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3Université Paris-Est

Laboratoire d’Informatique Gaspard Monge – CNRS UMR 8049

Champs sur Marne, France

jean-christophe.pesquet@univ-paris-est.fr

3LCSL

Istituto Italiano di Tecnologia and MIT

Genova, Italy

Cong.Bang@iit.it

Abstract

A wide array of image recovery problems can be abstracted into the
problem of minimizing a sum of composite convex functions in a Hilbert
space. To solve such problems, primal-dual proximal approaches have
been developed which provide efficient solutions to large-scale opti-
mization problems. The objective of this paper is to show that a
number of existing algorithms can be derived from a general form of
the forward-backward algorithm applied in a suitable product space.
Our approach also allows us to develop useful extensions of existing
algorithms by introducing a variable metric. An illustration to image
restoration is provided.
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1 Introduction

Many image recovery problems can be formulated in Hilbert spaces H and
(Gi)16i6m as structured optimization problems of the form

minimize
x∈H

m∑

i=1

gi(Lix), (1)

where, for every i ∈ {1, . . . ,m}, gi is a proper lower semicontinuous convex
function from Gi to ]−∞,+∞] and Li is a bounded linear operator from
H to Gi. For example, the functions (gi ◦ Li)16i6m may model data fidelity
terms, smooth or nonsmooth measures of regularity, or hard constraints on
the solution. In recent years, many algorithms have been developed to solve
such a problem by taking advantage of recent advances in convex optimiza-
tion, especially in the development of proximal tools (see [12, 29] and the
references therein). In image processing, however, solving such a problem
still poses a number of conceptual and numerical challenges. First of all, one
often looks for methods which have the ability to split the problem by acti-
vating each of the functions through elementary processing steps which can
be computed in parallel. This makes it possible to reduce the complexity of
the original problem and to benefit from existing parallel computing archi-
tectures. Secondly, it is often useful to design algorithms which can exploit,
in a flexible manner, the structure of the problem. In particular, some of
the functions may be Lipschitz differentiable in which case they should be
exploited through their gradient rather than through their proximity opera-
tor, which is usually harder to implement (examples of proximity operators
with closed-form expression can be found in [6, 12]). In some problems, the
functions (gi)16i6m can be expressed as the infimal convolution of simpler
functions (see [9] and the references therein). Last but not least, in image
recovery, the operators (Li)16i6m may be of very large size so that their
inversions are costly (e.g., in reconstruction problems). Finding algorithms
which do not require to perform inversions of these operators is thus of
paramount importance.

Note that all the existing convex optimization algorithms do not have
these desirable properties. For example, the Alternating Direction Method
of Multipliers (ADMM) [18, 17, 20] requires a stringent assumption of in-
vertibility of the involved linear operator. Parallel versions of ADMM [28]
and related Parallel Proximal Algorithm (PPXA) [11, 25] usually necessitate
a linear inversion to be performed at each iteration. Also, early primal-dual
algorithms [4, 5, 7, 10, 16, 21] did not make it possible to handle smooth
functions through their gradients. Only recently, have primal-dual methods
been proposed with this feature. Such work was initiated in [13] in the line
of [4] and subsequent developments can be found in [2, 3, 8, 9, 15, 27, 30].
As will be seen in the present paper, another advantage of these approaches
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is that they can be coupled with variable metric strategies which can poten-
tially accelerate their convergence.

In Section 2, we provide some background on convex analysis and mono-
tone operator theory. In Section 3, we introduce a general form of the
forward-backward algorithm which uses a variable metric. This algorithm
is employed in Section 4 to develop a versatile family of primal-dual proxi-
mal methods. Several particular instances of this framework are discussed.
Finally, we provide illustrating numerical results in Section 5.

2 Notation and background

Monotone operator theory [1] provides a both insightful and elegant frame-
work for dealing with convex optimization problems and developing new
solution algorithms that could not be devised using purely variational tools.
We summarize a number of related concepts that will be needed.

