/ri) = +∞, 1 ≤ i ≤ n− 1.

(v) For each c, a < c < b, Ln has a ”C.F. on the interval ]a, c[ which is of type
(II) at the endpoint a”, i.e. a factorization (2.3)-(2.4) valid on the interval ]a, c[ and
with the ri’s satisfying

(2.6)a

∫

→a
(1/ri) < +∞, 1 ≤ i ≤ n− 1.

And Ln has a “C.F. on the interval ]c, b[ which is of type (II) at the endpoint b”,
i.e. a factorization (2.3)-(2.4) valid on the interval ]c, b[ and with the ri’s satisfying

(2.6)b

∫ →b

(1/ri) < +∞, 1 ≤ i ≤ n− 1.
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Remarks. 1. In the definition of a C.F. conditions (2.5) or (2.6) are required to
hold for the index i running from 1 to (n − 1): there are no conditions on r0 and
rn. Factorizations in properties (iii)-(iv) are global i.e. valid on the whole given
interval ]a, b[, whereas property (v) claims the existence of local C.F.’s of type (II).
The existence of a global C.F. of type (II) at a or at b is a special circumstance [2;
Thm. 3.11, p. 163].

2. A global C.F. of type (I) at a specified endpoint does always exist for a
disconjugate operator on an open interval and is “essentially” unique in the sense
that the functions ri are determined up to multiplicative constants with product 1:
Trench [14]. The situation is quite different for C.F.’s of type (II). For example the
operator Ln ≡ u(n) has no global C.F. on (−∞,+∞) of type (II) at any of the end-
points for it has only “one” (up to constant factors) Pólya-Mammana factorization
on (−∞,+∞), namely

(2.7) u(n) ≡ (. . . (u′)′ . . . )′ ,

which is a special contingency characterized in [2; Thm. 3.3] and in [3; Thm. 7.1].
But the operator u(n) thought of as acting on the space ACn−1]0,+∞), or even on
the space C∞]0,+∞), has infinitely many “essentially” different C.F.’s of type (II),
for instance the following ones

(2.8) u(n) ≡ 1

(x− c)n−1

[
(x− c)2

(
. . .

(
(x− c)2

(
u

(x− c)n−1
)′)′

. . .

)′]′
,

which are C.F.’s of type (II) at both the endpoints “0” and “+∞” whatever the
choice of the constant c < 0. For c = 0 we get a factorization on ]0,+∞) which is
a C.F. of type (I) at “0” and of type (II) at “+∞”; for c > 0 we have nonglobal
factorizations which are of type (II) at +∞.

C.F.’s are naturally linked to bases of ker Ln forming asymptotic scales at one or
both endpoints and the following results, due to Levin [9; §2], highlight important
properties of the Wronskians constructed with an asymptotic scale.

Proposition 2.2 (Wronskians of asymptotic scales and their hierarchies).
(I) (Results involving a differential operator). Let Ln be an operator of type

(2.1)1,2 disconjugate on an open interval ]a, b[. Then:
(i) Its kernel has some basis (φ1, . . . , φn) satisfying :

(2.9)

{
φi(x) > 0 on some interval ]b− ǫ, b[ , 1 ≤ i ≤ n;
φ1(x)≫ φ2(x)≫ · · · ≫ φn(x), x→ b−.

(ii) For each such basis:

(2.10) W
(
φn(x), φn−1(x), . . . , φi(x)

)
> 0 on the whole interval ]a, b[ , 1 ≤ i ≤ n,

noticing the reversed order of the φi’s in the Wronskians.
(iii) For any strictly decreasing set of indexes {i1, . . . , ik}, i.e. such that

(2.11) n ≥ i1 > i2 > · · · > ik ≥ 1, 1 ≤ k ≤ n− 1,
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we have:

(2.12) W
(
φi1(x), . . . , φik(x)

)
> 0 on a left deleted neighborhood of b,

and in particular we have the inequalities:

(2.13)

{
sign W

(
φ1(x), . . . , φi(x)

)
= (−1)i(i−1)/2

on a left deleted neighborhood of b, 1 ≤ i ≤ n.

(iv) For each k, 1 ≤ k ≤ n− 1, and for any two distinct and strictly increasing
sets of indexes i1, . . . , ik and j1, . . . , jk such that ih ≤ jh, 1 ≤ h ≤ k, we have

(2.14) W
(
φi1(x), . . . , φik(x)

)
≫W

(
φj1(x), . . . , φjk(x)

)
, x→ b−.

Notice the ordering of the φi’s and the φj’s in (2.14): if each φi has an order of
growth at b− greater than that of the corresponding φj then the same is true for the
Wronskians. In the claim (iii) we have a different ordering of the φi’s as this grants
the positivity of the Wronskians in (2.12).

(II) (Results involving scales with less regularity). Let (φ1, . . . , φn) be functions
of class Cn−1]a, b[ satisfying conditions (2.9) and condition

(2.15) W
(
φn(x), φn−1(x), . . . , φ1(x)

)
either ≥ 0 or ≤ 0 on ]a, b[ , 1 ≤ i ≤ n;

and let there exist an integer r, 1 ≤ r ≤ n, such that:

(2.16) Wr

(
φn(x), φn−1(x), . . . , φi(x)

)
6= 0 on ]a, b[ , ∀ i, 1 ≤ i ≤ n;

where the symbol Wr

(
φn(x), φn−1(x), . . . , φi(x)

)
denotes the Wronskian determinant

wherein the column involving φr has been suppressed. Then they hold true:

(2.17) W
(
φn(x), φn−1(x), . . . , φ1(x)

)
≥ 0 on ]a, b[ ;

(2.18) W
(
φn(x), φn−1(x), . . . , φi(x)

)
> 0 on ]a, b[ , 1 ≤ i ≤ n− 1;

and the above-stated properties in (iii) and (iv). Notice that in (2.17)-(2.18) the signs
of the Wronskians are well defined even if they remain undefined in the assumptions
(2.15)-(2.16).

To visualize (2.14) we list a few asymptotic scales at b− constructed with the
Wronskians:

(2.19)





W (φ1, φ2)≫W (φ1, φ3)≫ · · · ≫W (φ1, φn)

W (φ2, φ3)≫W (φ2, φ4)≫ · · · ≫W (φ2, φn)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , x→ b−,

W (φn−2, φn−1)≫W (φn−2, φn)

(2.20) W (φ1, φ2, φ3)≫W (φ1, φ2, φ4)≫ · · · ≫W (φ1, φ2, φn), x→ b−.
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It is quite important to note the order of the φi’s forming the asymptotic scale
in (2.9); if we mantain the same ordering in the analogous statement for x → a+,
i.e. φ1(x) ≫ φ2(x) ≫ · · · ≫ φn(x), x → a+, then the Wronskians in (2.10) and in
(2.12) to (2.18) are the same, the essential point being the relative growth-order of
the φi’s. From the point of view of asymptotic expansions the correct numbering is
that adopted by us irrespective of the limiting process.

The above results substantiate the following definition of special asymptotic
scales wherein we merely fix the neighborhood of b left undefined in Proposition
2.2 whose part (I) grants the existence of such scales whereas part (II) implies a lot
of useful properties even for scales with less regularity. From now on the interval
will be denoted as in the two-term theory [7].

Definition 2.1 (Chebyshev asymptotic scales). The ordered n-tuple of real-
valued functions (φ1, . . . , φn), n ≥ 2, is termed a “Chebyshev asymptotic scale”
(T.A.S. for short) on the half-open interval [T, x0[ , T ∈ R, x0 ≤ +∞, provided
the following properties are satisfied:

(2.21) φi ∈ Cn−1[T, x0[ , 1 ≤ i ≤ n;

(2.22) φi(x) 6= 0 on some left deleted neighborhood of x0, 1 ≤ i ≤ n;

(2.23) φ1(x)≫ φ2(x)≫ · · · ≫ φn(x), x→ x−0 ;

(2.24) W
(
φ1(x), . . . , φi(x)

)
6= 0 on [T, x0[ , 1 ≤ i ≤ n.

Whenever the φi’s satisfy the stronger regularity condition

(2.25) φi ∈ ACn−1[T, x0[ , 1 ≤ i ≤ n,

they remain associated to the operator:

(2.26) Lφ1,...,φn
u := W

(
φ1(x), . . . , φn(x), u

) /
W
(
φ1(x), . . . , φn(x)

)
,

which is the unique linear ordinary differential operator of type (2.1)1,2, acting on
the space ACn−1[T, x0[ and such that ker Lφ1,...,φn

= span (φ1, . . . , φn).

Remarks. 1. Condition (2.21) is the usual regularity assumption in approxima-
tion theory (Chebyshev systems and the like), whereas in matters involving differ-
ential equations/inequalities it is natural to assume (2.25).

2. Choosing an half-open interval in this definition is a matter of convenience:
the point x0 involved in the asymptotic relations is characterized as the endpoint
not belonging to the interval, possibly x0 = +∞, whereas the other endpoint marks
off an interval whereon the inequalities involving the Wronskians are satisfied and
these in turn allow certain integral representations valid on the whole given interval
and essential to our theory. These remarks make evident the analogous definition
for an interval ]x0, T ] where: −∞ ≤ x0, and T ∈ R.

3. In the above definition we have merely supposed the nonvanishingness of
various functions instead of specifying their signs as in Proposition 2.2; this avoids
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restrictions that are immaterial in asymptotic investigations. If the φi’s are strictly
positive near x0 then Levin’s theorem provides the exact signs of certain Wronskians.

4. As concrete examples of such asymptotic scales on [T,+∞) the reader may
think of scales whose non-identically zero and infinitely-differentiable functions are
represented by linear combinations, products, ratios and compositions of a finite
number of powers, exponentials and logarithms. As a rule such functions and their
Wronskians have a principal part at +∞ which can be expressed by products of
similar functions, hence they do not vanish on a neighborhood of +∞.

When comparing our notations with other authors’ results the reader must care-
fully notice the numbering of the φi’s in the asymptotic scale (2.23) and in the
Wronskians (2.24); the next proposition contains various additional properties of a
T.A.S. and, in particular, it claims that conditions (2.21)-(2.24) imply the nonvan-
ishingness of the reversed Wronskians:

(2.27) W
(
φn(x), φn−1(x), . . . , φi(x)

)
6= 0 on [T, x0[ , 1,≤ i ≤ n,

though the converse generally fails as it may be easily checked for the scale:

(2.28) 1≫ cx+ x2 ≫ x2, x→ 0−, (c > 0), on (−∞, 0[ .

With our notations this scale satisfies (2.27) on (−∞, 0[ whereas:
{
φ1 and W (φ1, φ2, φ3) 6= 0 on (−∞, 0[ ;
W (φ1, φ2) ≡W (1, cx+ x2) = c+ 2x 6= 0 on ]− c/2, 0[ but not on (−∞, 0[ .

Proposition 2.3 (Several characterizations and additional properties of T.A.S.’s).
Let the ordered n-tuple of real-valued functions (φ1, . . . , φn), n ≥ 2, satisfy conditions
(2.21)-(2.22)-(2.23).

(I) The following are equivalent properties:
(i) (φ1, . . . , φn) is a T.A.S. on [T, x0[, i.e. (2.24) hold true.
(ii) Both sets of inequalities (2.24) and (2.27) hold true.
(iii) The ordered n-tuple (ǫ1φ1(x), . . . , ǫnφn(x)), with proper choices of the con-

stants ǫi = ±1, is an extended complete Chebyshev system on [T, x0[ .
(iv) The n-tuple (φ1, . . . , φn) admits of an integral representation of the form

(2.29)





φ1(x) = w0(x); φ2(x) = w0(x) ·
∫ x0

x
w1;

φi(x) = w0(x) ·
∫ x0

x
w1 . . .

∫ x0

ti−2

wi−1, 2 ≤ i ≤ n, x ∈ [T, x0[,

with suitable functions wi subjected to the following regularity conditions:

(2.30)

{
wi(x) 6= 0 ∀ x ∈ [T, x0[; wi ∈ Cn−1−i[T, x0[ , 0 ≤ i ≤ n− 1;∫ x0 |wi| < +∞, 1 ≤ i ≤ n− 1.
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If this is the case the wi’s are unique and may be expressed in terms of the φi’s
on [T, x0[ by the formulas:
(2.31)



w0(x) := φ1(x); w1 := −
(
φ2(x)/φ1(x)

)′
= −

(
φ1(x)

)−2
W
(
φ1(x), φ2(x)

)
;

wi(x) := −
[
W (φ1(x), . . . , φi−1(x), φi+1(x))

W (φ1(x), . . . , φi−1(x), φi(x))

]′
≡

≡ −
[
W (φ1, . . . , φi−1) ·W (φ1, . . . , φi+1)

]/[
W (φ1, . . . , φi)

]2
, 2 ≤ i ≤ n− 1.

Conversely we have the following formulas for the Wronskians of the φi’s:

(2.32) W
(
φ1, . . . , φi

)
= (−1)i(i−1)/2wi

0w
i−1
1 wi−2

2 . . . wi−1 on [T, x0[ , 2 ≤ i ≤ n.

(II) For (φ1, . . . , φn) a T.A.S. on [T, x0[ we have the inequalities:

(2.33) φi(x) 6= 0 on [T, x0[ , 1 ≤ i ≤ n, (implied by(2.29) − (2.30));

(2.34) W
(
φi1(x), . . . , φik(x)

)
6= 0 near x0,

for any set of indexes satisfying (2.11) and we also have the hierarchies between the
Wronskians stated in Proposition 2.2-(iv) and referred to x → x−0 . Whenever the
φi’s are strictly positive then all the Wronskians in (2.27) are strictly positive on
[T, x0[ by (2.10), but not necessarily all the Wronskians in (2.24); in this case the
inverted n-tuple (φn, . . . , φ1) is an extended complete Chebyshev system on [T, x0[.
On the contrary, if the given n-tuple (φ1, . . . , φn) is an extended complete Chebyshev
system on [T, x0[, i.e. all the Wronskians in (2.24) are strictly positive on [T, x0[,
then (2.29) and (2.31) imply that the φi’s have alternating signs, namely: sign φi =
(−1)i−1 on [T, x0[.

Part (I) of Proposition 2.3 generalizes a classical result, [8; Ch. XI, Th. 1.2,
p. 379], which characterizes those special asymptotic scales formed by functions
with zeros of increasing multiplicities (namely 0, 1, . . . , n − 1) at an endopint of a
compact interval; also refer to [9; Ch. 1] for locutions about Chebyshev systems.
Notice that formulas (2.31) in themselves are well defined if the n-tuple (φ1, . . . , φn)
satisfies (2.21) and (2.24); under the addditional assumption (2.23) they establish a
one-to-one correspondence between the φi’s and the wi’s. Formulas (2.31) for i ≥ 3
are not obvious consequences of (2.29): see the few introductory lines at the outset
of §8. For a T.A.S. on ]x0, T ] the integrals

∫ x0

x in (2.29) are obviously replaced by∫ x
x0
, the wi’s in (2.31) for i ≥ 1 are defined without the minus sign and the coefficient

(−1)... is absent in (2.32). If all the Wronskians in (2.24) are strictly positive on
]x0, T ] then the same is true for all the φi’s.

Under condition (2.25) formulas in Proposition 2.3-(ii) are related to C.F.’s of
type (II) at x0 and certain calculations used in our proof give quick proofs for the
existence of both types of C.F.’s. We collect in the next proposition all the facts
essential to develop our theory of asymptotic expansions; here the focus is on C.F’s
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rather than on integral representations of the given scale because we need both types
of C.F.’s and the layout of Proposition 2.3 does not suit a C.F. of type (I) .

Proposition 2.4 (Formulas concerning T.A.S.’s linked to differential operators).
Let the ordered n-tuple (φ1, . . . , φn) satisfy conditions (2.21) to (2.25), hence the op-
erator in (2.26) is disconjugate on the open interval ]T, x0[ and enjoys the properties
in Propositions 2.1 and 2.2-(I). Moreover, as an operator acting on ACn−1[T, x0[ it
has the following further properties:

(i) Define the following (n+ 1) functions on [T, x0[:
(2.35)



q0 := 1/|φ1|; q1 := (φ1)
2
/
|W (φ1, φ2)|;

qi :=
[
W (φ1, . . . , φi)

]2/ ∣∣W (φ1, . . . , φi−1) ·W (φ1, . . . , φi+1)
∣∣, 2 ≤ i ≤ n− 1;

qn := |q0q1 . . . qn−1|−1 ≡
∣∣W (φ1, . . . , φn)/W (φ1, . . . , φn−1)

∣∣.

Then the qi’s satisfy the following regularity conditions:

(2.36)

{
qi(x) > 0 ∀ x ∈ [T, x0[; qi ∈ ACn−1−i[T, x0[ , 0 ≤ i ≤ n− 1;

qn ∈ AC0[T, x0[.

Their reciprocals, left apart q0 and qn, may be expressed as derivatives of certain
ratios

(2.37)





1/q1(x) =
∣∣(φ2(x)/φ1(x))′

∣∣,

1/qi(x) =

∣∣∣∣
[
W (φ1(x), . . . , φi−1(x), φi+1(x))

W (φ1(x), . . . , φi−1(x), φi(x))

]′∣∣∣∣ , 2 ≤ i ≤ n− 1,

on the interval [T, x0[, and

(2.38)

∫ x0

T
(1/qi) < +∞, 1 ≤ i ≤ n− 1.

