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Abstract

We are concerned with minimax signal detection. In this setting, we discuss non-
asymptotic and asymptotic approaches through a unified treatment. In particular, we con-
sider a Gaussian sequence model that contains classical models as special cases, such as,
direct, well-posed inverse and ill-posed inverse problems. Working with certain ellipsoids in
the space of squared-summable sequences of real numbers, with a ball of positive radius re-
moved, we compare the construction of lower and upper bounds for the minimax separation
radius (non-asymptotic approach) and the minimax separation rate (asymptotic approach)
that have been proposed in the literature. Some additional contributions, bringing into light
links between non-asymptotic and asymptotic approaches to minimax signal, are also pre-
sented. An example of a mildly ill-posed inverse problem is used for illustrative purposes.
In particular, it is shown that tools used to derive ‘asymptotic’ results can be exploited to
draw ‘non-asymptotic’ conclusions, and vice-versa.
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1 Introduction

We consider the following Gaussian sequence model (GSM),

Yj = bjθj + ε ξj , j ∈ N, (1.1)

where N = {1, 2, . . .} is the set of natural numbers, b = {bj}j∈N > 0 is a known sequence,
θ = {θj}j∈N ∈ l2(N) is the unknown signal of interest, ξ = {ξj}j∈N is a sequence of independent
standard Gaussian random variables, and ε > 0 is a known parameter (the noise level). The
observations are given by the sequence Y = {Yj}j∈N from the GSM (1.1) and their joint law is
denoted by Pθ. Here, l2(N) denotes the space of squared-summable sequence of real numbers,
i.e.,

l2(N) =



θ ∈ R

N : ‖θ‖2 :=
∑

j∈N

θ2j < +∞



 .

The GSM (1.1) arises in many well-known situations. For instance, consider the Gaussian white
noise model (GWNM)

dXε(t) = Af(t)dt+ ε dW (t), t ∈ V, (1.2)

where A is a known linear operator acting on a Hilbert space H1 with values on another Hilbert
space H2, f(·) ∈ H1 is the unknown response function that one wants to detect or estimate,
W (·) is a standard Wiener process on V ⊆ R and ε > 0 is a known parameter (the noise level).
For the sake of simplicity, we only consider the case when A is injective (meaning that A has a
trivial nullspace) and assume that V = [0, 1], H1 = L2(V ), U ⊆ R and H2 = L2(U).

• (direct problem) Let A = I (the identity operator). Let {φj}j∈N be an orthonormal basis
on L2(V ). Transforming the GWNM (1.2) with A = I into the Fourier domain, the GSM
(1.1) arises with Yj =

∫ 1
0 φj(t)dXε(t), θj =

∫ 1
0 φj(t)f(t)dt, ξj =

∫ 1
0 φj(t)dW (t) and bj = 1,

for all j ∈ N.

• (well-posed inverse problem) Let A be a self-adjoint operator that admits an eigenvalue-
eigenfunction decomposition (bj , ϕj)j∈N, in the sense that

Aϕj = bjϕj , j ∈ N,

where bj > b0, for some b0 > 0, for all j ∈ N. Thus, the GSM (1.1) arises with Yj =∫ 1
0 ϕj(t)dXε(t), θj =

∫ 1
0 ϕj(t)f(t)dt, ξj =

∫ 1
0 ϕj(t)dW (t) and bj > b0 > 0, for all j ∈ N. In

this case, the GWNM (1.2) corresponds to a so-called well-posed inverse problem. Possible
examples of such decompositions arise with, e.g., differential or Sturm-Liouville operators.

• (ill-posed inverse problem) In most cases of interest, however, A is a compact operator
(see, e.g., Chapter 2 of [7]). In particular, it admits a singular value decomposition (SVD)
(bj , ψj , ϕj)j∈N, in the sense that

Aϕj = bjψj , A⋆ψj = bjϕj , j ∈ N,

where A⋆ denotes the adjoint operator of A – note that (b2j )j∈N and (ϕj)j∈N are, respec-
tively, the eigenvalues and the eigenfunctions of A⋆A. Thus, the GSM (1.1) arises with
Yj =

∫ 1
0 ψj(t)dXε(t), θj =

∫ 1
0 ϕj(t)f(t)dt, ξj =

∫ 1
0 ψj(t)dW (t) and bj > 0 (since A is in-

jective), for all j ∈ N. In this case, the GWNM (1.2) corresponds to a so-called ill-posed
inverse problem since the inversion of A∗A is not bounded. Possible examples of such de-
compositions arise with, e.g., convolution or Radon-transform operators. The effect of the
ill-posedeness of the model is clearly seen in the decay of (the singular values) bj towards
0 as j → +∞. As j → +∞, bjθj gets weaker and it is then more difficult to estimate or
detect the sequence θ = {θj}j∈N.
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From the above discussion, it is evident that one can undertake statistical inference based
on observations either from the GSM (1.1) or from the (equivalent) GWNM (1.2). Estimation
in either models has received much attention over the last decades, providing also optimality
results (in the minimax sense) over various loss functions and sequence/function spaces. Many
methods have been considered including kernel, local polynomial, spline, projection and wavelet
methods (see, e.g., [27], [10], [25], [6], [19]).

On the other hand, signal detection has received less attention. Minimax signal detection in
the GSM (1.1) with bj = 1 for all j ∈ N has been studied in [8] and in detail in the seminal work
of [13], [14] and [15] (see also [18]). This work uses an asymptotic framework, that is, the noise
level ε > 0 is allowed to converge to zero. A corresponding non-asymptotic framework, that
is, for any fixed value of the noise level ε > 0, has been studied in [1] and [2]. Non-asymptotic
and asymptotic studies for minimax signal detection in the GSM (1.1) with bj > 0 for all j ∈ N

have been recently considered in [17] and [22], respectively, in order to study minimax signal
detection in ill-posed inverse problems. Despite the fact that the considered minimax signal de-
tection problem is the same in the aforementioned studies, the final aims and the methodologies
involved sometimes differ.

Bearing in mind the different issues and tasks involved, our aim below is to provide a uni-
fied treatment for non-asymptotic and asymptotic approaches to minimax signal detection in
the GSM (1.1). In particular, we look for common ground between them that will enhance
our understanding of these two existing minimax signal detection paradigms. This paper is
organized as follows. Section 2 considers minimax signal detection from both non-asymptotic
and asymptotic point of views. Section 3 discusses the construction of upper and lower bounds
of the minimax separation radius (non-asymptotic approach) and the minimax separation rate
(asymptotic approach) in a unified treatment, and points out several similarities. Section 4
brings into light hitherto unknown links between non-asymptotic and asymptotic approaches to
minimax signal detection. It also contains an example of a mildly ill-posed inverse problem for
illustrative purposes. In particular, it is shown that tools used to derive ‘asymptotic’ results
can be exploited to draw ‘non-asymptotic’ conclusions, and vice-versa. Finally, Section 5 draws
some concluding remarks and provides an avenue for future research.

Throughout the paper, we set the following notations. For all x, y ∈ R, δx(y) = 1 if x = y
and δx(y) = 0 if x 6= y. Also, x ∧ y := inf{x, y} and (x)+ := max{0, x}. Given two collections
(cε)ε>0 and (dε)ε>0 of real numbers, cε ∼ dε means that there exist 0 < κ0 ≤ κ1 <∞ such that
κ0 ≤ cε/dε ≤ κ1 for all ε > 0. In the same spirit, given two sequences (cj)j∈N and (dj)j∈N of
real numbers, cj ≍ dj means that there exist 0 < κ0 ≤ κ1 < ∞ such that κ0 ≤ cj/dj ≤ κ1 for
all j ∈ N. Finally, the abbreviation oε(1) (resp. Oε(1)) will refer to a collection tending to 0
(resp. bounded) as ε tends to 0. When the dependence is not explicitly required on the noise
level ε > 0, it will be simply denoted by o(1) (resp. O(1)).

2 Minimax signal detection

Statistical estimation is concerned with a quantitative question. Instead, we address below
a qualitative question: given observations from the GSM (1.1), our aim is to compare the
underlying (unknown) signal θ ∈ l2(N) to a (known) benchmark signal θ0, i.e., to test

H0 : θ = θ0 versus H1 : θ − θ0 ∈ F , (2.1)

for some given θ0 and a given subspace F . The statistical setting (2.1) is known as goodness-of-fit
testing when θ0 6= 0 and as signal detection when θ0 = 0.
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Remark 2.1 Given observations from the GWNM (1.2), the test (2.1) is related to the test

H0 : f = f0 versus H1 : f − f0 ∈ F̃ , (2.2)

for a given benchmark function f0 and a given subspace F̃ . In most cases, F̃ contains functions
f ∈ L2(V ) that admit a Fourier series expansion with Fourier coefficients θ belonging to F (see,
e.g., [18], Section 3.2). In these cases, the problems (2.1) and (2.2) are equivalent.

The choice of the set F is important. Indeed, it should be rich enough in order to contain
the true θ. At the same time, if it is too rich, it will not be possible to control the performances
of a given test due to the complexity of the problem. The common approach for such problems
is to impose both a regularity condition (which characterizes the smoothness of the underlying
signal) and an energy condition (which measures the amount of the underlying signal).

Concerning the regularity condition, we will work with certain ellipsoids in l2(N). In partic-
ular, we assume that θ ∈ Ea(R), the set Ea(R) being defined as

Ea(R) =



θ ∈ l2(N),

∑

j∈N

a2jθ
2
j ≤ R



 ,

where a = (aj)j∈N denotes a non-decreasing sequence of positive real numbers with aj → +∞
as j → +∞, and R > 0 is a constant. The set Ea(R) can be seen as a condition on the decay
of θ. The cases where a increases very fast correspond to θ with a small amount of non-zero
coefficients. In such a case, the corresponding signal can be considered as being ‘smooth’.

Without loss of generality, in what follows, we set R = 1. In order to simplify the notation,
we will avoid the dependency to this term in all related quantities. In particular, we will write
Ea instead of Ea(1).

Regarding the energy condition, it will be measured in the l2(N)-norm. In particular, given
rε > 0 (called the radius), which is allowed to depend on the noise level ε > 0, we will consider
θ ∈ Ea such that ‖θ‖ > rε. Given a smoothness sequence a and a radius rε > 0, the set F can
thus be defined as

F := Θa(rε) = {θ ∈ Ea, ‖θ‖ ≥ rε} . (2.3)

Since θ0 and bj > 0, j ∈ N, are known, and assuming that θ0 ∈ Ea, without loss of generality,
given observations from the GSM (1.1), we restrict ourselves to the hypothesis testing setting
(2.1) with θ0 = 0 (i.e., signal detection).

In summary, given observations from the GSM (1.1), we will be dealing with the following
signal detection problem

H0 : θ = 0 versus H1 : θ ∈ Θa(rε), (2.4)

where Θa(rε) is defined in (2.3). The sequence a being fixed, the main issue for the problem
(2.4) is then to characterize the values of rε > 0 for which both hypotheses H0 (called the null
hypothesis) and H1 (called the alternative hypothesis) are ‘separable’ (in a sense which will be
made precise later on).

In the following, a (non-randomized) test Ψ := Ψ(Y ) will be defined as a measurable func-
tion of the observation Y = (Yj)j∈N from the GSM (1.1) having values in the set {0, 1}. By
convention, H0 is rejected if Ψ = 1 and H0 is not rejected if Ψ = 0. Then, given a test Ψ, we
can investigate
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• the first kind error probability defined as

αε(Ψ) := P0(Ψ = 1), (2.5)

which measures the probability to reject H0 when H0 is true (i.e., θ = 0); it is often
constrained as being bounded by a prescribed level α ∈]0, 1[, and

• the maximal second kind error probability defined as

βε(Θa(rε),Ψ) := sup
θ∈Θa(rε)

Pθ(Ψ = 0), (2.6)

which measures the worst possible probability not to reject H0 when H0 is not true (i.e.,
when θ ∈ Θa(rε)); one would like to ensure that it is (asymptotically) bounded by a
prescribed level β ∈]0, 1[.

For simplicity in our exposition, we will restrict ourselves to α-level tests, the value of
α ∈ ]0, 1[ being fixed.

Definition 2.1 A test Ψα is called an α-level test if

αε(Ψα) ≤ α.

Given the trivial test Ψα := α ∈ ]0, 1[, which does not depend on any observation, and
extending the definition of a (non-randomized) test to a randomized test1, it is easily seen that

inf
Ψ̃α:αε(Ψ̃α)≤α

βε(Θa(rε), Ψ̃α) ∈ [0, 1 − α], for all α ∈]0, 1[

(see, e.g., [18], pp. 10-11).