Throughout, H, G, and (Gi)16i6m are real Hilbert spaces. We denote
the scalar product of a Hilbert space by 〈· | ·〉 and the associated norm by
‖ ·‖. The symbol ⇀ denotes weak convergence,1 and Id denotes the identity
operator. We denote by B (H,G) the space of bounded linear operators
from H to G, we set S (H) =

{
L ∈ B (H,H) | L = L∗

}
, where L∗ denotes

the adjoint of L. The Loewner partial ordering on S (H) is denoted by<. For
every α ∈ [0,+∞[, we set Pα(H) =

{
U ∈ S (H) | U < α Id

}
, and we denote

by
√
U the square root of U ∈ Pα(H). Moreover, for every U ∈ Pα(H) and

α > 0, we define the norm ‖x‖U =
√

〈Ux | x〉.
We denote by G = G1 ⊕ · · · ⊕ Gm the Hilbert direct sum of the Hilbert

spaces (Gi)16i6m, i.e., their product space equipped with the scalar product
: (x,y) 7→ ∑m

i=1 〈xi | yi〉 where x = (xi)16i6m and y = (yi)16i6m denote
generic elements in G.

Let A : H → 2H be a set-valued operator. We denote by graA ={
(x, u) ∈ H ×H | u ∈ Ax

}
the graph of A, by zerA =

{
x ∈ H | 0 ∈ Ax

}

the set of zeros of A, and by ranA =
{
u ∈ H | (∃ x ∈ H) u ∈ Ax

}
its range.

The inverse of A is A−1 : H 7→ 2H : u 7→
{
x ∈ H | u ∈ Ax

}
, and the resolvent

of A is JA = (Id+A)−1. Moreover, A is monotone if

(∀(x, y) ∈ H ×H)(∀(u, v) ∈ Ax×Ay) 〈x− y | u− v〉 > 0, (2)

and maximally monotone if it is monotone and there exists no monotone
operator B : H → 2H such that graA ⊂ graB and A 6= B. An operator
B : H → H is β-cocoercive for some β ∈ ]0,+∞[ if

(∀x ∈ H)(∀y ∈ H) 〈x− y | Bx−By〉 > β‖Bx−By‖2. (3)

1In a finite dimensional space, weak convergence is equivalent to strong convergence.
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The conjugate of a function f : H → ]−∞,+∞] is

f∗ : H → [−∞,+∞] : u 7→ sup
x∈H

(
〈x | u〉 − f(x)

)
, (4)

and the infimal convolution of f with g : H → ]−∞,+∞] is

f �g : H → [−∞,+∞] : x 7→ inf
y∈H

(
f(y) + g(x− y)

)
. (5)

The class of lower semicontinuous convex functions f : H → ]−∞,+∞]
such that dom f =

{
x ∈ H | f(x) < +∞

}
6= ∅ is denoted by Γ0(H). If

f ∈ Γ0(H), then f∗ ∈ Γ0(H) and the subdifferential of f is the maximally
monotone operator

∂f : H → 2H

x 7→
{
u ∈ H | (∀y ∈ H) 〈y − x | u〉+ f(x) 6 f(y)

}
. (6)

Let U ∈ Pα(H) for some α ∈ ]0,+∞[. The proximity operator of f ∈ Γ0(H)
relative to the metric induced by U is [22, Section XV.4]

proxUf : H → H : x 7→ argmin
y∈H

f(y) +
1

2
‖x− y‖2U . (7)

When U = Id, we retrieve the standard definition of the proximity operator
[1, 24]. Let C be a nonempty subset of H. The indicator function of C is
defined on H as

ιC : x 7→
{
0, if x ∈ C;

+∞, if x /∈ C.
(8)

Finally, ℓ1+(N) denotes the set of summable sequences in [0,+∞[.

3 A general form of Forward-Backward algorithm

Optimization problems can often be reduced to finding a zero of a sum of two
maximally monotone operators A and B acting on H. When B is cocoercive
(see (3)), a useful algorithm to solve this problem is the forward-backward
algorithm, which can be formulated in a general form involving a variable
metric as shown in the next result.

Theorem 3.1 Let α ∈ ]0,+∞[, let β ∈ ]0,+∞[, let A : H → 2H be max-

imally monotone, and let B : H → H be cocoercive. Let (ηn)n∈N ∈ ℓ1+(N),
and let (Vn)n∈N be a sequence in Pα(H) such that

{
supn∈N ‖Vn‖ < +∞
(∀n ∈ N) (1 + ηn)Vn+1 < Vn

(9)
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and V
1/2
n BV

1/2
n is β-cocoercive. Let (λn)n∈N be a sequence in ]0, 1] such that

infn∈N λn > 0 and let (γn)n∈N be a sequence in ]0, 2β[ such that infn∈N γn > 0
and supn∈N γn < 2β. Let x0 ∈ H, and let (an)n∈N and (bn)n∈N be absolutely

summable sequences in H. Suppose that Z = zer(A+B) 6= ∅, and set

(∀n ∈ N)

⌊
yn = xn − γnVn(Bxn + bn)

xn+1 = xn + λn

(
JγnVnA (yn) + an − xn

)
.