Our operator admits of the following factorization on [T, x0[:

(2.39) Lφ1,...,φn
u ≡ qn

[
qn−1(. . . (q0u)

′ . . . )′
]′
,

which is a global C.F. of type (II) at both endpoints T and x0.
(ii) Our T.A.S. (apart from the signs) admits of the following integral represen-

tation in terms of the qi’s:

(2.40)





|φ1(x)| =
1

q0(x)
; |φ2(x)| =

1

q0(x)

∫ x0

x

1

q1
;

|φi(x)| =
1

q0(x)

∫ x0

x

1

q1
. . .

∫ x0

ti−2

1

qi−1
, 2 ≤ i ≤ n, x ∈ [T, x0[;

hence the φi’s, besides being everywhere non-zero on [T, x0[, have the same order of
growth at T , namely

(2.41) lim
x→T+

φi(x)/φj(x) = cij ∈ R\{0} ∀ i 6= j.

11



In the special case where all the Wronskians in (2.24) are strictly positive, i.e.
when (φ1, . . . , φn) is an extended complete Chebyshev system on [T, x0[, then the φi’s
have alternating signs, namely

(2.42) sign φi = (−1)i−1 on [T, x0[.

(iii) Analogously we define the following (n+ 1) functions on [T, x0[:
(2.43)




p0 := 1/|φn|; p1 := (φn)
2
/
|W (φn, φn−1)|;

pi :=
[
W (φn, φn−1, . . . , φn−i+1)

]2×
×
∣∣W (φn, φn−1, . . . , φn−i+2) ·W (φn, φn−1, . . . , φn−i)

∣∣−1, 2 ≤ i ≤ n− 1;

pn :=
∣∣p0p1 . . . pn−1

∣∣−1 ≡
∣∣W (φn, φn−1, . . . , φ1)/W (φn, φn−1, . . . , φ2)

∣∣ .

They satisfy the same regularity conditions on the half-open interval [T, x0[ as
the qi’s do in (2.36) and their reciprocals may be expressed as derivatives of the
following ratios analogous to those in (2.37):

(2.44)





1/p1(x) =
∣∣(φn−1(x)/φn(x))′

∣∣,

1/pi(x) =

∣∣∣∣
[

W (φn(x), . . . , φn−i+2(x), φn−i(x))

W (φn(x), . . . , φn−i+2(x), φn−i+1(x))

]′∣∣∣∣ , 2 ≤ i ≤ n− 1;

on the interval [T, x0[. Moreover:

(2.45)

∫ x0

(1/pi) = +∞, 1 ≤ i ≤ n− 1,

(2.46)

∫

T
(1/pi) < +∞, 1 ≤ i ≤ n− 1,

hence the associated factorization

(2.47) Lφ1,...,φn
u ≡ pn

[
pn−1(. . . (p0u)

′ . . . )′
]′
,

is (constant factors apart) “the” global C.F. of Lφ1,...,φn
of type (I) at x0 and it turns

out to be of type (II) at T .
(iv) The special fundamental system of solutions to Lφ1,...,φn

u = 0 defined by

(2.48)





P0(x) :=
1

p0(x)
; P1(x) :=

1

p0(x)

∫ x

T

1

p1
;

Pi(x) :=
1

p0(x)

∫ x

T

1

p1
. . .

∫ ti−1

T

1

pi
, 1 ≤ i ≤ n− 1,
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satisfies the asymptotic relations:

(2.49)

{
P0(x)≫ P1(x)≫ · · · ≫ Pn−2(x)≫ Pn−1(x), x→ T+,

Pn−1(x)≫ Pn−2(x)≫ · · · ≫ P1(x)≫ P0(x), x→ x−0 .

Relations (2.49) uniquely determine the fundamental system (P0, . . . , Pn−1) up
to multiplicative constants. (In the terminology used by the author [2; 3] the n-tuple
(P0, . . . , Pn−1) is a ”mixed hierarchical system” on ]T, x0[ whereas Levin [9; p. 80]
would call it a ”doubly hierarchical system” because he uses different arrangements
for asymptotic scales at the left or right endpoints [9; p. 59].) Whenever the φi’s are
strictly positive then the same is true for all the Wronskians appearing in (2.43) hence
the absolute values are redundant; in this case it is the inverted n-tuple (φn, . . . , φ1)
which forms an extended complete Chebyshev system on [T, x0[.

The construction of the two above factorizations starting from the given expres-
sions of the coefficients qi or pi is the classical procedure by Pólya [12]. Notice that
the functions pi’s in (2.47), which are unique (constant factors apart) by a mentioned
result by Trench, may be recovered from many different asymptotic scales and not
just from one! The main feature of the above proposition is that we can express all
the properties of our basic operator (at least those needed in our theory) in terms
of the a-priori given Chebyshev asymptotic scale. The use of absolute values in the
definitions of the qi’s and pi’s , though causing some incoveniences in the sequel,
has the advantage of avoiding their use in the everywhere-present integral represen-
tations; and we must use them in at least one of the definitions as the two sets of
Wronskians cannot have one and the same sign.

A quick proof of the existence of C.F.’s . The global existence of C.F.’s of
type (I) was for the first time proved by Trench [14] by an original procedure which
was subsequently adapted by the author [2] to show the local existence of C.F.’s
of type (II). Trench’s result played a historical role as it had a great impact on
the asymptotic theory of ordinary differential equations. Levin’s theorem easily
implies Trench’s result about global existence (but not uniqueness) in the case of
disconjugate operators and the existence of a particular local C.F.’s of type (II): see
the proof of Proposition 2.4. However we must point out that Trench’s procedure,
independent of properties of Wroskians, applies to a larger class of operators [14,
§1]. As far as C.F.’s of type (II) are concerned the present quick approach does not
yield a C.F. of type (II) at b for each interval ]a + ǫ, b[, as asserted in Proposition
2.1-(v).

3. Applying differential operators to asymptotic scales

In the elementary case of Taylor’s formula the simple condition

(3.1) ∃ f (n)(x0)
is not a mere sufficient condition for the validity of the asymptotic expansion

(3.2) f(x) =

n∑

i=0

ai(x− x0)i + o
(
(x− x0)n

)
≡ Tn(x) + o

(
(x− x0)n

)
, x→ x0;
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it in fact characterizes the set of the n asymptotic expansions

(3.3) f (k)(x) =

n−k∑

i=0

T (k)
n (x) + o

(
(x− x0)n−k

)
, x→ x0, 0 ≤ k ≤ n− 1,

which is formed by (3.2) together with the relations obtained by formal differentia-
tion 1, 2, . . . n−1 times. In this case we have the known formulas for the coeffficients:

(3.4) ai = f (i)(x0)/i! , 0 ≤ i ≤ n.

If we strenghten condition (3.1) by assuming

(3.5) f ∈ ACn
(
Ix0

)
, Ix0

: a neighborhood of x0,

we have representation

(3.6) f (n)(x) = f (n)(xo) +

∫ x

x0

f (n+1)(t)dt,

which, besides implying the validity of (3.3) for k = n as well, gives rise to the
integral representation formulas of all the remainders in (3.3).

A similar situation occurs in the factorizational theory of polynomial asymptotic
expansions at +∞, [4], where the standard operators of differentiation Dk := dk/dxk

happen to be formally applicable n times to the expansion

(3.7) f(x) = anx
n + . . .+ a1x+ a0 + o(1), x→ +∞,

in two quite different senses and under suitable integral conditions. But in the
analogous theory for expansions in arbitrary real powers

(3.8) f(x) = a1x
α1 + . . .+ anx

αn + o
(
xαn
)
, x→ +∞, (α1 > . . . > αn),

developed in [6], it turns out that the most natural operators on which to build
a satisfying theory are those linked to the C.F.’s of the differential operator in
(2.26) with φi(x) := xαi and not the operators Dk though, in this special instance,
the set of the formally-differentiated expansions may be equivalently expressed by
expansions involving the standad derivatives. In the present general context it is
good to preliminarly investigate which differential operators are likely to be formally
applicable to an expansion (1.1) and a possible approach consists in investigating
the case of an asymptotic expansion with a zero remainder i.e. a relation of type

(3.9) f(x) = a1φ1(x) + · · ·+ anφn(x).

A first very general answer comes from the hierarchies of the Wronskians; a
second, less general but practically more meaningful, answer comes from the use of
C.F.’s; third, a C.F. of type (II) turns out to play a special role in computing the
coefficients of an asymptotic expansion. We have used locutions such as “formal
application of an operator” in an intuitive way but we give here a precise definition
to avoid possible incongruences arising from identically-zero terms.
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Definition 3.1 (Asymptotically-admissible operators). Let L be a linear operator
acting between two linear spaces of real- or complex-valued functions of one real
variable. If L[φi(x)] ≡ 0 on some neighborhood of x0 ∀ i then the concept in question
is not defined, otherwise we put:

(3.10) m := max{i ∈ {1, . . . , n} : L[φi(x)] 6≡ 0 on a neighborhood of x0},

and say that L is asymptotically admissible with respect to a given asymptotic ex-
pansion

(3.11) f(x) = a1φ1(x) + · · ·+ anφn(x) + o(φn(x)), x→ x0,

if its formal application to both sides of (3.11) yields

(3.12)1 L[f(x)] = a1L[φ1(x)] + · · · + amL[φm(x)] + o
(
L[φm(x)]

)
, x→ x0,

wherein

(3.12)2

{
L[φ1(x)]≫ · · · ≫ L[φn(x)], x→ x0, after suppression

of all the terms ≡ 0 on some neighborhood of x0.

An alternative locution for an asymptotically-admissible L is “L is formally ap-
plicable to the asymptotic expansion”. The spoken-of neighborhood of x0 may well
be one-sided.

We exhibit two simple examples clarifying the above definition; in each of them
the standard operator d/dx is asymptotically admissible according to Definition 3.1
and inconsistencies would occur without suppression of the identically-zero terms:

(3.13)





f1(x) := x2 + log x+ 1 + x−1 + e−x, x > 0,

{
f1(x) = x2 + log x+ 1 + x−1 + o(x−1), x→ +∞,
f ′1(x) = 2x+ x−1 − x−2 + o(x−2), x→ +∞.

(3.14)





f2(x) := log x+ 1 +
√
x+ x2, x > 0,

{
f2(x) = log x+ 1 +

√
x+ o(x), x→ 0+,

f ′2(x) = x−1 + 1
2x
−1/2 + o(1), x→ 0+.

3-A. The approach through the Wronskians, based on
Levin’s theorem on hierarchies

A mere rereading of Proposition 2.2 gives

Proposition 3.1. Referring to a T.A.S. of class ACn−1[T, x0[ consider the
operators

(3.15) Lφi1
,...,φik

u := W (φi1 , . . . , φik , u), 1 ≤ i1 < i2 < · · · < ik ≤ n; 1 ≤ k ≤ n−1,
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which are kth-order linear differential operators whose leading coefficients never van-
ish on a left deleted neighborhood of x0. Then all these operators are asymptotically
admissible with respect to relation (3.9) viewed as an asymptotic expansion with zero
remainder; and this means that each relation

(3.16) Lφi1
,...,φik

f =

i=1,...,n∑

i 6=ij ∀j

aiW (φi1 , . . . , φik , φi)

is again an asymptotic expansion at x0 with zero remainder. For instance we have
the identities:

(3.17)
Lφk

f = a1W (φk, φ1) + · · ·+ ak−1W (φk, φk−1)+

+ ak+1W (φk, φk+1) + · · · + anW (φk, φn),

wherein

(3.18)
W (φk, φ1)≫W (φk, φ2)≫ · · · ≫W (φk, φk−1)≫

≫W (φk, φk+1)≫ · · · ≫W (φk, φn), x→ x−0 ,

for each fixed k, 1 ≤ k ≤ n − 1, n ≥ 3. (For n = 2 the chain (3.18) has only one
term). And we also have the identities:

(3.19) Lφh,φk
f =

i=1,...,n∑

i 6=h,k

aiW (φh, φk, φi),

wherein
(3.20)



W (φh, φk, φ1)≫W (φh, φk, φ2)≫ · · · ≫
≫W (φh, φk, φh−1)≫ W (φh, φk, φh+1)≫ · · · ≫
≫W (φh, φk, φk−1)≫W (φh, φk, φk+1)≫ · · · ≫W (φh, φk, φn), x→ x−0 ,

for fixed h, k : 1 ≤ h < k ≤ n, n ≥ 4. (For n = 3 the chain (3.20) has only one term).

Proposition 3.1 gives rise to a first conjecture:

Conjecture A. Referring to the asymptotic expansion (1.1), or (1.4) with i < n,
there are many linear differential operators, namely (3.15), which are likely to be
formally applicable under reasonable hypotheses.

3-B. The special operators associated to canonical factorizations

In the Wronskians in (3.15) a permutation of (φi1 , . . . , φik) seems to be imma-
terial a sign apart, hence there are exactly (2n − 2) essentially different operators
of type (3.15): the number of the distinct subsets of (φ1 . . . , φn) with cardinality
k̃ : 1 ≤ k̃ ≤ n− 1. Now for n ≥ 3 the object of our study, in a general formulation,
involves a sequence of “nested” operators:

(3.21) Lφi1
, Lφi1

,φi2
, . . . Lφi1

,φi2
,...,φik

,
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where “nested” refers to the inclusions of their kernels and the problem consists in
finding sufficient, and possibly necessary, conditions for the validity of the set of
asymptotic relations

(3.22)





f(x) =
∑n

i=1 aiφi(x) + o
(
φn(x)

)
,

Lφi1
[f(x)] =

∑i=1,...,n
i 6=i1

aiW (φi1 , φi;x) + o
(
ψ1(x)

)
,

. . . . . . . . .

Lφi1
,...,φik

[f(x)] =
∑i=1,...,n

i 6=ij ∀j
aiW (φi1 , . . . , φik , φi;x) + o

(
ψk(x)

)
,

with proper choices of the ψi’s. Once a subset (φi1 , . . . , , φik) has been fixed there
is no a-priori reason to prefer one permutation of the φi’s to another but it turns
out that each ordered k-tuple (φi1 , . . . , , φik) is linked to a special factorization of
Lφi1

,...,φik
, possibly valid on a neighborhood of x0 smaller than [T, x0[ and calcula-

tions can be successfully carried out only under proper integrability assumptions on
the coefficients of the factorization, hence the order of the φi’s is not immaterial.
Now a generic factorization of Lφ1,...,φn

, say (2.3), assumed valid on [T, x0[, involves
the differential operators

(3.23) r0(x)u; r1(x)(r0(x)u)
′; r2(x)

[
r1(x)(r0(x)u)

′
]′
. . .

which we label as “weighted derivatives of orders 0, 1, 2 etc. with respect to the
weights (r0, r1, . . . , rn)” in preference to the (some-times used) generic locutions of
“quasi-derivatives or generalized derivatives” with no reference to the n-tuples of
weights. For convenience we include the operator of order zero. Operators (3.23)
are not always linked to operators of the type in (3.15) nor they preserve the hierar-
chy of the φi’s but the two C.F.’s highlighted in Proposition 2.1 yield two sequences
of differential operators of orders 0, 1, 2, . . . , n − 1 which are strictly related to op-
erators in (3.15) and preserve the hierarchy; these operators were the core of the
asymptotic theory in the case of real-power expansions [5; 6] hence they deserve a
special attention and, as a matter of fact, the most meaningful results of our theory
are based on them.

Referring to the factorization of type (I) in (2.47), with the pi’s in (2.43), we
define the differential operators acting on ACn−1[T, x0[:

(3.24)

{
L0u := p0(x)u; Lku := pk

[
pk−1(. . . (p0u)

′ . . . )′
]′
, 1 ≤ k ≤ n;

Lnu ≡ Lφ1,...,φn
u,

which satisfy the recursive formula

(3.25) Lku := pk(x)(Lk−1u)
′, 1 ≤ k ≤ n.

And referring to the factorization of type (II) in (2.39), with the qi’s in (2.35),
we define the differential operators acting on ACn−1[T, x0[:

(3.26)

{
M0u := q0(x)u; Mku := qk(x)

[
qk−1(x)(. . . (q0(x)u)

′ . . . )′
]′
, 1 ≤ k ≤ n;

Mnu ≡ Lφ1,...,φn
u,
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which satisfy the recursive formula

(3.27) Mku := qk(x)(Mk−1u)
′, 1 ≤ k ≤ n.

Now representations (2.40) and (2.47) imply that:

(3.28)

{
ker Lk = span (φn, φn−1, . . . , φn−k+1),

ker Mk = span (φ1, . . . , φk), 1 ≤ k ≤ n− 1;

hence there exist never-vanishing functions p̃k, q̃k such that:

(3.29)

{
Lku = p̃k ·W (φn, φn−1, . . . , φn−k+1, u),

Mku = q̃k ·W (φ1, . . . , φk, u), 1 ≤ k ≤ n− 1.