Definition 2.2 A minimax hypothesis testing problem

H0 : θ = 0 versus H1 : θ ∈ G,

for some set G (with 0 6∈ G), is called trivial if

inf
Ψ̃α:αε(Ψ̃α)≤α

βε(F , Ψ̃α) = 1− α for all α ∈]0, 1[,

and is called asymptotical trivial if

inf
Ψ̃α:αε(Ψ̃)≤α

βε(F , Ψ̃α) = 1− α+ oε(1) for all α ∈]0, 1[.

The regularity and energy conditions imposed above, when taken together, i.e., when F is
given by (2.3), result (provided the radius rε > 0 is ‘well-chosen’) in a non-trivial or an asymp-
totical non-trivial minimax signal detection problem (2.4). This means, in particular, that both
hypotheses H0 and H1 are, in some sense, separable in such a framework. Two different point of
views, the so-called non-asymptotic and asymptotic minimax signal detection approaches, are
at hand, that have been respectively developed in, e.g., [1], [2], [22] and [17]. We elaborate on
both approaches in the subsequent sections.

1a measurable function Ψ := Ψ(Y ) of the observation Y = (Yj)j∈N from the GSM (1.1) with values in the
interval [0, 1]: the null hypothesis is rejected with probability Ψ(Y ) and it is not rejected with probability 1−Ψ(Y ).
In this case, αε(Ψ) := E0(Ψ(Y )) and βε(Θa(rε),Ψ) := supθ∈Θa(rε)

Eθ(1−Ψ(Y ))).
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2.1 The non-asymptotic approach

Let α, β ∈]0, 1[ be given, and let Ψα be an α-level test.

Definition 2.3 The separation radius of the α-level test Ψα over the class Ea is defined as

rε(Ea,Ψα, β) := inf {rε > 0 : βε(Θa(rε),Ψα) ≤ β} ,

where the maximal second kind error probability βε(Θa(rε),Ψα) is defined in (2.6).

In some sense, the separation radius rε(Ea,Ψα, β) corresponds to the smallest possible value
of the available signal ‖θ‖ for which H0 and H1 can be ‘separated’ by the α-level test Ψα with
prescribed first and maximal second kind error probabilities, α and β, respectively.

Definition 2.4 The minimax separation radius r̃ε := r̃ε(Ea, α, β) > 0 over the class Ea is defined
as

r̃ε := inf
Ψ̃α:αε(Ψ̃α)≤α

rε(Ea, Ψ̃α, β). (2.7)

The minimax separation radius r̃ε corresponds to the smallest radius rε > 0 such that there
exists some α-level test Ψ̃α for which the maximal second kind error probability βε(Θa(rε), Ψ̃α)
is not greater than β.

It is worth mentioning that Definitions 2.3 and 2.4 are valid for any fixed ε > 0 (i.e., it is
not required that ε→ 0). The performances of any given test Ψα is easy to handle in the sense
that the first kind error probability αε(Ψα) is bounded by α (i.e., Ψα is an α-level test), and
that the dependence of the minimax separation radius r̃ε with respect to given α and β can be
precisely described.

In practice, given an α-level test Ψα, it might be appropriate to compare its separation radius
rε(Ea,Ψα, β) to the minimax separation radius r̃ε. Hence, the following definition is in order
(see, e.g., [1], [22]).

Definition 2.5 A α-level test Ψα is said to be powerful over the class Ea if there exists a constant
C ≥ 1 such that, for all ε > 0,

βε(Θa(Cr̃ε),Ψα) ≤ β,

or, equivalently,
rε(Ea,Ψα, β) ≤ Cr̃ε,

for any given β ∈]0, 1[.

According to Definition 2.5, for every ε > 0, the separation radius rε(Ea,Ψα, β) of a powerful
α-level test Ψα is of the order (up to a constant) of the minimax separation radius r̃ε. In some
sense, a powerful test appears to be rate-optimal.

We present below a general strategy for obtaining the minimax separation radius r̃ε (that
implicitly also produces a powerful α-level test Ψα). Given an ellipsoid Ea, one has to find a
radius r⋆ε > 0 such that

(Lower bound) r̃ε ≥ r⋆ε ,

and to construct a specific α-level test Ψα for which

(Upper bound) rε(Ea,Ψα, β) ≤ Cr⋆ε ,

for some (explicitly obtained) constant C ≥ 1. It can be then easily seen that

r⋆ε ≤ r̃ε ≤ Cr⋆ε .
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More precisely,

Lower bound: It is enough to bound from below the following quantity

inf
Ψ̃α:αε(Ψ̃α)≤α

βε(Θa(rε), Ψ̃α),

for some radius rε := r⋆ε > 0. Indeed, if

inf
Ψ̃α:αε(Ψ̃α)≤α

βε(Θa(r
⋆
ε), Ψ̃α) ≥ β, (2.8)

for some r⋆ε > 0, then
r̃ε ≥ r⋆ε .

Upper bound: We first construct an α-level test Ψα. Then, we are looking for a radius rε > 0
such that, uniformly over all θ ∈ Ea,

‖θ‖ > rε ⇒ Pθ(Ψα = 0) ≤ β.

It is then evident that

βε(Θa(rε),Ψα) ≤ β implying that rε(Ea,Ψα, β) ≤ rε. (2.9)

Finally, if rε ≤ Cr⋆ε for some C ≥ 1, it then follows immediately that

rε(Ea,Ψα, β) ≤ Cr⋆ε .

(Note that the α-level test Ψα constructed above is powerful according to Definition 2.5.)

Figure 1 illustrates the areas where, according to Definitions 2.3–2.5, minimax signal detec-
tion can, or cannot, be possible.

We stress at this point that the quantity

inf
Ψ̃α:αε(Ψ̃α)≤α

βε(Θa(rε), Ψ̃α)

needed to bound from below in the above discussion is precisely the minimax second kind error
probability to be introduced in the asymptotic approach that we elaborate in the following
section.

2.2 The asymptotic approach

Let α ∈]0, 1[ be fixed and let rε > 0 be a given radius.

Definition 2.6 The minimax second kind error probability is defined as

βε,α(Θa(rε)) := inf
Ψ̃α:αε(Ψ̃α)≤α

βε(Θa(rε), Ψ̃α).

Given a radius rε > 0, the minimax second kind error probability βε,α(Θa(rε)) characterizes

the minimax testing performances over all α-level tests Ψ̃α for signal detection problem (2.4).
In other words, it corresponds to the lowest maximal second kind error probability over the set
Θa(rε). In particular, one would like to identify the different possible values of the radius rε > 0
such that the minimax second kind error probability βε,α(Θa(rε)) tends to 0 or to a constant or
to 1, as ε tends to 0.

7



0 r̃ε

r⋆ε

Cr⋆ε

Figure 1: According to the lower bound (2.8), minimax signal detection is not possible inside the
circle with center 0 and radius r⋆ε . According to the upper bound (2.9), for any given α ∈]0, 1[,
the maximal second kind error probability βε(Θa(rε),Ψα) of an α-level test Ψα can be controlled
by a prescribed level β ∈]0, 1−α[ outside the circle with center 0 and radius Cr⋆ε , for some C ≥ 1.
The ‘optimal frontier’ is determined by the circle with center 0 and radius r̃ε (i.e., the minimax
separation radius).

Definition 2.7 The term r̄ε := r̄ε(Ea, α) > 0 is called the minimax separation rate if, for any
given rε > 0,

βε,α(Θa(rε)) = 1− α+ oε(1) if
rε
r̄ε

→ 0 as ε→ 0,

and
βε,α(Θa(rε)) = oε(1) if

rε
r̄ε

→ +∞ as ε→ 0.

The minimax separation rate r̄ε identifies, in some sense, the frontiers between detectable
and undetectable signals. In other words, it means that, for small ε > 0, one can detect all
θ ∈ Θa(rε) for which the ratio rε/r̄ε is large. On the other hand, if, for small ε > 0, the ratio
rε/r̄ε is small, it is then impossible to distinguish H0 from H1 with small maximal second kind
error probability βε,α(Θa(rε)).

In practice, given an α-level test Ψα, it might be useful, for small ε > 0, to compare its max-
imal second kind error probability βε(Θa(rε),Ψα) to the minimax second kind error probability
βε,α(Θa(rε)). Hence, the following definition is appropriate.

Definition 2.8 An α-level test Ψα is said to be

(i) asymptotical minimax consistent if, for any given rε > 0,

βε(Θa(rε),Ψα) = oε(1) if
rε
r̄ε

→ +∞ as ε→ 0.

(ii) asymptotical minimax if, for any given rε > 0,

βε(Θa(rε),Ψα) = βε,α(Θa(rε)) + oε(1).
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Regarding Definition 2.8, given an α-level test Ψα, item (i) provides a weak condition in the
sense that, for small ε > 0, one can detect all θ ∈ Θa(rε) for which the ratio rε/r̄ε is large. On
the other hand, item (ii) refers to a strong condition in the sense that one needs to asymptoti-
cally attain the minimax second kind error probability βε,α(Θa(rε)).

In this setting, the point of view is asymptotic. The performance of any testing procedure
is investigated as ε tends to 0. Nevertheless, such a point of view allows, sometimes, to provide
a precise description of the asymptotic value for the minimax separation rate r̄ε. In particular,
one can, in some cases, determine sharp asymptotics of Gaussian type for the minimax second
kind error probability βε,α(Θa(rε)).

Definition 2.9 The minimax second kind error probability βε,α(Θa(rε)) is said to possess a
sharp asymptotic of Gaussian type if it has an asymptotic Gaussian shape, i.e., if there exists a
function ν(rε) ∈ ]−∞,Φ−1(1− α)] (that should be determined later on) such that

βε,α(Θa(rε)) = Φ(ν(rε)) + oε(1),

where Φ denotes the distribution function of the standard Gaussian distribution.

Sharp asymptotics of Gaussian type for the minimax second kind error probability βε,α(Θa(rε))
have been observed in particular settings (see e.g., [18] and references therein).

We present below a general strategy for obtaining the minimax separation rate r̄ε and sharp
asymptotics of Gaussian type for the minimax second kind error probability βε,α(Θa(rε)). Given
an ellipsoid Ea, this amounts to investigate the construction of both lower and upper bounds on
βε,α(Θa(rε)).

Lower bound: Find a radius rε,1 > 0 such that, for any given rε > 0,

βε,α(Θa(rε)) ≥ 1− α+ oε(1) if
rε
rε,1

→ 0 as ε→ 0.

If possible, one may also want to determine the shape of βε,α(Θa(rε)), i.e., to find a function
ν1(rε) ∈ ]−∞,Φ−1(1− α)] such that, for any given rε > 0,

βε,α(Θa(rε)) ≥ Φ(ν1(rε)) + oε(1).

Upper bound: Given an α-level test Ψα, find a radius rε,2 > 0 such that, for any given rε > 0,

βε(Θa(rε),Ψα) = oε(1) if
rε
rε,2

→ +∞ as ε→ 0.

Additionally, one may again want to determine the shape of βε(Θa(rε),Ψα), i.e., to find a
function ν2(rε) ∈ ]−∞,Φ−1(1− α)] such that, for any given rε > 0,

βε(Θa(rε),Ψα) ≤ Φ(ν2(rε)) + oε(1).

If the α-level test Ψα is such that rε,1/rε,2 = Oε(1), then, obviously, r̄ε/rε,1 = Oε(1). It
means that, according to Definition 2.7, either rε,1 or rε,2 correspond to the minimax separation
rate r̄ε. Furthermore, in the case when ν1(rε)/ν2(rε) = 1 + oε(1), then, according to Definition
2.9, we get sharp asymptotics of Gaussian type for the minimax second kind error probability
βε,α(Θa(rε)), with ν(·) = ν1(·).

Figure 2 illustrates the areas where, according to Definition 2.7, minimax signal detection
can, or cannot, be possible. It also illustrates, according to Definition 2.9, the area where sharp
asymptotics of Gaussian type for the minimax second kind error probability βε,α(Θa(rε)) are
feasible.
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rε
0

βε,α(Θa(rε))

1

1− α

A B

rε
r̄ε
→ 0 rε

r̄ε
→+∞rε

r̄ε
=Oǫ(1)

Figure 2: The interval [0, A] (resp. [B,+∞[) illustrates the area where rε
r̄ε

→ 0 (resp. rε
r̄ε

→
+∞) as ε → 0, i.e., where the minimax second kind error probability βε,α(Θa(rε)) satisfies
βε,α(Θa(rε)) = 1 − α + oǫ(1) (resp. βε,α(Θa(rε)) = oǫ(1)) (see Definition 2.7). The interval
[A,B] determines the frontier for the minimax separation rate r̄ε. In particular, inside this
area, sharp asymptotics of Gaussian type (solid curve) for βε,α(Θa(rε)) are feasible, i.e., there
exists a function ν(rε) ∈ ] − ∞,Φ−1(1 − α)] such that βε,α(Θa(rε)) = Φ(ν(rε)) + oε(1) (see
Definition 2.9).