(10)

Then xn ⇀ x for some x ∈ Z.

At iteration n, variables an and bn model numerical errors possibly arising
when applying JγnVnA or B. Note also that, if B is µ-cocoercive with µ ∈
]0,+∞[, one can choose β = µ(supn∈N ‖Vn‖)−1, which allows us to retrieve
[14, Theorem 4.1]. In the next section, we shall see how a judicious use
of this result allows us to derive a variety of flexible convex optimization
algorithms.

4 A variable metric primal-dual method

4.1 Formulation

A wide array of optimization problems encountered in image processing are
instances of the following one, which was first investigated in [13] and can
be viewed as a more structured version of the minimization problem in (1):

Problem 4.1 Let z ∈ H, let m be a strictly positive integer, let f ∈ Γ0(H),
and let h : H → R be convex and differentiable with a Lipschitzian gradient.
For every i ∈ {1, . . . ,m}, let ri ∈ Gi, let gi ∈ Γ0(Gi), let ℓi ∈ Γ0(Gi) be
strongly convex,2 and suppose that 0 6= Li ∈ B (H,Gi). Suppose that

z ∈ ran

(
∂f +

m∑

i=1

L∗
i (∂gi �∂ℓi)(Li · −ri) +∇h

)
. (11)

Consider the problem

minimize
x∈H

f(x) +

m∑

i=1

(gi� ℓi)(Lix− ri) + h(x)− 〈x | z〉 , (12)

and the dual problem

minimize
v1∈G1,...,vm∈Gm

(
f∗

�h∗
)(

z −
m∑

i=1

L∗
i vi

)

+
m∑

i=1

(
g∗i (vi) + ℓ∗i (vi) + 〈vi | ri〉

)
. (13)

2For every i ∈ {1, . . . ,m}, ℓi is ν
−1

i -strongly convex with νi ∈ ]0,+∞[ if and only if ℓ∗i
is νi-Lipschitz differentiable [1, Theorem 18.15].
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Note that in the special case when ℓi = ι{0}, gi� ℓi reduces to gi in (12).
Let us now examine how Problem 4.1 can be reformulated from the

standpoint of monotone operators. To this end, let us define g ∈ Γ0(G),
ℓ ∈ Γ0(G) and L ∈ B (H,G) by

g : v 7→
m∑

i=1

gi(vi), ℓ : v 7→
m∑

i=1

ℓi(vi)

and L : x 7→ (L1x, . . . , Lmx). (14)

Let us now introduce the product space K = H⊕ G and the operators

A : K → 2K

(x,v) 7→ (∂f(x)− z +L∗v)× (−Lx+ ∂g∗(v) + r) (15)

and

B : K → K

(x,v) 7→
(
∇h(x),∇ℓ∗(v)

)
. (16)

The operator A can be shown to be maximally monotone,whereas B is
cocoercive. A key observation in this context is that, if there exists (x,v) ∈
K such that (x,v) ∈ zer(A+B), then (x,v) is a pair of primal-dual solutions
to Problem 4.1 [13]. This connection with the construction for a zero of A+
B makes it possible to apply a forward-backward algorithm as discussed in
Section 3, by using a linear operator V n ∈ B (K,K) to change the metric at
each iteration n. Depending on the form of this operator various algorithms
can be obtained.

4.2 A first class of primal-dual algorithms

Let α ∈ ]0,+∞[, let (Un)n∈N be a sequence in Pα(H) such that (∀n ∈ N)
Un+1 < Un. For every i ∈ {1, . . . ,m}, let (Ui,n)n∈N be a sequence in Pα(Gi)
such that (∀n ∈ N) Ui,n+1 < Ui,n. A first possible choice for (V n)n∈N is
given by

(∀n ∈ N) V −1
n : (x,v) 7→ (U−1

n x−L∗v,−Lx+ Ũ
−1

n v) (17)

where

Ũn : G → G : (v1, . . . , vm) 7→ (U1,nv1, . . . , Um,nvm). (18)

The following result constitutes a direct extension of [14, Example 6.4]:

Proposition 4.2 Let x0 ∈ H, and let (an)n∈N and (cn)n∈N be absolutely

summable sequences in H. For every i ∈ {1, . . . ,m}, let vi,0 ∈ Gi, let
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(bi,n)n∈N and (di,n)n∈N be absolutely summable sequences in Gi. For ev-

ery n ∈ N, let µn ∈ ]0,+∞[ be a Lipschitz constant of U
1/2
n ◦ ∇h ◦ U

1/2
n

and, for every i ∈ {1, . . . ,m}, let νi,n ∈ ]0,+∞[ be a Lipschitz constant of

U
1/2
i,n ◦∇ℓ∗i ◦U

1/2
i,n . Let (λn)n∈N be a sequence in ]0, 1] such that infn∈N λn > 0.