It follows that Lk and Mk preserve the hierarchy (2.23), namely we have the
following asymptotic scales

(3.30) Lk[φ1(x)]≫ Lk[φ2(x)]≫ · · · ≫ Lk[φn−k(x)], x→ x−0 ,

(3.31) Mk[φk+1(x)]≫Mk[φk+2(x)]≫ · · · ≫Mk[φn(x)], x→ x−0 ,

for each fixed k, 0 ≤ k ≤ n− 2. For k = 0 they respectively reduce to

(3.32) p0(x)φ1(x)≫ p0(x)φ2(x)≫ · · · ≫ p0(x)φn(x), x→ x−0 ,

(3.33) q0(x)φ1(x)≫ q0(x)φ2(x)≫ · · · ≫ q0(x)φn(x), x→ x−0 ,

both equivalent to (2.23). Hence, applying each n-tuple of operators Lk and Mk,
0 ≤ k ≤ n − 1, to (3.9) yields again asymptotic expansions with zero remainders
and in this sense we may say that “the asymptotic expansion (3.9) is formally dif-
ferentiable (n − 1) times with respect to the n-tuples of weights (p0, . . . , pn−1) and
(q0, . . . , qn−1)” neglecting the nth-order weighted derivatives which yield identically-
zero expressions. The above discussion leads to the following

Conjecture B (Particularization of Conjecture A). For each chosen C.F. of
Lφ1,...,φn

of type either (I) or (II) at x0,

(3.34) Lφ1,...,φn
u ≡ rn

[
rn−1(. . . (r0u)

′ . . . )′
]′ ∀ u ∈ ACn−1[T, x0[ ,

there exists a linear subspace D ∈ ACn−1[T, x0[, such that:
(i) D ⊃

6=
span (φ1, . . . , φn),

(ii) each f ∈ D has an asymptotic expansion of type (1.1) which is formally
differentiable (n− 1) times with respect to the n-tuples of weights (r0, r1, . . . , rn−1).

The problem consists in finding out analytic conditions characterizing the ele-
ments of D for a C.F. of type (I) or (II) separately. The foregoing approach suggests
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a smallness condition involving the quantity Lφ1,...,φn
[f(x)] which is ≡ 0 whenever

the remainder in the expansion is.

3-C. The coefficients of an asymptotic expansion with zero remainder

A third fact we wish to investigate is the possible expressions of the coefficients of
an asymptotic expansion alternatively to the recurrent formulas (1.3), so generalizing
(3.4). It is clear from the study of polynomial expansions in [4] that the C.F. of type
(I) is of no use to this end whereas the right approach is via a C.F. of type (II) by
establishing a link between the coefficients of (3.9) and the limits of the weighted
derivatives.

Proposition 3.2 (The coefficients of an asymptotic expansion with zero re-
mainder). Referring to the T.A.S. in Proposition 2.4 and to the special factorization
(2.39) the following facts hold true for the differential operators Mk in (3.26):

(I) The Mk’s satisfy the following relations:

(3.35) ker Mk = span (φ1, . . . , φk), 1 ≤ k ≤ n;

(3.36) Mk[φk+1(x)] ≡ ǫk = constant = ±1, 1 ≤ k ≤ n− 1;

(3.37)





Mk[φh(x)] = ǫh,k ·
∫ x0

x

1

qk+1
. . .

∫ x0 1

qh−1
= o(1), x→ x−0 ;

ǫh,k = constant = ±1, 1 ≤ k ≤ h− 2, h ≤ n.

(3.38) Mku ≡ ǫk
W (φ1, . . . , φk, u)

W (φ1, . . . , φk, φk+1)
, 1 ≤ k ≤ n− 1.

(II) For a fixed k, 1 ≤ k ≤ n, we have the logical equivalence:

(3.39) Mk−1[f(x)] ≡ ǫk−1 · ak = constant on some interval J

iff

(3.40) f(x) = a1φ1(x) + · · ·+ akφk(x) on J for some constants ai,

ak being the same as in (3.39) and ǫk−1 as in (3.36).
If (3.39)-(3.40) hold true on a left neighborhood of x0 then the following limits

exist as finite numbers and

(3.41) ǫh−1 · ah = lim
x→x−

0

Mh−1[f(x)], 1 ≤ h ≤ k,

where, for h=k, (3.41) is the identity (3.39).

(III) In the special case where all the Wronskians in (2.24) are strictly positive
then the constants in (3.36)-(3.37) have the values:

(3.42) ǫk = 1, ǫh,k = (−1)h+k+1.
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We stress that the equivalence “(3.39) ⇔ (3.40)” is an algebraic fact based
on (3.35)-(3.36) whereas the inference “(3.39)-(3.40) ⇒ (3.41)” is an asymptotic
property whose validity requires that (φ1, . . . , φk) be an asymptotic scale at x0 and
that the operatorsMk be defined as specified. Proposition 3.2 suggests the following

Conjecture C. If all the limits in (3.41) exist as finite numbers for some
function f sufficiently regular on a left deleted neighborhood of x0 then an asymptotic
expansion

(3.43) f(x) = a1φ1(x) + · · · + akφk(x) + o
(
φk(x)

)
, x→ x−0 ,

holds true matched to other expansions obtained by formal applications of the opera-
tors M1, . . . ,Mk−1. Moreover it is worth investigating if the validity of the sole last
relation in (3.41), i.e. for h = k, implies the validity of the other relations.

We shall give complete answers to Conjectures B and C in §§4,5.

3-D. An heuristic approach via L’Hospiral’s rule.

There is another way to arrive at Conjecture C by the elementary use of L’Hospital’s
rule. The following calculations on the limits in (1.3), if legitimate, would yield:
(3.44)



a1 = lim
x→x−

0

f/φ1;

a2 = lim
x→x−

0

f − a1φ1
φ2

≡ lim
x→x−

0

(f/φ1)− a1
(
= o(1)

)

φ2/φ1
(
= o(1)

) H
= lim

x→x−
0

(f/φ1)
′

(φ2/φ1)′
≡ lim

x→x−
0

M1[f(x)];

a3 = lim
x→x−

0

f − a1φ1 − a2φ2
φ3

≡ lim
x→x−

0

(f/φ1)− a1 − a2(φ2/φ1)
φ3/φ1

H
=

H
= lim

x→x−
0

(f/φ1)
′ − a2(φ2/φ1)′
(φ3/φ1)′

≡ lim
x→x−

0

(f/φ1)
′
/
(φ2/φ1)

′ − a2
(φ3/φ1)′

/
(φ2/φ1)′

H
=

H
= lim

x→x−
0

(
(f/φ1)

′
/
(φ2/φ1)

′
)′

(
(φ3/φ1)′

/
(φ2/φ1)′

)′ ≡ lim
x→x−

0

M2[f(x)]; and so on.

Such kind of manipulations may seem artificial and awkward from an elementary
viewpoint and it is by no means obvious that iterating the procedure yields the
relations in (3.41) for h ≥ 4 as well. In one of the two algorithms presented in §8
(Proposition 8.1) it will be shown that the procedure is quite natural in the context
of formal differentiation of an asymptotic expansion and that it actually leads to
(3.41) for all values of h.

4. The first factorizational approach

We start from the ”unique” C.F. of our operator Lφ1,...,φn
on the interval [T, x0[ of

type (I) at x0, i.e. identity (2.47) with conditions (2.45)-(2.46) and the pi’s satisfying

20



the same conditions as do the qi’s in (2.36). We consider the fundamental system
(2.48). By (2.49) the ordered n-tuple (Pn−1, . . . , P0) is an asymptotic scale at x−0
but it cannot coincide (constant factors apart) with the given scale (φ1, . . . , φn) as
(2.41) and (2.49) are incompatible. However (2.23) and (2.49) imply that the two
scales are linked by the following relations

(4.1) φi(x) ∼ biPn−i(x), x→ x−0 , 1 ≤ i ≤ n,

with suitable nonzero constants bi, hence

(4.2)

{
φi(x) = biPn−i(x) +

∑n
j=i+1 βi,jPn−j(x), 1 ≤ i ≤ n− 1,

φn(x) = bnP0(x),

and viceversa

(4.3) P0(x) =
1

bn
φn(x), Pi(x) =

1

bn−i
φn−i(x) +

n∑

j=n−i+1

β̃i,jφj(x), 1 ≤ i ≤ n− 1,

with suitable constants βi,j, β̃i.j .
In this approach the appropriate differential operators to be used are the Lk’s

defined in (3.24) and here are some elementary properties of these operators.

Lemma 4.1. The following relations are checked at once:

(4.4) ker Lk =

{
span (P0, P1, . . . , Pk−1)

span (φn, φn−1, . . . , φn−k+1), 1 ≤ k ≤ n;

(4.5) Lk[Pk(x)] ≡ 1, 0 ≤ k ≤ n− 1;

(4.6) Lk[Pi(x)] ≡
∫ x

T

dtk+1

pk+1(tk+1)
. . .

∫ ti−1

T

dti
pi(ti)

, 0 ≤ k < i ≤ n− 1;

(4.7) Lk[Pi(x)]≪ Lk[Pi+1(x)], x→ x−0 , 0 ≤ k ≤ i ≤ n− 2.

Hence we have the following chains of asymptotic relations:

(4.8)





L0[P0(x)]≪ L0[P1(x)]≪ · · · ≪ L0[Pn−1(x)],

L1[P1(x)]≪ L1[P2(x)]≪ · · · ≪ L1[Pn−1(x)],

L2[P2(x)]≪ L2[P3(x)]≪ · · · ≪ L2[Pn−1(x)], x→ x−0 ,

. . . . . . . . .

Ln−2[Pn−2(x)]≪ Ln−2[Pn−1(x)].

The first chain in (4.8) coincides with the second chain in (2.49) apart from the
ordering and the multiplicative factor p0(x). As the first term in each chain is the
constant ”1” all the other terms diverge to +∞.
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Lemma 4.2. If a solution φ of Lφ1,...,φn
u = 0 satisfies the asymptotic relation

(4.9) φ(x) ∼ cPi(x), x→ x−0 ,

for some i ∈ {0, 1, . . . , n−1} and some nonzero constant c then the following relations
hold true:

(4.10) Lk[φ(x)] ∼ cLk[Pi(x)], x→ x−0 , 0 ≤ k ≤ i ≤ n− 1;

(4.11) Lk[φ(x)] ≡ 0, i+ 1 ≤ k ≤ n.

Moreover:

(4.12) Lk[φn−i(x)] ≡
{
bn−k, 0 ≤ i = k ≤ n− 1,

0, 0 ≤ i < k,

with the bi’s defined in (4.1). It follows from (4.1) and (4.10) that all relations in
(4.8) hold true after replacing Pi by φn−i hence we have the asymptotic scales:

(4.13)





L0[φ1(x)]≫ L0[φ2(x)]≫ · · · ≫ L0[φn(x)],

L1[φ1(x)]≫ L1[φ2(x)]≫ · · · ≫ L1[φn−1(x)],

L2[φ1(x)]≫ L2[φ2(x)]≫ · · · ≫ L2[φn−2(x)],

. . . . . . . . .

Ln−2[φ1(x)]≫ Ln−2[φ2(x)].

x→ x−0 ,

Last, with the bi’s defined in (4.1), we have the identity:

(4.14) Lku ≡ bn−k
W (φn, φn−1, . . . , φn−k+1, u)

W (φn, φn−1, . . . , φn−k)
, 1 ≤ k ≤ n− 1.

Lemma 4.3. Any function f ∈ ACn−1[T, x0[ admits of a representation of type:

(4.15)





f(x) = c1φ1(x) + · · · + cnφn(x)+

+
1

p0(x)

∫ x

T

1

p1
. . .

∫ tn−2

T

1

pn−1

∫ tn−1

T

Lφ1,...,φn
[f(t)]

pn(t)
dt, x ∈ [T, x0[ ,

with suitable constants ci. From (4.6), (4.12) and (4.15) we infer the following rep-
resentations of the weighted derivatives of f with respect to the weight functions
(p0, . . . , pn):

(4.16)





Lk[f(x)] = c1Lk[φ1(x)] + · · ·+ cn−kLk[φn−k(x)]+

+

∫ x

T

dtk+1

pk+1(tk+1)
. . .

∫ tn−2

T

dtn−1
pn−1(tn−1)

∫ tn−1

T

Lφ1,...,φn
[f(t)]

pn(t)
dt,

for x ∈ [T, x0[ ; 0 ≤ k ≤ n− 2;

22



(4.17)





Ln−1[f(x)] = c1Ln−1[φ1(x)] +

∫ x

T

Lφ1,...,φn
[f(t)]

pn(t)
dt =

(4.12)
= c1b1 +

∫ x

T

Lφ1,...,φn
[f(t)]

pn(t)
dt, x ∈ [T, x0[ .

By (4.13) the linear combination
∑n−k

i=1 ciLk[φi(x)] in the right-hand side of (4.16)
is in itself an asymptotic expansion at x−0 for each fixed k.

We shall now characterize various situations wherein relations (4.16)-(4.17) be-
come asymptotic expansions. In the following two theorems we state separately three
cases of a single claim lest a unified statement be obscure. The reader is referred
to the first remark after next theorem to grasp the meaning of the differentiated
asymptotic expansions which exhibit a special non-common phenomenon.

Theorem 4.4 (Asymptotic expansions formally differentiable according to the
C.F. of type (I) ). Let f ∈ ACn−1[T, x0[.

(I) The following are equivalent properties for a suitable constant a1:
(i) The set of asymptotic relations

(4.18) Lk[f(x)] = a1Lk[φ1(x)] + o
(
Lk[φ1(x)]

)
, x→ x−0 ; 0 ≤ k ≤ n− 1.

(ii) The single asymptotic relation

(4.19) Ln−1[f(x)] = a1b1 + o(1), x→ x−0 , with b1 defined in (4.1),

which is the explicit form of the relation in (4.18) for k = n− 1.
(iii) The improper integral

(4.20)

∫ x0

T

Lφ1,...,φn
[f(t)]

pn(t)
dt converges.

Under condition (4.20) we have the representation formula:

(4.21) Ln−1[f(x)] = a1b1 −
∫ x0

x

Lφ1,...,φn
[f(t)]

pn(t)
dt, x ∈ [T, x0[ .

(II) For a fixed i ∈ {2, . . . , n} the following are equivalent properties for suitable
constants ai (the same in each set of conditions):

(iv) The set of asymptotic expansions as x→ x−0 :
(4.22)



Lk[f(x)] = a1Lk[φ1(x)] + · · ·+ aiLk[φi(x)] + o
(
Lk[φi(x)]

)
, 0 ≤ k ≤ n− i;

Ln−i+h[f(x)] = a1Ln−1+h[φ1(x)] + · · ·+ ai−hLn−i+h[φi−h(x)]+

+ o(1); 0 ≤ h ≤ i− 1.

(v) The second group of asymptotic expansions in (4.22), i.e.

(4.23)

{
Ln−i+h[f(x)] = a1Ln−1+h[φ1(x)] + · · ·+ ai−hLn−i+h[φi−h(x)]+

+ o(1), x→ x−0 ; 0 ≤ h ≤ i− 1,
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where we point out that the last meaningful term in the right-hand side is a constant.
(vi) The following improper integral, involving “ i” iterated integrations,

(4.24)

∫ x0

T

1

pn−i+1

∫ x0

tn−i+1

1

pn−i+2
. . .

∫ x0

tn−2

1

pn−1

∫ x0

tn−1

Lφ1,...,φn
[f(t)]

pn(t)
dt converges.

Under condition (4.24) we have the representation formula:

(4.25)





Ln−i[f(x)] = a1Ln−i[φ1(x)] + · · · + aiLn−i[φi(x)]+

+(−1)i
∫ x0

x

1

pn−i+1

∫ x0

tn−i+1

1

pn−i+2
. . .

∫ x0

tn−2

1

pn−1

∫ x0

tn−1

Lφ1,...,φn
[f(t)]

pn(t)
dt,

for x ∈ [T, x0[, as well as the corresponding formulas for the functions Ln−i+h[f(x)]
with 0 ≤ h ≤ i − 1, obtained by suitable differentiations of (4.25): see remark 3
below.

Remarks. 1. Relations in (4.22) may be read as follows. The first relation,
involving L0, is equivalent to the asymptotic expansion

(4.26) f(x) = a1φ1(x) + · · ·+ aiφi(x) + o
(
φi(x)

)
, x→ x−0 ,

and the relations involving Lk, with 1 ≤ k ≤ n− i, state that (4.26) can be formally
differentiated (n− i) times in the sense of formally applying the operators Lk to the
remainder in (4.26). In so doing one arrives at the expansion

(4.27) Ln−i[f(x)] = a1Ln−i[φ1(x)] + · · ·+ aiLn−i[φi(x)] + o(1), x→ x−0 ,

where Ln−i[φi(x)] ≡ constant. The process of formal differentiation, from the order
(n−i+1) up to (n−1), goes on according to the following rule: in (4.27) and in each
expansion in (4.23) the last term is constant and is lost after one further weighted
differentiation while the remainder preserves its simple growth-order estimate of
“o(1)”. So the first (n− i+1) expansions, i.e. those involving L0, L1, . . . , Ln−i, have
the same number of meaningful terms whereas each of the other (i−1) expansions is
deprived of the last meaningful term at each successive differentiation. We rewrite
more explicitly the expansions in (4.22) to better highlight the dynamics of this
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process:

(4.28)





f(x) = a1φ1(x) + · · ·+ aiφi(x) + o
(
φi(x)

)
,

L1[f(x)] = a1L1[φ1(x)] + · · ·+ aiL1[φi(x)] + o
(
L1[φi(x)]

)
,

. . . . . .

Ln−i[f(x)] = a1Ln−i[φ1(x)] + · · ·+ aiLn−i[φi(x)]︸ ︷︷ ︸
constant

+ o(1),

Ln−i+1[f(x)] = a1Ln−i+1[φ1(x)] + · · ·+ ai−1Ln−i+1[φi−1(x)]︸ ︷︷ ︸
constant

+ o(1),

. . . . . .

Ln−2[f(x)] = a1Ln−2[φ1(x)] + a2Ln−2[φ2(x)]︸ ︷︷ ︸
constant

+ o(1),

Ln−1[f(x)] = a1Ln−1[φ1(x)]︸ ︷︷ ︸
constant

+ o(1).