2.3 A brief motivation

Although the considered minimax signal detection problem (2.4) is the same for both approaches
(non-asymptotic and asymptotic), the way the optimality of the considered testing procedures
is measured differs.

In the non-asymptotic setting, the statistician sets in advance some prescribed values α, β ∈
]0, 1[. Then, the goal is to find ‘optimal’ (non-asymptotic) separation conditions for H0 and H1

that allow a precise (non-asymptotic) control of the first kind error probability and maximal
second kind error probability by α and β, respectively. On the other hand, in the asymptotic
setting, the aim is slightly different. Given any rε > 0, the goal is to measure the best possi-
ble associated maximal second kind error probability of an (asymptotical) α-level test and to
(asymptotically) determine whether it tends to 1− α or to 0, as the noise level ε tends to 0.

In order to study the signal detection problem (2.4), from a minimax point of view, differ-
ent testing methodologies have been developed over the years that strongly depend on the two
considered signal detection paradigms. We refer to, e.g., [1], [21], [22], for the non-asymptotic
paradigm, and to, e.g., [13], [14], [15], [18], [17], for the asymptotic paradigm. Unsurprisingly,
the results in these studies are coherent (i.e., the associated minimax separation radii r̃ε and
minimax separation rates r̄ε are asymptotically equivalent, as ε tends to 0). Indeed, one can
formally prove (using the respective definitions) that r̃ǫ/r̄ǫ = Oǫ(1) as ǫ→ 0.

In the sequel, we propose below a unified treatment for the study of the minimax separation
radius r̃ε (non-asymptotic approach) and the minimax separation rate r̄ε (asymptotic approach).
We compare the construction of their lower and upper bounds and point out similarities in both
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settings (Sections 3 and 4). In particular, tools constructed in the non-asymptotic paradigm can
be used in order to draw conclusions in the asymptotic paradigm and vice-versa. In other words,
one can perform asymptotic analysis for non-asymptotic testing procedures and investigate non-
asymptotic performances for asymptotic testing procedures. This will be demonstrated later on,
when explicit sequences a = (aj)j∈N and b = (bj)j∈N are at hand (see Section 4.3).

3 Control of the lower and upper bounds

3.1 Control of the lower bounds

One of the main issues of minimax signal detection is to establish lower bounds for the minimax
separation radius r̃ε (non-asymptotic approach) and the minimax separation rate r̄ε (asymptotic
approach). In both approaches, this amounts to determine the values of the available signal for
which H0 and H1 cannot be separated with prescribed minimax second kind error probability
βε,α(Θa(rε)).

More formally, we are interested to bound from below the minimax second kind error prob-
ability βε,α(Θa(rε)). In particular, an interesting question is to investigate the smallest possible
value of the radius rε > 0 for which βε,α(Θa(rε)) can be, following the non-asymptotic or asymp-
totic approaches, (asymptotically) lower bounded by β ∈ ]0, 1− α[ or tends to 1− α.

A possible way to achieve this goal is to consider a (prior) probability measure π on the set
associated with H1, i.e., a probability measure π on the set Θa(rε) (see, e.g., [1], [18]). Then, it
is easily verified that

βε,α(Θa(rε)) ≥ inf
Ψ̃α:αε(Ψ̃α)≤α

Pπ(Ψ̃α = 0)

= inf
Ψ̃α:αε(Ψ̃α)≤α

[
P0(Ψ̃α = 0) + Pπ(Ψ̃α = 0)− P0(Ψ̃α = 0)

]

≥ inf
Ψ̃α:αε(Ψ̃α)≤α

[
1− α−

∣∣∣Pπ(Ψ̃α = 0)− P0(Ψ̃α = 0)
∣∣∣
]

≥ 1− α− sup
A: P0(A)≤α

|Pπ(A)− P0(A)|

≥ 1− α− sup
A∈A

|Pπ(A)− P0(A)|

= 1− α− V (Pπ,P0),

where
V (Pπ,P0) := sup

A∈A
|Pπ(A)− P0(A)|

denotes the total variation norm between the two probability measures P0 and Pπ =
∫
Pθ dπ(θ)),

and A denotes the σ-field of the underlying probability space. Assuming that Pπ is absolutely
continuous with respect to P0, using first the Scheffé Theorem (see, e.g., [25], Lemma 2.1) and
then the Cauchy-Schwarz inequality, it can be seen that

V (Pπ,P0) := sup
A∈A

|Pπ(A)− P0(A)|

=
1

2

∫ ∣∣∣∣
dPπ

dy
(y)− dP0

dy
(y)

∣∣∣∣ dy

=
1

2

∫ ∣∣∣∣
dPπ

dP0
(y)− 1

∣∣∣∣ dP0(y)

≤ 1

2

(
E0(|Lπ(Y )− 1|2)

)1/2
,

11



where Lπ(Y ) denotes the likelihood ratio between the two measures Pπ and P0, and E0 denotes
the expectation with respect to P0. Combining the above arguments, we obtain the following
lower bound

βε,α(Θa(rε)) ≥ 1− α− 1

2

(
E0[L

2
π(Y )]− 1

)1/2
. (3.1)

The construction of the lower bound for the minimax second kind error probability βε,α(Θa(rε))
developed in (3.1) heavily relies on the construction of a prior π on the set Θa(rε). Given some
sequence θ = (θj)j∈N, which will be made explicit below, we consider the symmetric prior π
defined as

π =
∏

j∈N

πj with πj =
1

2
(δ−θj + δθj ) ∀ j ∈ N. (3.2)

(Note that π(Θa(rε) = 1.) Since the ξj are standard Gaussian random variables, we get, after
some technical algebra (see [1] p. 596 or [17], supplementary material, Section 11.1), that

E0[L
2
π(Y )] =

∏

j∈N

cosh(b2jθ
2
j/ε

2) ≤ exp


 1

2ε4

∑

j∈N

b4jθ
4
j


 := exp(u2ε,θ). (3.3)

It is worth pointing out that the construction of the lower bound for the minimax separation
radius r̃ε (non-asymptotic approach) and the minimax separation rate r̄ε(asymptotic approach)
are then both related to the study of either E0[L

2
π(Y )] or its corresponding upper bound (3.3).

Two different interesting regimes at this point can be immediately deduced:

• First, E0[L
2
π(Y )] tends to 1 as ε → 0. In such a case, the minimax second kind error

probability βε,α(Θa(rε)) is asymptotically lower bounded by 1 − α, i.e., βε,α(Θa(rε)) ≥
1− α+ oε(1).

• Second, E0[L
2
π(Y )] can be upper bounded by a constant. In this case, the minimax second

kind error probability βε,α(Θa(rε)) is also lower bounded by a constant. An interesting
situation corresponds to the case where E0[L

2
π(Y )] ≤ 1+4(1−α−β)2 for some β ∈]0, 1−α[.

Then, βε,α(Θa(rε)) ≥ β.

Moreover, a more delicate study of the term u2ε,θ := 1
2ε4
∑

j∈N b
4
jθ

4
j in (3.3) allows, under

certain conditions to be made precise later on, to study sharp asymptotics of Gaussian type for
the minimax second kind error probability βε,α(Θa(rε)).

We discuss below the two different strategies that have been investigated in the literature.

3.1.1 Non-asymptotic control

The following control has been proposed by [1] in the direct setting and it has been generalized
to the inverse setting by [22]. The main idea consists of finding an explicit sequence θ0 = (θ0j )j∈N
and a radius rε > 0 which satisfy the following three requirements:

• ‖θ0‖ ≥ rε,

• exp
(

1
2ε4
∑

j∈N b
4
j (θ

0
j )

4
)
= 1 + 4(1− α− β)2,

• θ0 ∈ Ea.

To this end, one can consider, for instance, the sequence θ0 defined as

θ0j :=
rεε

2b−2
j(

ε4
∑D

k=1 b
−4
k

)1/2 ∀ j ∈ {1, . . . ,D} and θ0j = 0 ∀ j > D, (3.4)

12



for some (finite) parameter D ∈ N (called the bandwidth), that possibly depends on ε > 0.

It is evident that ‖θ0‖ = rε. Furthermore, taking into account (3.3), we get

E0[L
2
π(Y )] ≤ exp


 1

2ε4

∑

j∈N

b4j(θ
0
j )

4


 = exp

[
r4ε

2ε4
∑D

j=1 b
−4
j

]
= 1 + 4(1 − α− β)2, (3.5)

as soon as

r2ε = r2ε,D := c(α, β)ε2

√√√√
D∑

j=1

b−4
j ,

where
c(α, β) = (2 ln(1 + 4(1− α− β)2))1/4 > 0. (3.6)

In order to conclude, it remains to choose an appropriate D ∈ N such that θ0 ∈ Ea. To this end,
note that

∑

j∈N

a2j(θ
0
j )

2 ≤ a2D

D∑

j=1

(θ0j )
2 = a2Dr

2
ε,D ≤ 1 as soon as r2ε,D ≤ a−2

D .

Hence, if we define

r2ε,⋆ := sup
D∈N


c(α, β)ε2

√√√√
D∑

j=1

b−4
j ∧ a−2

D


 , (3.7)

we get, using (3.1)-(3.5),
βε,α(Θa(rε,⋆)) ≥ β,

which means that the minimax separation radius r̃ε satisfies

r̃ε ≥ rε,⋆.

This corresponds to a non-asymptotic lower bound on the minimax separation radius r̃ε.
The main advantage of such a bound is that it provides a precise description of the area where
minimax signal detection is impossible with prescribed values α, β ∈]0, 1[.

3.1.2 Asymptotic control

In the previous (non-asymptotic) approach, the main idea was to construct an explicit sequence
θ and to control E0[L

2
π(Y )]. In the asymptotic approach, one instead starts from (3.3) and find

the smallest possible value of u2ε,θ for which θ ∈ Θa(rε). In other words, the idea is to choose a

sequence θ̄ := θ̄(rε) as the solution of the following extremal problem

θ̄(rε) := arginf θ∈Θa(rε)

{
u2ε,θ :=

1

2ε4

∑

k∈N

b4kθ
4
k

}
. (3.8)

In the following, we will denote the solution of the extremal problem (3.8) as

uε(rε) := uε,θ̄(rε) := infθ∈Θa(rε)

{
1

2ε4

∑

k∈N

b4kθ
4
k

}
. (3.9)

This idea has been in particular developed in the series of papers [13], [14], [15], or, more
recently, in [17], in an inverse problem framework. The cases of interest correspond to the setting
where u2ε(rε) either tends to zero or is bounded by a constant. In that case, one can find the
solution of uε(rε) in (3.9) using, for instance, the standard methodology of Lagrange multipliers.
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Let α ∈]0, 1[ be fixed. We immediately see from (3.1) and (3.3) that if uε(rε) = oε(1), then

βε,α(Θa(rε)) ≥ 1− α+ oε(1). (3.10)

The interesting situation, however, arises when uε(rε) = Oε(1). It allows a more accu-
rate study to asymptotically precise the shape of the minimax second kind error probability
βε,α(Θa(rε)). In particular, if uε(rε) = Oε(1), it can be established that

ln(Lπ(Y )) = −u
2
ε(rε)

2
+ uε(rε)ξε + ζε, (3.11)

where ξε → ξ ∼ N (0, 1) and ζε → 0 (in P0-probability) as ε → 0 distribution (see Section 4.3.1
of [18] or the proof of Theorem 4.1 of [17], supplementary material, Section 11.1). By a standard
change of probability measure, it follows that

βε,α(Θa(rε)) ≥ Eπ(1− ψ⋆) = E0(exp(ln(Lπ(Y )))(1 − ψ⋆)),

where ψ⋆ is the likelihood ratio test defined as ψ⋆ = 1{ln(Lπ(Y ))>t⋆1−α}
with t⋆1−α being the (1−α)-

quantile of the distribution of ln(Lπ(Y )) under H0. Hence, in view of (3.11), it is easily seen
that

t⋆1−α = −u
2
ε(rε)

2
+ uε(rε)t1−α + oε(1),

where t1−α refers to the (1−α)-quantile of the standard Gaussian distribution. Moreover, using
the mean value theorem, it follows that

βε,α(Θa(rε)) ≥ Eπ(1− ψ⋆) = E0(exp(ln(Lπ(Y )))(1 − ψ⋆))

= Φ(t1−α − uε(rε)) + oε(1). (3.12)

(Note that, in the particular case where rε > 0 satisfies uε(rε) = t1−α−tβ, then, it is immediately
seen that βε,α(Θa(rε)) ≥ β + oε(1).)