For every n ∈ N, set

δn =

(
m∑

i=1

‖
√

Ui,nLi

√
Un‖2

)−1/2

− 1, (19)

and suppose that

inf
n∈N

δn
(1 + δn)max{µn, ν1,n, . . . , νm,n}

>
1

2
. (20)

Set

For n = 0, 1, . . .


pn = proxU
−1
n

f

(
xn − Un

(∑m
i=1 L

∗
i vi,n +∇h(xn)

+cn − z
))

+ an

yn = 2pn − xn
xn+1 = xn + λn(pn − xn)
For i = 1, . . . ,m

qi,n = prox
U−1

i,n

g∗
i

(
vi,n + Ui,n

(
Liyn −∇ℓ∗i (vi,n)

−di,n − ri
))

+ bi,n

vi,n+1 = vi,n + λn(qi,n − vi,n).

(21)

Then (xn)n∈N converges weakly to a solution to (12), for every i ∈ {1, . . . ,m}
(vi,n)n∈N converges weakly to some vi ∈ Gi, and (v1, . . . , vm) is a solution to

(13).

In the special case when Un ≡ τ Id with τ ∈ ]0,+∞[ and, for every
i ∈ {1, . . . ,m}, Ui,n ≡ σi Id with σi ∈ ]0,+∞[, we recover the parallel
algorithm proposed in [30]. Variants of this algorithm where, for every
i ∈ {1, . . . ,m}, ℓi = ι{0} are also investigated in [15]. In this case, less
restrictive assumptions on the choice of (τ, σ1, . . . , σm) can be made. Note
that this algorithm itself can be viewed as a generalization of the algorithm
which constitutes the main topic of [5, 16, 21] (designated by some authors
as PDHG). A preconditioned version of this algorithm was proposed in [26]
corresponding to the case when m = 1, (∀n ∈ N) Un and U1,n are constant
matrices, and no error term is taken into account. Algorithm (21) when, for
every n ∈ N, λn ≡ 1, Un and (Ui,n)16i6m are diagonal matrices, h = 0, and
(∀i ∈ {1, . . . ,m}) ℓi = ι{0} appears also to be closely related to the adaptive
method in [19].
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4.3 A second class of primal-dual algorithms

Let α ∈ ]0,+∞[, let (Un)n∈N be a sequence in Pα(H) such that (∀n ∈ N)
Un+1 < Un. For every i ∈ {1, . . . ,m}, let (Ui,n)n∈N be a sequence in Pα(Gi)
such that (∀n ∈ N) Ui,n+1 < Ui,n. A second possible choice for (V n)n∈N is
given by the following diagonal form:

(∀n ∈ N) V −1
n : (x,v) 7→

(
U−1
n x, (Ũ

−1

n −LUnL
∗)v
)

(22)

where Ũn is given by (18).
The following result can then be deduced from Theorem 3.1. Its proof

is skipped due to the lack of space.

Proposition 4.3 Let x0 ∈ H, and let (cn)n∈N be an absolutely summable

sequence in H. For every i ∈ {1, . . . ,m}, let vi,0 ∈ Gi, let (bi,n)n∈N and

(di,n)n∈N be absolutely summable sequences in Gi. For every n ∈ N, let

µn ∈ ]0,+∞[ be a Lipschitz constant of U
1/2
n ◦ ∇h ◦ U

1/2
n and, for every

i ∈ {1, . . . ,m}, let νi,n ∈ ]0,+∞[ be a Lipschitz constant of U
1/2
i,n ◦∇ℓ∗i ◦U

1/2
i,n .