The loss of the last meaningful term, where it occurs, is caused by formula (4.12)
for i = k − 1 which, after renaming the indexes, reads

(4.29) Ln−i+h[φi−h+1(x)] ≡ 0.

Notice that in the second group of expansions in (4.28) the meaningful terms
disappear one after one in reversed order if compared with Taylor’s formula.

2. It is shown in §7, after the proof of Theorem 4.4, that the set (4.23) is not
equivalent in general to the single relation

(4.30) Ln−i[f(x)] = a1Ln−i[φ1(x)] + · · ·+ aiLn−i[φi(x)] + o(1), x→ x−0 ,

as in part (I) of the theorem (case i = 1).
3. Suitable weighted differentiations of (4.25) yield integral representations of

the remainders in the differentiated expansions of orders greater than (n − i) and
these representations are numerically meaningful. On the contrary, if i < n, then
successive integrations of (4.25) contain some constants not uniquely defined hence
the corresponding representations are of no numerical use without additional infor-
mation on f.

For i = n the subset of (4.22) involving the operators Lk, 1 ≤ k ≤ n− i, is empty
and here is an explicit and expanded statement.

Theorem 4.5 (The case i = n in Theorem 4.4). For f ∈ ACn−1[T, x0[ the
following are equivalent properties:

(i) The set of asymptotic expansions as x→ x−0 for suitable constants a1, . . . , an:
(4.31)




f(x) = a1φ1(x) + · · ·+ anφn(x) + o
(
φn(x)

)
,

Lk[f(x)] = a1Lk[φ1(x)] + · · ·+ an−kLk[φn−k(x)]︸ ︷︷ ︸
constant

+ o(1), 1 ≤ k ≤ n− 1,
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where the last term in each expansion is lost in the successive expansion.
(ii) The improper integral

(4.32)

∫ x0

T

1

p1
. . .

∫ x0

tn−2

1

pn−1

∫ x0

tn−1

Lφ1,...,φn
[f(t)]

pn(t)
dt converges.

(iii) There exist n real numbers a1, . . . , an and a function Φn Lebesgue-summable
on [T, x0[ such that

(4.33)





f(x) = a1φ1(x) + · · · + anφn(x)+

+
(−1)n
p0(x)

∫ x0

x

1

p1

∫ x0

t1

1

p2
. . .

∫ x0

tn−2

1

pn−1

∫ x0

tn−1

Φn(t)dt, x ∈ [T, x0[ .

If this is the case Φn is determined up to a set of measure zero and

(4.34) Φn(x) =
1

pn(x)
Lφ1,...,φn

[f(x)] a.e. on [T, x0[ .

The phenomenon described in the above theorems is intrinsic in the theory; it
occurs even in the seemingly elementary case of real-power expansions, [6; Thm.
4.2-(ii), p. 181, and formula (7.2), p. 195], where the asymptotic scale enjoys
the most favourable algebraic properties. This type of formal differentiation of an
asymptotic expansion does not frequently occur in the literature though the results
in this section show that it is one of the possible natural situations. An instance
(not inserted in a general theory) is to be found in a paper by Schoenberg [13; Thm.
3, p. 258] and refers to the asymptotic expansion

(4.35) f(x) = a1x
−1 + a2x

−2 + · · ·+ anx
−n +O(x−n−1), x→ +∞.

5. The second factorizational approach and estimates of the remainder

Now we face our problem starting from a C.F. of type (II) at x0. Referring to
Proposition 2.4 the most natural choice is the special C.F. of Lφ1,...,φn

in (2.39),
with the qi’s in (2.35) and satisfying conditions (2.36). According to Conjectures
B and C in §3 we shall characterize a set of asymptotic expansions, involving the
operators Mk defined in (3.26), wherein each coefficient of the first expansion may
be found by an independent limiting process instead of the recursive formulas (1.3),
and the existence of the sole last coefficient implies the existence of all the preceding
coefficients.

In this new context a representation of the following type is appropriate for any
function f ∈ ACn−1[T, x0[:

(5.1)





f(x) = c1φ1(x) + · · ·+ cnφn(x)+

+
1

q0(x)

∫ x

T

1

q1
. . .

∫ tn−2

T

1

qn−1

∫ tn−1

T

Lφ1,...,φn
[f(t)]

qn(t)
dt , x ∈ [T, x0[ ,
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with suitable constants ci. Applying the operators Mk to (5.1) we get the following
representations of the weighted derivatives of f with respect to the weight functions
(q0, . . . , qn) :
(5.2)



Mk[f(x)] = ck+1Mk[φk+1(x)] + · · ·+ cnMk[φn(x)]+

+

∫ x

T

dtk+1

qk+1(tk+1)
. . .

∫ tn−2

T

dtn−1
qn−1(tn−1)

∫ tn−1

T

Lφ1,...,φn
[f(t)]

qn(t)
dt, 0 ≤ k ≤ n− 1.

Warning! To simplify formulas and to leave no ambiguity about the signs of the
involved quantities we assume throughout this section that the Wronskians in (2.24)
are strictly positive.

Hence, by (3.42) ǫk = 1 and the last relation in (5.2) explicitly is

(5.3) Mn−1[f(x)] = cn +

∫ x

T

Lφ1,...,φn
[f(t)]

qn(t)
dt, x ∈ [T, x0[ .

By (3.31) the ordered linear combination in (5.2),

(5.4)
n∑

i=k+1

ciMk[φi(x)],

is an asymptotic expansion at x−0 for each fixed k, 0 ≤ k ≤ n− 1.
Unlike §4 we first state here the result concerning a complete asymptotic expan-

sion, i.e. of type (1.1), because it is the most expressive result in this paper and
characterizes the simple circumstance that Mn−1[f(x)] = an + o(1) via a set of n
asymptotic expansions. Always refer to Proposition 3.2 for properties of the Mk’s.

Theorem 5.1 (Complete asymptotic expansions formally differentiable accord-
ing to a C.F. of type (II) ). Let our T.A.S. be such that all the Wronskians in (2.24)
are strictly positive and let f ∈ ACn−1[T, x0[.

(I) The following are equivalent properties:
(i) There exist n real numbers a1, . . . , an such that:

(5.5) f(x) = a1φ1(x) + · · ·+ anφn(x) + o
(
φn(x)

)
, x→ x−0 ;

(5.6)

{
Mk[f(x)] = ak+1Mk[φk+1(x)] + · · ·+ anMk[φn(x)]+

+ o
(
Mk[φn(x)]), x→ x−0 , 1 ≤ k ≤ n− 1;

where the first term in each expansion is lost in the successive expansion.
Notice that the relation that would be obtained in (5.6) for k = 0 differs from

relation in (5.5) by the common factor q0(x).
(ii) All the following limits exist as finite numbers:

(5.7) lim
x→x−

0

Mk[f(x)] ≡ ak+1, 0 ≤ k ≤ n− 1,
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where the ak’s coincide with those in (5.5).
(iii) The single last limit in (5.7) exists as a finite number, i.e.

(5.8) lim
x→x−

0

Mn−1[f(x)] ≡ an,

and (5.8) is nothing but the relation in (5.6) for k = n−1 which reads Mn−1[f(x)] =
an + o(1), x→ x−0 .

(iv) The improper integral

(5.9)

∫ →x0

T

Lφ1,...,φn
[f(t)]

qn(t)
dt converges,

and automatically also the iterated improper integral

(5.10)

∫ x0

T

1

q1

∫ x0 1

q2
. . .

∫ x0 1

qn−1

∫ x0 Lφ1,...,φn
[f(t)]

qn(t)
dt converges.

(v) There exist n real numbers a1, . . . , an and a function Ψn Lebesgue-summable
on [T, x0[ such that

(5.11) f(x) =
n∑

i=1

aiφi(x)+
(−1)n
q0(x)

∫ x0

x

1

q1
. . .

∫ x0

tn−2

1

qn−1

∫ x0

tn−1

Ψn(t)dt, x ∈ [T, x0[ ,

where we remind that, by (2.35), 1/q0(x) = φ1(x). In this case Ψn is determined up
to a set of measure zero and

(5.12) Ψn(x) =
1

qn(x)
Lφ1,...,φn

[f(x)] a.e. on [T, x0[ .

(II) Whenever properties in part (I) hold true we have integral representation
formulas for the remainders

(5.13)





R0(x) := f(x)−
n∑

i=1

aiφi(x),

Rk(x) := Mk[f(x)]−
n−k∑

i=1

ak+iMk[φk+i(x)], 1 ≤ k ≤ n− 1,

namely :

(5.14) R0(x) =
(−1)n
q0(x)

∫ x0

x

1

q1
. . .

∫ x0

tn−2

1

qn−1

∫ x0

tn−1

Lφ1,...,φn
[f(t)]

qn(t)
dt,

(5.15) Rk(x) = (−1)n+k

∫ x0

x

1

qk+1
. . .

∫ x0

tn−2

1

qn−1

∫ x0

tn−1

Lφ1,...,φn
[f(t)]

qn(t)
dt,

for x ∈ [T, x0[, 1 ≤ k ≤ n − 1. From (5.14) we get the following estimate of R0

wherein the order of smallness with respect to φn is made more explicit than in
Theorem 4.5 (formula in (2.40) for i = n is used):

(5.16) |R0(x)| ≤ |φn(x)| · sup
t≥x

∣∣∣∣
∫ x0

t

Lφ1,...,φn
[f(τ)]

qn(τ)
dτ

∣∣∣∣ , x ∈ [T, x0[ .
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Under the stronger hypothesis of absolute convergence for the improper integral
we get:

(5.17) |R0(x)| ≤ |φn(x)| ·
∫ x0

x

|Lφ1,...,φn
[f(t)]|

|qn(t)|
dt, x ∈ [T, x0[ .

Similar estimates can be obtained for the Rk’s.

Remarks. 1. As noticed in [6; Remark 1 after Thm. 4.1, pp. 179-180] the
remarkable inference ”(iii) ⇒ (ii)” is true for the special operator Mn−1 stemming
out from a C.F. of type (II) at x0 but not for any (n−1)th-order differential operator
originating from an arbitrary factorization of Lφ1,...,φn

.
2. Condition (5.9) involves the sole coefficient qn which admits of the explicit

expression in (2.35) in terms of φ1, . . . , φn :

(5.18) qn =W (φ1, . . . , φn)/W (φ1, . . . , φn−1);

hence (5.9) can be rewritten as

(5.19)

∫ →x0

T

W
(
φ1(t), . . . , φn−1(t)

)

W
(
φ1(t), . . . , φn(t)

) Lφ1,...,φn
[f(t)]dt converges.

For n = 2 the ratio inside the integral equals φ1/W (φ1, φ2) and we reobtain the
result in [7; condition (5.15), p. 265].

3. In Theorem 4.5, generally speaking, no such estimates as in (5.16)-(5.17)
can be obtained due to the divergence of all the improper integrals in (4.33) if the
innermost integral is factored out.

4. Referring to the elementary characterizations in (1.3) of the coefficients ak The-
orem 5.1 changes the perspective: in (1.3) the ak’s are defined recursively whereas
in (5.7) each ak has its own independent expression and, moreover, the existence of
an, as the limit in (5.8), implies the existence of a1, . . . , an−1.

In the following result about incomplete expansions formal differentiation is in
general legitimate a number of times less than the ”length” of the expansion (see
Remark 2 after the statement).

Theorem 5.2 (A result on incomplete asymptotic expansions). Let our T.A.S.
be such that all the Wronskians in (2.24) are strictly positive and let f ∈ ACn−1[T, x0[.

(I) For a fixed i ∈ {2, . . . , n− 1} the following are equivalent properties:
(i) There exist i real numbers a1, . . . , ai such that :

(5.20) f(x) = a1φ1(x) + · · ·+ aiφi(x) + o
(
φi(x)

)
, x→ x−0 ;

(5.21)

{
Mk[f(x)] = ak+1Mk[φk+1(x)] + · · ·+ aiMk[φi(x)]+

+ o
(
Mk[φi(x)]

)
, x→ x−0 ; 1 ≤ k ≤ i− 1.

(ii) All the following limits exist as finite numbers:

(5.22) lim
x→x−

0

Mk[f(x)] ≡ ak+1, 0 ≤ k ≤ i− 1,
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where the ak’s coincide with those in (5.20)-(5.21).
(iii) The single last limit in (5.22) exists as a finite number, i.e.

(5.23) lim
x→x−

0

Mi−1[f(x)] ≡ ai,

and (5.23) coincides with the relation in (5.21) for k = i− 1.
(iv) The improper integral

(5.24)

∫ →x0

T

dti
qi(ti)

∫ ti

T

dti+1

qi+1(ti+1)
. . .

∫ tn−1

T

Lφ1,...,φn
[f(t)]

qn(t)
dt converges,

and automatically also the iterated improper integral

(5.25)

∫ x0

T

1

q1
. . .

∫ x0

ti−1

1

qi

∫ ti

T

1

qi+1
. . .

∫ tn−1

T

Lφ1,...,φn
[f(t)]

qn(t)
dt converges.

(II) For i = 1 the theorem simply asserts that the asymptotic relation

(5.26) f(x) = a1φ1(x) + o
(
φ1(x)

)
, x→ x−0 ,

holds true for some real number a1 iff the improper integral

(5.27)

∫ →x0

T

1

q1

∫ t1

T

1

q2
. . .

∫ tn−1

T

Lφ1,...,φn
[f(t)]

qn(t)
dt converges.

Remarks. 1. We shall see in the proof of Theorem 5.2, formula (7.44), that the
representations of the quantities Mk[f(x)], 0 ≤ k ≤ i − 1, contain some unspecified
constants not determinable through the sole condition (5.24) which, for this reason,
grants neither explicit representations nor numerical estimates of the remainders of
the expansions in (5.20)-(5.21).

2. As concerns estimates of the quantities Mk[f(x)] for i ≤ k ≤ n − 1, the
situation is as follows. Formula (7.43), given in the proof, reads:

(5.28) Mi[f(x)] =

∫ x

T

dti+1

qi+1(ti+1)
. . .

∫ tn−1

T

Lφ1,...,φn
[f(t)]

qn(t)
dt

︸ ︷︷ ︸
I(x)

+ c+ o(1),

for some constant c. If, as x → x−0 , I(x) converges to a real number then we may
apply Theorem 5.2 with i replaced by i+1; but if it is unbounded and oscillatory no
asymptotic relation more expressive than (5.28) can be obtained generally speaking.
On the contrary a favourable situation occurs when it is known a priori that I(x)
either converges or diverges to ±∞ and the corrresponding estimates are reported
in Theorem 6.3.

Theorem 5.3 (The analogue of Theorems 5.1-5.2 with “O”-estimates). Let
our T.A.S. be such that all the Wronskians in (2.24) are strictly positive, let f ∈
ACn−1[T, x0[ and let i ∈ {2, . . . , n} be fixed. The following are equivalent properties:
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(i) There exist (i− 1) real numbers a1, . . . , ai−1 such that :

(5.29) f(x) = a1φ1(x) + · · ·+ ai−1φi−1(x) +O
(
φi(x)), x→ x−0 ;

(5.30)

{
Mk[f(x)] = ak+1Mk[φk+1(x)] + · · ·+ ai−1Mk[φi−1(x)]+

+O
(
Mk[φi(x)]

)
, x→ x−0 ; 1 ≤ k ≤ i− 1.

(ii) All the following relations hold true:

(5.31)





limx→x−
0

Mk[f(x)] ≡ ak+1, 0 ≤ k ≤ i− 2;

Mi−1[f(x)] = O(1), x→ x−0 ;

where the ak’s coincide with those in (5.29)-(5.30).
(iii) It holds true the single last relation in (5.31), i.e.

(5.32) Mi−1[f(x)] = O(1), x→ x−0 ;

(iv) We have the following estimate instead of condition (5.24):

(5.33)

∫ x

T

dti
qi(ti)

∫ ti

T

dti+1

qi+1(ti+1)
. . .

∫ tn−1

T

Lφ1,...,φn
[f(t)]

qn(t)
dt = O(1), x→ x−0 .

For i = n condition (5.32) reads

(5.34)

∫ x

T

Lφ1,...,φn
[f(t)]

qn(t)
dt = O(1), x→ x−0 ,

and representation (5.11)-(5.12) must be replaced by

(5.35)

f(x) =

n−1∑

i=1

aiφi(x) +
(−1)n−1
q0(x)

∫ x0

x

1

q1

∫ x0

t1

1

q2
. . .

∫ x0

tn−2

1

qn−1

∫ tn−1

T

Lφ1,...,φn
[f(t)]

qn(t)
dt.

For i = 1 the theorem simply asserts that the asymptotic relation

(5.36) f(x) = O(φ1(x)), x→ x−0 ,

holds true iff

(5.37)

∫ x

T

1

q1

∫ t1

T

1

q2
. . .

∫ tn−1

T

Lφ1,...,φn
[f(t)]

qn(t)
dt = O(1), x→ x−0 .

An outlook on the theory developed so far. We suggest a way of visualizing what
our theory is all about. Referring, say, to the situations characterized in Theorem
5.2 we have an asymptotic scale of the type:

(5.38)
1

q0(x)
≫ 1

q0(x)

∫ x0

x

1

q1
≫ . . .≫ 1

q0(x)

∫ x0

x

1

q1
. . .