Remark 3.1 It is worth mentioning that one cannot determine at this point the radius rε,1 > 0
(considered in the general strategy of Section 2.2 for constructing lower bounds), unless the
sequences a = (aj)j∈N and b = (bj)j∈N are explicitly given. We refer to, e.g., [17] for more
details or to Section 4.3 where a mildly ill-posed inverse problem is treated for illustrative
purposes.

In the following section, we investigate upper bounds on the minimax separation radius r̃ε
(non-asymptotic approach) and upper bounds on the minimax separation rate r̄ε (asymptotic
approach). In the latter setting, we also provide, under mild conditions, sharp asymptotics of
Gaussian type for the minimax second kind error probability βε,α(Θa(rε)).

3.2 Control of the upper bounds

3.2.1 A general testing methodology

In this section, we construct appropriate tests and investigate the associated separation ra-
dius (non-asymptotic approach) and the maximal second kind error probability (asymptotic
approach). Starting from signal detection problem (2.4), the underlying question is to decide
whether we observe a signal or not. To this end, a possible approach is to construct an estimator
d̂ of d := ‖θ‖2 or d := ‖bθ‖2. Indeed, the assertions “θ = 0” and “bθ = 0” are equivalent since
the sequence b = {bj}j∈N is assumed strictly positive. We refer to [21] for an extended discussion
on that subject. Then, one can use the following decision rule:

• if d̂ is large enough (larger than a prescribed threshold which should be precisely quanti-
fied), we reject H0,
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• If d̂ is smaller than this threshold, we do not reject H0.

In order to estimate ‖θ‖2 (resp. ‖bθ‖2), one can first construct a preliminary estimator of θ
(resp. bθ) and then take its squared norm. This idea has been widely investigated. We point
out that, in general, the preliminary estimators cannot be directly plugged in order to estimate
‖θ‖2 (resp. ‖bθ‖2). Indeed, minimax estimation and minimax testing are essentially two differ-
ent problems, see, e.g., [18], Sections 1.4.4 and 2.10. Nevertheless, ideas and methodologies in
minimax estimation can inspire the construction of appropriate minimax testing procedures.

In the following, we focus on the construction of linear estimators based on observations
from the GSM (1.1). Let ω = (ωj)j∈N be a filter, i.e., a sequence taking values in the interval
[0, 1]. Then, one can estimate ‖θ‖2 by the following estimator

‖̂θ‖2 =
∑

j∈N

ωjb
−2
j (y2j − ε2). (3.13)

or, in the same spirit, estimate ‖bθ‖2 by the following estimator

‖̂bθ‖2 =
∑

j∈N

ωj(y
2
j − ε2). (3.14)

Various possible filters ω = (ωj)j∈N are available in the literature. Among them, one can men-
tion, e.g., spectral cut-off filters (see Section 3.2.2), Tikhonov filters, Ingster filters (see Section
3.2.3) or filters based on other regularization approaches. For more details regarding available
regularization methods, we refer, e.g., to [3], [7] and [18].

Having an estimator ‖θ‖2 (resp. ‖bθ‖2) of the form (3.13) (resp. (3.14)), denoted by d̂, we
can construct an associated test Ψα,ω as

Ψα,ω = 1{d̂>tα,ω}
,

where tα,ω is a threshold that (asymptotically) controls the first kind error probability αε(Ψα,ω).

It is important to point out at this point that, having an (asymptotic) α-level test Ψα,

• (non-asymptotic approach) one can try to determine the smallest possible separation
radius rε,0 := rε(Ea,Ψα, β) > 0 such that the maximal second kind error probability
βε(Θa(rε,0),Ψα) is at most β, for any prescribed α, β ∈]0, 1[,

• (asymptotic approach) one can investigate the asymptotic behavior of the maximal second
kind error probability βε(Θa(rε),Ψα), for any given rε > 0 and any prescribed α ∈]0, 1[.

Our aim below is,

1. to construct appropriate tests that reach (at least up to a constant) the lower bounds
established in Sections 3.1.1 and 3.1.2 (Sections 3.2.2 and 3.2.3),

2. to bring into light hitherto unknown links between non-asymptotic and asymptotic ap-
proaches to minimax signal detection (see Section 4).

As mentioned previously, there exist several possible available filters. We focus below on two
different kind of filters investigated in, e.g., [22] and [17], namely, spectral cut-off and Ingster
filters, respectively.
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3.2.2 Non-asymptotic control: Spectral cut-off filters

Our aim is to propose an α-level test Ψα such that

rε(Ea,Ψα, β) ≤ Crε,⋆,

for some C ≥ 1, where rε,⋆ > 0 has been introduced in (3.7). In such a case, this will mean
that lower and upper bounds for the minimax separation radius r̃ε > 0 match together, up to a
constant.

According to the previous discussion, the suggested test will be based on an estimation of
‖θ‖2 (using (3.13)). More formally, given a bandwidth D ∈ N, we define

ΨD,P := 1{
∑D

j=1 b
−2
j (y2j−ε2)>t1−α,D}

:= 1{TD,P>t1−α,D}, (3.15)

where

TD,P :=

D∑

j=1

b−2
j (y2j − ε2) (3.16)

and t1−α,D denotes the (1−α)-quantile of TD,P underH0, i.e., the (1−α)-quantile of the random
variable ε2

∑D
j=1 b

−2
j (ξ2j − 1).

Due to the definition of t1−α,D, the spectral cut-off test ΨD,P is an α-level test. Indeed,

αε(ΨD,P ) := P0 (ΨD,P = 1) = P0 (TD,P > t1−α,D)

= P


ε2

D∑

j=1

b−2
j (ξ2j − 1) > t1−α,D


 = α.

Now, we turn to the control of the maximal second kind error probability βε(Θa(rε),ΨD,P ).
To this end, denote by tβ,D(θ) the β-quantile of TD,P under H1, i.e., the term satisfying

Pθ (TD,P ≤ tβ,D(θ)) = β.

Then, for a given θ ∈ Ea, in order to prove that

Pθ(ΨD,P = 0) := Pθ (TD,P ≤ t1−α,D) = Pθ




D∑

j=1

b−2
j (y2j − ε2) ≤ t1−α,D


 ≤ β,

it suffices to show that
t1−α,D ≤ tβ,D(θ). (3.17)

Figure 3 provides, for a fixed bandwidth D ∈ N, a heuristic illustration for the comparison
(3.17) between the (1− α)-quantile t1−α,D and the β-quantile tβ,D(θ) of the test statistic TD,P ,
defined in (3.16). In order to compare these two terms formally, we use the following proposition.

Proposition 3.1 Let TD,P be the test statistic defined in (3.16), and let t1−α,D and tβ,D(θ) be
its (1−α)-quantile under H0 and β-quantile under H1. Then, there exists a constant (explicitly
computable) C(α) > 0 such that

t1−α,D ≤ C(α)ε2




D∑

j=1

b−4
j




1/2

,
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t1−α,D tβ,D(θ)
0

β

α

Figure 3: Illustrative comparison of the (1 − α)-quantile t1α,D and the β-quantile tβ,D(θ) for
a fixed bandwidth D ∈ N. The left hand side curve displays the density of the test statistic
TD,P :=

∑D
j=1 b

−2
j (y2j − ǫ2), defined in (3.16), under H0, while the one on the right hand side

displays the density of the same test statistics TD,P under H1. The shaded areas are determined
by the corresponding (1 − α)-quantile t1−α,D (vertical lines) and β-quantile tβ,D(θ) (horizontal
lines).

and

tβ,D ≥
D∑

j=1

θ2j − 2
√

ln(1/β)

√√√√ε4
D∑

j=1

b−4
j + 2ε2

D∑

j=1

b−2
j θ2j .

The proof of Proposition 3.1 can be found in [22] (see the construction of the upper and lower
bounds in the proof of their Proposition 2). In particular, the control of t1−α,D and tβ,D(θ) is
based on deviation inequalities of appropriate independent weighted-χ2 random variables.

Using (3.17) and Proposition 3.1, one can easily see that

t1−α,D ≤ tβ,D(θ)

if and only if

D∑

j=1

θ2j ≥ C(α)ε2




D∑

j=1

b−4
j




1/2

− 2
√

ln(1/β)

√√√√ε4
D∑

j=1

b−4
j + 2ε2

D∑

j=1

b−2
j θ2j ,

which, in turn, holds true as soon as

D∑

j=1

θ2j ≥ C(α, β)ε2

√√√√
D∑

j=1

b−4
j , (3.18)

where, setting xγ = ln(1/γ), for all γ ∈]0, 1[,

C(α, β) =
√

2xβ +
√

2(xα + xβ) +
√
2
(√
xα +

√
xβ
)1/2

> 0 (3.19)

(see [22] for more details). The condition (3.18) ensures that

Pθ(ΨD,P = 0) ≤ β.
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The main drawback of (3.18) is that it is expressed in terms of a lower bound on
∑D

j=1 θ
2
j

instead of ‖θ‖2. However, since θ ∈ Ea, it follows that
∑

j>D θ
2
j ≤ a−2

D . Hence,

∀ θ ∈ Ea, ‖θ‖2 ≥ C(α, β)ε2

√√√√
D∑

j=1

b−4
j + a−2

D ⇒ Pθ(ΨD,P = 0) ≤ β. (3.20)

Moreover, we point out that the term in the left hand side of (3.20) corresponds to the sum of
two antagonist quantities. Since our aim is to obtain the weaker possible bound on the energy
condition, we choose a bandwidth D := D⋆ ∈ N such that

βε(Θa(r
⋆
ε),ΨD⋆,P ) := sup

θ∈Θa(r⋆ε )
Pθ(ΨD⋆,P = 0) ≤ β,

where

(r⋆ε)
2 := inf

D∈N


C(α, β)ε2

√√√√
D∑

j=1

b−4
j + a−2

D


 . (3.21)

Finally, thanks to (3.7) and (3.21), the values of rε,⋆ and r⋆ε are coherent. In Section 4, we
show that, under some weak conditions on the sequences a = (aj)j∈N and b = (bj)j∈N, non-
asymptotic lower and upper bounds for the minimax separation radius r̃ε match together, up to
a constant.

3.2.3 Asymptotic control: Ingster filters

We consider a different approach, since the testing procedure will be based on an estimation of
‖bθ‖2 (using (3.14)). We will deal with a specific kind of filters which have been, to the best
of our knowledge, introduced by Yuri I. Ingster in a series of papers (see, e.g., [13], [14], [15], [18]).

Let θ̄ = θ̄(rε) ∈ Θa(rε) be the solution of the extremal problem (3.8). Then, we define the
Ingster filters ωrε = (ωj,rε)j∈N as

ωj,rε =
b2j θ̄

2
j√

2
∑

k∈N b
4
kθ̄

4
k

∀ j ∈ N. (3.22)

As discussed in Section 3.2.1, one can use a test of the form

Ψrε,I := 1{
∑

j∈N
ωj,rε(y

2
j−ε2)>ε2 t1−α}

= 1{
∑

j∈N
ωj,rε((yj/ε))

2−1)>t1−α}

:= 1{Trε,I>t1−α}, (3.23)

where

Trε,I =
∑

j∈N

ωj,rε

((yj
ε

)2
− 1

)
, (3.24)

and t1−α denotes the (1− α)-quantile of a standard Gaussian random variable.

Since Trε,I = ξε, where ξε is the quantity appeared in (3.11), from the proof of the corre-
sponding lower bounds, it follows that Trε,I → ξ ∼ N (0, 1) (in P0 probability) as ε→ 0. Hence,
we immediately see that,

αε(Ψrε,I) = Φ(t1−α) + oε(1) = α+ oε(1). (3.25)

(This means that Ψrε,I is, asymptotically, an α-level test.)

We now consider the corresponding maximal second kind error probability βε(Θa(rε),Ψrε,I).
The following cases are of particular interest:
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• uε(rε) = oε(1). According to (3.10), βε,α(Θa(rε)) ≥ 1−α+ oε(1). It is then impossible to
distinguishH0 fromH1, meaning that, according to Definition 2.2, we have an asymptotical
trivial test. Thus, it is not needed to further study this case.

• uε(rε) = Oε(1). In this case, under the mild condition supj∈N ωj,rε = oε(1), we establish a
sharp asymptotic of Gaussian type for βε(Θa(rε),Ψrε,I).

