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SINGULARITY OF MACROSCOPIC VARIABLES NEAR
BOUNDARY FOR GASES WITH CUT-OFF
INVERSE-POWER POTENTIAL

I-KUN CHEN AND CHUN-HSIUNG HSIA

ABSTRACT. In this article, the boundary singularity for stationary so-
lutions of the linearized Boltzmann equation with cut-off inverse power
potential is analyzed. In particular, for cut-off hard-potential cases, we
establish the asymptotic approximation for the gradient of the moments.
Our analysis indicates the logarithmic singularity of the gradient of the
moments.

1. INTRODUCTION

The Boltzmann equation is

OF oF

— -— =Q(F F

where F' = F(t,z,£). @ above is the collision operator only involves velocity
as follows:

g
(1.2) Q(F,F)://O /0 (F'F, — FF,)B(|V|,0)d0ded¢.,

where V = £, — & and « is a unit vector on a hemisphere parametrized by 6
and e such that o- V' = |V]cosf and

(1.1)

(1.3) F=F(), F.=F(&), FF=F(¢), F.=F(),
(1.4) =&+ (a-V)a,
(1.5) §e=&—(a-V)a.

The B(|V],0) > 0 is called the cross-section. If we consider inverse power
force between particles, i.e., Force = Tis, then the cross-section is in the
form

(1.6) B(V],0) = [VI"5(6),

sl D .
where v = 522 The fact 8 ~ (5 —6) =1 as § — %, which is not integrable
in 0, makes us unable to separate into gain and lost parts. To avoid this
mathematical difficulty, it was Grad’s idea, [13], to consider the cross-section

such that
(1.7) B(|V1],0) < C|V|"cosfOsinb.
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We will refer these cases as Grad’s angular cut-off potential. In particular,
in our research we will consider the cases that B as a product of a function
of |V| and one of 0, i.e.,

(1.8) B(|V],0) = |V]'5(8), B(8) < Ccosfsinb.

To make distinctions, we will refer the cases above, (L]), as power-law
potential with angular cut-off in this paper. We first non-dimensialize the
equation so that the Maxwellian we are interested becomes the standard
one:

1
(1.9) w = —3€_|C|2.

NG

We linearize the equation around standard Maxwellian so that

(1.10) F=uw+uwsf.
We have,

of . af 1
(1.11) shoy +¢ 5 = ~L(f),

where L(f) = 2w_%Q(w,w%f). Under the assumption of Grad’s angular
cut-off, the linearized collision operator can be decomposed into a damping
multiplicative operator —v and a smoothing integral operator K:

(1.12) L(9)(¢) = —v(Q)¢(¢) + K ()(C)-

The the following properties of the linearized collision operator were studied
by Grad [I3] and Caflisch [6]. The collision frequency satisfies the following
estimate

(1.13) vo(1+[¢))7 < v(Q) < vl +[C))7,

where 0 < 1y < v; and —2 < v < 1 is a parameter from interaction be-
tween particles. v = 1 is called the hard sphere model; v = 0 is called the
Maxwellian case. Positive ’s corresponded to hard potential; negative v’s
correspond to soft-potential.

If we consider power-law potential with angular cut-off, we have further
properties :

(1.14) v(¢) is a function of |(].
(1.15) 10¢, K(H)llee < Clflle, p = 1.
In this paper, we restrict our study to the cases 0 < v < 1. We define
(1.16) 1 (Ol zge =Slép(1+|C|)“|f(C)|-
The integral operator improves the decay:
(1.17) 1K (Hllzg_ < Cllfllze,
(1.18) IK(Hllzsz, ., < Cllfllzge-
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We consider the stationary equation:

(1.19) G102 f(2,¢) = L(f)(C),for 0 <z < 1.

The functional space we are considering is as follows:

Definition 1.1.

(1.20) LER?) = {£, £ (Q)ll+ < o0},

where

(1.21) £l = ([ Pemec)*.

Also,

(1.22) £ == sup [|f]l+
0<z<l

We say [ € L?([O,l],LZ(R?’)) is a solution to (LI9) if it satisfies the
following integral equation:

(1.23)

1 (C (IE—s)
f@=1{° K@‘) fo O+ o e o K(f)(s,¢)ds,  for ¢ >0,

e f(,0) —I—f e ES x)K(f)(s,g)ds, for ¢; < 0.