∫ x0

ti−2

1

qi−1
, x→ x−0 ,
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where the qi’s are continuous and everywhere-nonzero functions on some interval
[T, x0[, and are interested in the validity of an asymptotic expansion of the type:

(5.39)





f(x) =
a1
q0(x)

+
a2
q0(x)

∫ x0

x

1

q1
+

a3
q0(x)

∫ x0

x

1

q1

∫ x0

x

1

q2
+ . . .+

+
ai

q0(x)

[∫ x0

x

1

q1
. . .

∫ x0

ti−2

1

qi−1

]
·
[
1 + o(1)

]
, x→ x−0 .

Theorem 5.2 gives characterizations of the set formed by (5.39) and the following
expansions obtained in a quite natural way:

(5.40)





M1

[
f(x)

]
≡ q1(x)

(
q0(x)f(x)

)′
= −a2

q1
− a3
q1(x)

∫ x0

x

1

q2
+ . . .+

− ai
q1(x)

[∫ x0

x

1

q2
. . .

∫ x0

ti−2

1

qi−1

]
·
[
1 + o(1)

]
, x→ x−0 ;

. . . . . . . . .

Mi−1

[
f(x)

]
≡ qi(x)

(
qi−1(x)(. . . (q0(x)f(x))

′ . . .)′
)′
=

= (−1)i−1ai + o(1), x→ x−0 .

The formal derivations of (5.40) from (5.39) may seem a triviality but it is not
an automatic fact and we have tied up our theory with the concepts of Chebyshev
systems and canonical factorizations, useful in other contexts. Moreover in some
applications the asymptotic scale is explicitly given whereas the expressions of the
coefficients qi or pi of the canonical factorizations, as given by formulas (2.35) or
(2.43), are unmanageable even for small values of n and only some properties of
them can be detected and used. In other applications, e.g. when a function f is
defined as a solution of a functional equation, it may happen that the asymptotic
scale is implicitly defined and only the principal parts of the φi’s are known; in such
cases there is no searching out the expressions of the qi’s and pi’s, but qn, as the
ratio in (5.18), might be indirectly known and this would let us decide whether or
not Theorem 5.1 applies.

6. Absolute convergence and solutions of differential inequalities

The foregoing theory becomes particularly simple when the involved improper in-
tegrals are absolutely convergent and still more expressive for a function f satisfying
the nth-order differential inequality:

(6.1) Lφ1,...,φn
[f(x)] ≥ 0 a.e. on [T, x0[ .

If W
(
φ1(x), . . . , φi(x)

)
> 0 on [T, x0[, 1 ≤ i ≤ n, this is a subclass of the so-

called “generalized convex functions with respect to the (complete extended Chebyshev)
system (φ1, . . . , φn)”, and we make this assumption, as in the preceding section, to
simplify relations involving the operatorsMk and to state precise inequalities for the
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remainders. The nice result stated in the next theorem claims that: if such a func-
tion admits of an asymptotic expansion (1.1) then this expansion is automatically
differentiable (n− 1) times in the senses of both relations (4.31) and (5.6).

Theorem 6.1 (Complete asymptotic expansions). If all the Wronskians in (2.24)
are strictly positive and if f ∈ ACn−1[T, x0[ satisfies (6.1) then the following are
equivalent properties:

(i) There exist (n− 1) real numbers a1, . . . , an−1 such that:

(6.2) f(x) = a1φ1(x) + · · ·+ an−1φn−1(x) +O
(
φn(x)

)
, x→ x−0 .

(ii) There exist n real numbers a1, . . . , an such that:

(6.3) f(x) = a1φ1(x) + · · · + an−1φn−1(x) + anφn(x) + o
(
φn(x)

)
, x→ x−0 .

(iii) The following set of asymptotic expansions holds true:

(6.4)





Lk[f(x)] = a1Lk[φ1(x)] + · · · + an−kLk[φn−k(x)]︸ ︷︷ ︸
constant

+

+ o(1), x→ x−0 , 0 ≤ k ≤ n− 1; see (4.31).

(iv) The following set of asymptotic expansions holds true:

(6.5)

{
Mk[f(x)] = ak+1Mk[φk+1(x)] + · · · + anMk[φn(x)]+

+ o
(
Mk[φn(x)]

)
, x→ x−0 ; 0 ≤ k ≤ n− 1; see (5.5)-(5.6).

(v) The following integral condition is satisfied:

(6.6)

∫ x0

T

1

p1
. . .

∫ x0

tn−2

1

pn−1

∫ x0

tn−1

1

pn(t)
Lφ1,...,φn

[f(t)]dt < +∞; see (4.32).

(vi) The following integral condition is satisfied:

(6.7)

∫ x0

T

1

qn(t)
Lφ1,...,φn

[f(t)]dt < +∞, see (5.9) and (5.19).

To this list we may obviously add the other properties in Theorem 5.1.
If this is the case the remainder R0(x) of the expansion in (6.3) admits of the

two representations on [T, x0[:

(6.8)





R0(x) =
(−1)n
p0(x)

∫ x0

x

1

p1
. . .

∫ x0

tn−2

1

pn−1

∫ x0

tn−1

Lφ1,...,φn
[f(t)]

pn(t)
dt,

=
(−1)n
q0(x)

∫ x0

x

1

q1
. . .

∫ x0

tn−2

1

qn−1

∫ x0

tn−1

Lφ1,...,φn
[f(t)]

qn(t)
dt ,

whence it follows that

(6.9) (−1)nR0(x) ≥ 0 ∀ x ∈ [T, x0[ ,
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and that both of the following two functions are decreasing on [T, x0[:

(6.10) (−1)nR0(x)p0(x) ≡ −R0(x)φn(x), (−1)nR0(x)q0(x) ≡ −R0(x)φ1(x).

In addition to the equivalence (iii)⇔(iv) stated in Theorem 6.1, there is an-
other remarkable circumstance wherein the two types of formal differentiations are
simultaneously admissible namely when the convergence of the pertinent improper
integrals is absolute.

Theorem 6.2. For f ∈ ACn−1[T, x0[ the following integral conditions are equiv-
alent :

(6.11)

∫ x0

T

1

p1
. . .

∫ x0

tn−2

1

pn−1

∫ x0

tn−1

1

pn(t)

∣∣Lφ1,...,φn
[f(t)]

∣∣dt < +∞;

(6.12)





∫ x0

T
P (t)

∣∣Lφ1,...,φn
[f(t)]

∣∣dt < +∞, where

P (t) :=
1

pn(t)

∫ t

T

dtn−1
pn−1(tn−1)

. . .

∫ t3

T

dt2
p2(t2)

∫ t2

T

dt1
p1(t1)

;

(6.13)
∫ x0

T

∣∣Lφ1,...,φn
[f(t)]

∣∣
qn(t)

dt ≡
∫ x0

T

∣∣∣∣∣
W
(
φ1(t), . . . , φn−1(t)

)

W
(
φ1(t), . . . , φn(t)

) Lφ1,...,φn
[f(t)]

∣∣∣∣∣ dt < +∞.

Hence each of these three conditions implies both sets of asymptotic expansions
(4.31) and (5.5)-(5.6). (Here the signs of the Wronskians are immaterial.)

Open problem 1. In §7 we give an indirect proof of the equivalence “(6.12)⇔(6.13)”
based on Theorem 6.1; a more refined statement would be:

(6.14) P (x) ∼ c W
(
φ1(x), . . . , φn−1(x)

)

W
(
φ1(x), . . . , φn(x)

) , x→ x−0 ,

for some constant c 6= 0. For n = 2 this is quite elementary and we also found a
proof for n = 3; but for the time being we leave this minor question as an open
problem.

Using Theorems 4.4 and 5.2 we can also get the analogues of Theorems 6.1-6.2
for incomplete asymptotic expansions left apart the integral representations of the
remainders but with meaningful estimates for weighted derivatives of orders ≥ i. We
give here a simplified statement wherein all asymptotic relations refer to x→ x−0 of
course.

Theorem 6.3 (Incomplete asymptotic expansions). Let the Wronskians in (2.24)
be strictly positive, let f ∈ ACn−1[T, x0[ satisfy (6.1) and let i ∈ {1, . . . , n − 1} be
fixed. Then the following are equivalent properties:

(6.15) f(x) = a1φ1(x) + · · ·+ ai−1φi−1(x) +O
(
φi(x)

)
;
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(6.16) f(x) = a1φ1(x) + · · · + ai−1φi−1(x) + aiφi(x) + o
(
φi(x)

)
;

(6.17)





Lk[f(x)] = a1Lk[φ1(x)] + · · ·+ aiLk[φi(x)]+

+ o(Lk[φi(x)]), 0 ≤ k ≤ n− i;

Ln−i+h[f(x)] = a1Ln−1+h[φ1(x)] + · · ·+
+ ai−hLn−i+h[φi−h(x)] + o(1), 0 ≤ h ≤ i− 1,

(which last relations are written in (4.28) in an expanded form);

(6.18)





Mk[f(x)] = ak+1Mk[φk+1(x)] + · · · + aiMk[φi(x)]+

+ o
(
Mk[φi(x)]

)
, 0 ≤ k ≤ i− 1;

Mk[f(x)] = O

(∫ x

T

1

qk+1
. . .

∫ tn−1

T

Lφ1,...,φn
[f(t)]

qn(t)
dt

)
, i ≤ k ≤ n− 2;

Mn−1[f(x)] = O

(∫ x

T

Lφ1,...,φn
[f(t)]

qn(t)
dt

)
;

(6.19)

∫ x0

T

1

pn−i+1

∫ x0

tn−i+1

1

pn−i+2
. . .

∫ x0

tn−1

Lφ1,...,φn
[f(t)]

pn(t)
dt < +∞;

(6.20)





∫ x0

T
P (t)Lφ1,...,φn

[f(t)]dt < +∞, where

P (t) :=
1

pn(t)

∫ t

T

dtn−1
pn−1

. . .

∫ tn−i+2

T

dtn−1+1

pn−1+1
if i ≥ 2;

(6.21)

∫ x0

T

dti
qi

∫ ti

T

dti+1

qi+1
. . .

∫ tn−1

T

Lφ1,...,φn
[f(t)]

qn(t)
dt < +∞.

To the foregoing list we may obviously add property (ii) or property (v) in Theo-
rem 4.4 and properties (ii)-(iii) in Theorem 5.1. For i = 1 the first group of expan-
sions in (6.18) reduces to relation in (5.26).

As pointed out in Remark 1 after Theorem 5.2 the “O”-estimates in (6.18) are
meaningful whenever all the involved integrals diverge as x → x0 i.e. whenever
the asymptotic expansion in (6.16) cannot be improved by adding more meaningful
terms of the form ai+jφi+j(x). As soon as one of these integrals converges to a real
number as x→ x0 then we may apply the theorem with a greater value of i.

Remark. In Theorem 6.1 the two types of formal differentibility 1, 2, . . . , n − 1
times are equivalent facts whereas it is not so for a generic f such that Lφ1,...,φn

[f(x)]
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changes sign on each deleted left neighborhood of x0. The equivalence has been
proved for polynomial expansions [4] and for real-power expansions [6] in an indi-
rect way by expressing the two sets of differentiated expansions as suitable sets of
expansions involving the standard operators dk/dxk; these new sets of expansions
make evident that what we called “weak formal differentiability” indeed is a weaker
property than what we called “strong formal differentiability”. The same circum-
stance occurs for a general two-term expansion [7; Remarks, p. 261] but is not a
self-evident fact. In each of these three cases direct proofs could be also provided
working on the corresponding integral conditions. Hence in these cases the locutions
of “weak or strong formal differentiation” are legitimate. But in the general theory
for n ≥ 3 we face a nontrivial situation and state

Open problem 2. For n ≥ 3 consider the two types of formal differentiability
characterized in Theorems 4.5 and 5.1. Investigate whether or not property in
Theorem 5.1 always implies that in Theorem 4.5 for any T.A.S. .

7. Proofs

Proof of Proposition 2.1. For the equivalence of the two properties in (i) see
Coppel [1; Prop. 3, p. 82]. ”(i)⇔(ii)” is proved in Levin [9; Thm. 2.1, p .66]
where the interval I is explicitly stated to be open not in the statement of the cited
theorem but at the outset of §2 on p. 58; ”(ii)⇔(iii)” is the classical result by Pólya
[12]; ”(i)⇔(iv)” is the fundamental result by Trench [14]; ”(i)⇒(v)” is to be found in
[2; Thm. 2.2, p. 162] whereas the converse rests on the trivial fact that disconjugacy
on ]a, b[ is equivalent to disconjugacy on every compact subinterval of ]a, b[. ✷

Proof of Proposition 2.2. Part (I) is contained in [9; Th. 2.1, p. 66] with reverse
numbering of the φi’s whereas part (II) follows from [9; Lemma 2.6, pp. 63-64, and
remarks on p. 67 concerning the hierarchies of the Wronskians], here again with
reverse numbering of the φi’s. Levin’s results are valid for an open interval and this
is stated explicitly at the outset of §2 in [9; p. 58]; moreover, the tacit assumption of
strict positivity of the functions forming the scale is agreed in a long list of notations
and terminology in [9; §1, p. 57, item 20°]. ✷

Proof of Proposition 2.3. (i)⇒(ii). Let (φ̃1, . . . , φ̃n) be an extension of (φ1, . . . , φn)
of class Cn−1]T − ǫ, x0[, ǫ > 0, such that:

(7.1) W
(
φ̃1, . . . , φ̃i

)
6= 0 on ]T − ǫ, x0[, 1 ≤ i ≤ n.

In particular we have:

(7.2)

{
W
(
φ̃n, φ̃n−1, . . . , φ̃1

)
6= 0

W
(
φ̃n−1, . . . , φ̃1

)
6= 0

on ]T − ǫ, x0[,

and we may apply part (II) of Proposition 2.2 (regardless of the signs) because the
second condition in (7.2) coincides with the condition in (2.16) for r = 1. So we
infer the inequalities:

(7.3) W
(
φ̃n, φ̃n−1, . . . , φ̃i

)
6= 0 on ]T − ǫ, x0[, 1 ≤ i ≤ n,
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which imply (2.27). Proposition 2.2 also implies all the claims in part (II).
(i)⇔(iii). We refer to the standard definition of the concept of “extended com-

plete Chebyshev system on a generic interval J”, based on the maximum number
of zeros for their linear combinations: see, e.g., [8; Ch. I]. A classical result states
the equivalence between an ordered n-tuple (u1, . . . , un) forming such a system on
J and the strict positivity of the Wronskians W (u1, . . . , ui), 1 ≤ i ≤ n, on J . This
is proved, e.g., in [8; Ch. XI, Th. 1.1, p. 376] for a compact interval J but the
argument is valid for any interval as observed, e.g., by Mazure [10; Prop. 2.6]. This
equivalence is a general fact involving only inequalities (2.24).

(ii)⇒(iv). Here we are merely retracing the steps of the proof in [8; Ch. XI,
Th 1.2, pp. 379-380] in a way that includes in one proof the expressions given in
(2.31). First, inequalities (2.24) grant that the functions wi, 0 ≤ i ≤ n− 1, are well
defined on [T, x0[ and satisfy (2.29): the second expression for wi, i ≥ 2, in (2.30) is
a classical identity: see [1; Lemma 4, p. 87] for a syntetic proof under our regularity
assumptions. Moreover inequalities (2.24) and (2.27) together grant, by Proposition
2.2-(II), the asymptotic relations (2.14) hence:

(7.4)





φ2(x)/φ1(x) = o(1), x→ x−0 ,

W (φ1(x), . . . , φi−1(x), φi+1(x))

W (φ1(x), . . . , φi−1(x), φi(x))
= o(1), x→ x−0 , 2 ≤ i ≤ n− 1.

This implies: the convergence of the improper integrals

(7.5)

∫ x0

(φ2/φ1)
′;

∫ x0
[
W (φ1(t), . . . , φi−1(t), φi+1(t))

W (φ1(t), . . . , φi−1(t), φi(t))

]′
dt, 2 ≤ i ≤ n− 1,

the representations for φ1, φ2 and the identity

(7.6)
W (φ1(x), . . . , φi−1(x), φi+1(x))

W (φ1(x), . . . , φi−1(x), φi(x))
=

∫ x0

x
wi(t)dt, 2 ≤ i ≤ n− 1.

Before using induction we prove the representation of φ3 to highlight the role of
(7.6). We have:

(7.7)




W (φ1, φ3)

/
W (φ1, φ2) =

∫ x0

x
w2(t)dt,

W (φ1, φ2) = −(φ1)2w1, W (φ1, φ3) = (φ1)
2
(
φ3/φ1)

′,

whence

(7.8)





(
φ3/φ1)

′(x) = −w1(x)

∫ x0

x
w2(t)dt,

φ3(x)/φ1(x) = c+

∫ x0

x
w1

∫ x0

t1

w2(t)dt
by(2.23)
=

∫ x0

x
w1

∫ x0

t1

w2(t)dt,

which implies the representation of φ3 in (2.28). To prove the representations of φi
for 4 ≤ i ≤ n − 1 we proceed by induction supposing to have proved our inference
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(ii)⇒(iv) for any i-tuple forming a T.A.S. on [T, x0[; hence our representations hold
true for φ1, . . . , φi and we must prove it for φi+1. Putting

(7.9) ψk(x) :=
(
φk+1/φ1(x)

)′
, 1 ≤ k ≤ i,

we immediately infer from (1.5) and from (2.14) referred to x→ x−0 that:

(7.10) (φ1(x))
k+1W (ψ1, . . . , ψk) ≡W (φ1, . . . , φk+1) 6= 0 on [T, x0[ ;

(7.11)

{
ψk ≡ (φ1)

−2W (φ1, φk+1)≫ (φ1)
−2W (φ1, φk+2) ≡ ψk+1, x→ x−0 , i.e.