• uε(rε) → ∞ as ε→ 0. In this case, we establish that βε(Θa(rε),Ψrε,I) = oε(1).

To this end, simple algebra leads to the following expressions of the expectation and the
variance of the test statistics Trε,I :

Eθ[Trε,I ] = ε−2
∑

j∈N

ωj,rεb
2
jθ

2
j , Varθ[Trε,I ] = 1 + 4ε−2

∑

j∈N

ω2
j,rεb

2
jθ

2
j . (3.26)

Introduce the standardized random variable T̃rε,I defined as

T̃rε,I =
Trε,I − Eθ[Trε,I ]√

Varθ[Trε,I ]
,

where the Eθ[Trε,I ] and Varθ[Trε,I ] have been computed in (3.26). Define

ω0,rε := sup
j∈N

b2j θ̄
2
j√

2
∑

k∈N b
4
kθ̄

4
k

:= sup
j∈N

ωj,rε, (3.27)

where θ̄ = θ̄(rε) ∈ Θa(rε) is the extremal sequence, i.e., the solution of the extremal problem
(3.8). (Note that, using (3.27), 1 ≤ Varθ[Trε,I ] ≤ 1 + 4ω0,rε Eθ[Trε,I ].)

In order to proceed, we need the following proposition.

Proposition 3.2 Let Trε,I be the test statistic defined in (3.24) Let h(rε, θ) := Eθ[Trε,I ], where
Eθ[Trε,I ] is computed in (3.26). Then

inf
θ∈Θa(rε)

h(rε, θ) = uε(rε).

The proof of Proposition 3.2 can be found in [17], supplementary material, Lemma 11.1.

Case 1 (uε(rε) = Oε(1)) Following the proof of Theorem 4.1 of [17], supplementary material,
Section 11.1, using Lyapunov’s conditions and (3.26), it follows that, as soon as ω0,rε = oε(1),

• T̃rε,I is asymptotically standard Gaussian under Pθ.

• Varθ[Trε,I ] = 1 + oε(1).

Therefore, we get that

Pθ(Ψrε,I = 0) = Pθ

(
T̃rε,I ≤

t1−α − Eθ[Trε,I ]√
Varθ[Trε,I ]

)
= Φ(t1−α − Eθ[Trε,I ]) + oε(1).

Using Proposition 3.2, we arrive at

βε(Θa(rε),Ψrε,I) = sup
θ∈Θa(rε)

Pθ(Ψrε,I = 0)

= sup
θ∈Θa(rε)

Φ(t1−α − Eθ[Trε,I ]) + oε(1)

:= sup
θ∈Θa(rε)

Φ(t1−α − h(rε, θ)) + oε(1)

= Φ

(
t1−α − inf

θ∈Θa(rε)
h(rε, θ)

)
+ oε(1)

= Φ (t1−α − uε(rε)) + oε(1). (3.28)
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Therefore, using (3.28), we get that

βε,α(Θa(rε)) ≤ βε(Θa(rε),Ψrε,I)

= Φ(t1−α − uε(rε)) + oε(1). (3.29)

(Note that, in the particular case that rε > 0 satisfies uε(rε) = t1−α − tβ, it is immediately seen
that βε,α(Θa(rε)) ≤ β + oε(1).)

Case 2 (uε(rε) → +∞ as ε → 0) Using Proposition 3.2 and (3.26), it follows that, for all
θ ∈ Θa(rε),

Eθ[Trε,I ] := h(rε, θ) ≥ inf
θ∈Θa(rε)

h(rε, θ) = uε(rε) → +∞ as ε→ 0.

Therefore, using Markov’s inequality,

βε(Θa(rε),Ψrε,I) := sup
θ∈Θa(rε)

Pθ(Ψ = 0)

= sup
θ∈Θa(rε)

Pθ

(
T̃rε,I ≤

t1−α − Eθ[Trε,I ]√
Varθ[Trε,I ]

)

≤ sup
θ∈Θa(rε)

Pθ

(
|T̃rε,I | ≥

Eθ[Trε,I ]− t1−α√
Varθ[Trε,I ]

)

≤ sup
θ∈Θa(rε)

Varθ[Trε,I ]

(t1−α − Eθ[Trε,I ])
2

≤ sup
θ∈Θa(rε)

1 + 4ω0,rε h(rε, θ)

(h(rε, θ)− t1−α)2

∼ 1

infθ∈Θa(rε) h(rε, θ)
:=

1

uε(rε)
= oε(1). (3.30)

Remark 3.2 It is worth mentioning that one cannot determine at this point the radius rε,2 > 0
(considered in the general strategy of Section 2.2 for constructing upper bounds). This more
or less amounts to solve the equation uε(rε,2) = Oε(1) as ε → 0. This cannot be accomplished
unless the sequences a = (aj)j∈N and b = (bj)j∈N are explicitly given. We refer again to, e.g.,
[17] for more details or to Section 4.3 where an example of a mildly ill-posed inverse problem is
treated for illustrative purposes.

Below, we first formalize the results for the lower and upper bounds presented above and
explain their meaning for practical purposes (Section 4.1). We then bring into light hitherto
unknown links between non-asymptotic and asymptotic approaches to minimax signal detection
(Section 4.2 and Section 4.3).

4 Connections between non-asymptotic and asymptotic frame-

works

4.1 General Results

In Section 3, lower and upper bounds on the minimax separation radius r̃ε and the minimax
second kind error probability βε,α(Θa(rε)) were independently treated. In the following theo-
rems, these results are gathered in unified manners.

We first focus our attention to the non-asymptotic paradigm.
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Theorem 4.1 (Non-asymptotic framework) Assume that Y = (Yj)j∈N are observations from
the GSM (1.1), and consider the signal detection problem (2.4) with F defined in (2.3). Let
α, β ∈ ]0, 1[ be given. Then, for every ε > 0, the minimax separation radius r̃ε is controlled by

sup
D∈N


c(α, β)ε2

√√√√
D∑

j=1

b−4
j ∧ a−2

D


 ≤ r̃2ε ≤ inf

D∈N


C(α, β)ε2

√√√√
D∑

j=1

b−4
j + a−2

D


 , (4.1)

where the constants c(α, β) and C(α, β) are respectively given in (3.6) and (3.19).

In order to shed some light on the meaning of (4.1), the following comments are in order:

• One cannot ensure that both lower and upper bounds on the minimax separation radius
r̃ε in (4.1) match together, unless (weak) conditions on the sequences a = (aj)j∈N and
b = (bj)j∈N are at hand. A discussion on that point is provided below (see Theorem 4.1).

• Nevertheless, we point out that these bounds are coherent since they involve the same

quantities, namely, a−2
D and ε2

√∑D
j=1 b

−4
j , for any given bandwidth D ∈ N, as well as

positive constants c(α, β) and C(α, β), depending on α and β only.

• A careful look into the discussion presented in the previous section indicates that the term
a−2
D can be related to a (in fact an upper bound on the) ‘bias’ term in the sense that it

measures the amount of signal that is missed using the spectral cut-off test ΨD,P (see,
e.g., (3.18)). Recall that the sequence a = (aj)j∈N characterizes the smoothness of the
underlying signal θ. Obviously, the smoother the signal of interest, the easier the testing
problem in the sense that the minimax separation radius r̃ε becomes smaller.

• In the same spirit, ε2
√∑D

j=1 b
−4
j can be related to a ‘standard deviation’ term that cor-

responds to the estimation of the term ‖θ‖2 using the spectral cut-off test ΨD,P . When
bj = 1, for all j ∈ N, (i.e., the direct problem) this term is of order ε2

√
D. This particular

case has been discussed in detail in [1], Section 3. On the other hand, the case when bj → 0
as j → +∞, corresponds to ill-posed inverse problems. In this case, the signal detection
problem becomes harder in the sense that the minimax separation radius r̃ε strongly de-
pends on the decay of the sequence b = (bj)j∈N towards 0 and becomes larger than the
corresponding one in the direct problem.

In summary, in order to precisely compute the minimax separation radius r̃ε, explicit se-
quences of a = (aj)j∈N and b = (bj)j∈N are needed to control the trade-off between the two

antagonist terms, i.e., the ‘bias’ and the ‘standard deviation’ terms, a−2
D and ε2

√∑D
j=1 b

−4
j , re-

spectively. This will be elaborated on Section 4.3 below, where an example of a mildly ill-posed
inverse problem is used for illustrative purposes.

We now turn our attention to the asymptotic paradigm.

Theorem 4.2 (Asymptotic framework) Assume that Y = (Yj)j∈N are observations from the
GSM (1.1), and consider the signal detection problem (2.4) with F defined in (2.3). Let a
radius rε > 0 be fixed, and let α ∈ ]0, 1[ be given. Let uε(rε) and ω0,rε denote the solution of the
extremal problem defined in (3.9) and the term introduced in (3.27), respectively.

(a) If
uε(rε) = oε(1),

then
βε,α(Θa(rε)) = 1− α+ oε(1).
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(b) If
uε(rε) = Oε(1) and ω0,rε = oε(1),

then
βε,α(Θa(rε)) = Φ(t1−α − uε(rε)) + oε(1).

(c) If
uε(rε) → +∞ as ε→ 0,

then
βε,α(Θa(rε)) = oε(1).

It is evident from Theorem 4.2 that the minimax signal detection problem in the asymptotic
framework essentially reduces to the study of the extremal problem (3.8). Indeed, the corre-
sponding solution given in (3.9) governs both the lower and the upper bounds on the minimax
second kind error probability βε,α(Θa(rε)). The three different regimes mentioned in Theorem
4.2 are of particular interest and require at this step some additional explanations:

• If uε(rε) = oε(1), then, according to Definition 2.2, an asymptotical non-trivial minimax
hypothesis testing problem is not possible. In other words, it is impossible to distinguish
between H0 and H1.

• If uε(rε) = Oε(1) and ω0,rε = oε(1), then one can precisely describe the shape of the
minimax second kind error probability βε,α(Θa(rε)) since it possesses a sharp asymptotic
of Gaussian type. It is also evident that βε,α(Θa(rε)) ∈ ]0, 1 − α[. This means that the
minimax signal detection problem is asymptotically non-trivial (i.e., βε,α(Θa(rε)) > 0) but
that H0 and H1 can be asymptotically always separated (i.e., βε,α(Θa(rε)) < 1−α). Note
that in this particular case that uε(rε) = Oε(1) and ω0,rε = oε(1), the Ingster test Ψrε,I

defined in (3.23) is asymptotical minimax according to Definition 2.8.

• If uε(rε) → +∞ as ε→ 0, then the minimax second kind error probability βε,α(Θa(rε)) =
oε(1). In particular, the test Ψrε,I constructed in (3.23)-(3.24) asymptotically always
separates H0 from H1.

Remark 4.1 Theorem 4.2 does not treat the case where

uε(rε) = Oε(1) and ω0,rε 6→ 0 as ε→ 0. (4.2)

In such a case, the lower bound (3.12) is still valid but can be, in fact, improved by showing
that

liminfε→0βε,α(Θa(rε)) > 1− α for any α ∈]0, 1[,
i.e., the minimax signal detection problem is asymptotically trivial (see the proof of Theorem
4.1 of [17], supplementary material, Section 11.1.). It is worth pointing out at this point that if
(4.2) holds, then the minimax second kind error probability βε,α(Θa(rε)) asymptotically belongs
to the set {0, 1 − α}, for any α ∈]0, 1[, depending on the behavior of any given rε > 0.

The case where ω0,rε 6→ 0 as ε → 0 exists in, e.g., the case of severely ill-posed inverse
problems with the class of analytic functions (super-smooth functions), i.e., bj ≍ e−jt, j ∈ N,
for some t > 0, and aj ≍ ejs, j ∈ N, for some s > 0, respectively. Indeed,

ω0,rε := sup
j∈N

b2j θ̄
2
j√

2
∑

k∈N b
4
kθ̄

4
k

∼ z20e
−2tm

z20e
−2tm

≍ 1 6→ 0, as ε→ 0,

for some quantities z0 ∈ R and m ∈ [1,∞) (see Theorem 4.3 and Remark 4.4 in [17]). We
also refer to Section 4.3.3 below for a similar computation in a mildly ill-posed inverse problem
setting.

22



Remark 4.2 Theorem 4.2 does not provide an immediate expression for the minimax separation
rate r̄ε. In practice, however, both terms rε,1 and rε,2 required in the construction of the lower
and upper bounds, respectively, sketched in Section 2.2, are derived from the same equation:
uε(rε,1) = uε(rε,2) = Oε(1). Then one can, ‘in general’, check the implications

rε
rε,1

→ 0 ⇒ uε(rε) = oε(1) and
rε
rε,2

→ +∞ ⇒ uε(rε) → +∞, as ε→ 0,

which, thanks to Theorem 4.2 and Definition 2.7, allows one to conclude. As mentioned previ-
ously, this task cannot be accomplished unless explicit expressions on the sequences a = (aj)j∈N
and b = (bj)j∈N are given. Explicit calculation of the minimax separation rate r̄ε in a mildly
ill-posed inverse problem is provided in Section 4.3.2.