Remark 1.2. The solution spaces for both Milne and Kramar’s problems
given in [I1] are in L3°([0,1], LZ(R3)) if x is restricted to [0,]. ]

The moments are defined as follows:

Definition 1.3. The a moment is defined as

(1.24) Galz) = / £(@,Q)alQ)dC,

where
a = (o, a2, a3), ais are nonnegative integers,
and

2
\

(1.25) Bal() = C"BF = mmi(Pgge T
We introduce a constant depending on o

Definition 1.4. Set

_a +ao +a3

(1.26) Ao = (201) 7 (200) F (20) Te T F

where we follow the convention 00 = 1.
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The macroscopic variables are obtained through the moments. For ex-
ample, 0(g,0,0) is the density, o(; o) is the flow velocity in z; direction, and
%(0(270,0) + 000,200 T 7(0,02)) — 90,00 is the temperature. The following
inequality will be frequently used later :

(1.27) 6al < CAge 5.

The Main Theorem is as follows

Theorem 1.5. Suppose f € Lg"([O,l],LZ(R?’)) is a solution to (LI9) with
power law potential with angular cut-off with 0 < v < 1 and Vf(0,¢) €
LER3T) for p > 1, f(0,¢) € LER?T) , and f(1,¢) € LE(R?7). Then, for
x small enough,

0000 (2)] = — Inz / / 6a(0, Co. G3) L(F) (0,07, Go, C3)dCadCs

(1.28)
+O(Au(f)"),
where
(129) L(f)(07 0+7 C27 C3) = Clli—?éJr L(f)(07 Clv C27 <3)
and
(1.30)

(£ =1+l + ”f(oao”LZ’O(R3+) + Hf(LC)HLEO(R%) + IV £(0, C)HL’C’(RH)-

We first investigate the problem for Grad’s angular cut-off potential. We
consider the the distribution function for (; > 0. The case for (; < 0 can be
treated similarly. Differentiating (I23]) for ¢; > 0, we have

9 fa,0) == YO 510, 0) + L K(F)(@,0)
(131) Ox |C1] |C1]
| e SR ()6, 0
1

We observe that the first term is nice in ( when z is away from zero and
has a singularity at x = 0. On the other hand, the second and third terms
have factors [¢1|~! and |¢1|72 in ¢, which cause a difficulty in our analysis.
In order to overcome this difficulty, we reorganize the equation (L3I]):

(1.32)

9 Q)9 1o,
5l == 8, O*W SRS (. 0)
/ K, Q) ~ K(f)(s,0))ds
_ Le %m £0,0) + e G (I (f) (@, Q) — K(£)(0,0))

1l

1
+ [ (K (1) 0.0 - K (6. 0)) s
) ol
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The contribution from the second and third terms is uniformly bounded.
Roughly speaking, we organize the equation in such a way in order to use the
"Hélder continuity” of K (f) in z to obtain ”differentiability” of f in a very
week sense, which will be explained in detail in Section 2l Also in Section
2l we will deal with the contribution from (; < 0. In section [ with further
assumption of invers-power potential with angular cut-off and regularity on
boundary data, we can extract the singularity from the contribution of the
first term on the right hand side of ([L32]), which concludes the Theorem

2. UPPER BOUND ESTIMATES

As outlined in the introduction, the goal of this section is to prove
Lemma 2.1. Suppose f € Lgo([O,l],Lz(R?’)) is a solution to (LI9) with
Grad’s angular cut-off potential with 0 < v <1 and f(0,() € LZ’O(R?’JF) and

f(1,¢) € LE(R?).
Then,

(2.1)

| <>0¢amﬂ ST L (0,0)dC] < O Ina] + 1) Aa(f),

(2.2)

| ¢1>0 Pate] !Cl\
(2.3)

“r(Q) -
| <1>o¢a/o Gi2€
where

(2.4) (5 = AN+ IO, Ol e @s+y + 1T Oll e sy

Proof. We observe that f is in fact bounded for all = and ¢ if f(0,¢) €
LE(R*T) and f(1,¢) € LE(R*7). For ¢ >0,

V(C)

e 1Al (K (f)(z,¢) — K(£)(0,¢))d¢| < CAL(f),

v(€)

¢ 1 (@=s) (K(f)(ﬂf, ¢)— K(f)(s, {))dsdd < CAL(f),

9]

rwcn<um<n+muu/,<, =g

oo,
< 17O, Ollz=qwss) + ClF vy Ale dz

< C(IF0, Ollzge sty + [1£11)-
A similar inequality holds for {; < 0. Therefore,
(2.6) 1 flle, < CLF).
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We observe

vQ)
| ~1alTL(f)(0, C)dc]

o
¢1>0 “ ‘Cl‘
1?2 1

CA, e
= il ¢1>oe |C1]