ψ1(x)≫ ψ2(x)≫ . . .≫ ψi(x), x→ x−0 .

(The n-tuple (ψ1, . . . , ψn) is sometimes called the “reduced system”.) Moreover
(7.6) and (7.10) imply:

(7.12)
W (ψ1(x), . . . , ψi−2(x), ψi(x))

W (ψ1(x), . . . , ψi−2(x), ψi−1(x))
=

∫ x0

x
wi(t)dt.

We may now apply our inductive hypothesis inferring that:

(7.13) ψi(x) = w̃0(x) ·
∫ x0

x
w̃1 . . .

∫ x0

ti−2

w̃i−1,

where the w̃k’s are defined by the expressions on the right of (2.30) with the φk’s
replaced by the ψk’s and (7.10) implies:
(7.14)



w̃0 := ψ1 ≡ (φ2/φ1)
′ = −w1,

w̃k := −W (ψ1, . . . , ψk−1, ψk+1)

W (ψ1, . . . , ψk−1, ψk)
= −W (φ1, . . . , φk, φk+2)

W (φ1, . . . , φk, ψk+1)
= wk+1, 2 ≤ k ≤ i− 1,

and (7.13) becomes:

(7.15)
(
φi+1/φ1)

′(x) = −w1(x) ·
∫ x0

x
w2 . . .

∫ x0

ti−2

wi,

which, by (2.23), gives the sought-for formula for φi+1. Formulas (2.32) may be
proved quite simply, in alternative to the inductive argument suggested in [8; p.
380], using the second expressions for the wi’s given in (2.31); putting for brevity:

(7.16) Wi :=W (φ1, . . . , φi),

we have as in [1; p. 92]:

(7.17)





W1 = w0, W2/W1 = −w0w1,

Wi+1/Wi = −wi ·Wi/Wi−1 = +wiwi−1Wi−1/Wi−2 = . . . =

= (−1)iw0w1 . . . wi, 2 ≤ i ≤ n− 1;
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hence:
(7.18)



Wi = (−1)i−1w0w1 . . . wi−1 ·Wi−1 =

= (−1)i−1w0w1 . . . wi−1 · (−1)i−2w0w1 . . . wi−2 ·Wi−2 = . . . =

= (−1)(i−1)+(i−2)+...+2+1[w0w1 . . . wi−1][w0w1 . . . wi−2] . . . [w0w1]w0 = (2.32),

and this shows the converse inference (iv)⇒(ii). ✷

Proof of Proposition 2.4. (i)-(ii). Properties in (2.36) follow directly from the
assumptions and relations in (2.37) are a standard fact as remarked in the preced-
ing proof. As concerns (2.38) the continuity of the qi’s at the endpoint T implies∫
T (1/qi) < +∞ whereas from (2.37) we get:
(7.19)



∫ x

T
1/q1 = constant+

φ2(x)

φ1(x)

by (2.23)
convergent , x→ x−0 ;

∫ x

T
1/qi(x) = constant+

W (φ1(x), . . . , φi−1(x), φi+1(x))

W (φ1(x), . . . , φi−1(x), φi(x))

by (2.14)
convergent ,

as x→ x−0 , 2 ≤ i ≤ n− 1.

Factorization (2.39) is then the classical factorization arising from (2.35) and
discovered for the first time by Pólya [12]. Representations (2.40) are contained
in Proposition 2.3 with different notations. In general, by (2.12), the calculations
in (7.19) prove the existence of a C.F. of type (II) at x0 valid on a suitable left
neighborhood of x0.

(iii). The very same reasonings prove the properties of the pi’s; the proof of
(2.45) is similar to that in (7.19):
(7.20)



∫ x

T
1/p1 = constant+

φn−1(x)

φn(x)

by (2.23)

divergent , x→ x−0 ;

∫ x

T
1/pi(x) = constant+

W (φn(x), . . . , φn−i+2(x), φn−i(x))

W (φn(x), . . . , φn−i+2(x), φn−i+1(x))

by (2.14)

divergent ,

as x→ x−0 , 2 ≤ i ≤ n− 1;

and in general, by (2.10), these calculations prove the existence of a C.F. of type
(I) at x0 valid on the whole open interval where the given operator is asssumed
disconjugate. The claims in (iv) are trivial. ✷

Proof of Proposition 3.2. Relations (3.35) to (3.37) are directly checked using
representations (2.40). Relation (3.38) follows from the second relation in (3.29)
replacing u by φk+1 and using (3.36). If (3.39) holds true for some sufficiently
regular f then (3.27) implies Mk[f(x)] ≡ 0 and (3.40) follows from (3.35)-(3.36).
The converse trivially follows again from (3.35)-(3.36). Now suppose (3.39)-(3.40)
to be true on the left of x0; relation (3.41) for h = 1 is nothing but the obvious
relation a1 = limx→x−

0

f(x)/φ1(x).
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For h ≥ 2 we use all relations (3.35), (3.36), (3.37) and get from (3.40):

(7.21)





Mh−1[f(x)] =
k−h∑

i=0

ah+iMh−1[φh+i(x)] =

= ǫh−1ah +
k−h∑

i=1

ah+iMh−1[φh+i(x)] = ǫh−1ah + o(1),

where the remainder “o(1)” is ≡ 0 for h = k. ✷

Proof of Lemma 4.2. From the chain Pn−1(x)≫ . . .≫ P0(x), x→ x0, we get

(7.22) φ(x) = cPi(x) + αi−1Pi−1(x) + . . . + α0P0(x)

for suitable constants αk, hence

(7.23) Lk[φ(x)] = cLk[Pi(x)] + αi−1Lk[Pi−1(x)] + . . .+ α0Lk[P0(x)];

now (4.10) follows from (4.7), and (4.11) follows from (4.4). If in (7.22) we replace
φ by φn−i we have c = bn−i and the identities in (4.12) follow from (4.4) and (4.5).
The identity in (4.12) for i = k, i.e. Lk[φn−k(x)] ≡ bn−k, together with the first
relation in (3.28) imply (4.14). ✷

Proof of Theorem 4.4. Part (I). From (4.12) and (4.17), with c1 = a1, we infer at
once the equivalence “(ii)⇔(iii)” as well as representation in (4.21). The inference
“(i)⇒(ii)” being obvious let us prove the converse simply denoting by L our operator
Lφ1,...,φn

. We shall repeatedly use the recursive formulas (3.25) in the form

(7.24) Lk−1u =

∫ x

T

1

pk(t)
Lk[u(t)]dt+ constant, 1 ≤ k ≤ n.

If (4.19) holds true we have (4.21), and representations in (4.16) can be rewritten
as

(7.25)





Lk[f(x)] =
{
c1Lk[φ1(x)] + · · ·+ cn−kLk[φn−k(x)]

}
+

+

(∫ x0

T

L[f(t)]

pn(t)
dt

)
·
∫ x

T

dtk+1

pk+1(tk+1)
. . .

∫ tn−2

T

dtn−1
pn−1(tn−1)

+

−
∫ x

T

dtk+1

pk+1(tk+1)
. . .

∫ tn−2

T

dtn−1
pn−1(tn−1)

∫ x0

tn−1

L[f(t)]

pn(t)
dt; 0 ≤ k ≤ n− 2.

Now we have

(7.26)

∫ x

T

dtk+1

pk+1(tk+1)
. . .

∫ tn−2

T

dtn−1
pn−1(tn−1)

by (4.6)
≡ Lk[Pn−1(x)] = · · ·

by (4.1) and (4.10) · · · = (1/b1)Lk[φ1(x)] + o
(
Lk[φ1(x)]

)
.
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After substituting into (7.25) we get:
(7.27)



Lk[f(x)] = c1Lk[φ1(x)] + o (Lk[φ1(x)]) + c̄Lk[Pn−1(x)] + o
(
Lk[Pn−1(x)]

)
=

=

(
c1 +

c̄

b1

)
Lk[φ1(x)] + o

(
Lk[φ1(x)]

)
, 0 ≤ k ≤ n− 2,

where c̄ :=
∫ x0

T L[f(t)]/pn(t) dt, and the coefficient

(7.28) c := c1 + (c̄/b1)

is independent of k. To show that c coincides with the a1 appearing in (4.19) we
may suitably integrate (4.19) to obtain, by (3.24),
(7.29)



Ln−2[f(x)] =

∫ x

T

Ln−1[f(t)]

pn−1(t)
dt+ constant

by (4.19)
=

= a1b1

∫ x

T

dt

pn−1(t)
+ o

(∫ x

T

dt

pn−1(t)

)
by (4.6)
≡ a1b1Ln−2[Pn−1(x)] + o

(
Ln−2[Pn−1(x)]

)
= . . .

by (4.1) and (4.10) · · · = a1Ln−2[φ1(x)] + o (Ln−2[φ1(x)]) .

Part (II). Case i = 2. We must prove the equivalence of the following three
contingencies:

(7.30)





f(x) = a1φ1(x) + a2φ2(x) + o(φ2(x)),

Lk[f(x)] = a1Lk[φ1(x)] + a2Lk[φ2(x)] + o
(
Lk[φ2(x)]

)
, 1 ≤ k ≤ n− 2,

Ln−1[f(x)] = a1Ln−1[φ1(x)] + o
(
Ln−1[φ1(x)]

)
;

(7.31)

{
Ln−2[f(x)] = a1Ln−2[φ1(x)] + a2Ln−2[φ2(x)] + o

(
Ln−2[φ2(x)]

)
,

Ln−1[f(x)] = a1Ln−1[φ1(x)] + o
(
Ln−1[φ1(x)]

)
;

(7.32)

∫ x0

T

dt

pn−1(t)

∫ x0

t

L[f(τ)]

pn(τ)
dτ convergent.

First we prove “(7.31)⇔(7.32)”. If (7.32) holds true then , by part (I) of our
theorem, we have all relations in (4.18) and in particular the second relation in
(7.31). Moreover we can rewrite representation in (4.16) for k = n− 2 in the form:

(7.33) Ln−2[f(x)] = a1Ln−2[φ1(x)] + a2Ln−2[φ2(x)] +

∫ x0

x

dt

pn−1(t)

∫ x0

t

L[f(τ)]

pn(τ)
dτ,

where a1 is just the same as in the second relation in (7.31) and a2 is a suitable
constant. This yields the first relation in (7.31) because Ln−2[φ2(x)] is a nonzero
constant by (4.12). Viceversa if relations in (7.31) hold true then, by part (I), we
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have representation in (4.21) by which we replace the quantity Ln−1[f(t)] in the first
equality in (7.33). Denoting by cn−2, c̄n−2 suitable constants we get:

(7.34)





Ln−2[f(x)] = cn−2 +

∫ x

T

Ln−1[f(t)]

pn−1(t)
dt =

= cn−2 +

∫ x

T

1

pn−1(t)

[
a1Ln−1[φ1(t)]−

∫ x0

t

L[f(τ)]

pn(τ)
dτ

]
dt =

= c̄n−2 + a1Ln−2[φ1(x)] −
∫ x

T

dt

pn−1(t)

∫ x0

t

L[f(τ)]

pn(τ)
dτ.

By comparison with the first relation in (7.31) we get (7.32) because Ln−2[φ2(x)]
is a constant. As the inference “(7.30)⇒(7.31)” is obvious it remains to prove the
converse. Using (7.24) and integrating the first relation in (7.31) we get (with
suitable constants cn−3, c̄n−3):
(7.35)



Ln−3[f(x)] ≡ cn−3 +
∫ x

T

Ln−2[f(t)]

pn−2(t)
dt = cn−3+

+a1

∫ x

T

Ln−2[φ1(t)]

pn−2(t)
dt+ a2

∫ x

T

Ln−2[φ2(t)]

pn−2(t)
dt+

∫ x

T
o

(
Ln−2[φ2(t)]

pn−2(t)

)
dt = . . .

as Ln−2[φ2(x)] is a nonzero constant and
∫→x0 1/pn−2 diverges

· · · = c̄n−3 + a1Ln−3[φ1(x)] + a2Ln−3[φ2(x)] + o
(
Ln−3[φ2(x)]

)
.

Here the constant c̄n−3 is meaningless as the comparison functions are divergent
as x→ x−0 . Iterating the procedure we get all relations in (7.30). By induction on i
and the same kind of reasonings our theorem is proved for each i ≤ n. ✷

Proof of Theorem 5.1. (i)⇒(ii). Relation (5.5) implies the existence of a1 ≡
limx→x−

0

f(x)/φ1(x) ≡ limx→x−
0

M0[f(x)], and each relation in (5.6) implies the rela-

tion in (5.7) with the same value of k because of (3.36)-(3.37). (ii)⇒(iii) is obvious.
(iii)⇔(iv). It follows from (5.3) that the limit in (5.8) exists in R iff (5.9) holds true
and, in this case, (5.3) can be written as

(7.36) Mn−1[f(x)] = an −
∫ x0

x

L[f(t)]

qn(t)
dt,

where, as above, L ≡ Lφ1,...,φn
.

(iv)⇒(i). We have already proved (7.36) which is (5.6) for k = n−1 together with
an integral representation of the remainder. For k = n − 2 the recursive formulas
(3.27) give

(7.37) (Mn−2[f(x)])
′ =

1

qn−1(x)
Mn−1[f(x)],

whence, by (7.36) and (2.38), we get:

(7.38) Mn−2[f(x)] = an−1 − an
∫ x0

x

1

qn−1
+

∫ x0

x

dτ

qn−1(τ)

∫ x0

τ

L[f(t)]

qn(t)
dt,
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for a suitable constant an−1. By (3.36)-(3.37) this is nothing but
(7.39)

Mn−2[f(x)] = an−1Mn−2[φn−1(x)] + anMn−2[φn(x)] +

∫ x0

x

dτ

qn−1(τ)

∫ x0

τ

L[f(t)]

qn(t)
dt,

which is the relation in (5.6) for k = n − 2 with a representation of the remainder.
In a similar way for k = n− 3 we start from

(7.40) (Mn−3[f(x)])
′ =

1

qn−2(x)
Mn−2[f(x)],

and integrate (7.38) after dividing by 1/qn−2, so getting

(7.41)





Mn−3[f(x)] = an−2 − an−1
∫ x0

x

1

qn−2
+ an

∫ x0

x

dtn−2
qn−2

∫ x0

tn−1

dtn−2
qn−1

+

−
∫ x0

x

dtn−2
qn−2

∫ x0

tn−2

dtn−1
qn−1

∫ x0

tn−1

L[f(t)]

qn(t)
dt

for a suitable constant an−2. By (3.36)-(3.37) this can be rewritten as

(7.42)





Mn−3[f(x)] = an−2Mn−3[φn−2(x)] + an−1Mn−3[φn−1(x)]+

+anMn−3[φn(x)] −
∫ x0

x

1

qn−2

∫ x0 1

qn−1

∫ x0 L[f(t)]

qn(t)
dt,

with a suitable constant an−2. An iteration of the procedure gives all relations in
(5.6) together with the representation formulas (5.11)-(5.12) for R0(x) and (5.15)
for Rk(x), k ≥ 1.: “(i)⇒(v)” has been proved. The last inference “(v)⇒(i)” and
(5.12) are trivially proved by applying the operators Mk to (5.11). ✷

Proof of Theorem 5.2. (i)⇒(ii) follows from (3.36)-(3.37). (ii)⇒(iii) is obvious.
(iii)⇔(iv): by (3.36)-(3.37) the representation in (5.2) for k = i− 1 has the form

(7.43) Mi−1[f(x)] = ci +

∫ x

T

1

qi

∫ ti

T

1

qi+1
. . .

∫ tn−2

T

1

qn−1

∫ tn−1

T

L[f(t)]

qn(t)
dt+ o(1),

whence our equivalence follows at once. If this is the case (5.2) can be rewritten as

(7.44)





Mi−1[f(x)] = ai −
∫ x0

x

1

qi

∫ ti

T

1

qi+1
. . .

∫ tn−1

T

L[f(t)]

qn(t)
dt+

+ci+1Mi−1[φi+1(x)] + . . .+ cnMi−1[φn(x)], x ∈ [T, x0[,

where ai is uniquely determined by (5.23) but ci+1, . . . , cn are non-better specified
constants not determinable by the sole condition (5.23).

(iv)⇒(i). This is proved like the corresponding inference in Theorem 5.1 by
successive integrations of (7.44) starting from

(7.45) (Mi−2[f(x)])
′ =

1

qi−1(x)
Mi−1[f(x)],
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whence, by (2.38),(3.27) and (3.37), we get:
(7.46)



Mi−2[f(x)] = ai−1 − ai
∫ x0

x

1

qi−1
+

∫ x0

x

1

qi−1

∫ x0

ti−1

1

qi

∫ ti

T

1

qi+1
. . .