The proofs of the assertions in Theorem 4.1 and Theorem 4.2 are direct consequences of the
discussion provided in Section 3, concerning the control of the upper and lower bounds, for both
minimax separation radius r̃ε and maximal second kind error probability βε,α(Θa(rε)). Detailed
arguments and related discussions can be found in, e.g., [1], [17] and [22].

4.2 Deriving the minimax separation rate r̄ε from bounds on the minimax

separation radius r̃ε.

The following theorem shows that, under some mild conditions on the growth of the sequences
a = (aj)j∈N and b−1 = (b−1

j )j∈N, one can derive the asymptotic order of the minimax separation
rate r̄ε from the bounds on the minimax separation radius r̃ε given in (4.1).

Proposition 4.1 Assume that Y = (Yj)j∈N are observations from the GSM (1.1), and consider
the signal detection problem (2.4) with F defined in (2.3). Assume that both sequences a =
(aj)j∈N and b−1 = (b−1

j )j∈N are non-decreasing and that they satisfy

a⋆ ≤
aD−1

aD
≤ a⋆ and b⋆ ≤

bD−1

bD
≤ b⋆ for all D > 1, (4.3)

for some constants 0 < a⋆ ≤ a⋆ < ∞ and 0 < b⋆ ≤ b⋆ < ∞. Let α, β ∈ ]0, 1[ be given. Then,
there exists a constant C ≥ 1 such that

inf
D∈N


C(α, β)ε2

√√√√
D∑

j=1

b−4
j + a−2

D


 ≤ C sup

D∈N


c(α, β)ε2

√√√√
D∑

j=1

b−4
j ∧ a−2

D


 ,

where the constants c(α, β) and C(α, β) are respectively given in (3.6) and (3.19). In particular,
both lower and upper bounds in (4.1) are of the same order.

The control (4.1) hence proposes a sharp description of the minimax separation radius r̃ǫ
as soon as (4.3) is satisfied. Since r̄ǫ/r̃ǫ = Oǫ(1), the asymptotic minimax separation rate r̄ǫ
can thus be determine from (4.1). On the other hand, a non-asymptotic bound that matches
asymptotic known results can be considered as (rate) optimal. Hence, although the motivations
differ, both asymptotic and non-asymptotic approaches provide a similar description on the
minimax signal detection problem at hand.

Remark 4.3 We note also that the condition (4.3) is satisfied for various combinations of
interest, among them: (i) mildly ill-posed inverse problems (bj ≍ j−t, j ∈ N, for some t > 0)
with ordinary smooth functions (aj ≍ js, j ∈ N, for some s > 0), (ii) severely ill-posed inverse
problems (bj ≍ e−jt, j ∈ N, for some t > 0) with ordinary smooth functions (aj ≍ js, j ∈ N, for
some s > 0), and (iii) mildly ill-posed inverse problems (bj ≍ j−t, j ∈ N, for some t > 0) with
super-smooth functions (aj ≍ ejs, j ∈ N, for some s > 0). Among the possible situations where
the condition (4.3) is not satisfied, one can mention, for instance, power-exponential behaviors

(aj ≍ ej
ls, j ∈ N, for some s > 0 and l > 1, or bj ≍ e−jrt, j ∈ N, for some t > 0 and r > 1).
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Proof. Let the bandwidth D0 ∈ N satisfy

D0 = arg sup
D∈N


c(α, β)ε2

√√√√
D∑

j=1

b−4
j ∧ a−2

D


 . (4.4)

We restrict ourselves to the following case

a−2
D0

≤ c(α, β)ε2

√√√√
D0∑

j=1

b−4
j .

(The other case follows similarly along the same lines of proof.) Then, thanks to (4.3), we get

inf
D∈N


C(α, β)ε2

√√√√
D∑

j=1

b−4
j + a−2

D


 ≤ C(α, β)ε2

√√√√
D0∑

j=1

b−4
j + a−2

D0

≤ (C(α, β) + c(α, β))ε2

√√√√
D0∑

j=1

b−4
j

≤ Cε2

√√√√
D0−1∑

j=1

b−4
j ,

for some constant C > 0 that can be explicitly computed. Note that

a−2
D0

≤ c(α, β)ε2

√√√√
D0∑

j=1

b−4
j implies a2D0−1 > c(α, β)ε2

√√√√
D0−1∑

j=1

b−4
j ,

since, otherwise, we arrive at a contradiction, due to the definition of D0 ∈ N in (4.4). Hence,

inf
D∈N


C(α, β)ε2

√√√√
D∑

j=1

b−4
j + a−2

D


 ≤ Cε2

√√√√
D0−1∑

j=1

b−4
j ,

≤ C


ε2
√√√√

D0−1∑

j=1

b−4
j ∧ a−2

D0−1


 ,

≤ C sup
D∈N


c(α, β)ε2

√√√√
D∑

j=1

b−4
j ∧ a−2

D


 .

In other words, there exists some constant C ≥ 1 such that

sup
D∈N


c(α, β)ε2

√√√√
D∑

j=1

b−4
j ∧ a−2

D




≤ inf
D∈N


C(α, β)ε2

√√√√
D∑

j=1

b−4
j + a−2

D


 ≤ C sup

D∈N


c(α, β)ε2

√√√√
D∑

j=1

b−4
j ∧ a−2

D


 . (4.5)

Hence, the lower and the upper bounds in (4.1) are of the same order. This concludes the proof
of the proposition.

�
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Remark 4.4 According to Definition 2.8, and as soon as (4.3) is satisfied, the spectral cut-off
test ΨD,P defined in (3.15), with bandwidth D := D0 ∈ N selected as in (4.4), is asymptotical
minimax consistent. Indeed, given θ ∈ Ea and a radius rε such that ‖θ‖ ≥ rε,

Pθ(ΨD0,P = 0) = Pθ (TD0,P ≤ t1−α,D0) ,

= Pθ


TD0,P − E[TD0,P ] ≤ t1−α,D0 −

D0∑

j=1

θ2j


 ,

≤ Pθ


|E[TD0,P ]− TD0,P | ≥

D0∑

j=1

θ2j − t1−α,D0


 ,

≤
ε4
∑D0

j=1 b
−4
j(∑D0

j=1 θ
2
j − t1−α,D0

)2 .

Then, since r̄ε/r̃ε = Oε(1) as ε→ 0, using Proposition 3.1, we get

D0∑

j=1

θ2j − t1−α,D0 ≥ ‖θ‖2 − C


ε2

√√√√
D0∑

j=1

b−4
j + a−2

D0


 ,

≥ r2ε −Cr̃2ε ,

≥ r2ε(1− oε(1)),

as soon as rε/r̄ε → +∞ as ε→ 0. Finally, we obtain

Pθ(ΨD0,P = 0) ≤ Cr̄4ε
r4ε(1− oε(1))

= oε(1),

which entails
βε(Θa(rε),ΨD0,P ) = oε(1) if

rε
r̄ε

→ +∞ as ε→ 0.

4.3 An illustrative example: a mildly ill-posed inverse problem

Our aim below is to illustrate the results presented in Section 4.1 and Section 4.2. To this end,
we address the minimax signal detection problem of a mildly ill-posed inverse problem. Namely,
we will assume that

aj ≍ js, for some s > 0, and bj ≍ j−t, for some t > 0, for all j ∈ N. (4.6)

Our aim in this context is multifold:

• First, we consider an asymptotic analysis of the minimax separation radius r̃ε based on
the inequality (4.1).

• Second, we explicitly compute the minimax separation rate r̄ε though a careful analysis of
the extremal problem (3.9).

• Third, we provide a non-asymptotic analysis of the Ingster test Ψrε,I , defined in (3.23). In
particular, we compute its associated separation radius rε(Ea,Ψrε,I , β) and show that, up
to constant, it coincides with the minimax separation radius r̃ε.

• Fourth, we present an asymptotic analysis of the spectral cut-off test ΨD,P , defined in
(3.15). In particular, for an appropriate bandwidth D := D̃ ∈ N, we prove that the
maximal second kind error probability βε(Θa(rε),ΨD̃,P ), is asymptotically bounded from
above by a quantity that possesses a Gaussian shape.

These results demonstrate that tools used to derive ‘asymptotic’ results can be exploited to
draw ‘non-asymptotic’ conclusions, and vice-versa.
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4.3.1 Asymptotic analysis of the minimax separation radius r̃ε

We are interested in the asymptotic behavior of the minimax separation radius r̃ε. Recall from
Theorem 4.1 that, for any ε > 0,

sup
D∈N


c(α, β)ε2

√√√√
D∑

j=1

b−4
j ∧ a−2

D


 ≤ r̃2ε ≤ inf

D∈N


C(α, β)ε2

√√√√
D∑

j=1

b−4
j + a−2

D


 .

Moreover, according to (4.5), both the upper and the lower bounds in the above inequality are
of the same order. Indeed, the constraint (4.3) of Theorem 4.1 is satisfied in the setting (4.6).
Hence, we are now able to characterize the asymptotic value of the minimax separation radius r̃ε.

Simple algebra shows that

D∑

j=1

b−4
j =

D∑

j=1

j4t = CD4t+1(1 + o(1)) as D → +∞,

for some constant C > 0. Hence, the bandwidth D0 ∈ N, introduced in (4.4), satisfies

ε2

√√√√
D0∑

j=1

b−4
j = O(a−2

D0
) iff ε2D

2t+1/2
0 = O(D−2s

0 ) iff D0 = Oε

(
ε

−2
2s+2t+1/2

)
.

We then deduce from the previous computation that the minimax separation radius r̃ε satisfies

r̃2ε = O(D−2s
0 ) = Oε

(
ε

4s
2s+2t+1/2

)
. (4.7)

4.3.2 Computation of the minimax separation rate r̄ε

Following Remark 4.2, an explicit computation of the function rε 7→ uε(rε) is required in order
to retrieve the minimax separation rate r̄ε from the solution of the equation uε(rε) = Oε(1).

We first need to solve the extremal problem (3.9) defined as

u2ε(rε) =
1

2ε4
inf

θ∈Θa(rε)

∑

j∈N

b4jθ
4
j . (4.8)

This problem is solved via Lagrange multipliers. In particular, the extremal sequence, i.e., the
solution of the above mentioned extremal problem, appears to be of the form

θ̄2j (rε) = z20b
−4
j (1−Aa2j)+, j ∈ N,

where the quantities z0 := z0,ε and A := Aε are determined by the equations

∑

j∈N

b−2
j θ̄2j (rε) and

∑

j∈N

a2jb
−2
j θ̄2j (rε) = 1. (4.9)

Remark 4.5 The quantity A determines the so-called efficient dimensionm in specific ill-posed
inverse problems: since aj is an increasing sequence, the efficient dimension is the quantity
m = mε ∈ [1,∞) such that Aa2[m] ≤ 1 < Aa2[m]+1, see, e.g., [17], supplementary material,

Section 11. Moreover, a unique solution to the system of equations (4.9) exists for rε > 0 small
enough, due to the fact that

∑
j∈N b

−1
j = +∞ (see, Proposition 11.2 of [17], supplementary

material, Section 11).
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The equations (4.8)-(4.9) are immediately rewritten in the form
{
r2ε = z20J1,
1 = z20A−1J2,

(4.10)

with

J1 =
∑

j∈N

b−4
j (1−Aa2j)+,

J2 = A
∑

j∈N

a2jb
−4
j (1−Aa2j)+.

In particular, the extremal problem (3.9) takes the form

u2ε(rε) = ε−4z40J0/2, where J0 = J1 − J2 =
∑

j∈N

b−4
j (1−Aa2j)2+. (4.11)

Setting R = A−1/2s, simple computations lead to

J1 =
∑

j∈N

b−4
j (1−Aa2j)+,

=
∑

j: a2j≤A−1

b−4
j −A

∑

j: a2j≤A−1

b−4
j a2j ,

=
∑

j: j≤R

j4t −A
∑

j: j≤R

j4t+2s,

= C1R4t+1(1 + o(1)) as R → +∞.

Using similar algebra, one can prove that

J2 = C2R4t+1(1 + o(1)) and J0 = C0R4t+1(1 + o(1)) as R → +∞.