(2.7) Vo)
e T dC| < CAa(f)(|Ina] + 1),

which concludes (21])
We will present the proof for ([2.3)).
Replacing 0, I by s, = in the (23], we can derive

K(f)(@,0) — K(f)(s.0) = /C >Ok<<,<*><e‘”<(f’i”‘s—1>f<s,<*>d<*

T M\x—t\
’ TR (), Godtdd,
+/4;1>o Sl )/ \g*l\e : (f)(t, &)dtdC

(2.8) I /C . k(¢ (1 — e_ﬁ\ﬂﬁ—s\)f(x’ Ci)dCs

T v,
+/ k(¢ G) / e el TR () (2, ¢ dtdc
(+1<0 s |C*1|
=: Hy+ Hy+ Hs + H,.
The term Hy and H, have the property to be proved later
(2.9) |Ha| < O\ f|lelx = s|°, |Ha| < C||f[|s]x — 5|,

where 0 < 8 < ﬁ We let

_e e (z—s) Z _ s 5
/<1>o/ e TR @0 — K(f)(s.))dsdg

(2.10) _/ / 00(O) ) TS (a1, 4 Hy 1y 1 HL)dsd
150 IC 2
=: By + By + B3 + By.

Therefore, for ¢ = 2 and 4,

) (s

Bl < CAllfll] [ e [T LTy gpsag

¢1>0 |C1|2
(2.11) Cf ) V‘(Cil)‘w )

<cA, HfH!/ 4 ww/ Bedadc]
0

< CAIf-

v(¢)

where z = m(az — s). Estimates for By and Bjs are not so obvious and the

analysis is more demanding. We shall present the case for By only and the
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case for B3 can be done similarly. We claim

(2.12)
|Bi| =

AN /0 |<(f|2 “fat@=) /C S Tt =sl 1) (s, ¢)dCodsdC)
< CALf).

Change the order of integration, we have

(2.13)
|B1| =

x Lc) _V(f)(m_s) —%’{)\x—s\_
‘/o /<*1>o(/<1>0k(€’c*)¢“ygly2e o dC)(e el 1) f(s, C.)dC.ds|.

We observe, for a > 0

1) arige WO < Cotle s 1L+ In

(2.15) a7 L |§ RO < Cudala — 8]
Interpolating the inequalities above, we obtain

216 loaige By < Coale = oI5 1+ [mnfal 3,

where 1 < p < co. In particular,

v(Q) ~¥a—s)
KB

Let h(6,7,a) = (3 =10+ (2+a—)(1—-0) =2+a(l—0) — v — 30,
where 0 < 6 < 1. We have

(2.17) o 222 2 < CAalz — 5|73 (1+ | In|z]|)2.

Kl = sup (10101 + |<|>%—V)6 (I +[ch*)*

(2.18) —_—
< ||K(f )I!Lo%oﬂHK( Mz, . < Il IIfIE

2+a
Combining (LIT7), (LI8), 2I5) , 2I7), and 2.I8]), we have
(2.19)
ﬂ r—sS — — = =
1 6O e g e < CCM0Aafo—of 401+ | Infa— 5|3,

e
¢1>0 |C |2
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Applying ([Z.19) above with fixed 0 < § < 1 and a large enough, we have
(2.20)

1
rBl\<r//C A1) = 501+ [1nfo o))
w1 >

(e~ Tt _ 1)1 (s, C)ldG.ds]
SCAJ/iM—sF@@®G+\mM—sm¥

|z—s] )
/ / ) TG 41607 £ (s, G\ dCdtds|
¢+1>0 |C*1|

< CAa(fH/ ‘LZ' - S‘_(l_%e)(l + “n‘x - S“)l+%6d‘9‘ < CAa<f>
0

The proof for (2.2]) is similar and simpler. Replacing s in (2.8]) by 0 and
denoting these terms as Hs, we write

bae T (K (F)(2,C) — K(£)(0,C)) dC
¢1>0 1
(2.21) — [ e T L+ 1+ H)AC
¢1>0 Cl

=: B} + By + B + Bj.
Using the fact

(2.22) \Hy| < Cla|?||flls, |HY| < Clz|?|| £]]s,
we have
|By + By <|Ifll« ba C_e Gt “la|Pd¢
(2.23) =0
< O f]l« Pa d¢ < Ol f]l«

(1>0 V(C)\Clll‘ﬁ

The treatment for Bj and Bj is similar, and therefore we present the case
for B] only. Changing the order of integration, we have

_ v,

, v,
Bi= [ gare il /C KGR = 1) 10, Cdcc
*1>

¢1>0 Cl

V(*) (C)w
_ / (T 10,0 ( / B(C,C)bare T dg) .
10 ¢1>0 1

Note that
1 20
(2.25) |pa—e
1

(2.24)

1 _vo, 1
(2.26) [pa—e 101700 < CoAa(=)-
G x
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By interpolation, we have

(2.27) | fa C—e it . < CA, ( )2 (14 |Inz|)z.