∫ tn−1

T

L[f(t)]

qn(t)
dt+

+ci+1Mi−2[φi+1(x)] + . . .+ cnMi−2[φn(x)] = by (3.31) and (3.37) =

= ai−1 + aiMi−2[φi(x)] + o(Mi−2[φi(x)]),

where the constant ai−1, which includes all the constants from integration of the
various terms, is uniquely determined by (5.22). By iteration of the procedure
we get all relations in (5.20)-(15.21). Relation (5.28) easily follows from (7.44) by
(3.36)-(3.37). ✷

Proof of Theorem 5.3. This is almost a word-for word repetition of the proofs
of Theorems 5.1-5.2. (i)⇒(ii). For 0 ≤ k ≤ i − 2 this is included in the same
inference in Theorems 5.1-5.2; whereas the relation in (5.30) for k = i− 1 just reads
Mi−1[f(x)] = O(1). (ii)⇒(iii) is obvious. (iii)⇔(iv) follows from (7.43). To show
(iv)⇒(i) we use (7.45) and the representation in (5.2) for k = i− 1 instead of (7.44)
as in the proof of Theorem 5.2. Due to the convergence of

∫→x0 1/qi−1 we may still
apply the operator

∫ x0

x so getting, instead of (7.46),
(7.47)



Mi−2[f(x)] = ai−1 −
∫ x0

x

1

qi−1

∫ ti−1

T

1

qi

∫ ti

T

1

qi+1
. . .

∫ tn−1

T

L[f(t)]

qn(t)
dt+

−
∫ x0

x

1

qi−1




n∑

j=i+1

cjMi−2[φj(x)]


 = ai−1 +O

(∫ x0

x

1

qi−1

)
+ o

(∫ x0

x

1

qi−1

)
=

= ai−1 +O

(∫ x0

x

1

qi−1

)
≡ ai−1 +O

(
Mi−2[φi(x)]

)
.

By iteration we get all relations in (5.28)-(5.29). ✷

Proof of Theorem 6.1. The only thing to be proved is the inference “(i)⇒(v)∧(vi)”,
the other properties being included in Theorems 4.5 and 5.1. We use a procedure
already used in [4; p. 193] and in [6; p. 213]. From representation in (4.15) we get
(using the simplified notation L ≡ Lφ1,...,φn

):
(7.48)
f(x)

φ1(x)
− c1 + o(1) =

1/p0(x)

φ1(x)

∫ x

T

1

p1
. . .

∫ tn−2

T

1

pn−1

∫ tn−1

T

L[f(t)]

pn(t)
dt, x ∈ [T, x0[.

By the assumption (6.2) the left-hand side has a finite limit as x→ x0, and for
the limit of the right-hand side we have:

(7.49) lim
x→x−

0

1/p0(x)

φ1(x)

∫ x

T

1

p1
. . .

∫ tn−2

T

1

pn−1

∫ tn−1

T

L[f(t)]

pn(t)
dt

by (4.1) and (2.42)
=
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=
1

b1
lim

x→x−
0

∫ x

T

1

p1
. . .

∫ tn−2

T

1

pn−1

∫ tn−1

T
L[f(t)]/pn(t) dt

Pn−1(x)/P0(x)
=

=
1

b1
lim

x→x−
0

∫ x

T

1

p1
. . .

∫ tn−2

T

1

pn−1

∫ tn−1

T
L[f(t)]/pn(t) dt

∫ x

T

1

p1
. . .

∫ tn−2

T

1

pn−1

= · · · = 1

b1
lim

x→x−
0

∫ x

T
L/pn,

after applying L’Hospital’s rule (n− 1) times (which is legitimate as all the denomi-
nators diverge to +∞). By the positivity of the integrand this last limit exists in R

and coincides with the limit of the left-hand side in (7.48) hence it must be a real
number and (4.15) can take the form:

(7.50)





f(x) = a1φ1(x) + c2φ2(x) + · · ·+ cnφn(x)+

− 1

p0(x)

∫ x

T

1

p1
. . .

∫ tn−2

T

1

pn−1

∫ x0

tn−1

L[f(t)]

pn(t)
dt, x ∈ [T, x0[ ,

with suitable constants c2, . . . , cn. From this we get:

(7.51)





f(x)− a1φ1(x)
φ2(x)

− c2 + o(1) =

= −1/p0(x)

φ2(x)

∫ x

T

1

p1
. . .

∫ tn−2

T

1

pn−1

∫ x0

tn−1

L[f(t)]

pn(t)
dt, x ∈ [T, x0[ .

Here again the left-hand side has a finite limit as x → x0 whereas the limit of
the right-hand side, by (4.1), equals:

− 1

b2
lim

x→x−
0

∫ x

T

1

p1
. . .

∫ tn−2

T

1

pn−1

∫ x0

tn−1

L[f(t)]/pn(t) dt

Pn−2(x)/P0(x)
=

= − 1

b2
lim

x→x−
0

∫ x

T

1

p1
. . .

∫ tn−2

T

1

pn−1

∫ x0

tn−1

L[f(t)]/pn(t) dt

∫ x

T

1

p1
. . .

∫ tn−3

T

1

pn−2

= · · · =

= − 1

b2
lim

x→x−
0

∫ x

T

1

pn−1

∫ x0

tn−1

L/pn,

after applying L’Hospital’s rule (n− 2) times. Hence this last limit, which exists in
R, must be a real number and (7.50) can be rewritten as:

(7.52)





f(x) = a1φ1(x) + a2φ2(x) + c3φ3(x) + · · ·+ cnφn(x)+

+
1

p0(x)

∫ x

T

1

p1
. . .

∫ tn−3

T

1

pn−2

∫ x0

tn−2

1

pn−1

∫ x0

tn−1

L[f(t)]

pn(t)
dt, x ∈ [T, x0[ ,
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with suitable constants c3, . . . , cn. It is now clear how this procedure works and by
induction one can prove the validity of representation:
(7.53)



f(x) = a1φ1(x) + . . .+ an−1φn−1(x) + cnφn(x)+

+
(−1)n−1
p0(x)

∫ x

T

1

p1

∫ x0

x

1

p2
. . .

∫ x0

tn−3

1

pn−2

∫ x0

tn−2

1

pn−1

∫ x0

tn−1

L[f(t)]

pn(t)
dt, x ∈ [T, x0[ ,

with a suitable constant cn. As a last step we observe that (6.2) implies:

(7.54)
[
f(x)− a1φ1(x)− · · · − an−1φn−1(x)

]/
φn(x) = O(1), x→ x−0 ,

and (7.53) in turn implies:

(7.55)





1/p0(x)

φn(x)

∫ x

T

1

p1

∫ x0

x

1

p2
. . .

∫ x0

tn−2

1

pn−1

∫ x0

tn−1

L[f(t)]

pn(t)
dt

by(4.2)
≡

≡
∫ x

T

1

p1

∫ x0

x

1

p2
. . .

∫ x0

tn−2

1

pn−1

∫ x0

tn−1

L[f(t)]

pn(t)
dt = O(1), x→ x−0 .

By the positivity of the integrand this last relation implies (6.6) and the first
representation in (6.8) for R0(x). To prove (6.7) we apply the same ideas starting
from representation (5.1) and dividing by φ1; recalling that φ1 = 1/q0 we get:

(7.56)
f(x)

φ1(x)
− c1 + o(1) =

∫ x

T

1

q1
. . .

∫ tn−2

T

1

qn−1

∫ tn−1

T

L[f(t)]

qn(t)
dt, x ∈ [T, x0[ .

This implies:

(7.57)

∫ x0

T

1

q1

∫ t1

T

1

q2
. . .

∫ tn−2

T

1

qn−1

∫ tn−1

T

L[f(t)]

qn(t)
dt < +∞,

and (5.1) can be rewritten as:

(7.58)





f(x) = a1φ1(x) + c2φ2(x) + · · · + cnφn(x)+

− 1

q0(x)

∫ x0

x

1

q1

∫ t1

T

1

q2
. . .

∫ tn−2

T

1

qn−1

∫ tn−1

T

L[f(t)]

qn(t)
dt, x ∈ [T, x0[ ,

with suitable constants c2, . . . , cn. From this we get:

(7.59)
f(x)− a1φ1(x)

φ2(x)
− c2 + o(1) = −φ1(x)

φ2(x)

∫ x0

x

1

q1

∫ t1

T

1

q2
. . .

∫ tn−1

T

L[f(t)]

qn(t)
dt.

Evaluating the limit of the right-hand side by L’Hospital’s rule and using formula
in (2.37), 1/q1 = (φ2/φ1)

′, we get:

lim
x→x−

0

−
∫ x0

x

1

q1

∫ t1

T

1

q2
. . .

∫ tn−1

T
L[f(t)]/qn(t) dt

φ2(x)/φ1(x)
H
= lim

x→x−
0

∫ x

T

1

q2
. . .

∫ tn−1

T
L[f(t)]/qn(t) dt,

46



and this last limit, which exists in R, must be a real number. This means that

(7.60)

∫ x0

T

1

q1

∫ x0

t1

1

q2

∫ t2

T

1

q3
. . .

∫ tn−2

T

1

qn−1

∫ tn−1

T

L[f(t)]

qn(t)
dt < +∞,

and (7.50) can be rewritten as:

(7.61)





f(x) = a1φ1(x) + a2φ2(x) + c3φ3(x) + · · ·+ cnφn(x)+

+
1

q0(x)

∫ x0

x

1

q1

∫ x0

t1

1

q2

∫ t2

T

1

q3
. . .

∫ tn−2

T

1

qn−1

∫ tn−1

T

L[f(t)]

qn(t)
dt,

with suitable constants c3, . . . , cn. For the clarity’s sake we make explicit the steps of
this second part of our proof. Assume by induction that the following two conditions
hold true:

(7.62)

∫ x0

T

1

qi

∫ ti

T

1

qi+1
. . .

∫ tn−2

T

1

qn−1

∫ tn−1

T

L[f(t)]

qn(t)
dt < +∞;

(7.63)





f(x) = a1φ1(x) + · · ·+ aiφi(x) + ci+1φi+1(x) + · · ·+ cnφn(x)+

+
(−1)i
q0(x)

∫ x0

x

1

q1

∫ x0

t1

1

q2
. . .

∫ x0

ti−1

1

qi

∫ ti

T

1

qi+1
. . .

∫ tn−1

T

L[f(t)]

qn(t)
dt,

for some i, 1 ≤ i ≤ n − 2. and suitable constants ci+1, . . . , cn. Dividing both sides
of (7.63) by φi+1 and taking account of (6.2) we infer that the limit of the quantity

(7.64)

[
(−1)i
q0(x)

∫ x0

x

1

q1
. . .

∫ x0

ti−1

1

qi

∫ ti

T

1

qi+1
. . .

∫ tn−1

T

L[f(t)]

qn(t)
dt

]/
φi+1(x)

(2.34)≡

≡
[∫ x0

x

1

q1
. . .

∫ x0

ti−1

1

qi

∫ ti

T

1

qi+1
. . .

∫ tn−1

T

L[f(t)]

qn(t)
dt

]/∫ x0

x

1

q1
. . .

∫ x0

ti−1

1

qi

exists in R. Applying L’Hospital’s rule i times to evaluate this limit we get the new
limit

lim
x→x−

0

∫ x

T

1

qi+1
. . .

∫ tn−1

T

L[f(t)]

qn(t)
dt

which, by the positivity of the integrand, exists in R hence it must be a real number.
We infer that condition (7.62) holds true with i replaced by i + 1 and this implies
representation (7.63) with i replaced by i+1 and suitable constants ci+2, . . . , cn. By
this inductive procedure we arrive at representation:

(7.65)





f(x) = a1φ1(x) + · · ·+ an−1φn−1(x) + cnφn(x)+

+
(−1)n−1
q0(x)

∫ x0

x

1

q1
. . .

∫ x0

tn−2

1

qn−1

∫ tn−1

T

L[f(t)]

qn(t)
dt, x ∈ [T, x0[ ,
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with some constant cn. Dividing by φn and using (6.2) we may now conclude that

(7.66)

[∫ x0

x

1

q1
. . .

∫ x0

tn−2

1

qn−1

∫ tn−1

T

L[f(t)]

qn(t)
dt

]/∫ x0

x

1

q1
. . .

∫ x0

tn−2

1

qn−1
= O(1),

and if we try to evaluate the limit of the ratio on the left applying L’Hospital’s rule
(n− 1) times we get the limx→x−

0

∫ x
T L[f(t)]/qn(t)dt, which exists in R and must be

a finite number. This is condition (6.7) which allows the second representation in
(6.8). ✷

Proof of Theorem 6.2. The equivalence between (6.11) and (6.12) easily follows
from Fubini’s theorem by interchanging the order of integrations in (6.11) whereas
the equivalence between (6.12) and (6.13) is by no means an obvious fact. We give
a concise proof based on Theorem 6.1. Putting

(7.67) F (x) :=
1

p0(x)

∫ x

T

1

p1
. . .

∫ tn−2

T

1

pn−1

∫ tn−1

T

1

pn(t)
|Lφ1,...,φn

[f(t)]|dt,

we have

(7.68) F ∈ ACn−1[T, x0[; Lφ1,...,φn
[F (x)] = |Lφ1,...,φn

[f(x)]| a. e. on [T, x0[ ;

hence F satisfies Lφ1,...,φn
[F (x)] ≥ 0 a. e. on [T, x0[ and Theorem 6.1 implies the

equivalence between (6.12) and (6.13). ✷

Proof of Theorem 6.3. The only thing to prove is the O-estimates in (6.18).
From representation (7.44) we get:
(7.69)

Mi[f(x)] =

∫ x

T

1

qi+1
. . .

∫ tn−1

T

L[f(t)]

qn(t)
dt+ ci+1Mi[φi+1(x)] + · · ·+ cnMi[φn(x)] = · · ·

by (3.36) and (3.37)

· · · =
∫ x

T

1

qi+1
. . .

∫ tn−1

T

L[f(t)]

qn(t)
dt+ c+ o(1)

for some constant c whence it follows the estimate forMi[f(x)]. The other estimates
are similarly obtained. ✷

8. Appendix: algorithms for constructing canonical factorizations

The original procedure used by Trench [14] to construct a C.F. of type (I) for a
disconjugate operator is not an intuitive one. Here we exhibit two easier algorithms
to construct both types of C.F.’s starting from an explicit fundamental system of
solutions which is also an asymptotic scale at one endpoint. The so-obtained fac-
torizations will be proved to coincide with those obtainable by Pólya’s procedure
when applied either to the asymptotic scale (φ1, . . . , φn) or to the inverted n-tuple
(φn, . . . , φ1). As each step in the algorithms has an asymptotic meaning they pro-
vide asymptotic intepretations of Pólya’s procedure and they may sometimes be
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quicker to apply than Pólya’s procedure, especially for small values of n, avoiding
the explicit use of Wronskians. The algorithm for a C.F. of type (II) is particularly
meaningful as it highlights how the operators Mk naturally arise from an asymp-
totic expansion with an identically-zero remainder when one attempts to find out
independent expressions for each of its coefficients: see §3-C and §3-D. Moreover
this algorithm provides an asymptotic interpretation of formulas (2.31) related to
representation (2.29).

Let us consider a generic element u ∈ span (φ1, . . . , φn) of the type

(8.1) u = a1φ1(x) + · · ·+ anφn(x), ai 6= 0 ∀ i,

which we interpret as an asymptotic expansion at x0 (with a zero remainder).
We shall first present the algorithm for a C.F. of type (II) as it is more simple

to describe.

Proposition 8.1 (The algorithm for a special C.F. of type (II)). Let (φ1, . . . , φn)
satisfy conditions (2.25),(2.23) and (2.24) with all the Wronskians strictly positive;
then the following algorithm yields the special global C.F. of Lφ1,...,φn

of type (II)
at x0 in (2.39) together with (n − 1) asymptotic expansions which, after dividing
by the first meaningful term on the right, concide with the expansions obtained by
applying to (8.1) the operators Mk defined in (3.27). Formulas for the coefficients
ak in (3.41), with ǫh−1 = 1, are reobtained.

(A) Verbal description of the algorithm.
1st step. Divide both sides of (8.1) by the first term on the right, which is the

term with the largest growth-order at x0, and then take derivatives so obtaining

(8.2)

(
u(x)

φ1(x)

)′
= a2

(
φ2(x)

φ1(x)

)′
+ · · · + an

(
φn(x)

φ1(x)

)′
.

Notice that division of both sides by the first term on the right just yields the
expansion obtained by applying to (8.1) the operator M1; a similar remark applies
to each of the subsequent expansions both in this and in the next proposition.

2nd step. Divide both sides of (8.2) by the first term on the right and take
derivatives so obtaining

(8.3)

[
1

(φ2(x)/φ1(x))′

(
u(x)

φ1(x)

)′]′
= a3

(
(φ3(x)/φ1(x))

′

(φ2(x)/φ1(x))′

)′
+ . . .

· · ·+ an

(
(φn(x)/φ1(x))

′

(φ2(x)/φ1(x))′

)′
.

3rd step. Repeat the procedure on (8.3) dividing by the first term on the right
and then taking derivatives so getting

(8.4)




1(
(φ3/φ1)′

(φ2/φ1)′

)′
(

1

(φ2/φ1)′

(
u

φ1

)′)′



′

=
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= a4

(
(φ4/φ1)

′

(φ2/φ1)′

)′/((φ3/φ1)
′

(φ2/φ1)′

)′
+ · · ·+ an

(
(φn/φ1)

′

(φ2/φ1)′

)′/(
(φ3/φ1)

′

(φ2/φ1)′

)′
.

Iterating the procedure each of the obtained relation is an identity on [T, x0[ and
is an asymptotic expansion at x0, hence at each step we are dividing by the term on
the right with the largest growth-order at x0. Notice that at each step the asymptotic
expansion loses its first meaningful term and this is the same phenomenon occurring
in differentiation of Taylor’s formula. After n steps we arrive at an identity :

(8.5) [qn−1(. . . (q0u)
′ . . . )′]′ ≡ 0 on [T, x0[ ,

where the qi’s coincide with those in (2.35).
(B) Schematic description of the algorithm.