In particular, we get from (4.10) that

r2ε = AJ1
J2

= R−2s C1
C2

(1 + o(1)) as R → +∞. (4.12)

Therefore, combining the above results,

uε(rε) =
(rε
ε

)4 J0
2J2

1

=
(rε
ε

)4 C0R4t+1

2C2
2R2(4t+1)

(1 + o(1)) as R → +∞,

=
(rε
ε

)4 r−(4t+1)/s
ε

r
−(8t+2)/s
ε

O(1) as rε → 0,

= O
(
ε−4r(4s+4t+1)/s

ε

)
as rε → 0. (4.13)

The expression in (4.13) provides an explicit form for the function rε 7→ uε(rε) that is
required in order to retrieve the minimax separation rate r̄ε from the solution of the equation
uε(rε) = Oε(1). Our next task is to solve this equation. Using (4.13), we immediately get

uε(rε) = Oε(1) iff ε−4r(4s+4t+1)/s
ε = Oε(1) iff rε = Oε

(
ε

2s
2s+2t+1/2

)
. (4.14)

In order to conclude our discussion, we need to prove that the minimax separation rate r̄ε is
of the following order

rε,0 = Oε

(
ε

2s
2s+2t+1/2

)
. (4.15)

To this end, we remark that, for any rε > 0,
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• If rε/rε,0 → 0 then, using (4.13), it is easily seen that uε(rε) = oε(1). Hence, according to
Theorem 4.2, βε(Θa(rε)) = 1− α+ oε(1).

• If rε/rε,0 → +∞ then, using (4.13), it is easily seen that uε(rε) → +∞, as ε → 0. Hence,
according to Theorem 4.2, βε(Θa(rε)) = oε(1).

Therefore, Definition 2.7 allows to conclude that rε,0 in (4.15) is indeed the minimax separation
rate r̄ε. (Note that, in view of (4.7) and (4.15), the minimax separation radius r̃ε and the
minimax separation rate r̄ε are of the same asymptotic order, as expected according to previous
discussion.)

4.3.3 Non-asymptotic analysis of the Ingster test Ψrε,I

We present a non-asymptotic study of the Ingster test Ψrε,I , defined in (3.23). We show that
the statistical performances of the Ingster test Ψrε,I and the spectral cut-off test ΨD,P defined
in (3.15) are comparable. In particular, the Ingster test Ψrε,I appears to be powerful in the
sense of Definition 2.5, namely,

rε(Ea,Ψrε,I , β) ≤ Cr̃ε,
for a fixed β ∈]0, 1[ and some constant C ≥ 1, for an appropriately selected radius rε > 0.

Proposition 4.2 Let α, β ∈]0, 1[ be given. Define

ρ2ε := inf
R≥2

[C0R−2s ∨ c′(α, β)ε2R2t+1/2], (4.16)

for some positive constants C0 and c′(α, β) than can be explicitly computed. Let Ψ⋆
I := Ψρε,I ,

where Ψ.,I is the Ingster test defined in (3.23), and let ρε > 0 be the radius defined in (4.16).
Then, there exists constants C ≥ 1 and ε0 > 0 such that, for all 0 < ε < ε0, the separation radius
of Ψ⋆

I satisfies
rε(Ea,Ψ⋆

I , β) ≤ Cr̃ε. (4.17)

Proof of Proposition 4.2. Let rε > 0 be a given radius. Using the same arguments as in
(3.30), we get

βε(Θa(rε),Ψrε,I) ≤ sup
θ∈Θa(rε)

1 + 4ω0,rε h(rε, θ)

(h(rε, θ)− t1−α)2
.

Then, there exists an explicit constant Cα,β > 0 such that

uε(rε) ≥ Cα,β ⇒ h(rε, θ) ≥ Cα,β, ∀ θ ∈ Θa(rε)

⇒ 1 + 4ω0,rε h(rε, θ)

(h(rε, θ)− t1−α)2
≤ β ∀ θ ∈ Θa(rε)

⇒ sup
θ∈Θa(rε)

1 + 4ω0,rε h(rε, θ)

(h(rε, θ)− t1−α)2
≤ β

⇒ βε(Θa(rε),Ψrε,I) ≤ β. (4.18)

Our task now is to find a condition on rε > 0 that will guarantee the validity of the above
inequality uε(rε) ≥ Cα,β. Working along the lines of Section 4.3.2, we then arrive at

r2ε = z20J1, A = z20J2 and u2ε(rε) = ε−4r4ε
J0
2J2

1

.

Hence, we see that

uε(rε) ≥ Cα,β iff r2ε ≥
√
2Cα,β ε

2 J1

J
1/2
0

. (4.19)
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Moreover,

J1 =
∑

j∈N

b−4
j (1−Aa2j)+ ≤

∑

j:j≤R

j4t ≤ C ′
1R4t+1,

and
J1 ≥

∑

j:j≤R

j4t −R−2s
∑

j:j≤R

j4t+2s ≥ C1R4t+1,

for all R ≥ 2, where R = A−1/2s, and for some positive constants C1, C
′
1 (depending on s and t

only). In the same spirit, we can also prove that, for all R ≥ 2,

C2R4t+1 ≤ J2 ≤ C ′
2R4t+1 and C0R4t+1 ≤ J0 ≤ C ′

0R4t+1,

for some positive constants C0, C
′
0, C1, C

′
1 (depending on s and t only). Hence, we get that

√
2Cα,βε

2 J1

J
1/2
0

≤ c′(α, β)ε2R2t+1/2, (4.20)

for some constant c′(α, β) > 0. Therefore, we deduce from (4.19)-(4.20), that

r2ε ≥ c′(α, β)ε2R2t+1/2 ⇒ uε(rε) ≥ Cα,β .

Using the same kind of algebra, we get from (4.12) that r2ε = R−2sJ1/J0. Hence, for all R ≥ 2,

C0R−2s ≤ r2ε ≤ C1R−2s,

for some positive constants C0, C1. Finally, for all R ≥ 2,

r2ε ≥ C0R−2s ∨ c′(α, β)ε2R2t+1/2 ⇒ uε(rε) ≥ Cα,β ⇒ βε(Θa(rε),Ψrε,I) ≤ β.

Hence, taking rε := ρε, where ρε is defined in (4.16), we immediately get that

βε(Θa(ρε),Ψ
⋆
I) ≤ β,

which implies
rε(Ea,Ψ⋆

I , β) ≤ ρε.

To conclude, it suffices to show that there exists a constant C ≥ 1 and ε0 > 0 such that, for
all 0 < ε < ε0, ρε ≤ Cr̃ε. This, however, holds true working along the lines of the proof of (4.5).
This concludes the proof of the proposition.

�

Concerning Proposition 4.2, the following comments are in order:

• The considered Ingster test Ψ⋆
I , designed for asymptotic purposes, can be, somehow,

employed in the non-asymptotic framework. It appears, that we recover existing non-
asymptotic upper bounds, namely, for all 0 < ε < ε0, the Ingster test Ψ⋆

I is powerful
according to Definition 2.5. The value ε0 > 0 guarantees that the optimal bandwidth
D0 ∈ N in (4.4) satisfies the requirement 2 ≤ D0 < +∞ which, in turn, ensures that ρε
and r̃ε are, indeed, of the same order.

• The term ρε involved in the construction of Ψ⋆
I := ΨI,ρε plays the role of a tuning (regu-

larization) parameter. In a sense, the parameter ρε plays a similar role to the bandwidth
D⋆ in (3.21). Hence, it provides a trade-off between the two competing terms ‘bias’ and
‘standard deviation’ involved in (4.16).

• As we have seen in (3.25), the Ingster test Ψrε,I is an asymptotic α-level test for all
rε > 0. Hence, a non-asymptotic control of the first kind error probability αε(Ψ

⋆
I) would

be necessary in order to provide a fully non-asymptotic treatment for the Ingster test
Ψ⋆

I . This can be easily accomplished by replacing the (1− α)-quantile t1−α of a standard
Gaussian random variable in (3.23) by an appropriate (1 − α)-quantile. Then, the upper
bound (4.17) presented in Proposition 4.2 still holds true, up to some constants.
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4.3.4 Asymptotics of Gaussian type for the spectral cut-off test ΨD,P

To conclude, we present an asymptotic analysis of the spectral cut-off test ΨD,P , defined in
(3.15). In particular, as ǫ → 0, we prove that the maximal second kind error probability
βε(Θa(rε),ΨD̃,P ), for an appropriate bandwidth D̃ ∈ N, is asymptotically bounded from above
by a quantity that possesses a Gaussian shape.

Proposition 4.3 Let α ∈]0, 1[ be given. Let rε > 0 be a radius satisfying uε(rε) = Oε(1). Let
also ΨD̃,P be the spectral cut-off test defined in (3.15) with bandwidth D̃ ∈ N satisfying

D̃ := argmax
D∈N



C(α)ε2

√√√√
D∑

j=1

b−4
j + a−2

D ≤ r2ε
2



 , (4.21)

where the positive constant C(α) is defined in Proposition 3.1. Then, for any sequence hε ∈]0, 1[
satisfying hε = oε(1) and hεD̃

1/4 → +∞ as ε→ 0,

βε(Θa(rε),ΨD̃,P ) ≤ Φ


t1−α − (1− hε)

a−2
D̃

ε2
√∑D̃

j=1 b
−4
j


+ oε(1). (4.22)

Proof of Proposition 4.3 Consider the spectral cut-off test ΨD̃,P defined in (3.15), with

bandwidth D̃ ∈ N selected as in (4.21). For any θ ∈ Θa(rε) and any sequence hε ∈]0, 1[ (that
will be made precise later on)

Pθ(ΨD̃,P = 0) = Pθ

(
TD̃,P ≤ t1−α,D̃

)

= Pθ




D̃∑

j=1

b−2
j (y2j − ε2) ≤ t1−α,D̃




= Pθ


ε2

D̃∑

j=1

b−2
j (ξ2j − 1) + 2ε

D̃∑

j=1

b−1
j θjξj ≤ t1−α,D̃ −

D̃∑

j=1

θ2j




≤ Pθ


ε2

D̃∑

j=1

b−2
j (ξ2j − 1) ≤ (1− hε)

(
t1−α,D̃ −

D̃∑

j=1

θ2j

)


+Pθ


2ε

D̃∑

j=1

b−1
j θjξj ≤ hε

(
t1−α,D̃ −

D̃∑

j=1

θ2j

)


:= T1 + T2, (4.23)

where, for the last inequality, we used the fact that, for any t ∈ R and any random variables X
and Y ,

{X + Y ≤ t} ⊆ {X ≤ (1− hε)t} ∪ {Y ≤ hεt}.
Below, our aim is

• to show that, asymptotically, T1 has a Gaussian shape of the form (4.33),

• to prove that T2 = oε(1),

• to study the asymptotic behavior of the threshold t1−α,D̃.
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Control of T1: For any δ > 0, simple algebra shows that, for any bandwidth D ∈ N,

ε2(2+δ)
∑D

j=1 b
−2(2+δ)
j E|ξ2j − 1|2+δ

(
ε2
√∑D

j=1 b
−4
j

)2+δ
≍ D2(2+δ)t+1

D(4t+1)(2+δ)/2
≍ D−δ/2 = o(1) as D → +∞.

Hence, by Lyapunov’s condition,

ε2
∑D̃

j=1 b
−2
j (ξ2j − 1)

ε2
√∑D̃

j=1 b
−4
j

L−→ N (0, 1) as ε→ 0 (since D̃ → +∞).