Let (λn)n∈N be a sequence in ]0, 1] such that infn∈N λn > 0. For every n ∈ N,

set

ζn = 1−
m∑

i=1

‖
√

Ui,nLi

√
Un‖2 (23)

and suppose that

inf
n∈N

ζn
max{ζnµn, ν1,n, . . . , νm,n}

>
1

2
. (24)

Set

For n = 0, 1, . . .


sn = xn − Un(∇h(xn) + cn − z)
yn = sn − Un

∑m
i=1 L

∗
i vi,n

For i = 1, . . . ,m
qi,n = prox

U−1

i,n

g∗
i

(
vi,n + Ui,n

(
Liyn −∇ℓ∗i (vi,n)

−di,n − ri
))

+ bi,n

vi,n+1 = vi,n + λn(qi,n − vi,n).
pn = sn − Un

∑m
i=1 L

∗
i qi,n

xn+1 = xn + λn(pn − xn).

(25)

Assume that f = 0. Then (xn)n∈N converges weakly to a solution to (12),
for every i ∈ {1, . . . ,m} (vi,n)n∈N converges weakly to some vi ∈ Gi, and

(v1, . . . , vm) is a solution to (13).
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(a) (b)

(c) (d)

Figure 1: Original image x (a), noisy image w1 (SNR = 5.87 dB) (b), blurred
image w2 (SNR = 16.63 dB) (c), and restored image x̃ (SNR = 21.61 dB)
(d).

The algorithm proposed in [23, 8] is a special case of the previous one, in
the absence of errors, when m = 1, H and G1 are finite dimensional spaces,
ℓ1 = ι{0}, Un ≡ τ Id with τ ∈ ]0,+∞[, U1,n ≡ σ Id with σ ∈ ]0,+∞[, and
no relaxation (λn ≡ 1) or a constant one (λn ≡ κ < 1) is performed.

5 Application to image restoration

We illustrate the flexibility of the proposed primal-dual algorithms on an
image recovery example. Two observed images w1 and w2 of the same
scene x ∈ R

N (N = 2562) are available (see Fig. 1(a)-(c)). The first one is
corrupted with a noise with a variance θ21 = 576, while the second one has
been degraded by a linear operator H ∈ RN×N (7 × 7 uniform blur) and a
noise with variance θ22 = 25. The noise components are mutually statistically
independent, additive, zero-mean, white, and Gaussian distributed. Note
that this kind of multivariate restoration problem is encountered in some
push-broom satellite imaging systems.

An estimate x̃ of x is computed as a solution to (12) where m = 2, z = 0,

9



0 20 40 60 80 100 120
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Figure 2: Normalized norm of the error on the iterate vs computation time
(in seconds) for Experiment 1 (blue, dash dot line) and Experiment 2 (red,
continuous line).

r1 = 0, r2 = 0,

h =
1

θ21
‖ · −w1‖2 +

1

θ22
‖H · −w2‖2, (26)

g1 = ι[0,255]N , g2 = κ‖ · ‖1,2, (27)

f = 0, ℓ1 = ℓ2 = ι{0} (28)

where the second function in (27) denotes the ℓ1,2-norm and κ ∈ ]0,+∞[.
In addition, L1 = Id and L2 = [G⊤

1 , G
⊤
2 ]

⊤ where G1 ∈ R
N×N and GN×N

2 are
horizontal and vertical discrete gradient operators. Function g1 introduces
some a priori constraint on the range values in the target image, while func-
tion g2 ◦ L2 corresponds to a classical total variation regularization. The
minimization problem is solved numerically by using Algorithm (25) with
λn ≡ 1. In a first experiment, standard choices of the algorithm parame-
ters are made by setting Un ≡ τ Id, U1,n ≡ σ1 Id, and U2,n = σ2 Id with
(τ, σ1, σ2) ∈ ]0,+∞[3. In a second experiment, a more sophisticated choice
of the metric is made. The operators (Un)n∈N, (U1,n)n∈N and (U2,n)n∈N are
still chosen diagonal and constant in order to facilitate the implementation
of the algorithm, but the diagonal values are optimized in an empirical man-
ner. A similar strategy was applied in [26] in the case of Algorithm (21).
The regularization parameter κ has been set so as to get the highest value
of the resulting signal-to-noise ratio (SNR).

The restored image is displayed in Fig. 1(d). Fig. 2 shows the conver-
gence profile of the algorithm. We plot the evolution of the normalized
Euclidean distance (in log scale) between the iterates and x̃ in terms of
computational time (Matlab R2011b codes running on a single-core Intel
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i7-2620M CPU@2.7 GHz with 8 GB of RAM). An approximation of x̃ ob-
tained after 5000 iterations is used. This result illustrates the fact that
an appropriate choice of the metric may be beneficial in terms of speed of
convergence.
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