Step ”1”:

u = a1 φ1︸︷︷︸+ · · · + anφn

↑←−←−←−↓
d & d

Step ”2”:

(u/φ1)
′ = a2 (φ2/φ1)

′

︸ ︷︷ ︸+ · · ·+ an(φn/φ1)
′

↑←−←−←−←−←↓
d & d

Step ”3”:

(
(u/φ1)

′

(φ2/φ1)′

)′
= a3

(
(φ3/φ1)

′

(φ2/φ1)′

)′

︸ ︷︷ ︸
+ · · ·+ an

(
(φn/φ1)

′

(φ2/φ1)′

)′

↑←−←−←−←−←−←−←↓
d & d

Step ”4”:




1
(
(φ3/φ1)′

(φ2/φ1)′

)′
(

1

(φ2/φ1)′

(
u

φ1

)′)′



′

=

↑←−←−←−←−←−←−←−←−
d & d

= a4

(
(φ4/φ1)

′

(φ2/φ1)′

)′/((φ3/φ1)
′

(φ2/φ1)′

)′

︸ ︷︷ ︸
+ · · ·+ an

(
(φn/φ1)

′

(φ2/φ1)′

)′/((φ3/φ1)
′

(φ2/φ1)′

)′
,

←−←−←−←−←−↓

and so on, where the symbol “d & d” stands for the two operations “divide” both
sides by the underbraced term on the right and then “differentiate” both sides (the
equation in each step being the result of the preceding step).

Proposition 8.2 (The algorithm for the C.F. of type (I)). Let (φ1, . . . , φn) satisfy
conditions (2.23), (2.24), (2.25); then the following algorithm yields “the” global
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C.F. of Lφ1,...,φn
of type (I) at x0 and (n − 1) asymptotic expansions which, after

dividing by the last meaningful term on the right, coincide (apart from the signs of
the coefficients) with the expansions obtained by applying to (8.1) the operators Lk

defined in (3.24).
(A) Verbal description of the algorithm.
1st step. Divide both sides of (8.1) by the last term on the right, which is the

term with the smallest growth-order at x0, and then take derivatives so obtaining

(8.6)

(
u(x)

φn(x)

)′
= a1

(
φ1(x)

φn(x)

)′
+ · · ·+ an−1

(
φn−1(x)

φn(x)

)′
.

2nd step. Divide both sides of (8.6) by the last term on the right and then take
derivatives so obtaining

(8.7)

[
1

(φn−1(x)/φn(x))′

(
u(x)

φn(x)

)′]′
= a1

(
(φ1(x)/φn(x))

′

(φn−1(x)/φn(x))′

)′
+ . . .

· · ·+ an−2

(
(φn−2(x)/φn(x))

′

(φn−1(x)/φn(x))′

)′
.

3rd step. Repeat the procedure on (8.7) dividing by the last term on the right
and then taking derivatives so getting

(8.8)




1
(
(φn−2/φn)′

(φn−1/φn)′

)′
(

1

(φn−1/φn)′

(
u

φn

)′)′



′

=

= a1

(
(φ1/φn)

′

(φn−1/φn)′

)′/((φn−2/φn)
′

(φn−1/φn)′

)′
+ · · ·+ an−3

(
(φn−3/φn)

′

(φn−1/φn)′

)′/(
(φn−2/φn)

′

(φn−1/φn)′

)′
.

Iterating the procedure each of the obtained relation is an identity on [T, x0[ and
is an asymptotic expansion at x0, hence at each step we are dividing by the term
on the right with the smallest growth-order at x0. Also notice that at each step
the asymptotic expansion loses its last meaningful term and this is a phenomenon
different from that occurring in differentiation of Taylor’s formula (see the foregoing
proposition). After n steps we arrive at an identity :

(8.9) [pn−1(. . . (p0u)
′ . . . )′]′ ≡ 0 on [T, x0[ ,

where the pi’s coincide, signs apart, with those in (2.43).
(B) Schematic description of the algorithm.

Step ”1”:

u = a1φ1 + · · ·+ an φn︸︷︷︸
↑←−←−←−←−←−←−←↓

d & d

Step ”2”:

(u/φn)
′ = a1(φ1/φn)

′ + · · ·+ an−1 (φn−1/φn)
′

︸ ︷︷ ︸
↑←−←−←−←−←−←−←−←−←−←−←−←−↓

d & d
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Step ”3”:

(
(u/φn)

′

(φn−1/φn)′

)′
= a1

(
(φ1/φn)

′

(φn−1/φn)′

)′
+ · · · + an−2

(
(φn−2/φn)

′

(φn−1/φn)′

)′

︸ ︷︷ ︸
↑←−←−←−←−←−←−←−←−←−←−←−←−←−←−←−←−←−↓

d & d

Step ”4”:




1
(
(φn−2/φn)′

(φn−1/φn)′

)′
(

1

(φn−1/φn)′

(
u

φn

)′)′



′

=

↑←−←−←−←−←−←−←−←−←−←−
d & d

= a1

(
(φ1/φn)

′

(φn−1/φn)′

)′/((φn−2/φn)
′

(φn−1/φn)′

)′
+ · · · + an−3

(
(φn−3/φn)

′

(φn−1/φn)′

)′/((φn−2/φn)
′

(φn−1/φn)′

)′

︸ ︷︷ ︸
,

←−←−←−←−←−←−←−←−←−←−←−←−←−←−←−←−←−←−↓

and so on with the symbol “d & d” reminding of the two operations “divide” both
sides by the underbraced term on the right and then “differentiate” both sides ( the
equation in each step being the result of the preceding step).

Remarks. 1. In order to obtain any C.F. by the above procedures one may simply
choose a1 = · · · = an = 1.

2. If some operator Ln of type (2.1)1,2 is known to be disconjugate on a left
neighborhood of x0, Ix0

, and if

(8.10)

{
φ1, . . . , φn ∈ ker Ln,

φ1(x)≫ · · · ≫ φn(x), x→ x−0 ,

then the algorithm in Proposition 8.2 yields the C.F. of type (I) at x0, valid on
the whole given interval Ix0

by Proposition 2.2-(ii). But the algorithm in Proposi-
tion 8.1 yields a C.F. of type (II) at x0 valid on some left neighborhood of x0, the
largest of them being characterized by the nonvanishingness of all the Wronskians
W (φ1, . . . , φi), 1 ≤ i ≤ n − 1, which does not automatically follow from the nonva-
nishingness of W (φn, φn−1, . . . , φi), 1 ≤ i ≤ n,: see remarks preceding Proposition
2.3.

3. By applying the above algorithms to (8.1) with a random choice of the term
to be factored out at each step one may well obtain, after n steps, a factorization
valid on a certain subinterval of the given interval but, in general for n ≥ 3, it will
not be a C.F. at an endpoint.

4. In practical applications of the algorithms there is a fatal pitfall to avoid,
namely the temptation at each step of suppressing brackets, cancelling possible
opposite terms and rearranging in an aestetically-nicier asymptotic scale. This in
general gives rise to a factorization of an operator quite different from Lφ1,...,φn

.
Hence it is essential that all the terms coming from a single term in the preceding
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step be kept grouped together as a single term to the end of the procedure: see
examples at the end of this section.

Proof of Proposition 8.1, that of Proposition 8.2 being exactly the same after
replacing (φ1, . . . , φn) by (φn, . . . , φ1). We have to prove that the qi’s in (8.5) coincide
with those in (2.35) and this does not seem to be an obvious fact though it is made
explicit in the algorithm that the first three coefficients q0, q1, q2 coincide with Pólya’s
coefficients in (2.35). Now, known qi, our algorithm constructs qi+1, for i ≥ 2, by
the following rule:
(8.11)
1/qi+1 =

[
qi×(the expression for 1/qi with the one change: φi+1 replaced by φi+2)

]′
,

hence it is enough to show that Pólya’s expression for 1/qi+1 is obtained by the
same rule. We present two different proofs, the first being based on the equivalent
representations (2.35) and (2.37). We have:

(8.12)
[
qi × (expression in (2.29) for 1/qi with φi+1 replaced by φi+2)

]′
=

=

[
[W (φ1, . . . , φi)]

2

W (φ1, . . . , φi−1)W (φ1, . . . , φi, φi+1)
· W (φ1, . . . , φi−1)W (φ1, . . . , φi, φi+2)

[W (φ1, . . . , φi)]
2

]′
=

=

[
W (φ1, . . . , φi, φi+2)

W (φ1, . . . , φi, φi+1)

]′
by(2.31)
=

1

qi+1
.

It is also clear that the various identities obtained are nothing but those obtained
by applying to (8.1) the operators Mk defined in (3.26) which, by (3.29), differ from
Lφ1,...,φk

by a factor which is a non-vanishing function.
The second proof is based on a nontrivial identity involving Wronskians of Wron-

skians, Karlin [7bis; p. 60], which we report here in the version needed in our proof:
(8.13)
W (g1, . . . , gn, f1, f2) ·W (g1, . . . , gn) ≡W

(
W (g1, . . . , gn, f1),W (g1, . . . , gn, f2)

)
.

Comparing the expressions in (2.37) and those given by our algorithm we see
that the two procedures coincide if the following identity holds true:
(8.14)

[
W (φ1, . . . , φi, φi+2)

W (φ1, . . . , φi, φi+1)

]′
≡
{[

W (φ1, . . . , φi−1, φi+2)
/
W (φ1, . . . , φi−1, φi)

]′
[
W (φ1, . . . , φi−1, φi+1)

/
W (φ1, . . . , φi−1, φi)

]′

}′
.

We shall show the validity of this identity even if the outer derivatives are sup-
pressed. Using the elementary formula (g2/g1)

′ =W (g1, g2) · g−21 we have:

(8.15)





[
W (φ1, . . . , φi−1, φi+2)

/
W (φ1, . . . , φi−1, φi)

]′
[
W (φ1, . . . , φi−1, φi+1)

/
W (φ1, . . . , φi−1, φi)

]′ =

=
W
(
W (φ1, . . . , φi),W (φ1, . . . , φi−1, φi+2)

) (
W (φ1, . . . , φi)

)−2

W
(
W (φ1, . . . , φi),W (φ1, . . . , φi−1, φi+1)

) (
W (φ1, . . . , φi)

)−2 = · · ·
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by (8.13) with g1, . . . , gn replaced by φ1, . . . , φi−1

· · · = W (φ1, . . . , φi−1, φi, φi+2) ·W (φ1, . . . , φi−1)

W (φ1, . . . , φi−1, φi, φi+1) ·W (φ1, . . . , φi−1)
=
W (φ1, . . . , φi, φi+2)

W (φ1, . . . , φi, φi+1)
.

✷

An example illustrating the two algorithms. Consider the fourth-order operator
L of type (2.1)1,2 such that

(8.16) ker L = span (ex, x, log x, 1),

acting on AC3]0,+∞) or even on C∞]0.+∞). Starting from the asymptotic scale

(8.17) ex ≫ x≫ log x≫ 1, x→ +∞,

the algorithm in Proposition 8.2 yields in sequence:

u = ex + x+ log x+ 1
↑←←−←−←−←−←−←−←−↓

;

u′ = ex + 1 + x
↑←−←−←−←−←−↓

−1
;

(xu′)′ = [(x+ 1)ex] + 1;
↑←←−←−←−←−←−←−←−↓

(xu′)′′ = [(x+ 2)ex]
↑←−←−←−←−←−↓

;

[
(x+ 2)−1e−x(xu′)′′

]′ ≡ 0.

Hence

(8.18) Lu ≡ x−1(x+ 2)ex
[
(x+ 2)−1e−x(xu′)′′

]′
,

where

(8.19) p1(x) = x; p2(x) = 1; p3(x) = (x+ 2)−1e−x;

and (8.18) is “the ” global C.F. of L of type (I) at +∞.
On the other hand the algorithm in Proposition 8.1 yields in sequence:

u = ex
↑←−←↓

+ x+ log x+ 1;

(e−xu)′ = [(1− x)e−x]︸ ︷︷ ︸+[(x−1 − log x)e−x]− e−x;

[(1− x)−1ex(e−xu)′]′ = [(1− x)−2(− log x+ 1 + x−1 − x−2)]︸ ︷︷ ︸−(1− x)
−2;

[
(1− x)2(− log x+ 1 + x−1 − x−2)−1[(1− x)−1ex(e−xu)′]′

]′
=
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= (− log x+ 1 + x−1 − x−2)−2x−3(−x2 − x+ 2)︸ ︷︷ ︸;

[
(− log x+ 1 + x−1 − x−2)2x3(−x2 − x+ 2)

−1 ×

×
[
(1− x)2(− log x+ 1 + x−1 − x−2)−1[(1− x)−1ex(e−xu)′]′

]′]′
≡ 0.

(The underbraced terms on the right are those by which one must divide and then
differentiate.) Hence:

(8.20) Lu ≡ (1− x)−1x−3(−x2 − x+ 2)(− log x+ 1 + x−1 − x2)−1×

×
[
(− log x+ 1 + x−1 − x2)2x3(−x2 − x+ 2)

−1×

×
[
(1− x)2(− log x+ 1 + x−1 − x−2)−1[(1− x)−1ex(e−xu)′]′

]′ ]′
,

where

(8.21)





q0(x) := e−x; q1(x) := (1− x)−1ex;
q2(x) := (1− x2)(− log x+ 1 + x−1 − x−2)−1 ∼ x2/ log x, x→ +∞;

q3(x) := x3(−x2 − x+ 2)−1(− log x+ 1 + x−1 − x−2)2 ∼
∼ −x(log x)2, x→ +∞;

∫ +∞
1/|qi| < +∞, i = 1, 2, 3.

Hence (8.20) is a C.F. of L of type (II) at +∞ valid on the largest neighborhood
of +∞ whereon

1− x 6= 0; 1− x2 6= 0; (log x− 1− x−1 + x−2) 6= 0; x2 + x− 2 6= 0,

which is easily seen to be the interval ]1,+∞). In conclusion: changing the signs of
the qi’s, if necessary, we get a Pólya-Mammana factorization of L on ]1,+∞) which
is a C.F. of type (II) at +∞. The standard non-factorized form of L is

(8.22) Lu ≡ u(4) + x−1(6− x2)(x+ 2)−1u(3) − 2x−1(x+ 3)(x + 2)−1u′′.

In the various steps of the above procedures one must carefully avoid the tempta-
tion of rearranging the terms in the right-hand side in (supposedly) nicier asymptotic
scales. For instance the first procedure involves quite simple terms and only at the
last-but-one step we may split the remaining term on the right by writing

(xu′)′′ = xex + 2ex

↑←−←−←−←−←−↓

and taking ex as the term with the smallest growth-order. The procedure then yields

(e−x(xu′)′′)′ = 1 and (e−x(xu′)′′)′′ ≡ 0.

This gives a fifth-order operator

L̃u := x−1ex(e−x(xu′)′′)′′,
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distinct from the given fourth-order operator.
On the contrary the second procedure offers a great number of temptations! For

instance if one rewrites the result of the first step as

(8.23) (e−xu)′ = −xe−x − log x · e−x + x−1e−x,

and then goes on applying the second algorithm to (8.23) as if the right-hand side
would be an asymptotic expansion with three meaningful terms, one gets:

(8.24) (x−1ex(e−xu)′)′ =





(x−2 log x− x−2)︸ ︷︷ ︸−2x
−3,

x−2 log x︸ ︷︷ ︸−x
−2 − 2x−3,

the only difference between the two expressions on the right being the term-grouping.
From the upper relation in (8.24), considered as an asymptotic expansion at +∞
with two meaningful terms, one gets:

[
x2(log x− 1)−1(x−1ex(e−xu)′)′

]′
= (−2x−1(log x− 1)−1)′ =

= 2x−2(log x− 1)−1 + 2x−2(log x− 1)−2 = 2x−2(log x− 1)−2 log x,

and then
{
x2(log x)−1(log x− 1)2

[
x2(log x− 1)−1(x−1ex(e−xu)′)′

]′}′ ≡ 0,

whose left-hand side is a fourth-order operator distinct from our operator.
If, instead, one starts from the lower relation in (8.24), considered as an asymp-

totic expansion at +∞ with three meaningful terms, one gets:
(
x2(log x)−1(x−1ex(e−xu)′)′

)′
= x−1(log x)−2 + 2x−2(log x)−1 + 2x−2(log x)−2

and so forth in an endless process leading nowhere!!

An example showing that application of the procedure in the algorithms regardless
of the relative growth-orders of the terms may yield a non-canonical factorization.
Let us consider Lu := u′′′ acting on AC2]0,+∞) or even on C∞]0,+∞) and the
tern (1, x, x2) which satisfies

1≫ x≫ x2, x→ 0+; x2 ≫ x≫ 1, x→ +∞,

and is such that all the possible Wronskians constructed with these three functions
do not vanish on ]0,+∞). We now apply the following two procedures:

u = x2 + x
↑←−←−←−←↓

+ 1

ւց
(x−1u)′ = 1−
↑←−←−←−↓

x−2 (x−1u)′ = 1− x−2
↑←−←−←−←−↓

(x−1u)′′ = 2x−3 (x2(x−1u)′)′ = 2x

(x3(x−1u)′′)′ ≡ 0
(
x−1(x2(x−1u)′)′

)′ ≡ 0
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and obtain the two factorizations:

(8.25) u′′′ ≡ x−2(x3(x−1u)′′)′; u′′′ ≡ (x−1(x2(x−1u)′)′)′

both valid on ]0,+∞) but none of which is a C.F. at any of the endpoints.
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