Then, it follows that

T1 = Φ



(1− hε)

(
t1−α,D̃ −∑D̃

j=1 θ
2
j

)

ε2
√∑D̃

j=1 b
−4
j


+ oε(1). (4.24)

Control of T2: Since (ξj)j∈N are independent standard Gaussian random variables,

T2 := Pθ


2ε

D̃∑

j=1

b−1
j θjξj ≤ hε

(
t1−α,D̃ −

D̃∑

j=1

θ2j

)


= Pθ


Z ≤ hε

2

(
t1−α,D̃ −∑D̃

j=1 θ
2
j

)

ε

√∑D̃
j=1 b

−2
j θ2j


 (where Z ∼ N (0, 1)). (4.25)

Then, according to (4.21), for any θ ∈ Θa(rε),

∑D̃
j=1 θ

2
j − t1−α,D̃

ε
√∑D̃

j=1 b
−2
j θ2j

≥
‖θ‖2 − t1−α,D̃ − a−2

D̃

ε (max1≤j≤D̃ b
−1
j )‖θ‖

≥ 1

C

(‖θ‖2 − r2ε/2

rε‖θ‖

)
D̃1/4

≥ D̃1/4

2C

‖θ‖
rε

≥ 1

2C
D̃1/4 → +∞ as ε→ 0 (since D̃ → +∞), (4.26)

where for the second inequality we used the fact that

ε

(
max

1≤j≤D̃
b−1
j

)
≍ εD̃t ≍

(
ε2
√∑D̃

j=1 b
−4
j

)1/2

D̃1/4
≤ C

rε

D̃1/4
,

for some constant C > 0. Hence, using (4.25) and (4.26), it follows that, as soon as hεD̃
1/4 →

+∞ as ε→ 0,
T2 = oε(1). (4.27)

Behavior of t1−α,D̃: First we show that

(1− hε)
t1−α,D̃

ε2
√∑D̃

j=1 b
−4
j

= t1−α + oε(1). (4.28)
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Indeed, according to the definition of t1−α,D̃,

P0




D̃∑

j=1

b−2
j (y2j − ε2) ≤ t1−α,D̃


 = 1− α

⇔ P


ε

2
∑D̃

j=1 b
−2
j (ξ2j − 1)

ε2
√∑D̃

j=1 b
−4
j

≤
t1−α,D̃

ε2
√∑D̃

j=1 b
−4
j


 = 1− α

⇔ Φ−1
ε (1− α) =

t1−α,D̃

ε2
√∑D̃

j=1 b
−4
j

,

where, for any s ∈ R,

Φε(s) := P


ε

2
∑D̃

j=1 b
−2
j (ξ2j − 1)

ε2
√∑D̃

j=1 b
−4
j

≤ s


 .

Then, as above, using the Central Limit Theorem with Lyapunov’s condition and Lemma 21.2
in [26], we get

Φε(s) → Φ(s) as ε→ 0 (∀ s ∈ R)

⇔ Φ−1
ε (u) → Φ−1(u) as ε→ 0 (∀ u ∈]0, 1[) (4.29)

In particular, for any α ∈]0, 1[,
Φ−1
ε (1− α) → Φ−1(1− α) as ε→ 0

⇔
t1−α,D̃

ε2
√∑D̃

j=1 b
−4
j

= t1−α + oε(1). (4.30)

Finally, taking into account that hε = oε(1), (4.28) holds true.

Completing the proof: Using (4.24) and (4.28), it follows that

T1 = Φ


t1−α −

(1− hε)
∑D̃

j=1 θ
2
j

ε2
√∑D̃

j=1 b
−4
j

+ oε(1)


 + oε(1). (4.31)

According to (4.21), for any θ ∈ Θa(rε),

(1− hε)

∑D̃
j=1 θ

2
j

ε2
√∑D̃

j=1 b
−4
j

= (1− hε)
‖θ‖2 −∑D̃

j=1 θ
2
j

ε2
√∑D̃

j=1 b
−4
j

≥ (1− hε)
r2ε − a−2

D̃

ε2
√∑D̃

j=1 b
−4
j

≥ (1− hε)
a−2
D̃

ε2
√∑D̃

j=1 b
−4
j

. (4.32)

Hence, using (4.23), (4.24), (4.27) and the Mean Value Theorem,

βε(Θa(rε),ΨD̃,P ) = sup
θ∈Θa(rε)

Pθ(ΨD̃,P = 0)

≤ Φ


t1−α − (1− hε)

a−2
D̃

ε2
√∑D̃

j=1 b
−4
j


+ oε(1).

Hence, (4.22) holds true, and this completes the proof of the proposition.
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Concerning Proposition 4.3, the following comments are in order:

• The maximal second kind error probability βε(Θa(rε),ΨD̃,P ) associated to the spectral

cut-off test ΨD̃,P , with bandwidth D̃ ∈ N selected as in (4.21), is asymptotically bounded
from above by a quantity that possesses a Gaussian shape. It is worth mentioning that
this spectral cut-off test ΨD̃,P is of the same type as the one introduced in Section 3.2.2. In
particular, by construction, the spectral cut-off ΨD̃,P is still an α-level test. Nevertheless,

the bandwidth D̃ ∈ N defined in (4.21), is selected in a different manner in order to
accommodate the asymptotic paradigm. Indeed, this regularization parameter D̃ ∈ N now
depends on the radius rε. Notice that this is comparable to the construction of the Ingster
test Ψrε,I introduced in (3.23), where the Ingster filters ωj,rε defined in (3.22) explicitly
depend on the radius rε.

• The asymptotic upper bound of the maximal second kind error probability βε(Θa(rε),ΨD̃,P )
obtained in (4.22) is coherent with the non-asymptotic analysis provided in Section 3.2.2
(see, in particular, (3.20) and (3.21)). Indeed, in order to guarantee that, for any β ∈]0, 1[,
βε(Θa(rε),ΨD̃,P ) is (asymptotically) upper bounded by β, we have to solve the equation

a−2
D ≍ Cα,βε

2
√∑D̃

j=1 b
−4
j , for some constant Cα,β > 0 (whose value depends on the tools

used to control βε(Θa(rε),ΨD̃,P )).

• In order to conclude our discussion, we provide a heuristic comparison between the asymp-
totic upper bound of the maximal second kind error probability βε(Θa(rε),ΨD̃,P ) and the
sharp asymptotics of Gaussian type obtained in Theorem 4.2. Working as in Section 4.3.2,
we get that, as ε→ 0,

uε(rε) ∼
r4ε
ε4

R−(4t+1)
ε ∼

(
R−2s

ε

ε2R2t+1/2
ε

)2

, where Rε satisfies R−s
ε ∼ rε.

Note that, thanks to (4.13), uε(rε) = Oε(1) implies that rε ∼ ε2s/(2s+2t+1/2), as ε → 0.
Moreover, in view of (4.7), D̃−2s ∼ a−2

D̃
∼ r2ε as ε → 0. Hence, according to the definition

of the bandwidth D̃ given in (4.21), as soon as uε(rε) = Oε(1), in some sense, we have
that

uε(rε) ∼
a−2
D̃

ε2
√∑D̃

j=1 b
−4
j

as ε→ 0.

In particular, it means that we can find a c ∈]0, 1[ such that

βε(Θa(rε),ΨD̃,P ) ≤ Φ(t1−α − c uε(rε)) + oε(1). (4.33)

According to Theorem 4.2, it is immediately seen that

βε,α(Θa(rε)) = Φ(t1−α − uε(rε)) + oε(1) < Φ(t1−α − c uε(rε)) + oε(1). (4.34)

Hence, the spectral cut-off test ΨD̃,P defined in (4.22), with bandwidth D̃ ∈ N selected as
in (4.21), does not provide sharp asymptotics of Gaussian type. Indeed, it is not designed
for that purpose: the spectral cut-off filters associated to this test appear to be quite
‘rough’ in such setting compared to the Ingster filters defined in (3.22) (see Figure 4 for a
graphical illustration).

• If we define a radius r̄⋆ε > 0 to satisfy u(r̄⋆ε) = t1−α − tβ, for prescribed α, β ∈]0, 1[, then,
using Theorem 4.2, we immediately get

βε,α(Θa(r̄
⋆
ε)) = Φ(t1−α − uε(r̄

⋆
ε)) + oε(1) = β + oε(1).
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Furthermore, according to the definition of the separation radius r̃⋆
ε,D̃

:= rε(Ea,ΨD̃,P , β)

for the spectral cut-off test ΨD̃,P defined in (4.22), with bandwidth D̃ ∈ N selected as in
(4.21), we have

βε,α(Θa(r̃
⋆
ε,D̃

) ≤ β.

However, we conjecture that it is not possible to prove that

r̃⋆
ε,D̃

r̄⋆ε
= 1 + oε(1).

In other words, the spectral cut-off tests appear to be quite ‘rough’ in order to provide
the optimal constants of the associated rates for the considered minimax signal detection
problem.

Remark 4.6 Proposition 4.3 holds true in a general setting. Indeed, by looking at its proof
(the control of T1 and T2), the only condition needed to prove (4.22) is that

∃ δ > 0 such that
max1≤j≤D b

−2
j√∑D

j=1 b
−4
j

= o(D−δ) as D → +∞. (4.35)

It is easily seen the condition (4.35) is satisfied in various settings, namely, direct problems (i.e.,
bj = 1, j ∈ N), well-posed inverse problems (i.e., bj > b0, for some b0 > 0, j ∈ N) and mildly
ill-posed problems (i.e., bj ≍ j−jt, j ∈ N, for some t > 0). We point out, however, that it is not
satisfied, for instance, in exponential or power-exponential behaviors (i.e., bj ≍ e−jrt, j ∈ N, for
some t > 0 and r ≥ 1), discussed in Remark 4.3). It is worth mentioning that condition (4.35)
is, in general, comparable to the condition ω0,rε = oε(1), discussed in Theorem 4.2. For more
details on the asymptotic expression of ω0,rε in mildly ill-posed inverse problems, we refer to the
proof of Theorem 4.2 of [17], supplementary material, Section 11.3.

5 Conclusions

We discussed non-asymptotic and asymptotic approaches to minimax signal detection trough a
unified treatment and provided, in some sense, an overview of this specialized area. In partic-
ular, we considered a Gaussian sequence model that contains classical models as special cases,
such as, direct, well-posed inverse and ill-posed inverse problems. We compared the construction
of lower and upper bounds for the minimax separation radius (non-asymptotic approach) and
the minimax separation rate (asymptotic approach), and brought into light hitherto unknown
similarities and links between these two associated minimax signal detection paradigms. An
example of a mildly ill-posed inverse problem was used for illustrative purposes. In particular,
tools used to derive ‘asymptotic’ results can be exploited to draw ‘non-asymptotic’ conclusions,
and vice-versa. To this end, we note that in these considerations we have worked with certain
ellipsoids in the space of squared-summable sequences of real numbers, with a ball of positive
radius removed, and we confined our attention to the Neyman-Pearson criterion.

There are various ways that the above results could be possibly extended. For instance, for
the same smoothness classes, similar investigations, could be easily obtained for the total-error
probability criterion defined as the sum of the type I and maximal type II error probabilities of
a given test Ψ, i.e.,

ζε(Θa(rε),Ψ) = αε(Ψ) + βε(Θa(rε),Ψ),

whereαε(Ψ) and βε(Θa(rε),Ψ) are defined in (2.5) and (2.6), respectively. Note that, by defining

ζε(Θa(rε)) = inf
Ψ̃
[ζε(Θa(rε), Ψ̃)]

34



rε
0

βε,α(Θa(rε))

1

1− α

A B

rε
r̄ε
→ 0 rε

r̄ε
→+∞rε

r̄ε
=Oǫ(1)

Figure 4: The solid curve represents the function Φ(t1−α−uǫ(rǫ)) while the dashed curve displays
the function Φ(t1−α − cuǫ(rǫ)), for some c ∈]0, 1[ and a radius rε > 0 satisfying uε(rε) = Oε(1)
(see (4.34)). The solid curve is associated to the sharp asymptotics of Gaussian type for the
maximal second kind error probability βε,α(Θ(rε)) while the dashed curve is associated to the
asymptotic upper bound of the maximal second kind error probability βε(Θa(rε),ΨD̃,P ) of the

the spectral cut-off test ΨD̃,P , with bandwidth D̃ ∈ N selected as in (4.21).

where the infimum is taken over all possible tests Ψ̃, it is known that (see, e.g., [18], Chapter 2)
that

ζε(Θa(rε)) = inf
α∈]0,1[

[
α+ βε,α(Θa(rε))

]
,

where βε,α(Θa(rε)) is the minimax second kind error probability defined in Definition 2.6.

Similar investigations for the Neyman-Pearson criterion and/or the total-error probability
criterion should also be possible for other classes F of signals, such as those characterized by
their non-zero coefficients (dense or sparse signals) and lp-bodies with p ∈]0, 2] (see, e.g., [24],
[1], [17], [22]). In the same spirit, several contributions have been proposed in various regression
and density models which provide attractive frameworks for investigation in the minimax testing
theory (see, e.g., [12], [9], [11], [4], [16], [5], [20]).

For the sake of brevity and clarity in our presentation, we have also not discussed adaptation
issues of the involved testing procedures in the considered minimax signal detection paradigms.
Indeed, the filters used to design the spectral cut-off (non-asymptotic framework) and Ingster
(asymptotic framework) tests explicitly depend on the form of the sequence (aj)j∈N that mea-
sures the smoothness of the signal θ, which is, in general, unknown in practice. It is therefore
of paramount importance in practical applications to provide minimax testing procedures that
do not explicitly depend on the associated smoothness parameter. This is, usually, referred to
as the ‘adaptation’ problem (see, e.g., [1], [18], [17], [23]).

However, all the above investigations need careful attention that is beyond the scope of the
present work.
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