Combining (LI7), (m) (m 227), and ([2ZI8)), we have

228) || [ K¢, ¢ bame T dC 1 < COI0A,(2 >-%<1+|1nx\>%9
¢1>0 G1

Similar to ([2.20)), for fixed 0 < § < 1 and a large enough, we have

(2.29)

_vGs) o _ 1., 0
|B}| < CA, : 0<e Cal® = 1) £(0,6) (1 + (¢ )T Om ) (= )75 (1 + | Ina|)2fdc.
*1>

1_7 Cv) -l —h(6,v,a)
< CAL( (1+ [ Ina])2? 26 G (1 4 ) |£(0, G )| dCudt
ca>0 |Gl

< CAu(f)az2(1+|Inz|) 1+29 < CALf).

We still have to prove (2.9). We will present the proof for Hs only and
the one for Hy is similar. We will first present the following lemma

Lemma 2.2. If f € L? and 0 € (2+V, 1), then

(2:30 | e KR < C

The proof Lemma [2.2] follows the idea of the one of Lemma 4.2 in [I1].
We will present the proof at the end of this section to make this paper
self-contained.

With the Lemma above, we have

* J R C P
H = k * [Ctl K ,*d*d
|| |L /CO (€. CIe (F)(t, C)dCudt|

¢ 1w,y ,

C o1l K COI2de)Ed

231 % </C*l>0u¢*1‘e : (Nt COPdC.) 2 dt
< #(/c o o K (D) (L COPdC.) bt

|z — 1’ |G 2720w (¢4)

<Clz—s)'70 =Clz - s|°.

For ¢; < 0, we can yield a similar lemma. Together, we have
Lemma 2.3. Suppose f € L;O([O,l],LZ(]R?’)) is a solution to (LI9) with
Grad’s angular cut-off potential with 0 <y <1 and f(0,() € LE"(}R‘%) and
f(1,0) € LE(R*™). Then,

(2.32) |00 (z)] < C’(‘ In |ZE|‘ +1),
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(2.33) |0y0,, (z)] < C’(‘ In|l — :EH +1),

where

(2.34) oo () = bafdC, og () = Pafdg.

¢1>0 ¢1<0
Proof for Lemma[Z2 We observe

/ K f2d¢ = / < / B(C, G F(CR)dC / k<<,<’>f<<’>d<’> dc
(235) < ClIflly / £(C)] / B, G+ 1) G Vdcdc,
< Clfll.: / A+ Icx )~E20dc, < Clflllifll < CILFIR.

Together with (ILIT), we know |K f|> € L N L'. Interpolating between
these two inequalities, we have

(2.36) 11K fP |z < CJIf|Z for 1 < p < oo,
Therefore, we now only need to prove for some proper 0 < § < 1 and Holder
conjugate of p, p’ € [1, o0,

1
|G 720" |1 + |G )20
which yields the following condition:

(2.37) dds < o0,

(2.38) (2—20)p" < 1; (2—20+270)p > 3.

Such p’ exists if and only if

(2.39) 0 <1, 3(2—20)<2—20+ 240,

which concludes Lemma O

3. ASYMPTOTIC FORMULA

In the precious section, we obtain an upper bound for |0,0,/|, which di-
verges to infinity at boundary like a logarithmic function. Through the
analysis, we also localize the source of singularity, which is the contribu-
tion from the first term on the right hand side in (I.32]). In this section,
restricted to the inverse-power potential with angular cut-off, the goal is
to further single out and factorize the singularity and form an asymptotic
formula, i.e.,

Lemma 3.1. Suppose f(0,¢) € L, and Vf(0,() € L‘Z(R?’Jr). Then,

(3.1)
9 4. 1 el
axo-al T C1>O¢Q|C1|e <l L(f)(()aC)dC

o / / 600, o, G3)L(1)(0, 07, o, C3)dCadCs + O(Aalg)),
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where

(32) L(f)(07 0+7 C27 (3) = Clli—?é+ L(f)(07 (17 (27 (3)

Proof. If we change to spherical coordinates so that
¢ = (pcosh, psinf cos ¢, psinfsin @),

we have

o 4 oI LT 1 2 v, 5
3) =0t = st [(p, 0 0dfdepd
(3:3) 9zl /0 /0 /0 pcosf” rer (p, 0, ¢)p~sin ddp,

where

(3.4) Flp,0,6) = 710525 LI)(0,¢) =: g(C).

Further letting z = cos @, we obtain

o) 2 1 1 v 2
(3.5) EULZ/ / U —e” 02 "F(p,z,$)dz| e”'7 pdepdp,
8$ 0 0 0 <

where

(3.6) F(p,2,6) = Fp,cos™ 2,0).
Here, we introduce a well-know special function, exponential integral,
1
1 =
(3.7) Bi(x) = / L4,
0o <
The E1(x) has the following properties, [I:
1)k gk
(3.8) Ey(r) = —y - 1nm+§j k P
1, 2 . 1
(3.9) 3¢ In(1+ 5) < Ei(z) <e *In(1+ E) for z > 0.
From the properties above, we have
(3.10) Ei(x)=—Inz+0(1) ,for0 <z <1,
Let
1 v,
(3.11) H(z,x) = —/ —e Pudu.
L ou

_vip) .
Notice that %H(z, z) = Le o “and H(0,z) = El(@x). Performing
integration by parts for the inner most integral in (3.5]), we obtain

/o1 (%H(Z)> F(p,z,¢)dz

v(p)

1
(3.12) _ El(Tx)F(p= 0, %) _/0 H(z) <%F(P,Z,¢)> dz

11



The first term on the right hand side above is the source of singularity and
will be explained in detail later. We will prove the contribution from the
second term above is finite. Let

0 27 2
(313) 1= / E1<”(p) \E(p,0. 8% pdgdp.

(3.14)  II: _/ /%/ <83F P, 2, ¢)> dze~% pdodp.

Notice that

(3.15) |H(z,z)| <|lnz,
0 0 pz 0 pz 0
(3.16) aF(p,z,qﬁ)—paClg—i-\/l_—cosqﬁaC \/__smqﬁaCS
We have
(3.17)
27 02
1] < ( F(p, z, ¢)> dze_Tpdcbdp‘
27r
(/ Ol + o+ [ Tmal —glds) e 5 oy
<o, [ (1L<o O+ 2100l + \—L(O,o\) &
¢1>0 03
oo 2w % % 2
+ Aa / / (/ \1nzy‘1dz> </ \—L(O g);%:) e” T pPdodp)
0 0 0 0

wherep>1and%+%:1.
Let the second term on the right hand side above be I1’.

(3.18)

IIF|<</ /%(/ |lnz|qdz>espd¢dp> (/ /2W</0 _Lompdz)e% 2d¢dp>i'

0 , ;
< Cyda (/M% 0.0)Pe )

Therefore,

11 < CA, /

¢1>0

. (|L<o O+ I 20,01 + %Lw,cn) ac

(3.19)
pl¢)?

v p,— 2 g
+ CpA, </<1>0‘8C1L(0 ¢)|Pe d() ,

where p > 1.
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Using the assumption and (LI5]), we have
(3.20) (1] < CA([VF0, Ol 1z ey + 170, )
Finally, we are going to extract the singularity from 7. We let

(3.21) po = sup{p|%f))x > 1}.

We devided the domain of integration of I in ([BI3]) into two, 0 < p < po
and pyp < p, and denoted the integral as Iy and I; correspondently. Note
that if 0 < p < pg, then

(3.22) we), 5 %
P C1

Applying [B.9) , we have

(3.23) [Is| < CAL(f).-

Using the asymptotic formula (BI0]), We obtain
(3.24)

[e'e) 21 2
I =~ ln(a) / [ (p.0.0) % pdodp + O(aa )
£0o

. / / 60 (0, Co C3)L(F)(0, 0%, Ca. C3)dCads + O (Aalf)(1 + pi|In])) .

The remaining task is to estimate pg. If we assume x < %, then

v(po) (1+ po)

v 1 Y
(3.25) 1= 220 < ¢ p< LEP)”

PO Po 2po

If v =1, we see pg < 1. Observe that, for 0 < v < 0, p grows faster then
the $(1+p)Y as p — oo. Therefore, ([B.26) implies py < m for some m < cc.
Therefore, we have

(3.26) o veo), o Em
Po Po
We have
(3.27) lpiinz| < Cz?|lnz| < C
and conclude the lemma. (]

Finally, combining (22)) and (23] in Lemma 21} ([233]) in Lemma 23]
and Lemma [B.I], we concludes Theorem
13
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